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Abstract: The generation of vortices around bridge piers can lead to removal of riverbed materials 

from around piers, especially during flood events and heavy rainfalls, which can compromise the 

stability of the bridge and consequently its failure, if not properly detected and mitigated. Bridge 

failures pose serious threats to the local socio-economic and public safety and can cost lives. As 

such, real-time monitoring and early warning systems for scour -induced bridge failure can serve as 

a vital tool to protect the community and civil infrastructure against disastrous events. Vibration-

base monitoring of bridge scour is an attractive option due to its low cost and relatively easy 

installation without the need to block the road and close the bridge to traffic. While limited number 

of previous studies have shown the capabilities of acceleration-based monitoring techniques in this 

area of research, they generally lack a rigorous framework for data analysis within and relating 

those to evaluate scour. This paper is an attempt to provide such framework that would enable a 

fast and low-cost analysis of vibration data within a physical modelling study on a simplified bridge 

pier. To achieve this, three experiments were conducted on an ideal single-pier scaled model bridge 

in a hydraulic flume, where water flows at a velocity near the critical velocity for the sand bed which 

in turn generates a scour hole around the pier. Then, the vibration data recorded using two mounted 

wireless accelerometers, were used to conduct an operational modal analysis through which the 

natural frequencies are extracted. The extracted natural frequencies and measured scour depths are 

then used to provide a chart that relates these two parameters. The results of this study showed the 

promising capability of the vibration-based data analysis in finding this relationship, indicating an 

up to around 30-50% reduction in natural frequencies as a result of around 50% scour ratio (ratio of 

maximum scour depth to buried depth), and beyond 50% scour  ratio the natural frequencies remain 

constant. While the data presented in this paper are preliminary, they clearly show a promising 

potential for application in real-time monitoring of bridge stability under the effect of local scour 

and further works are underway to enrich the experimental data and empower the proposed 

methodologies at the laboratory scale.  
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1. Introduction  

Bridges have a considerably large service life which sometimes reaches or surpasses 100 years, 

and their resilience against different and rare environmental conditions need to be carefully 

evaluated. Depending on the size and application of a bridge, its failure can pose a substantial threat 

to public safety and local infrastructures and civil services. Lagasse, Zevenbergen [1] estimated that 

in the United States, repairing damages induced by flood alone costs around $50 million per annum, 

and that overlooks the consequences of catastrophic bridge failures. In addition, it is estimated that 

the indirect costs caused by bridge restorations (e.g. long detour and lost production time) is about 

five times larger than the cost of bridge repair [2]. Cook, Barr [3] has conducted one of the most 
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comprehensive studies on bridge failure rates and found that the leading cause of bridge failure is 

scour, accounting for 60% of them. Scour is defined as the removal of the material from bed and banks 

of rivers as a result of erosive action of flowing water [4, 5]. Scours can be classified into three main 

categories of “natural scour”, “contraction scour” and “local scour” as depicted in Figure 1a [6]. 

Natural scour is the natural erosion of the streambed without obstacle due to natural variability of 

river stream flows and sedimentation regimes, and it takes place on a large scale on the riverbed [7]. 

Contraction scour occurs due to flow contraction when flow velocity increase as a result of reduced 

flow cross section (due to bridge abutments, for instance) and it usually takes place within the whole 

width of river stream. Local scour occurs due to a local concentration of turbulence generated by 

presence of objects (e.g., bridge piers and abutments) that obstruct the flow of w ater [8]. Local scour 

has a smallest influence zone compared to the other two scour types, but it occurs in the close vicinity 

of the structures and hence it is the most critical. Local scour is mainly caused by horseshoe vortices 

which is formed due to the downward hydraulic gradient in front of pier as a result of lower dynamic 

pressure near the bed surface [9]. This results in a downward flow towards the bed and the separated 

boundary layer rolls up to form a swirling vortex around the pier which then tr ails off downstream 

[10]. On the downstream behind the pier, the rotation in the boundary layer over the surface of the 

pile where shear layers originated from the sides of the pier roll up to form wake vortices [10]. The 

schematic of these vortices generated around the pier is illustrated in Figure 1b. The combined effect 

of the horseshoe and wake vortices leads to liquefaction of which allows the riverbed soil to be carried 

off with current and be deposited downstream which in turn creates a scour hole in  front of the pier 

and a deposit mound behind the pier  (Figure 1c). Development of scour hole will then reduce the 

stiffness of the bridge foundation which can lead to failure of piers [11].  

 

Figure 1. a) definition and general and local scours [8], b) schematic of local scour around cylindrical 

pier [12], and c) illustration of scour pattern around the pier with maximum scour depth definition, 

𝒅𝒔,𝒎𝒂𝒙 [after 13]. 

The formation and characteristics of the horseshoe and wake vortices in the vicinity of the bridge 

pier has been the subject of extensive experimental research over the last three decades [e.g. 14, 15-

21]. Despite the aforementioned studies along with other investigations, precise prediction of scour 

occurrence and its characteristics and its effect on structural stability of bridges is still difficult [11], 

mainly due to the spatial and temporal uncertainties associated with characteristics of water flow, 
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bed materials and structural mechanics and hence most of studies have employed empirical 

relationships or machine learning [22-27].  

The above-mentioned shortcomings with predictive approaches, therefore, highlight the 

importance of monitoring of bridges to assess their susceptibility to scour and scour -induced 

instability, which in turn can mitigate the potentially disastrous consequences of bridge failure such 

as the notable catastrophic events reviewed by Jones and Richardson [28]. Several studies have 

reviewed monitoring techniques for assessment of scour in bridge piers and abutment s [e.g. 7, 11, 29] 

and have compared their relative advantages and disadvantages and have found that vibration -based 

monitoring techniques showed promising potential as a cost -effective and precise solution to bridge 

scour monitoring. This is because sensors used in vibration-bases monitoring techniques are easy to 

install, non-intrusive, very accurate and durable and relatively cheap compared to other types of 

sensors such as Ultrasonic, TDR (Time Domain Reflectometry), capacitor, and wireless acoustic 

sensors [11]. However, as Wang, Yu [29] pointed out, the vibration-based modal analysis for bridge 

scour is still under development and needs further research. The shortcomings with the existing 

studies in this area is discussed below and then we explain how our innovative approach can 

overcome these issues.  

