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Abstract: Retinitis pigmentosa (RP) clinically and genetically heterogeneous group of inherited
retinal disorders (IRD) that result in retinal degeneration. This study aimed to identify the genetic
findings of patients with autosomal recessive retinitis pigmentosa (arRP). Whole exome sequencing
(WES) was performed in two unrelated Pakistani families underlying arRP. Data analysis and
mutation screening was performed for all the known RP genes following bi-directional Sanger
sequencing to determine whether any of the candidate variants co-segregated with the disease
phenotype in the families. WES data analysis revealed a novel homozygous missense variant
(c.1274T>C) in the in Tubby like Protein 1 (TULP1 NM_003322.6) gene in family 1 and a novel
homozygous frameshift variant (c.351delC) in the retinoid isomerohydrolase 65 (RPE65
NM_000329.3) gene in family 2. The identified variants perfectly co-segregated with the disease
phenotype within the families. Our results strongly suggest that mutations in TULP1 and RPE65 are
responsible for the retinal phenotype in the affected individuals. These mutations will increase the
mutation spectrum of these genes; furthermore, it will enhance our knowledge and understanding
of the underlying molecular mechanisms of retinitis pigmentosa.
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1. Introduction

Retinitis pigmentosa (RP, OMIM: #268000) is a progressive, clinically and genetically
heterogeneous group of inherited retinal disorders that result in retinal degeneration [1, 2]. RP
affecting about 1:3500-1:5000 people worldwide [1]. Typical clinical features include night blindness
during adolescence, side vision during early adulthood, and central vision in later life. The first
symptom is progressive night blindness because of the progressive loss of rod and cone
photoreceptor cells [2]. Due to rod dysfunction, a gradual loss of the peripheral visual field is
followed by a drop in visual acuity due to secondary cone degeneration. RP is classified as non-
syndromic RP and syndromic RP. About 20-30% of RP patients have other symptoms, and such cases
belong to more than 30 different syndromes [3]. RP is a highly heterogeneous disorder and more than
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80 genes are associated with non-syndromic RP [4]. RP can be inherited as an autosomal dominant
(AD), autosomal recessive (AR), and X-linked form [1-4]. However, other forms of inheritance
patterns such as mitochondrial and digenic RP have also been described in the literature [5]. Advance
technologies such as next generation sequencing (NGS) including whole exome sequencing (WES),
whole genome sequencing (WGS) and targeted next generation sequencing (TNGS) have identified
various genetic causes for human RP.

In this article, we describe two consanguineous Pakistani families having hallmark features of
RP. Using WES followed by Sanger sequencing, we found a novel homozygous missense variant
(c.1274T>C; p.Ile425Thr) in Tubby like Protein 1 (TULP1 NM_003322.6) gene in family 1 and a novel
homozygous frameshift variant (c.351delC; p.Argl18Glyfs*9) in retinoid isomerohydrolase 65
(RPE65 NM_000329.3) gene in family 2 respectively. Both variants perfectly segregate with disease
phenotype in all the families members. These finding suggests that TULP1 and RPE65 have an
essential function in maintaining adult photoreceptors in human, and also supports the hypothesis
that diverse clinical phenotypes can be caused by mutations in the same gene

2. Materials and Methods

2.1. Human Subjects

In the current study, the total number of 16 individuals from two large unrelated Pakistan
families was studied. Ten of them had an initial diagnosis with non-syndromic RP. All patients and
their families were clinically examined by an ophthalmologist at local hospitals in Pakistan.
Comprehensive eye examinations were performed, including visual acuity (VA) and fundus
photography. RP diagnosis was confirmed in patients with night blindness, progressive visual field
constriction, poor VA in advanced stages and fundus examination [6].

2.2. Ethical Approval

Written Informed consent for genetic testing and publication of these reports were obtained from
all participating individuals. This study was approved by the Ethical Review Committee (ERC) of
Peking Union Medical College (Beijing, China), China Medical University (Shenyang, China). ) and
followed Helsinki protocols. All experiments were conducted in accordance with ethical principles.

2.3. DNA Extraction and Quantification

Fresh peripheral blood samples were collected from 7 individuals (4 males and 3 females) of
family 1 and 9 individuals (4 males and 5 females) of family 2 (Figure 1 A-B) in
ethylenediaminetetraacetic acid (EDTA) vacutainers tube. Genomic DNA was extracted from
peripheral blood using the QIAquick DNA extraction kit (Qiagen, Hilden, Germany) and quantified
using the Nanodrop-2000 spectrophotometer (ThermoFisher Scientific, Waltham, MA, USA).

