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Abstract: Herein, we present a combination of experimental and computational study on the
mitochondrial FOF1-ATPase nanotoxicity inhibition induced by single-walled carbon nanotubes
(SWCNT-pristine, SWCNT-COOH). To this end, the in wvitro inhibition responses in
submitochondrial particles (SMP) as FOF1-ATPase enzyme were strongly dependent on the
concentration assay (from 3 to 5 pg/ml) for both types of carbon nanotubes. Besides, both
SWCNTs show an interaction inhibition pattern like the oligomycin A (the specific mitochondria
FOF1-ATPase inhibitor). Furthermore, the best crystallography binding pose obtained for the
docking complexes based on the free energy of binding (FEB), fit well with the previous in vitro
evidences from the thermodynamics point of view. Following an affinity order as: FEB
(oligomycin A/FO-ATPase complex) = -9.8 kcal/mol > FEB (SWCNT-COOH/F0-ATPase complex) =
- 6.8 kcal/mol ~ FEB (SWCNT-pristine complex) = -5.9 kcal/mol. With predominance of van der
Waals hydrophobic nanointeractions with key FO-ATPase binding site residues (Phe 55 and Phe
64). By the other hand, results on elastic network models, and fractal-surface analysis suggest that
SWCNTs induce significant perturbations by triggering abnormal allosteric responses and signals
propagation in the inter-residue network which could affect the substrate recognition ligand
geometrical specificity of the FOF1-ATPase enzyme in order (SWCNT-pristine > SWCNT-COOH).
Besides, the performed Nano-QSTR models for both SWCNTSs show that this method may be used
for the prediction of the nanotoxicity induced by SWCNT. Overall, the obtained results may open
new avenues toward to the better understanding and prediction of new nanotoxicity mechanisms,
rational drug-design based nanotechnology, and potential biomedical application in precision
nanomedicine.
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Introduction

The coupled mechanical co-rotating between the y and & subunits that form the
mitochondrial F1-ATP synthase (complex V) favors the H protons flux necessary for ATP
synthesis in all eukaryotic cells®-2. This bioenergetic process involves several synchronized
conformational changes which are critical for the survival or death of the cells'. In this
regard, a few years ago has been shown that under pathological conditions like chronic
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diseases as cancer, Alzheimer, Parkinson, MELAS syndrome, several toxic events, including
nanotoxicity-induced by SWCNT may trigger FOF1ATPase dysfunction®>. The ATP cellular reserves
are abruptly consumed by a reverse biochemical reaction which paradoxically hydrolyses
significant amounts of ATP compromising the cellular homeostasis and viability> 5.

Several chemical agents (including carbon nanoparticles) have ShOwn a high
affinity/selectivity by the bioenergetic mechanisms based on ATP hydrolysis® 5. Particularly,
nanoparticle-based single-walled carbon nanotubes (SWCNTs) which have been studied by its
selective nanotoxicity effects on mitochondria (mitotropic behavior)e*.

To the best of our knowledge, the toxicological modulation of mitochondrial ATP bioenergetic
mechanisms released by the exposure with SWCNT has been insufficiently characterized in order to
explain the mitochondrial nanotoxicity-induced by SWCNT. By the other hand, this mechanistic
knowledge could be very useful to implement strategies on the named “precision mitochondrial
nanomedicine” to improve selectivity for the treatment of brain, cardiac diseases, and cancer using
the mitotropic behavior of SWCNT to address active pharmacological principles as new targeting of
the mitochondrial FOF1-ATPase®!. In this context, we hypothesize that SWCNT could acts
mimicking the pharmacodynamic behavior of the Oligomycin A, which is the specific inhibitor
of the mitochondrial ATP-hydrolysis that modulate the activity of the C-ring-FO-ATP hydrolase
subunit. The C-ring-FO-ATP hydrolase subunit represent an uncoupling channel which is part of
the mitochondrial permeability transition pore-induced associated to mitochondrial
dysfunction and apoptosis'® 1®. Following this idea, we suggest that SWCNT could promote
the selective inhibition of the FO-ATPase under pathological conditions!6.