The vibration-based monitoring of structures is a topic of interest in many civil engineering 

applications and has recently gained a lot of attention for bridge scour detection. The overall response 

of a bridge is mainly governed by the soil-water-structure interactions [30] and understanding these 

interactions can be very complex as many parameters are involved. While predicting the dynamic 

response of bridges can be quite difficult, measuring the changes  in the dynamic characteristics is 

relatively straightforward. Accelerometers can be placed on bridge pier and their data can be used to 

detect fluctuations in dynamic characteristics of the bridge [31]. It has been shown that presence of 

scour hole can significantly change the dynamic response of a bridge pier and more specifically the 

natural frequency [e.g. 32]. Yao, Darby [32] conducted laboratory scale experiments in a flume, where 

they showed that the first three predominant natural frequencies of pier (PNF) reduced with 

increasing scour depth. Briaud, Yao [33] improved upon the previous study by studying the effect of 

shallow and deep foundation and detected a similar decreasing trend of PNF. Tserng, Ju [34] 

developed a physical model of 3-pier bridge under extreme flood condition and installed wireless 

accelerometer to record the vibration response of piers and calculated the natural frequency of each 

pier. Prendergast, Hester [31] and Bao, Liu [35] neglected the complex fluid–structure and fluid–soil 

interactions, and conducted experiments on a monopile without the effect of flowing water where 

the scour was artificially induced by removing soil from around the pile. They also found a 

decreasing trend for natural frequency as more materials removed fr om around the pile. These 

studies, however, only used a Fast Fourier Transform (FFT) on acceleration data induced by an 

impact hammer and then estimated the natural frequency  from the local maxima in FFT plots. Such 

method of data analysis cannot be easily  used for real world bridge environment with a broad range 

of ambient vibrations. Lin and Chang [36] used velocity sensors to record the dynamic response of 

piers in a hydraulic flume and to monitor the rigid body motion cause by scouring. However, they 

introduced an instability index as a diagnostic indicator to evaluate the susceptibility of the bridge to 

failure instead of a transient evaluation of natural frequency versus scour depth. Mao, Mazzotti [37] 

conducted field experiments on a bridge using impact hammer and employed an experimental modal 

analysis to calculate the modal parameters with the known input and output using the Frequency 

Response Function (FRF). The known input-output algorithms for estimation of natural frequency, 

require conducting impact tests on the bridge pier and hence cannot be used as a continuous  real-

time monitoring strategy.  

This paper aims to address the above-mentioned shortcomings with the studies listed previously 

to get a step closer to real-time monitoring of bridge pier scour. In order to achieve that, a physical 

model was developed where a hydraulic flume filled with sand as the riverbed to ensure the complex 

fluid–structure and fluid–soil interactions are properly considered (as opposed to studies without 

flowing water). A scaled single-pier model bridge was buried into soil and a controlled water flow 

established in the flume to allow steady-state flow-induced scour around pier. Accelerometers were 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 September 2020                   doi:10.20944/preprints202009.0049.v1

https://doi.org/10.20944/preprints202009.0049.v1


 4 of 18 

used to collect the acceleration data of the pier which were then analysed within a novel framework 

which allows fast Operational Modal Analyses (OMA) with unknown input  excitation and using 

acceleration data of output response through Frequency Domain Decomposition (FDD). FDD [38, 39] 

had a growing interests in structural health monitoring [e.g. 40, 41, 42]. However, its application in 

bridge scour identification is limited [e.g. 43] and FFT-based identification of PFN is widely used [e.g. 

11, 44, 45], despite its prospects for real-time modal identification.  

This paper provides new experimental dataset that gives invaluable insights on the evolution of 

scour hole under clear-water conditions, while the framework used for data analysis allows the 

estimation of PNF which can then be related to the measured scour depth. Following the report of 

the results and their discussion, this paper discusses the advantages and limitat ions of this study and 

will provide future research directions for its application in real-time monitoring of scour detection 

in existing bridges which can lead to early-warning systems for catastrophic failure. In this paper an 

automatic EFDD method is developed which is capable of extracting the modal parameters of the 

pier using an output signal only; that is we do not need to have any information about the input 

excitation and it can even be a white noise. As opposed to the methods used in previous studies 

which does not provide a precise estimation of PNFs especially for short time intervals, our 

framework allows conducting an operational modal analysis at much shorter time intervals (5 

minutes in this study) with lower number of acceleration data point s, and as such this paper is the 

first to provide the PNFs of piers affected by scours at such small time intervals. In addition, a 

technique for identification and removal of harmonic components has been employed in data 

processing which enhances the accuracy and the resolution of the measurements; to the authors’ 

knowledge this has not been used in any studies on vibration-based monitoring of piers. Therefore, 

the framework introduced in this paper is a novel approach that helps us improve and speed up the 

identification of changes in natural frequency vs time and/or scour depth.  

2. Materials and Methods  

In order to simulate the condition of scour development under the river flow regime, a series of 

flume experiments were conducted at the Western Sydney University’s Hydraulic Laboratory. The 

experimental setup and procedures along with the data analysis methodology is explained in this 

section.  

2.1. Experimental Setup and Procedure  

Experiments were conducted in a rectangular hydraulic flume with dimensi ons of 

5000×500×300mm (Length × Depth × Width). The walls are made of Plexiglass sheets with 10  mm 

thickness. The materials selected to mimic the riverbed materials is a uniform sand with mean particle 

diameter (𝑑50) of 0.78 mm. The water is supplied with a circulating pump system and the flume is 

equipped with a flap gate valve at the downstream that regulates water discharge to set the water 

level to a desired depth. A pier made of a PVC pipe with an outer diameter of 25  mm buried into the 

sand to a depth of 𝑑𝑏 and its top end was attached to a straight board to simulate the bridge deck. 

The pier diameter was chosen to follow Melville and Coleman [5] where they recommended that the 

ratio of pier diameter (𝐷) to the width of flume (𝑊) needs to be greater than 0.1 in order to minimise 

the effect of contraction on scour depth. The schematic of the experimental setup and dimensions of 

the physical models are depicted in Figure 2.  