2.4. Library Preparation and Whole Exome Sequencing

Library preparation and whole exome sequencing was performed using the Ion Proton Machine
as described previously [7]. The library was prepared using lon AmpliSeq Library Kit 2.0 (Life
Technologies). Whole exome oligos were used to capture the target regions followed by PCR
amplification. The PCR conditions were 99°C for 2 minutes, followed by 18 cycles of 99°C for 15
seconds and 60°C for 8 minutes. The primer sequences were partially digested with FuPa reagent.
The library was encoded with the Ion Xpress barcode adapter. Magnetic beads were used to purify
the resulting libraries. Finally, the Ion PI chip is used for sequencing by the Ion Proton Machine.

2.5. Data Processing

Sequence data was converted from raw data to the FASTQ file, aligned to the GRCh37/hg19
reference sequence. Genotyping of multiple allelic substitutions were performed by Torrent Variant
Caller (version 4.4.3). Functionally variants were annotated with ANNOVAR
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(http://www.wannovar.usc.edu/). Bam files were visualized with Integrative Genome Viewer (IGV,
http://www .broadinstitute.org/igv/). Variant frequencies were determined with Exome Variant
Server (http://evs.gs.washington.edu/EVS/), GhomAD (https://gnomad.broadinstitute.org), and 1000
Genomes (http://www.1000genomes.org/). To identify pathogenic variants in the RP patients, we first
focused on the known disease-causing genes for RP [OMIM, https://www.omim.org/]. As the
pedigrees depicted recessive inheritance pattern thus preference was given to the functional
homozygous or compound heterozygous variants, including nonsense variants, missense variants,
frameshift indels and splice site variants.

2.6. In-Silico Analysis

For functional effect prediction, the identified variants was subjected to different bioinformatics
tools such as Polyphen-2 (http://genetics.bwh.harvard.edu/pph2/), Sorting Intolerant from Tolerant
(SIFT, http://sift.jcvi.org/) , Protein Variation Effect Analyzer (PROVEAN, http://provean.jcvi.org) ,
Mutation Taster (http://www.mutationtaster.org/) , Varsome (https://varsome.com/) , Mutation
assessor (http://mutationassessor.org) , and Combined Annotation Dependent Depletion (CADD,
https://cadd.gs.washington.edu/). Finally, for the interpretation of variants, the American College of
Medical Genetics and Genomics (ACMG) 2015 guidelines were used [8].

2.7. Candidate Genes Sequencing

Genomic sequences of the detected mutations were retrieved from the University of California,
Santa Cruz (UCSC) genome database browser (https://genome.ucsc.edu/). Primer 3 software
(http://primer3.ut.ee/y was wused for primer design (TULP1; Forward Primer: 5'-
GCTCAGGGAGTTGGCTATTT-3" Reverse Primer 5-CTGGCAGCTGTGATCTATGT-3', RPE65; 5'-
CTGTGTCCCACCTGCTTAAT-3" and Reverse Primer 5- GGATTGCTCCTGTCTATACTCTTC-3")
and Sanger sequencing was performed to validate the candidate variants in the affected and normal
individuals in both families members. Chromas Lite (http://technelysium.com.au/wp/) and Codon
Code Aligner (https://www.codoncode.com/aligner/) software was used to visualize the
chromatograms and identify the sequence variant (Figure 1E and 1F).

2.8. Protein Modeling and Conservation Analysis

The amino acid sequence of TULP1 and RPE65 encoding protein was retrieved from UniProt
database (https://www.uniprot.org/) with accession number 000294-1 and Q16518-1 in FASTA
format. The 3D modeled structure of the TULP1 and RPE65 proteins for wild and mutant type were
prepared using homology modeling in SWISS-MODEL (https://swissmodel.expasy.org/). Structure
visualization, measurement of distance, mutagenesis analysis and residue interaction networks to the
protein function were performed with the different bioinformatics software’s as described previously
[9, 10]. The amino acid sequences alignments from different species were downloaded from UCSC
genome database browser (https://genome.ucsc.edu/). The sequence alignment was performed with
default parameters using Molecular Evolutionary Genetics Analysis (MEGA) software
(https://www.megasoftware.net/) (Figure 2).

3. Results

3.1. Clinical Features

Affected individuals of these families initially presented symptoms such as night blindness but
subsequently experienced a gradual daytime vision loss. All affected individual from both families
was examined by local an ophthalmologist at District Head Quarter (DHQ) Teaching Hospital Bannu
(THB), Pakistan.

