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Abstract: two new species of genus Piper L. from Madagascar: Piper malgassicum 16 

and Piper tsarasotrae, were analyzed to investigate their phylogenetic position and 17 

evolutionary history. Both plastidial and nuclear markers were used for 18 

sequencing.  19 

The plastidial markers (ndhF and the trnL intron) showed a close relationship 20 

between the two species with respect to the other species of Piper. Both species 21 

appeared phylogenetically related to the African P. guineense and the 22 

Malagasian/Mascarenhas endemic P. borbonense. The nuclear marker (G3PDH) 23 

amplification produced two separate sets of sequences: “long” sequences, that 24 

could be easily translated into an amino acid chain, and “short” sequences, 25 

characterized by deletions that did not allowed to translate them correctly to an 26 

amino acid sequence. 27 

Analyzing together the nuclear sequences, we observed that the “long” sequence 28 

of P. tsarasotrae had a stricter relationship to the African accessions of P. guineense, 29 

while the accession of P. malgassicum was more strictly related to P. borbonense. On 30 

the contrary both “short” sequences of Piper malgassicum and Piper tsaratsotrae 31 

resulted phylogenetically related to Asian accessions and more distantly related to 32 

the formerly cited species. 33 

This unexpected result was tentatively explained with a more ancient hybridization 34 

event between an ancestor of P. malgassicum and P. tsarasotrae (and possibly P. 35 

borbonense) and an Asian species of Piper. The Asian contribution would have 36 

produced the ancestors of the “short” sequences that would eventually have lost 37 

functionality by deletions, becoming paralogs. A more recent hybridization event 38 

would have led to the separation of Piper malgassicum from Piper tsarasotrae with an 39 

African pollen-derived genome contribution from P. guineense or, more probably, 40 

an ancestor thereof, to an ancestor of P. tsarasotrae. 41 
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The chromosome numbers of P. tsarasotrae (2n = about 38) and P. malgassicum (2n = 42 

about 46), were more like the Asian species than to the American species. 43 

Unfortunately, no chromosome number of the African species P. guineense is 44 

currently available, to analyze eventual chromosomal connections. 45 

Keywords: Piper malgassicum, Piper tsarasotrae, Piperaceae, chromosomes, 46 

hybridization, DNA sequences, G3PDH, trnL, ndhF, Malagasy biodiversity 47 

 48 

 49 

 50 

1. Introduction 51 

Genus Piper L. (Piperaceae) is one of the largest genera of Angiosperms, with 52 

more than 2000 species [1]. Piper L. and hence family Piperaceae, were considered 53 

belonging to a basal group of angiosperms, the so called “paleoherbs” [2]. 54 

Piper is a pantropical genus developing highly variable growth forms [3], with 55 

the highest biodiversity in the American continent with a number of species 56 

ranging from 500 [4] [5], to 1100 [6], later increased to more than 1800 [7], many of 57 

them with a small distribution areal [1]. 58 

The separation of species is often tricky, due to the small dimension of the 59 

floral parts and hence the number of synonyms may be high [8], while other 60 

species tend to get naturalized [9]. While only two species are known as native of 61 

the African continent, P. guineense and P. capense, more species are known of 62 

Madagascar, even if some of them are known only for a single herbarium sample. 63 

The currently recognized species in Madagascar are P. heimii C. DC, P. 64 

pachyphyllum Baker and possibly P. borbonense (Miq.) C. DC., described for the 65 

island Île Bourbon, nowadays La Reunion [10], belonging to Mascarenhas Islands. 66 

However, its presence in Madagascar was affirmed by De Candolle [11] [12]. The 67 

fact that P. borbonense is cultivated makes more complex to understand its real 68 

distribution areal [13]. 69 

Piper malgassicum Papini, Palchetti, Gori, Rota Nodari and Piper tsarasotrae 70 

Papini, Palchetti, Gori, Rota Nodari, were recently described as new Malagasy 71 

species [13] and are of economic interest, since their dried fruits are often mixed 72 

with P. borbonense to produce the typical Malagasy spice called in local language 73 

“voatsiperifery” pepper. 74 

 75 

2. Materials and Methods 76 

The plants were collected by E. Palchetti and N. Gandolfi in two different areas of the 77 
Ambositra region in Madagascar: the first group belonging to the P. malgassicum type was collected 78 
into the tropical rainy forest of Vohiday and the second group, belonging to the P. tsarasotrae type 79 
in the semi-dry area of Tsaratsotra village. These plants were compared with the samples of P. 80 
tsarasotrae and P. malgassicum which have been used for the previous research [13]. Samples were 81 
conserved either in ethanol 96% either as herbarium sample by the ET (Tropical Herbarium of 82 
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Florence, CSET, https://www.bio.unifi.it). Some seeds were also germinated in Florence for 83 
karyotyping. The DNA used for this work was extracted from tissue conserved in ethanol 96% [14] 84 
[15]. 85 