To avoid the effect of water depth on local scour depth, the ratio of pier diameter to water depth 

ratio should be less than 0.7 according to Melville and Coleman [5]. As such, the depth of water in 

this study was chosen to be 100 mm. In order to prevent live bed scour condition (where bed particles 

are transported by the flowing water and hence filling the scour hole), the water flowrate was chosen 

to be smaller than a critical velocity which mainly depends on water depth and particle size [46]. This 

critical velocity for the experimental setup in this cr itical velocity was estimated to be 0.333 m/s after 

Melville and Coleman [5] and hence a mean water velocity of 0.33 m/s (equivalent to a volumetric 

flowrate 9.9 litre/s) was chosen in this study. The mean water velocity is chosen close to critical 
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velocity to facilitates the local scour development under clear water condition  and hence replicates 

the condition under high river flow conditions such as those following extended heavy rainfalls .  

The first step of the test was to install the pier at the centre of the flume. After that, the bed 

materials were placed and levelled, hence the pier can be considered as a free-standing (floating) pile. 

Then the flume was slowly filled with water from downstream, ensuring the sand bed was not 

disturbed. Once the depth of water reached the target depth of 100 mm, the upstream flowrate was 

gradually increased to the design rate of 9.9 litre/s while flap gate valve was adjusted to maintain the 

water depth of 100 mm. The experiments were run until the maximum scour depth r eached to 90-

95% of the pier’s burial depth (𝑑𝑏).  

 

Figure 2. schematic of the hydraulic flume and model pier used in the experiments (section view at 

the half length). 

In order to measure the maximum scour depth, a laser range finder was mounted on the front 

side of the pier (upstream) whose data are recorded every few minutes. Care was taken to ensure 

that the rangefinder emits light perpendicular to the water surface to minimise the backscattered light 

off the water surface. The rangefinder provides an accurate estimation of the distance from the sensor 

to the surface of the sand bed (±0.2 mm) and its changes represent the instantaneous maximum depth 

of scour hole. Two wireless accelerometers were also mounted on the back side of the pier 

(downstream) which record the accelerations in the flow direction at a frequency of 124  Hz. One of 

these accelerometers is located at the top of the pier near the bridge deck and the other one is mounted 

level 7cm of the pier surface. 

The accelerometers store data on their dedicated memory on specified time intervals which will 

be used for FDD analysis upon completion of the test . Figure 3 shows photographs of the hydraulic 

flume, its pump, and instruments mounted on the pier during testing. It should be noted that 

throughout the test, some vibration was forced to the deck to simulate the effect of ambient vibrations 

such as those in real bridge environment (e.g. due to passing vehicles and trains).  
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Figure 3. the hydraulic flume and model pier, and utilised instruments: (a) the photograph of the 

hydraulic flume, (b) the control panel of the pump, (c) two accelerometers mounted on the pier, and 

(d) the laser rangefinder mounted on the upstream side of the pier. 

2.2. Scaling Laws for Physical Modelling  

In the current physical modelling technique, Froude number similitude is  chosen because the 

local scour near the bridge pier usually occurs in open channel flow. Since the flume provides an 

open channel, the flow is governed by the balance between inertial and gravitational forces and the 

ratio of these forces is called the Froude Number as shown in Equation 5 [47]:  

𝐹𝑟 =
𝑉

√𝑔 ∙ ℎ𝑤
 (1) 

where, 𝑉  is the water velocity, ℎ𝑤  is the water depth, and 𝑔  is the gravitational acceleration. 

Studies have shown that the effect of Reynold’s number similitude can be negligible in scouring 

applications owing to its relatively high value, i.e. turbulent flow [5, 47]. With Froude number 

similitude, the following scaling relationship can be written  
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𝑉𝑟 = √𝐿𝑟  (2) 

𝑡𝑟 = √𝐿𝑟 

where 𝐿𝑟  is the scaling ratio of length in the model to length in prototype, Note that, hereafter, the 

subscript 𝑟  represents the scaling ratio. While, the Froude number similitude can be somewhat 

simplistic, considering more complex scaling law is beyond the scope of this paper. Among the 

shortcomings of such scaling approach, the sediment particle size distortion in the scaled model can 

be an important issue [e.g. 48, 49], following Melville and Chiew [50] and Melville and Coleman [5], 

we can conclude that the effect of the sediment particle size can be considered negligible under the 

experimental conditions in this study where 𝐷/𝑑𝑝 > 25. As such, it is assumed that using the river 

sediments of the prototype in the scaled model does not cause any significant error in our study. 

Discussions on the effect of sediment size scaling in flume physical models can be found in a number 

of studies [e.g. 19], but it is beyond the scope of this paper.  

The stiffness (𝐾 ) and the first natural frequency (𝑃𝑁𝐹 ) of a pier can be simplified using a 

cantilever beam approach as follows  

𝐾 =
48𝐸̇ ∙ 𝐼

ℎ𝑝
3

 (3) 

𝑃𝑁𝐹 =
1

2𝜋
√
𝐾

𝑀
 

where 𝐸̇  is the elastic modulus, 𝐼 = 𝜋/64 × (𝐷𝑜𝑢𝑡
4 − 𝐷𝑖𝑛𝑛

4 ) is the second moment of area that can be 

found using the inner and outer diameter (𝐷𝑖𝑛𝑛  and 𝐷𝑜𝑢𝑡  are the inner and outer diameter of the 

PVC pipe, respectively) for the model pier, ℎ𝑝  is the height of unburied pier between the deck and 

the soil surface, and 𝑀  is the mass of the pier. Using these equations and knowing that 𝑀 =

𝑣𝑜𝑙𝑢𝑚𝑒 × 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 , we can arrive at the following scale relationships.  