3.2. Family 1
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The members of family 1 live in the Bannu districts of Khyber Pakhtunkhwa Province of Pakistan
and the parents are first cousins. Family 1 has four affected individuals (V-1, V-6, V-9 and V-11)
having typical features of autosomal recessive RP (Figure 1A). The family’s medical history,
pregnancy and delivery were uneventful. Parents of the affected individuals were physically and
mentally normal and healthy. All affected individuals (V-1, V-6, V-9 and V-11) showed congenital
cataract on both eyes, poor vision with night blindness before ten years of age. At the time of clinical
examination their age was ranged from 24 to 40 years. Their clinical features include low visual
acuity, night blindness, nystigmous, strabismus and progressive loss of vision. The proband (V-1) in
this family had congenital cataract which was surgically removed at the age of two year, with no
secondary implantation of an intraocular lens and at the age of 8, he gradually reduced eyesight.
Fundus examination revealed typical bone-spicule deposits on the periphery and also exhibited
attenuation of retinal vessels (Figure 1C). Other clinical features such as intelligent quotient (IQ),
height, cardiac, respiratory, skeletal hearing, nose, teeth, nails, skin and hair were observed normal.

3.3. Family 2

Family 2 also originates from the Khyber Pakhtunkhwa province of Pakistan. The family
comprises four affected individuals (IV-3, IV-4, IV-10 and IV-11), indicating an autosomal recessive
inheritance. All four patients had congenital RP. Last clinical examination, at 38, 40, 42, 46 and 48
years of age for IV-3, IV-4, IV-10 and IV-11, respectively, revealed severe retinal dystrophy, large-size
eyes, night blindness, low visual acuity and congenital nystagmus. Prenatal, perinatal and neonatal
medical records of all patients were normal. The fundus photographs of the proband (IV-6) show
vascular attenuation, peripheral bone spicule pigmentation, accompanied by salt and pepper-like
changes, and signs of maculopathy with a yellow perifoveal ring in both eyes (Figure 1D). No cardiac,
respiratory, skeletal skin and hearing anomalies were observed. Their vision and was normal.
Additional clinical information of the affected individuals is summarized in Table 1.

Table 1. Clinical features of two consanguineous Pakistani RP families.

Clinical Findings Family 1 Family 2
Gender Female Male Female Male Female Male Female Female Male
Age (Years) 24 30 36 40 38 40 42 46 48
Height
. . L. 16lcm 168cm  167cm  164cm 162cm 170cm 165cm 169cm 174cm
(at time of examination)
(at time ZZZ;iI:;ina dom k& 7kg B8lkg 9kg  84kg  %6kg  68kg 7kg  97kg
Night blindness + + + + + 4 + + +
Retinal dystrophy + + + + + + + + +
Macular degeneration + + + + + 4 + + +
Pigment deposit + + + + + + + + +
Pale optic disc + + + & + + + 4 I
Large eyes + + + + + + + + +
Strabismus + + + + + + + + +
Nystagmus + + + + + + + 4 +
Visual acuity + + + + + + + + o

Developmental delay
Intellectual disability
Microcephaly
Macrocephaly

Speech anamolies - - - - - - - - -
Learning disability - - - - - = - - -
Behavior problem - - - - - - - - ;
Psychiatric disorder - - - - - = 5 - -

Skeletal problem - - - - - - - - R
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Skin problem - - - - - = = - -
Epilepsy - - - - - - - - -
Muscular dystrophy - - - - - - = - -
Self-care + + + + + + + + +

Cardian anamolies - - - - = - - - -
Hearing loss - - - - - - - - -
Teeth anamolies - - - - = - - - -
Limb defect - - - - - - - - -

+, present;-, absent.

3.4. Genetic Findings

Molecular analysis revealed a novel homozygous missense variant (c.1274T>C; p.Ille425Thr) in
the TULP1 gene in family 1 (Figure 1E) and a novel homozygous frameshift variant (c.351delC;
p-Argl18Glyfs*9) in the RPE65 gene in family 2 (Figure 1F). These variants (TULP1: c.1274T>C;
p-lle425Thr and RPE65: ¢.351delC; p.Argl18Glyfs*9 perfectly segregated in respective families.
Affected individuals (V-1, V-6, V-9 and V-11) in family 1 and family 2 (IV-3, IV-4, IV-10 and IV-11)
were homozygous whereas unaffected individuals in both families were heterozygous carriers or
homozygous normal for the variants. The identified variants were absent in the GnomAD
(https://gnomad.broadinstitute.org), and 1000 Genomes (http://www.1000genomes.org/), dbSNP
(http://www.ncbi.nlm.nih.gov/SNP/), HGMD (http://www.hgmd.cf.ac.uk/ac/index.php) and 200
ethnically matched control individuals (Table 2).