DNA was extracted from 40 mg of the ethanol preserved leaves after drying under vacuum. 86 
The starting material was inserted in 2m L tube, together with tungsten carbide beads, frozen in 87 
liquid nitrogen and finely ground in a tissue homogenizer (Tissue Lyser ® , Qiagen). DNA was 88 
extracted using Invisorb Spin Plant Mini kit (Stratec molecular® ).  89 

Amplification of the trnL (UAA) intron (trnL) and the low copy nuclear gene glyceraldehyde 90 
3-phosphate dehydrogenase (G3PDH) followed respectively the protocols by Taberlet et al. [16] 91 
and Strand et al. [17]. Two new primer pairs were designed using the chloroplast genome sequence 92 
of Piper kadsura (GenBank: KT223569.1) as template to cover the entire NADH dehydrogenase F 93 
(ndhF) plastid gene:  ndhF-F3_forward 5’-AGGTTCTTATCGAGCCGCTT-3’ and reverse 5’-94 
GTAAGAAGAAATGCGCCCCC-3’ and ndhF-F10_forward 5’-CTTCGCCGTATGTGGGCTTT-3’ 95 
and reverse 5’-TCGACCAAAAGCAAGCAAGAG-3’. The amplicons have been directly and bi-96 
directionally sequenced by using the corresponding primers for each amplified sequence. Since 97 
direct sequencing of G3PDH showed fragments of extra peaked sequencing data, we proceeded 98 
with cloning with InsTAclone PCR Cloning Kit (Thermo Scientific® ) of the G3PDH amplification 99 
products. Several colonies for each cloned sample were amplified using T7 and SP6 primers whose 100 
sites are located at the boundaries of the cloning vector. PCR products were purified using the 101 
QIAquick PCR Purification Kit (Quiagen) and sent to the University of Florence internal sequencing 102 
service CIBIACI (www.cibiaci.unifi.it). Manual correction and assembly of the sequences was 103 
performed using the software programmes Multalin [18] and MEGA7 [19]. Unexpectedly, two 104 
DNA sequences were obtained, after removing the cloning vector fragments, showing a different 105 
size: 965bp and 1058bp which were named “short” and “long” sequences respectively. 106 

The sequences used during our investigation are available in Genbank: Piper tsarasotrae 107 
G3pdH long sequence (MH234634), G3pdh short sequence (MT793801), trnL (MH234638), ndhF 108 
(MH234636) and Piper malgassicum: G3pdH long sequence (MH234633), G3pdh short sequence 109 
(MT793800), trnL (MH234637), ndhF (MH234635).  110 

 111 
2.1. Phylogenetic analysis 112 

The DNA sequences were aligned with CLUSTALX 2.0 [20] and checked by eye for manual 113 
adjustment. The plastidial and the nuclear sequences were aligned separately to produce matrices 114 
that were later combined with the software combinex2_0.py (Python version 2.6.4; Biopython 1.57), 115 
by A. Papini, released under GPL license and available at 116 
www.unifi.it/caryologia/PapiniPrograms.html as implemented in Bandara et al. 2013 [21] and in 117 
Simeone et al. 2016 [22]. 118 

The phylogenetic analysis was executed on both cpDNA (ndhF and trnL) and nuclear 119 
sequences (G3PDH). Maximum parsimony analysis was performed with PAUP* 4.0b1 [23] [24]). 120 
The genbank sequences of P. humistratum Görts & K. U. were used as outgroups both in the nuclear 121 
and the plastid genes matrix, following the previous phylogenetic analysis by Smith et al. [9]: see 122 
(Fig. 1B). This species resulted in the sister clade with respect to the clade containing the species 123 
more relevant to the African species and the related clades. All characters had equal weight and 124 
unordered state transitions. Gaps were coded with the "simple indel coding" model [25], with the 125 
software Gapcoder [26] and added to the final matrix after the DNA sequences as in Papini et al. 126 
[27].  127 
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 128 

Figure 1. Maximum likelihood tree produced by RAXML with nuclear sequences. The supports above 129 
or below the branches are, respectively, the bootstrap resampling support with maximum likelihood 130 
criterion produced by RAXML, and the bayesian support calculated including the information 131 
derived from indels. In case the bayesian support is lower than 50, it is not indicated on the figure. 132 

 133 

The evolutionary model implemented in Mrbayes for treating gaps was the same as that 134 
proposed by Lewis et al. [28] for treating morphological data, the Mk model. 135 