𝐾𝑟 = 𝐸̇𝑟 ∙ 𝐼𝑟 ∙ 𝐿𝑟
−3 (4) 

(𝑃𝑁𝐹)𝑟 = 𝐾𝑟
1/2

∙ 𝑀𝑟
−1/2

 

𝐼𝑟 = 𝐿𝑟
4 [1 − (𝐷𝑖𝑛𝑛

4 /𝐷𝑜𝑢𝑡
4 )]⁄  

where 𝛾 is the density of the pier. The scaling factors derived based on Froude number similitude 

are provided in Table 1 along with the magnitude of parameters at both model and prototype scales.  
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Table 1. Scaling laws and scaling factors with corresponding magnitudes in model and prototype . 

Parameter 
Scaling factor 
relationship 

Scaling 
Magnitude 

Unit 
Model Prototype 

Length (𝐿𝑟) 𝐿𝑟  1:50 0.3 15 𝑚 
Pier width (𝐷) 𝐷𝑟 = 𝐿𝑟 1:50 0.025 1.25 𝑚 

Scour depth (𝑑𝑠) 𝑑𝑠,𝑟 = 𝐿𝑟 1:50 0.01* 0.5 𝑚 
Sediment diameter (𝑑𝑝) 𝑑𝑝,𝑟 = 1 1:1 0.78 0.78 𝑚𝑚  

Effective sediment 
density (Δ𝜌) 

Δ𝜌𝑟 = 1 1:1 1.6 1.60 
𝑔
/𝑐𝑚3 

Water velocity (𝑉) 𝑉𝑟 = 𝐿𝑟
1/2

 1:7.071 0.33 0.88 𝑚/𝑠 

Time (𝑇) 𝑇𝑟 = 𝐿𝑟
1/2

 1:50 6* 300 ℎ𝑟 

Pier elastic modulus (𝐸̇) 𝐸̇𝑟  1:12 2.5 30 𝑀𝑃𝑎 

Pier density (𝛾) 𝛾𝑟  1:4.92 0.406^ 2 
𝑔
/𝑐𝑚3 

Mass of pier (𝑀) 𝑀𝑟 = 𝛾𝑟 ∙ 𝐿𝑟
3 1:615,351 0.0598 5206.5 𝑘𝑔  

Second moment of area 
(𝐼) 

𝐼𝑟
= 𝐿𝑟

4

∙ [1 − (𝐷𝑖𝑛𝑛
4 𝐷𝑜𝑢𝑡

4⁄ )]−1 
1:12,447,010 9.6E-9 1.2E-1 𝑚4 

Stiffness of bridge pier 
(𝐾) 

𝐾𝑟 = 𝐸̇𝑟 ∙ 𝐼𝑟 ∙ 𝐿𝑟
−3 1:1,195 43 18.1E6 𝑁/𝑚 

First natural frequency 
(𝑃𝑁𝐹) 

𝑃𝑁𝐹𝑟 = 𝐸̇𝑟
1/2

∙ 𝛾𝑟
−1/2

∙ 𝐿𝑟
−3

∙ 𝐼𝑟
1/2

 
22.7:1 42.01ϯ 92.56 𝐻𝑧 

* A typical test durations time is used. 

^ The density calculated for the hollow cylinder 
Ϯ PNF calculated for perfect cantilever beam 

2.3. Background on FDD and Data Analysis Procedure  

The data gathered during experiments are raw acceleration records and need to be adequately 

processed in order to estimate the modal parameters which can then b e related to the measurement 

of scour depth. The technique employed in this paper is an extension of the classical frequency 

domain approach often referred to as the basic frequency domain (BFD) technique, or the peak 

picking technique. The classical approach is based on simple signal processing using a discrete FFT, 

and uses the fact that well separated modes can be estimated directly from the power spectral density 

matrix at the peak [51]. The classical techniques, however, can have difficulty detecting the close 

modes, and, the frequency estimates are limited by the frequency resolution of the spectral density 

estimate and, in all cases, damping estimation is uncertain or impossible [38].  

The so-called Frequency Domain Decomposition (FDD) technique removes all the 

disadvantages associated with the classical approach, taking advantage of the Singular Value 

Decomposition (SVD) of the spectral matrix, the spectral matrix is decomposed into a set of auto 

spectral density functions, each corresponding to a single degree of freedom (SDOF) system. This 

result is exact in the case where the loading is white noise, the structure is lightly damped and when 

the mode shapes of close modes are geometrically orthogonal. If these assumptions are not satisfied 

the decomposition into SDOF systems is approximate, but still the results are significantly more 

accurate than the results of the classical approach [38].  

The FDD method is based on the SVD of the measured PSD matrix of the recorded response, 

𝐺𝑦𝑦(𝑓𝑖 ), at discrete frequencies of 𝑓 = 𝑓1 , 𝑓2 , … , 𝑓𝑖 , as shown in Equation 5, where 𝑈(𝑓) is a matrix of 

singular vectors and 𝑆(𝑓)  is a diagonal matrix of singular values. Over the frequency range 

associated with each peak in the first singular values, the structural response is dominated by a single 

vibration mode, with the first singular vector being an estimate of the mode shape and the 

corresponding first singular value being the auto-PSD of the modal contribution [52].  

𝐺𝑦𝑦(𝑓) = 𝑈(𝑓)[𝑆(𝑓)]𝑈𝑇(𝑓)  (5) 

The data analysis using the FDD technique explained above, was carried out in MATLAB2019. 

First, the recorded acceleration data from both accelerometers was imported into MATLAB and then 
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a pre-processing procedure was used following the principles of Enhanced Frequency Domain 

Decomposition (EFDD) method [e.g. 53, 54] to filter the acceleration data. The first step in pre-

processing is normalisation of all measurement channels (two channels in our experiments) to have 

zero mean and unit variance. Then, a narrow bandpass filter is applied to data. Following that, based 

on Welch’s method, the PSD and SVD are calculated. In order to remove the harmonic components 

from the SVD curve, the Kurtosis test was conducted as described in details in the relevant literature 

[53, 55, 56]. Upon identifying and removing the harmonic components, peaks of SVD are picked, 

where the frequencies associated with the selected peaks are the natural frequency of the modes 

(PNFs). This procedure is repeated at 5-minute intervals of the collected acceleration data to enable 

the assessment of the change in PNFs versus time. It is worth noting that due to the low natural 

frequencies present in structural health monitoring applications, relatively long periods of data is 

required to ensure sufficient data points and peaks in the modal analysis, but EFDD provides an 

advantage over other methods of operational modal analysis (e.g. SSI-COV) 