Table 2. Genotyping in RP patients’ variants of the two families.

Category Family 1 Family 2
Gene TULP1 RPE65
Chromosome chr6 chrl
Cytogenetic location 6p21.31 1p31.3 - 1p31.2
GRCh37 chr6: 35465651-35480673 chrl: 68894505-68915637
Ge“banlil;ransmpt NM_003322.6 NM_000329.3
Ensembl transcript ID ENST00000229771 ENST00000262340
Zygosity Homozygous Homozygous
Variant type Missense variant Frameshift variant
DNA changes c.1274T>C c.351delC
BP chr 6: 35471385 chr 1: 68910461
Exon 13 4
Predﬁ:ﬂgﬁ’teln p.lle425Thr p.Arg118Glyfs*9
ExAC NA NA
1000G NA NA
HGMD NA NA
gnomAD NA NA
dbSNP NA NA
Mutation Taster disease causing disease causing
PolyPhen2 probably damaging; score 0.999 NA
SIFT Score 0.004 NA
PROVEAN Score Damaging; -4.64 NA
REVEL score 0.964 NA
CADD 28 NA
GERP++ 5.16 NA
Human Splicing No significant splicing motif alteration ~ Alteration of the WT donor
Finder detected. site,
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most probably affecting
splicing.

The TULP1 (c.1274T>C) mutation changes a highly conserved isoleucine into threonine (Figure
2A), which is predicted to be pathogenic by different computational algorithms. Orthologous protein
sequence alignment shows that the region is highly evolutionarily conserved (Figure 2B, C). Mutant
tertiary structure generated by Swiss-model predicts that a change from isoleucine to threonine at
amino acid position 425 may have a negative downstream effect on iron coordination (Figure 2D).
The RPE65 (c.351delC; p.Argl18Glyfs*9) mutation is predicted as disease causing using different
analysis tools (Table 2). The putative read-through protein is 408 amino acids shorter than the wild
type RPE65 protein. The RPE65: ¢.351delC; p.Argl18Glyfs*9 mutation is predicted to bring out
anticipatory nonsense-mediated mRNA decay (NMD) and triggering the prevenient degradation.
Swiss-model predicts mutant tertiary structure is a single-base deletion at base position 351. It causes
significant perturbations for effecting downstream iron coordination and structure of palmitic acid;

producing truncated proteins (Figure 2E).
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Figure 1. (A, B) Pedigree of families 1 and 2 exhibiting autosomal recessive inheritance pattern. (C)
Fundus appearance of affected individual (V-6) from family 1 showing attenuation of retinal vessels
with typical bone-spicule deposits on the periphery. (D) Fundus images of affected individual IV-6 of
family 2 (right and left eyes). The photographs show vascular attenuation, peripheral bone spicule
pigmentation, accompanied by salt and pepper-like changes, and signs of maculopathy with a yellow
perifoveal ring in both eyes. (E) Sanger sequencing electrograms of Family 1 (Wild type, heterozygous
carriers and affected individuals) having missense variant (c.1274T>C) in the TULP1 gene. (F) Sanger
sequencing electrograms of Family 2 (Wild type, heterozygous carrier and affected individuals)
having frameshift variant (c.351delC) in the RPE65 gene.
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Figure 2. Protein alignment with location of the TULP1 and RPE65 variants. (A) Amino acid
alignment of TULP1 and RPE65 orthologues. The amino acid sequences from different species were
downloaded from UCSC (https:// http://www.genome.ucsc.edu/). The alignment was performed with
default parameters in the MEGA software. (B, C) Amino acid sequences deduced from the nucleotide
sequences from different species were downloaded from the National Center for Biotechnology
Information (NCBI) (https://www.ncbi.nlm.nih.gov/). (D, E) Wild type and mutant type of TULP1 and
RPEG5 tertiary protein structures generated by Swiss-model (https://swissmodel.expasy.org/).

4. Discussion

RP belongs to the group of pigmentary retinopathies, which is characterized by retinal pigment
deposits visible on fundus examination and primary loss of rod photoreceptor cells followed by
secondary loss of cone photoreceptors. Patients typically have night blindness and loss of mid-
peripheral visual field. As their condition progresses, they lose their far peripheral visual field and
eventually central vision as well.