In this regard, computational approaches like molecular docking simulation, elastic network
models, fractal-surface approaches linked to nano-quantitative-structure-toxicity relationships
(Nano-QSAR/QSTR models) and others® 224, could be efficiently applied to the exhaustive
exploration of the underlying mechanisms of mitochondrial bioenergetic dysfunction (pathological
ATP-hydrolysis) from the structural point of view for therapeutic purposes.

Particularly, computational Nano-QSAR/QSTR approaches are essential tools to support
the discovery process of toxicological effects of nanomaterials (SWCNT). Several
approaches have been developed and applied recently able to predict potential harmfulness
of nanoparticles and nanomaterials®'*. One of the most used is the so called nano-
quantitative-structure-toxicity-relationships (Nano-QSTR models) due to the fact that was
successfully applied in very different fields?>2’. This in silico tools have the quality of
being versatile and reconfigurable to many problems. For example, the nano-quantitative-
structure-binding-relationship (Nano-QSBR) models is a type of Nano-QSTR which is able
to associate the physico-chemical properties of nanomaterials (nanodescriptors) with the
theoretical free energy of binding (FEB values, kcal/mol) obtained from the molecular
docking studies and also to experimental nanotoxicological outputs'® 14 28,

Due to this, QSAR (Nano-QSTR) paradigm has been applied since the beginning of the
“nano revolution” as a useful methodology able to support toxicity profiling of
nanomaterials and CNT 2°33, Several approaches by many authors have been reported
combining different molecular descriptors, methodologies and algorithms, including
machine learning and deep learning®°. In this sense, in strongly advisable use Nano-
QSTR approaches while performing toxicity profiling of CNT and nanomaterials also
considering in silico approaches are strongly encouraged by authorities in order to improve
the EU 3R principles (replacement, reduction, refinement) in Alternative Toxicology.
Currently, the main limitation of these computational methods is to address a feasible mechanistic
interpretation of the nanotoxicity phenomena at the atomic level, in many cases*..

Then, in this work we propose for the first time, a combination of computational modeling
approaches, based on molecular docking simulations, elastic network models, fractal-surface
approaches and Nano-QSTR calculations, along with experimental validation to tackle the study of
binding interactions between single-walled carbon nanotubes with the mitochondrial FOF1-ATPase


https://doi.org/10.20944/preprints202009.0014.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 1 September 2020 doi:10.20944/preprints202009.0014.v1

toward to contribute to the rational drug-design based nanotechnology, mitotarget-drug discovery
and the new area of precision mitochondrial nanomedicine.

Materials and methods

Isolation of rat-liver sub-mitochondrial particles (SMP).

The frozen RLM pellet was thawed and diluted with homogenization medium to contain 20
mg of protein/ml. The mitochondrial suspension was subjected to sonic oscillation four times for 15
s with 30 s intervals, using 80 watts at 4°C#4, The suspension was then centrifuged at 9750 x g for
10 min at 4°C and the submitochondrial particles in the supernatant were isolated by additional
centrifugation in a Sorval SV-80 vertical rotor for one hour at 15 000 rev/min at 4°C, using
discontinuous gradient containing 1ml of 0.5 M sucrose and 1 ml of 2.0 M sucrose in 5 mM Tris-
HCl, pH 7.4. Finally, the SMP were suspended in the isolation medium, and the final volume
adjusted to give a stock suspension containing 1 mg of protein/ml.

Standard incubation procedure.

Mitochondria liver isolated and submitochondrial particles (SMP) were energized with 5 mM
of potassium succinate (plus 2.5 uM of rotenone) in a standard incubation medium consisting of 125
mM of sucrose, 65 of mM KCl, 2 mM of inorganic phosphate (K2HPO4) and 10 mM of HEPES-KOH
pH 7.4 at 30 °C.24

Determination of mitochondrial FOF1-ATPase inhibition in isolated rat-liver sub-mitochondrial particles
(SMP).