3. Results and Discussion  

three experiments were conducted with different burial depths (𝑑𝑏 ) of 75 mm, 65 mm, and 

60 mm, while all other experimental parameters were the same (see Table 2). The measured 

maximum scour depth versus time is presented in Figure 4a for these tests. It can be seen that the 

evolution of maximum scour depth is very similar between the three tests, although it may seem that 

scour development occurs faster test A with a smaller buried depth. This may be due to the slight 

differences (smaller than the tolerance of the measurements) between experimental parameters such 

as water velocity, or may be due to difference in the level of sand compaction , or even due to natural 

variability in soil characteristics. The cylinder is founded on free standing location and it has not any 

pile foundation connected to this pier and soil. Meanwhile, the soil near the bridge pier is compacted 

and soil bed is completely levelled. The general trends in evolution of maximum scour depth are very 

similar to those found in existing literature [e.g. 19]. An attempt was made to characterise the scour 

development phases in Figure 4b which present the normalised scour depth versus time with 

different phases as presented by Hoffmans and Verheij [57].  

Table 2. experimental characteristics for the two tests . 

Parameter Test A Test B Test C  Unit 
Mean water velocity (𝑉) 0.33 0.33 0.33  m/s 

Pier diameter (𝐷) 25 25 25  mm 

Water height (ℎ𝑤 ) 100 100 100  mm 
mean particle diameter (𝑑50) 0.78 0.78 0.78  mm 

Buried depth (𝑑𝑏) 75 65 60  mm 
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Figure 4. (a) evolution of maximum scour depth with time in both experiments; (b) normalised 

maximum scour depth versus time with regards to different temporal phases of scour. 

In order to show the extent of scouring zone around the pier, the photographs of the zone around 

the pier before and after scouring is depicted in Figure 5. It can be seen that prior to testing (Figure 

5a), the sand bed has a flat morphology as care was taken when preparing the soil to ensure surface 

has no wrinkle or ups and downs. After scouring (Figure 5b), scour hole is formed at upstream side 

of the pier which has a dimeter nearly 3 times of the pier diameter. On downstream, the sand particles 

have been deposited, consistent with observation of previous studies as presented in introduction 

and Figure 1c.  
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Figure 5. photographs of bridge pier and bed materials: (a) before water flow, (b) after 70 minutes of 

water flow. 

The results of the modal analysis and extracted PNFs in each experiment is also shown in Figure 

6 for the first three modes. The right y-axis in these charts also shows the measured maximum scour 

depth. As explained earlier, the modal analysis using the EFDD techniques was conducted in 5 -

minute intervals through which the PNFs for the first three modes were extracted which captures the 

changes in PNFs of the deck-pier-bed structural system as a result of scour hole development. As it 

can be seen, all three modes in all three experiments show a steep reduction with time following the 

growth of the scour hole (i.e. increasing maximum scour depth). It also interestingly shows that 

during the initiation phase of scour hole evolution, the PNFs remain relatively unchanged but it 

decreases sharply within the development phase of scour hole evolution. As discus sed earlier, the 

reduction in natural frequency is due to change in the stiffness of the structural system which is 

compromised as a result of scour hole development around the pier. When the maximum scour hole 

reaches around 50 percent of the buried depth, the PNFs remains nearly constant, which suggests 

that relationship between the maximum scour depth and PNF is highly nonlinear. However, it should 

be noted that this latter effect may be due to the constrained boundary condition of the pier and the 

deck which are fixed to the sides of the hydraulic flume to simulate the effect of bridge abutment. As 

such, the experiments conducted in this study represent an ideal single pier bridge whose abutments 

have not affected by scouring, but in reality, the riverbed around the abutment may also undergo 

scouring which may further compromise the stiffness and hence its stability and the PNFs may 

continue to decrease beyond the 50 percent observed in these experiments. While the results of this 

study are generally in agreement with the existing literature that show a reducing trend in PNFs with 

the increasing maximum scour depth [e.g. 32], the existing literature lacked a very clear trend of the 

temporal changes in PNFs mainly due to their limitations with their PNF ext raction techniques.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 September 2020                   doi:10.20944/preprints202009.0049.v1

https://doi.org/10.20944/preprints202009.0049.v1


 12 of 18 

 

Figure 6. the temporal changes in the first three natural frequency: (a) test A, (b) test B, and (c) test 

C. 

In order to further analyse the relationship between PNFs and the maximum scour depth, the 

dimensionless reduction of PNFs (δfn
∗) were also presented versus the dimensionless maximum scour 

depth (the ratio of maximum scour depth to buried depth of the pier, ds/db ) in Figure 7. Note that 

the reduction of PNFs is defined as δfn
∗ = (fn

0 − fn) fn
0⁄ , where fn

0 is the initial unchanged PNF and fn 

is the instantaneous PNF. It can be seen that the second mode of frequency has the largest ultimate 

reduction in all three experiments, while the third modal frequency has the smallest. Figure 8 shows 

the average of the change in the first three modes of PNFs for each experiment. This chart can be 

considered as an attempt to relate the changes in PNFs to maximum scour depth and consequently 

the stability of a model bridge affected by scouring. Such approach for field application can provide 

a near real-time monitoring strategy (only 5-minute lag) for firsthand estimation of the scour hole 

depth around the pier. However, it should be noted that the variability and uncertainties is somewhat 

more pronounced here in Figure 7 and Figure 8, but the general conclusions drawn from Figure 6 is 

still valid. This chart can provide a practical guide for estimation and severity of the scour hole 

development. Further experimental, analytical and/or numerical works are required along wit h more 

advanced data analysis techniques to evaluate the impact of scour on the overall stability of the 

bridge, so that an early-warning threshold can be determined for different types of bridge based on 

the scour hole growth, but it is evident that for such ideal model bridge, a δfn
∗ value of 0.3 can be 

selected as an early warning threshold that coincides with ds/db value of 0.4-0.5.  
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Figure 7. the dimensionless reduction in the first three natural frequency versus dimensionless 

maximum scour depth: (a) test A, (b) test B and (c) test C. 