Herein, we describe two unrelated consanguineous Pakistani families suffering from arRP. The
entire patients have night blindness with progressive loss of day time visions. By whole exome
sequencing (WES) following, we found a homozygous missense variant (c.1274T>C; p.lle425Thr) in
family 1 in TULP1 and a novel frame shift variant (c.351delC; p.Argl118Glyfs*9) in RPE65 gene in
family 2. Both genes (TULP1 and RPE65) are previously described in human as well as in knockout
animal models that cause similar RP disease [11-14].

TULP1 is a protein coding gene and a member of the tubby-like gene family (TULPs), encoding
tubby-like protein 1 with a cytogenetic location of 6p21.31. It consists of 15 coding exons spanning a
15 kb region and encodes for a 542 amino acid protein, associated with rhodopsin from synthesis site
in the inner segments through the connecting cilium to the outer segments [15]. The TULP protein
shares a highly conservative C-terminal region containing approximately 200 amino acid residues
[16]. It is important for photoreceptor triggering, associating with functional photoreceptor and
photoreceptor cells long-term survival [17]. Binding lipids in vitro contribute to the stimulation of
phagocytosis of apoptotic retinal pigment epithelium (RPE) cells and macrophages. The variant
identified in our patients are located at tubby-like domain (292 to 542aa) of TULP1 protein that might
alter the protein function. Previous reports and literature highlighted that mutation in this domain
can lead to arRP and Leber congenital amaurosis (LCA) disease [18-20]. Gene Ontology (GO)
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annotations of TULP1 include actin filament binding and G-protein coupled photoreceptor activity.
To date, about 88 mutations has been reported in human gene mutation database (HGMD,
http://www.hgmd.org) (Supplementary table 1) in the TULP1 gene associated with RP and LCA
disease. Previous studies showed that TULP1 mutations is associated with different disease such as
retinitis pigmentosa 14 (OMIM 600132) and leber congenital amaurosis-15 (OMIM 613843) [15, 21-
23].

RPE65 is an isomerohydrolase highly expressed in retinal pigment epithelium and is important
for the regeneration of the visual pigment for both rod and cone-mediated vision. Mutations in
human RPE65 cause LCA and other forms of arRP which are associated with early-onset blindness.
Several RPE65 animal models have been thoroughly characterized to determine the mechanisms that
underlie RPE65 associated retinal dystrophies [24]. RPE65 has two forms of regulatory proteins, a
soluble form (sRPE65), and a palmitoylated, membrane-bound form (mRPE65) that playing a role in
the inhibition of 11-cis retinal synthesis. The sRPE65 binds vitamin A (all-trans-retinol), making it
active for LRAT processing to all-trans-retinyl ester; while the mRPE65 protien binds all-trans-retinyl
esters, making them available for IMH (isomerohydrolase) processing to all-cis-retinol [29-32]. A
homozygous missense mutation (p. Pro363Thr) in the RPE65 was identified for the first time in
Germany patient causing autosomal recessive childhood-onset severe retinal dystrophy (arCSRD)
[27]. Affected individuals in family 2 carry a novel homozygous frameshift variant (c.351delC;
p-Argl118Glyfs*9) in RPE65 gene. Various prediction tools indicating that this alteration might disrupt
the protein function leading to RP. RPE65 gene is located on chromosome 1p31.3 - 1p31.2 and contains
14 exons spanning 21 kb region. It encodes a 533 amino acid protein, which is located in the retinal
pigment epithelium [25, 26]. RPE65 GO annotations include retinal isomerase, all-trans-retinyl-ester
hydrolase, and 11-cis retinol forming activity. Study has shown that RPE65 plays an important role
in the production of 11-cis retinal and visual pigment regeneration [28]. To date, 144 different types
of mutations such as missense and nonsense (59), splice site (31) and frame shift (27) in RPE65 gene
have been reported in human gene mutation database (HGMD, http://www.hgmd.org)
(Supplementary table 1) causing RP and LCA phenotypes. Previous study described that genetic
alteration in RPE65 can cause Leber congenital amaurosis type 2 (LCA2, OMIM 204100), retinitis
pigmentosa 20 (OMIM 613794), and Retinitis pigmentosa 87 (OMIM 618697) with choroidal
involvement [28].

In conclusion, the present study further supports previous findings that bi-allelic alteration in
TULP1 and RPE65 genes cause arRP. Moreover, our molecular findings through WES expand the
knowledge on genotype-phenotype correlations in arRP related to TULP1 and RPE65 variants in
Pakistani population.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: HGMD
reported mutations in TULP1 gene with associated disorders, Table S2: HGMD reported mutations in RPE65 gene with
associated disorders
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