We used MrMODELTEST 2.0 [29] to choose the best evolutionary model of DNA sequences 136 
on the basis of the Akaike information criterion [30]. The best model was used as settings with 137 
MrBayes 3.2.7 [31] for Bayesian Inference. A maximum likelihood (ML) phylogenetic analysis was 138 
carried out with RaxML [32] and the resulting trees were edited with Figtree [33]. We mapped the 139 
support on the tree branches with the results of the Bayesian phylogenetic analysis after removing 140 
the first trees with low likelihood values as "burn-in", as in Papini et al. [34], [35]. The remaining 141 
trees were used to produce a 50% majority-rule consensus tree in which the percentage indicated 142 
on branches was used as a measure of the Bayesian posterior probability. 143 

 144 
2.2. Karyological analysis 145 
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Chromosomes images were obtained from somatic mitoses recorded from root tips of only one 146 
plant living in a pot. The procedure was the same as in Mosti et al. [36] and Mousavi et al. [37], with 147 
a pretreatment in 8-hydroxichinoline and fixation in Carnoy. Then the material was hydrolyzed in 148 
Hcl and then stained with Lacto-propionic-orceine. 149 

We observed metaphase plates of meristematic cells, with the technique of fresh squashes of 150 
root tips. Chromosome counts were made during direct observations with the microscope, and later 151 
recounted on enlarged digital images. Images were recorded with a microscope Leica DM RB Fluo. 152 

 153 

3. Results 154 

Amplification of the plastid fragments ndhF and trnL intron was carried on and the 155 

amplicons correctly sequenced producing reads of 1860 bp and 920 bp, respectively. 156 

Cloning of the amplicon of the nuclear gene G3pdhG3PDH of P. malgassicum and P. 157 

tsarasotrae allowed to isolate two haplotypes, which were named after their size of 158 

1058 bp “long” and 965 bp “short”, even if the difference in length was little (93bp). 159 

We used a total of 71 sequences, both for the G3PDH and the plastid sequences 160 

matrix. The total alignment of the G3PDH region was 1127 nucleotides long 161 

including gaps. The final parts of the sequences were very variable and hence the 162 

alignment was ambiguous. For this reason, we excluded the characters from position 163 

957 to 1127. The rest of the alignment was used for indels (gap) coding (with the 164 

software gapcoder), resulting in further 99 characters that were inserted after the 165 

nucleotide sequences. The plastid genes ndHF and trnL were inserted one after the 166 

other in the sequence, producing an aligned matrix of 2016 characters. The coding 167 

of indels resulted in further 115 characters. 168 

RAxML applied on the nuclear G3PDH matrix (indels coding excluded) produced a 169 

maximum likelihood tree with bootstrap support obtained with 1000 replicates (Fig. 170 

1). The support on branches corresponds to maximum likelihood bootstrap support 171 

(left) and Bayesian support with gaps (on the right). 172 

The same method was using for the plastid matrix (Fig. 2).  173 
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 174 

Figure 2. Maximum likelihood tree produced by RAXML with chloroplast sequences. The support 175 
indexes indicated on the tree are the same as in Fig. 1 (maximum likelihood bootstrap and bayesian 176 
support). 177 

 178 

Comparing the two maximum likelihood trees, the one based on nuclear DNA data 179 

(G3PDH sequences) and that obtained with plastid markers, we could observe that 180 

in the first case the two entries corresponding to two different populations of P. 181 

malgassicum, clustered together and as sister group of P. borbonense  (Fig. 1), another 182 

species from the La Reunion Island, which lies relatively close to Madagascar. This 183 

relationship is corroborated by 100% maximum likelihood bootstrap (MLS) and 184 

bayesian (BS) support. The other Malagasy species, P. tsarasotrae, typical of arid 185 

forest, was more strictly related to the entries of the African species P. guineense, with 186 
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100% MLS and 100% BS. All these species formed a well characterized clade with 187 

89% MLS and 100% BS and their closest species appeared to be Asian species P. 188 

caninum, (Fig. 1). The BS without considering gaps coding gave the same support in 189 

this clade (Fig 1 suppl. mat.). 190 

The “short” sequences of G3PDH of both P. tsarasotrae and P. malgassicum clustered 191 

together within a group of Asian species, mainly originating from Malaysia and 192 