Another important observation from these figures is that the maximum scour depth increases so 

fast that the measured PNFs at the 5-minute intervals seems insufficient. However, PNF estimation 

at smaller time intervals may become unreliable if not impossible by EFDD technique (or any other 

technique for that matter), mainly because the acceleration data may not be enough for efficient 

estimation of PSD and SVD. This problem will not be rectified with recording data at a h igher 

frequency as it can introduce additional layers of white noise to the data and it may not increase the 

data density at the desired frequency range at all. Thus, it is imperative to conduct experiments at 

lower water velocities where scour hole development takes place at a slower pace, in order to better 

capture the trend of δfn
∗ with respect to scour depth.  
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Figure 8. averaged dimensionless reduction of the first three natural frequency versus dimensionless 

maximum scour depth: (a) test A, (b) test B and (c) test C. 

4. Conclusions and Future Developments  

This paper presents the results of a series of physical modelling studies on local scour around 

an ideal bridge pier, where an acceleration-based monitoring strategy has been utilised towards the 

development of a real-time monitoring technique. The acceleration-based monitoring techniques 

have been used in structural health monitoring for decades, but for bridge scour monitoring, it has 

been deemed challenging. This paper provides a novel framework w hich will serve as a building 

block for bridge stability monitoring. In this framework, a relatively new modal analysis technique 

(EFDD) has been employed that allows a more reliable PNF extraction form ambient vibration with 

short time lag (in order of few minutes). The promising results presented in this study is a giant leap 

towards the development of a low -cost real-time monitoring technique that can be applied to evaluate 

the stability of bridge.  

It is of utmost importance to discuss the limitations of this study in the context of real-time 

monitoring of bridge stability. First and foremost, this study is a preliminary investigation of the 

relationship between the PNFs and maximum scour depth and does not consider some important 

aspects of bridge stability. Moreover, the bridge model in this study is a single pier bridge whose 

abutment have not been affected by scouring. Though, in reality the bridge abutment also undergoes 

scouring and may further reduce the stiffness of the bridge as a structure and consequently the 

estimated PNFs. Considering uncompromised bridge abutments is commonplace in experimental 

studies on scour hole evolution around pier in the literature, but when modelling the effect of 

scouring on bridge stability is important to also study the simultaneous effect of scour on abutment 

which can give a better picture of the stability of the bridge as a whole influenced by scouring. In 

addition, having multiple piers in a bridge and considering different arrangements for them can 

provide a more realistic model for bridge pier scour and the overall stability of the bridge. Moreover, 

advanced modal analyses are required to identify the mode shapes of the bridge pier under scour 

influence which will provide better indicators of bridge stability. While, we have only focused on 

extracted PNFs in this paper, the authors currently working on strategies to extract reliable mode 

shapes through EFDD technique, which will eventually provide a more comprehensive monitoring 

capabilities for bridge pier scour. It should be also noted that although the results presented in this 

paper provides promising results, the application of this algorithm in the real scale can be 

problematic to some extent. As an example, the scaled model here presented PNFs as high as 3 8 Hz 
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but in the prototype scale it corresponds to a PNF of nearly 1.8 Hz and working with such small 

frequencies can potentially lead to large errors during harmonic removal and PNF extraction. 

Moreover, the nature of the deck-pier-bed system in a real bridge can potentially affect the 

monitoring process, where the interaction between these varying and inhomogeneous system can 

lead to some difficulties in scour development and PNF extraction.  

From a hydraulics point of view, the development of scour hole can be affected by the water 

velocity. Therefore, a more rigorous study of the effect of water velocity on maximum scour depth 

and hence the extracted PNFs should be an immediate future study as it can reveal a better picture 

on the relationship between PNF and the scour depth. In this study, we have selected a velocity very 

close to the critical velocity but selecting lower velocities for future experiments allows a more reliable 

and complete relationship between PNFs and maximum scour depth. It should also be noted that 

PNFs may not only be a function of maximum scour depth but also a function of the three 

dimensional shape of the scour hole, and therefore measurement of the three dimensional shape of 

the scour hole and its evolution with time at the same temporal resolution as the extracted PNFs can 

allow establishing a more rigorous relationship between the PNFs and scour hole development.  

Another important aspect that has been largely neglected in studies of the scour hole 

development and its effect on bridge stability (including this study) is the role of soil types, their 

hydro-mechanical characteristics, and their variability. Given that scour hole develops as a result of 

water flow pattern around the soil surrounding the pier, it seems intuitive to heavily focus on hydro-

mechanical properties of soil to better understand the local scour mechanisms and its ultimate impact 

on bridge stability. Most of existing experimental studies have used non-cohesive sandy soils, and 

while some studies attempted to study the role of cohesion of soil on pier scour [58], the role of other 

soil characteristics (e.g. consolidation, friction angle, cementation) is not fully understood yet. 

Therefore, it is important for future studies to focus on the effect of soil’s natura l variability on scour 

hole development and structural stability of the bridge.  

Appendix A. Peak Picking Through EFDD 

The acceleration data recorded by the accelerometers are first transformed from time domain 

into the frequency domain using the cross pow er spectral density. Then, the first singular value 

diagram is evaluated for peaks, for which the corresponding frequencies are the natural frequencies 

(PNFs). However, peak picking using the regular SVD diagram can be problematic as the harmonic 

components can present some peak that do not represent an actual mode of frequencies. In order to 

avoid this from happening, the harmonic components need to be removed from the SVD through the 

methodologies developed by Jacobsen, Andersen [53]. In this methodology, the following steps are 

taken in order:  

 Each measurement channel is normalized to unit variance and zero mean  

 For all frequencies between DC and the Nyquist frequency a narrow bandpass filtering of 

acceleration around the frequency is performed  

 The Kurtosis for the filtered signal around the frequency is calculated  

 For each frequency, the mean of the Kurtosis is calculated across the measurement channels  

 The median of the Kurtosis of all frequencies is calculated. If the signal is purely Gaussian 

distributed this measure for the mean will theoretically be 0.  