Isolated rat-liver sub-mitochondrial particles (isolated-FOF1-ATPase) (20 mg of protein) were
incubated according the following experimental groups: 1) untreated SMP, 2) SMP + DMSO (100
mM), 3) SMP+ SWCNT-samples (SWCNT-pristine, SWCNT-COOH) in the range of concentration of
(0.5-5 ug/ml), 4) SMP + Oligomycin A (1 uM) as positive control, and 5) SMP + Oligomycin A (1
puM) + SWCNT-samples at 5 pig/ml as additional control assay. The reactions are started by addition
of enzyme as H*-c-ring/Fo-ATPase (80 g of protein). The total volume was 1ml. After 10 min at
37°C, the reaction was stopped by addition of 0.5 trichloroacetic acid, 30% (w/v). Phosphate
released by ATP hydrolysis is measured on 0.5 ml of molybdate reagent (10 mM ammonium
molybdate in 2.5 M sulfuric acid), 1 ml of acetone and 0.5 ml of 0.4 M citric acid. After each
addition, the tubes are homogenized for 10 s in a vortex mixer. The mitochondrial FOF1-ATPase
inhibition (F0-ATPase inhibition) for each treatment was calculated by measuring the absorbance at
355 nm#%. Before all spectrophotometric FO-ATPase inhibition measurements, the blanks with each
SWCNT were run and interferences absorbance peaks of SWCNT were not observed at 300-400
nm*%, Furthermore, each SWCNT-sample was added under continuous stirring by using magnetic
stirrer cuvettes.

Statistical procedures for the mitochondrial assays using SMP.

Analysis of variance (ANOVA) followed by a post hoc Newman-Keuls multiple comparison
test to determine statistical differences between Fo-ATPase inhibition assay experimental groups
was performed. All the biochemical tests by using isolated rat-liver mitochondria (RLM) and sub-
mitochondrial particles (SMP) were performed at least three times in triplicate. Normality and
variance homogeneity were verified using Shapiro-Wilks and Levene tests, respectively, before
using ANOVA analysis. In all cases, significance level was set in 5%.

Molecular docking study

Docking simulations were performed using Autodock tools mixed Autodock Vina to
understand the strength of biochemical interactions across CNT-family member (pristine-CNT,
CNT-OH, CNT-COOH), and oligomycin A on FO-ATPase. These binding in silico interactions were
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performed only to explain hidden biophysical and pharmacodynamic mechanisms observed in the
mitochondrial in vitro assays. For this instance, it was modeled only three types of single walled
zig-zag SWCNTs (Hamada index n = 8, m = 0) like SWCNT(8.0), SWCNT-COOH(8.0) and SWCNT-
OH(8.0) as FOF1-ATPase ligands in order to reproduce and modeling some critical experimental
conditions from CNT-properties like CNT-functionalization linked to observed F0-ATPase
inhibition (ATP-hydrolysis inhibition) in isolated-RLM and isolated-SMP. Following this idea, the
FOF1-ATPase C10 ring with oligomycin A from yeast (Saccharomyces cerevisiae) as the receptor (PDB
ID: 5BPS, Resolution 2.1A) was obtained from the RCSB Protein Data Bank (PDB)*. It is important to
note that, c-ring-FO-ATPase subunit.pdb x-ray structure from Saccharomyces cerevisiae (5BPS) can be
used in the context of the present docking approaches taking into account that mitochondrial c-
ring-FO-ATPase subunit.pdb x-ray structure from Rattus norvegicus with oligomycin A has not been
crystallized and included in the RCSB Protein Data Bank‘. However, the oligomycin A-
pharmacodynamics mechanism is highly conserved in Rattus norvegicus according to previous
experimental evidences'”.

Before the molecular docking, ATPase C10 ring molecular structure was optimized using the
AutoDock Tools 4 software for AutoDock Vina. The algorithm includes the removal of
crystallographic water molecules and all the co-crystallized ATPase C10 ring ligand molecules, such
as Oligomycin A (Oligo A: C4#H7On like ID: EFO) from ATPase C10 ring chains (B, E, K, L, M, O).
Oligomycin A a recognized classical inhibitor of FOF1-ATPase inhibition it was used as a control to
compare the affinity and/or relevant interactions by re-docking procedure.

This theoretical algorithm was performed to the c-ring FO-ATPase subunit using a grid box size
with dimensions of X=22 A, Y=22 A, Z=22 A and the c-ring FO-ATPase subunit grid box center
X=19.917 A, Y= 19.654 A, Z= 29.844 A to evaluate the SWCNT-c-ring F0-ATPase interaction?,
considering the oligomycin A environment to evaluate the SWCNT-surface affinity in the c-ring FO-
ATPase subunit active binding site.