Australia with 98% MLS and 100% BS (Fig. 1).  193 

The (phylogenetic) story told by the data obtained from chloroplast genome 194 

sequences was quite different: the Malagasian species P. tsarasotrae and P. 195 

malgassicum clustered together with the phytogeopraphically close P. borbonense 196 

with 90% MLS and 100% BS, while the 5 accessions of the African P. guineense were 197 

in a more external condition with respect to the former group and separated in two 198 

groups, one from Cameroon (NW Africa) and one from Uganda/Kenya (Central-199 

East Africa). All these species together formed a monophyletic group with 64% MLS 200 

and 96% BS (95% bayesian support in the analysis without gaps). Also in this case P. 201 

caninum, together with P. rothianum, was the outgroup to the African + Malagasy 202 

species (Fig. 2) with 80% MLS and 98% BS (99% without gaps). 203 

The counted chromosome numbers varied from 2n=46±2 in P. malgassicum (Fig. 3A) 204 

to 2n=36± 2 in P. tsarasotrae (Fig. 3B). The uncertainty in the counts, that should be 205 

taken only as preliminary result, derived from the small dimension of the 206 

chromosomes (many of them less than 1 μm of length), the low amount of 207 

metaphases in the root tips of the plants cultivated in Florence and the apparently 208 

small dimension of the mitotic spindle, leading to partial overlapping of many of the 209 

small chromosomes. 210 

 211 
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Figure 3. Chromosomes. A)  P. malgassicum number of chromosomes: about 2n = about 46. Bar = 5 212 
μm; B) P. tsarasotrae: 2n = about 38. Bar = 5 μm. 213 

 214 

4. Discussion 215 

The fact that the phylogenetic history based on the chloroplast markers told a 216 

different tale with respect to the tree produced with nuclear markers may be 217 

explained with a possible ancient hybridization/introgression event with pollen 218 

coming from an ancestor of the African P. guineense and reaching the ancestor of P. 219 

tsarasotrae, that would hence share some part of the nuclear genome with the African 220 

species. The only species of Piperaceae analyzed under the point of view of the type 221 

of plastid inheritance was a species of Peperomia, resulted only with maternal 222 

plastidial inheritance [38]. The presence of the short G3PDH sequences among the 223 

nuclear DNA sequences may be related to a still more ancient hybridization event 224 

involving the ancestor of the Malagasy species and some ancestor of Asian origin, 225 

also in this case probably with Asian pollen entering in contact with the ancestor ś 226 

stigma of the Malagasian species. As a matter of fact the closest relatives to the 227 

African species sensu lato (including the Malagasy and the Reunion species) are 228 

Asian, with the closest species (among those here sampled) apparently from 229 

Malaysia (see Figg. 1 and 2).  230 

The preliminary results about the chromosome numbers scored about 2n=46+-2 in 231 

P. malgassicum and 2n=36+-2 in P. tsarasotrae. The uncertainty in the counts was due 232 

to the small dimension of the chromosomes that were observed in most of the species 233 

of the genus, together with stickiness [39], the low amount of metaphases in the root 234 

tips of the plants cultivated in vitro and the apparently small dimension of the 235 

mitotic fuse, leading to partial overlapping of many of the small chromosomes. The 236 

mitotic spindle can reach dimensions up to 60 μm [40]; [41], while in P. malgassicum 237 

and P. tsarasotrae it was about 15-20 μm (see Fig. 3). 238 

Apparently interspecific hybrids can be obtained in genus Piper also experimentally 239 

[42], while the hybrid origin of several Andean species was already proposed by 240 

Quijano-Abril et al. [1].  241 

The chromosome numbers in genus Piper are very variable, ranging from 2n=26 to 242 

2n=104, with some species apparently able to possess several possible chromosome 243 

numbers [39]. Most new world species show a karyotype of 2n=26, while in Asia 244 

tetraploids 2n=52 would prevail [39], while no data was available for African and 245 

Malagasy species up to the here presented results. However, the clear difference in 246 

karyotype between P. tsarasotrae and P. malgassicum, two species otherwise strictly 247 

related may confirm a possible hybridization/introgression event with a species with 248 

a different chromosome number with respect to the ancestor of the Malagasian 249 

species.  250 
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5. Conclusions 251 

The surprising discrepancy between the nuclear and the plastid phylogeny could be 252 

explained with an ancestral introgression event due probably to pollen contribution 253 

from an ancestor of the African mainland P. guineense towards the ancestor of P. 254 

tsarasotrae. The presence of paralogs of the nuclear gene G3PDH, clustering together 255 

with more distantly related Asian species lead to the hypothesis that a second more 256 

ancient hybridation/introgression event would have occurred between south Asian 257 

species and the ancestor of the Malagasian species. The chromosome numbers 258 

observed in the Malagasian species would confirm different evolutionary history. 259 

Further studies about the karyotypes of the Malagasy species, P. guineense and P. 260 

borbonense will be necessary together with the investigation of the possible presence 261 

of short sequences in P. borbonense. 262 

 263 

 264 

 265 

 266 

  267 
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