 For each frequency, the deviation of the Kurtosis from the median is calculated. If Kurtosis 

deviates significantly from median of the Kurtosis, then the distribution around the frequency 

is different than for the majority of the other frequencies. In such a case the frequency can be 

characterised as an outlier that should not be included in the estimation of the SDOF functions  

Figure A-1 depicts the first singular value diagram with and without the harmonic components 

and the green bands represents the frequency ranges with harmonic components detected. Then, the 

peak picking algorithm is performed on the SVD whose harmonic components hav e been removed 

as illustrated in Figure A-1.  
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Figure A. removing the harmonic components of the SVD. 

 

Figure A. a. 

References  

1. Lagasse, P.F., et al., Stream stability at highway structures. 2012, United States. Federal Highway 

Administration. Office  of Bridge Technology. 

2. Lagasse, P.F., P.L. Thompson, and S.A. Sabol, Guarding against scour. Civil Engineering, 1995. 65(6): p. 56. 

3. Cook, W., P.J. Barr, and M.W. Halling, Bridge Failure Rate. Journal of Performance of Constructed Facilities, 

2015. 29(3): p. 04014080. 

4. Hamill, L., Bridge hydraulics. 1998: CRC Press. 

5. Melville , B.W. and S.E. Coleman, Bridge scour. 2000: Water Resources Publication. 

6. Briaud, J.-L., et al., SRICOS: Prediction of Scour Rate in Cohesive Soils at Bridge Piers. Journal of Geotechnical 

and Geoenvironmental Engineering, 1999. 125(4): p. 237-246. 

7. Prendergast, L.J. and K. Gavin, A review of bridge scour monitoring techniques. Journal of Rock Mechanics and 

Geotechnical Engineering, 2014. 6(2): p. 138-149. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 September 2020                   doi:10.20944/preprints202009.0049.v1

https://doi.org/10.20944/preprints202009.0049.v1


 17 of 18 

8. Pizarro, A., S. Manfreda, and E. Tubaldi, The science behind scour at bridge foundations: a review. Water, 2020. 

12(2): p. 374. 

9. Akan, A.O., Hydraulic Structures. Open Channel Hydraulics, 2006: p. 200-265. 

10. Sumer, B.M., N. Christiansen, and J. Fredsøe, The horseshoe vortex and vortex shedding around a vertical wall-

mounted cylinder exposed to waves. Journal of Fluid Mechanics, 1997. 332: p. 41-70. 

11. Bao, T. and Z. Liu, Vibration-based bridge scour detection: A review. Structural Control and Health Monitoring, 

2017. 24(7): p. e1937. 

12. Jahangirzadeh, A., et al., Experimental and Numerical Investigation of the Effect of Different Shapes of Collars on 

the Reduction of Scour around a Single Bridge Pier. PLOS ONE, 2014. 9(6): p. e98592. 

13. Hong, J.-H., et al., Predicting time-dependent pier scour depth with support vector regression. Journal of 

Hydrology, 2012. 468-469: p. 241-248. 

14. Parola, A., et al., Effects of rectangular foundation geometry on local pier scour.  Journal of Hydraulic 

Engineering, 1996. 122(1): p. 35-40. 

15. Muzzammil, M. and T. Gangadhariah, The mean characteristics of horseshoe vortex at a cylindrical pier. Journal 

of Hydraulic Research, 2003. 41(3): p. 285-297. 

16. Tafarojnoruz, A., R. Gaudio, and S. Dey, Flow-altering countermeasures against scour at bridge piers: a review. 

Journal of Hydraulic Research, 2010. 48(4): p. 441-452. 

17. Dey, S. and R.V. Raikar, Characteristics of Horseshoe Vortex in Developing Scour Holes at Piers. Journal of 

Hydraulic Engineering, 2007. 133(4): p. 399-413. 

18. Guan, D., et al., Characterization of horseshoe vortex in a developing scour hole at a cylindrical bridge pier.  

International Journal of Sediment Research, 2019. 34(2): p. 118-124. 

19. Link, O., S. Henríquez, and B. Ettmer, Physical scale modelling of scour around bridge piers. Journal of 

Hydraulic Research, 2019. 57(2): p. 227-237. 

20. Bauri, K.P. and A. Sarkar, Turbulent bursting events within equilibrium scour holes around aligned submerged 

cylinder. Journal of Turbulence, 2020. 21(2): p. 53-83. 

21. Keshavarzi, A., B. Melville , and J. Ball, Three-dimensional analysis of coherent turbulent flow structure around a 

single circular bridge pier. Environmental Fluid Mechanics, 2014. 14(4): p. 821-847. 

22. Keshavarzi, A., R. Gazni, and S.R. Homayoon, Prediction of scouring around an arch-shaped bed sill using 

Neuro-Fuzzy model. Applied Soft Computing, 2012. 12(1): p. 486-493. 

23. Qaderi, K., et al., A comparative study of solo and hybrid data driven models for predicting bridge pier scour depth.  

Marine Georesources & Geotechnology, 2020: p. 1-11. 

24. Williams, P., T. Bolisetti, and R. Balachandar, Evaluation of governing parameters on pier scour geometry. 

Canadian Journal of Civil Engineering, 2016. 44(1): p. 48-58. 

25. Lam, E., et al. Prediction of pier scour depth at bridges with composite piers and headstock supporting structures . in 

13th Hydraulics in Water Engineering Conference. 2017. Engineers Australia. 

26. Pizarro, A., et al., Dimensionless Effective Flow Work for Estimation of Pier Scour Caused by Flo od Waves. Journal 

of Hydraulic Engineering, 2017. 143(7): p. 06017006. 

27. Alipour, A., B. Shafei, and M. Shinozuka, Evaluation of Uncertainties Associated with Design of Highway Bridges 

Considering the Effects of Scouring and Earthquake , in Structures Congress 2010. 2010. p. 288-297. 

28. Jones, S.J. and E.V. Richardson. A Decade of High Priority Bridge Scour Research in the US . in Proceedings 2nd 

International Conference on Scour and Erosion (ICSE-2). November 14.–17., 2004, Singapore. 2004. 

29. Wang, C., X. Yu, and F. Liang, A review of bridge scour: mechanism, estimation, monitoring and countermeasures. 

Natural Hazards, 2017. 87(3): p. 1881-1906. 

30. Foti, S. and D. Sabia, Influence of Foundation Scour on the Dynamic Response of an Existing Bridge. Journal of 

Bridge Engineering, 2011. 16(2): p. 295-304. 

31. Prendergast, L.J., et al., An investigation of the changes in the natural frequency of a pile affected by scour. Journal 

of Sound and Vibration, 2013. 332(25): p. 6685-6702. 

32. Yao, C., et al., Motion sensors for scour monitoring: laboratory experiment with a shallow foundation, in GeoFlorida 

2010: Advances in Analysis, Modeling & Design. 2010. p. 970-979. 

33. Briaud, J.-L., et al. Motion Sensors for Scour Monitoring: Laboratory Experiments and Numerica l Simulations. The. 

in Transportation Research Board (TRB) 89th Annual Meeting . 2010. 

34. Tserng, H.-P., et al., Application of Wireless Sensor Network to the Scour Monitoring System of Remote Bridges.  

International Journal Of Engineering And Technology, 2013. 5(5): p. 641. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 September 2020                   doi:10.20944/preprints202009.0049.v1

https://doi.org/10.20944/preprints202009.0049.v1


 18 of 18 

35. Bao, T., Z.L. Liu, and K. Bird, Influence of soil characteristics on natural frequency-based bridge scour detection. 

Journal of Sound and Vibration, 2019. 446: p. 195-210. 

36. Lin, T.-K. and Y.-S. Chang, Development of a real-time scour monitoring system for bridge safety evaluation. 

Mechanical Systems and Signal Processing, 2017. 82: p. 503-518. 

37. Mao, Q., et al., Structural condition assessment of a bridge pier: A case study using experimental modal analysis 

and finite element model updating. Structural Control and Health Monitoring, 2019. 26(1): p. e2273. 

38. Brincker, R., L. Zhang, and P. Andersen, Modal identification of output-only systems using frequency domain 

decomposition. Smart materials and structures, 2001. 10(3): p. 441. 

39. Magalhães, F. and Á . Cunha, Explaining operational modal analysis with data from an arch bridge. Mechanical 

Systems and Signal Processing, 2011. 25(5): p. 1431-1450. 

40. Torbol, M., Real-Time Frequency-Domain Decomposition for Structural Health Monitoring Using General-Purpose 

Graphic Processing Unit. Computer-Aided Civil and Infrastructure Engineering, 2014. 29(9): p. 689-702. 

41. Makki Alamdari, M., et al., Frequency domain decomposition-based multisensor data fusion for assessment of 

progressive damage in structures. Structural Control and Health Monitoring, 2019. 26(2): p. e2299. 

42. Chen, Z., et al., Dynamic Behavior of Super High-Rise Building: Deployment of Smart Monitoring System and 

Analysis. Journal of Structural Engineering, 2020. 146(4): p. 05020001. 

43. Malekjafarian, A. and E.J. Obrien, Identification of bridge mode shapes using Short Time Frequency Domain 

Decomposition of the responses measured in a passing vehicle. Engineering Structures, 2014. 81: p. 386-397. 

44. Kong, X. and C.S. Cai, Scour effect on bridge and vehicle responses under bridge–vehicle–wave interaction. Journal 

of Bridge Engineering, 2016. 21(4): p. 04015083. 

45. Prendergast, L.J., D. Hester, and K. Gavin, Determining the Presence of Scour around Bridge Foundations Using 

Vehicle-Induced Vibrations. Journal of Bridge Engineering, 2016. 21(10): p. 04016065. 

46. Ranjbar-Zahedani, M., et al. Submerged flow diversion structure as an effective countermeasure to protect bridge 

piers from scour. in Australian Small Bridges Conference, 9th, 2019, Surfers Paradise, Queensland, Australia . 2019. 

47. Chanson, H., Hydraulics of Open Channel Flow: An Introduction. 2004: Elsevier Butterworth-Heinemann. 

48. Tabarestani, M.K. and S.A.J.M.J.o.C.E. Salamatian, Physical modelling of local scour around bridge pier. 2016. 

28(3). 

49. Melville , B.W. and A.J. Sutherland, Design Method for Local Scour at Bridge Piers. Journal of Hydraulic 

Engineering, 1988. 114(10): p. 1210-1226. 

50. Melville , B.W. and Y.-M. Chiew, Time Scale for Local Scour at Bridge Piers. Journal of Hydraulic Engineering, 

1999. 125(1): p. 59-65. 

51. Bendat, J.S. and A.G. Piersol, Engineering applications of correlation and spectral analysis . 2nd ed. New York. 

1993, New York: Wiley. 

52. KARIYAWASAM, K., et al., Field Assessment of Ambient Vibration-Based Bridge Scour Detection. Structural 

Health Monitoring 2019, 2019. 

53. Jacobsen, N.-J., P. Andersen, and R. Brincker. Using enhanced frequency domain decomposition as a robust 

technique to harmonic excitation in operational modal analysis. in Proceedings of ISMA2006: international 

conference on noise & vibration engineering . 2006. Belgium Leuven. 

54. Altunışık, A.C., F.Y. Okur, and V. Kahya, Modal parameter identification and vibration based damage detection 

of a multiple cracked cantilever beam. Engineering Failure Analysis, 2017. 79: p. 154-170. 

55. Andersen, P., et al. Estimating modal parameters of civil engineering structures subject to ambient and harmonic 

excitation. in Proceeding of EVACES 07 Conference. 2007. 

56. Brincker, R.a.V., C.E. , Frequency-Domain Identification, in Introduction to Operational Modal Analysis. 2015, 

John Wiley & Sons, Ltd: United Kingdom. p. 261-280. 

57. Hoffmans, G.J.C.M. and H.J. Verheij, Scour Manual. 1997, Rotterdam, The Netherlands: Balkema. 

58. Lodhi, A.S., et al., Influence of cohesion on scour at wake of partially submerged spur dikes in cohesive sediment 

mixtures. ISH Journal of Hydraulic Engineering, 2018: p. 1-12. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 3 September 2020                   doi:10.20944/preprints202009.0049.v1

https://doi.org/10.20944/preprints202009.0049.v1