The docking free energy of binding output results (or FEB values) is defined by affinity (like
AGvina values) for all docked poses of the formed complexes (SWCNT-FOATPase) and include the
internal steric forces of a given ligands (SWCNT) which can be expressed as the sum of individual
molecular mechanics terms of standard-chemical potentials as: van der Waals interactions (AGvaw),
hydrogen bond (AGrbond), electrostatic interactions (AGetkctost), and intramolecular interactions
(AGinternat) ligands (SWCNTs) from empirically validated Autodock Vina scoring function based on
default Amber force-field parameters?'-23.

Then the (SWCNTs-FO-ATPase) complexes free energy of binding (FEBdo) was calculated
based on the following scoring function:
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AG= - RT(In Ki), R (gas constant) is 1.98 cal*(mol*K)-!, and Ki represents the predicted
inhibition constants at T = 298.15 K. The first term describes the van der Waals interaction as Aij/di!2
(attractive Guassian function) and Bij/di® (repulsive hyparabolic function) to represent a typical
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Lennard-Jones potential (SWCNT-FOATPase). The Gaussian term is negative and the parabolic
positive, dj is the surface distance calculated as dj = 1ij — Ri- Rj, where rj is the interatomic distance
and Ri and Rj are the radii of the atoms in the pair of interaction of SWCNTi-FOATPasej atoms. The
second term is the pair consisting of an H-bond donor and an H-bond acceptor as a directional 12-
10 hydrogen-bonding potential term such as Ci/di’? and Dy/di'® (H-bonding potential with
Goodford directionality), where E(t) is an angular weight factor to represents the hydrogen bonds
directionality and dj follows the criteria mentioned above. Atoms with dj below of cutoff value of 7
A were considered as interacting atoms?!%,

The third term represents the Coulomb electrostatic potential stored for the formed complex
(SWCNT/FOATPase); of N charges (gi, g;) of pairs of charged atoms of SWCNTw and FOATPase(). For
this instance, appropriated Gasteiger partial atomic charges of the FOATPase enzyme were
assigned. Herein, dj is the interatomic distance between the point charges as the reference positions
of interaction based on distance-dependent dielectric constant. Herein, Autodock Vina based on
Amber force field was parameterized with default options for the pristine-SWCNT, SWCNT-OH
and SWCNT-COOH by summing up individual molecular mechanic contributions like: SWCNT-
intra-molecular contributions, SWCNT-aromaticity criterion and the set number of active torsions
moving of each SWCNT-ligand following to general preparation procedures of ligand. For this
instance, the fourth term of the equation (2) as (AGinterma) was used to validate the internal steric
energy of each SWCNT-ligand including dispersion-repulsion energy and a torsional energy
through the sum of the default Amber force field parameters (ligand conformation-independent
parameters of the Autodock Vina scoring function)?'-2,

It is important to note that, docking dimensionality based on degree of freedom (DOF) for each
SWCNT (SWCNT-pristine, SWCNT-COOH) like: SWCNT-atom position/translation (xi, yi, zi = 3),
SWCNT-atom orientation/quarternion (q(xi), q(vi), q(zi), q(wi) = 4), SWCNT-number of rotable
bonds/torsion (tori, tors, ..., torn= Nwr) and SWCNT-total dimensionality (total DOF = 3 + 4 + n) not
have a significant weight in the FEBdo« based on the very small intra-molecular contributions of
force field parameters of the SWCNT-ligand which were considered as rigid-bodies and
considering the SWCNT-geometry optimization by AGintermal minimization of the SWCNT-ligands
used in the present study 2.

Local-perturbation response induced by SWCNT on the FO-ATPase subunit.

In parallel with docking simulation a new model based elastic network model was
performed to propose potential mechanism-based on the SWCNT-propensity to perturb the
intrinsic motion of FO-ATPase subunit binding residues involved in the docking
interactions. To this purpose, the FO-ATPase is represented as a network, or graph of the inter-
residue contacts from Ca-FO-ATPase atoms of a residue and the overall potential is simply the sum
of harmonic potentials between interacting nodes (FO-ATPase residues). The network includes all
interactions within a cutoff distance < 4 A. Information about the orientation of each interaction
with respect to the global coordinates system is considered within the force constant matrix and
allows prediction of perturbed anisotropic motions*. The force constant of the FO-ATPase protein
system can be described by a Kirchhoff or Hessian matrix (Hi,;) to evaluate potential perturbations
induced by SWCNT-ligand in the transduction properties of the FO-ATPase enzyme according to
the following equation:

................. - 1@
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Where each Hij is a 3x3 matrix which holds the anisotropic informations regarding the
orientation of residues (i, jnodes). Each such sub matrix (or the "super element" of the Hij —Hessian
matrix) is defined by the equation 4 as:

OV IOX,X, N IaXdY, 0NV 10Xz,
H, =| V1oV X, aNIavaY, N IaY,az,

)
Iz X, Nz, Nz, |

The second partial derivatives are the harmonic potentials V between interacting FO-ATPase
residues. These partial derivatives are formed by a simple matrix of cosines and the off-diagonal
super elements of the Hij -Hessian matrix are calculated according to equation 5 as:
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(5)

where v is an interaction constant. The si; is the instantaneous distance between nodes or
residues i and j. The diagonal super elements are calculated by:

Hi,i = _Z?lzl,j#:iHi,j (6)

Herein, the force constant matrix Hij holds information regarding the FO-ATPase-residues
position/orientation. The inverse of the Hessian matrix is the covariance matrix of 3N multi-variant
Gaussian distribution where p is an empirical parameter according to the equation (7) for the new
off-diagonal elements of the Hessian matrix which hold the desired information on the residue-
fluctuations including the FO-ATPase binding-site residues (i, j) involved in the SWCNT-F0-ATPase
docking interactions.

(X,——Xi)(xj—xi) (Xj_XiXYj_Yi) (Xj—xi)(zj—zi)
Hy = (=X -%) (= )y, -y, (Yj—Yi)(zj—zi))

ij Sipj+2 (Zj —ZiXXj B xll)) (Zj _ZiXYj _Y-)) (Zj —ZiXZJ' —Z.

7)

Then, we tackle the construction of the local perturbation response scanning maps (LPRS
maps) by setting the following conditions: i) unbound FO0-ATPase as the control simulation
experiment, ii) oligomycin A + FO-ATPase, iii) SWCNT-pristine + F0-ATPase, and SWCNT-COOH +
FO-ATPase.

Performing Nano-QSTR approaches

The Nano-QSTR models have been developed using a linear regression approach to predict the
mitochondrial FOF1-ATPase inhibition values of the SWCNT herein studied. The values used for
the development of the continuous model were obtained from molecular docking experiments
considering the free energy of binding (FEB values) obtained from the complexes SWCNT-
pristine/FO-ATPase, and SWCNT-COOH/F0-ATPase. For this purpose, two different sets for both
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ligands (SWCNT-pristine, SWCNT-COOH) were efficiently built. Considering the three
recognized categories of geometric topologies as: zig-zag-SWCNT (Hamada index m = 0, n > 0),
amchair-SWCNT (Hamada index m = n) and chiral- SWCNT, characterized by Hamada index (n,
m), with m > 0 and m # n; and with its enantiomers (or mirror images) present Hamada index (m,n),
which is different from (n, m) no reflection symmetry'> 4. Then, regression Nano-QSTR models
were developed using the linear regression tool implemented in the Statistica® suite.

The validation of the Nano-QSTR model was performed using the cross-validation module
implemented in the software. This procedure is aimed at assessing the predictive accuracy of a
model. The test randomly split the dataset into a training set and a validation set, ensuring that if an
entry was included in the test set it could not be used in the validation test. In so doing, the model
was developed using the cases in the training or learning sample, which, in our study, was 70% of
the dataset. The predictive accuracy was then assessed using the remaining 30% of the dataset.

Finally, the performance of the model was evaluated using the residuals, R and R? and other
relevant statistics. Regarding the molecular descriptors (MD), we used the DRAGON 7.0® software
to calculate the variables that have been used for the development of the models. This software
suite is able to calculate up to 7,500 different descriptors, belonging to very different classes, such as
topological, 2D, 3D, connectivity, and so on®. In order to select the best subset of MD, we have
performed a feature selection process using a forward stepwise methodology® for both models. At
the end of this procedure, we were able to develop the pristine and the carboxylate model using
respectively two and three MD belonging to the Topological class. The two MD used in the
SWCNT-pristine model are the Narumi geometric topological index (GNar) and the electro-
topological positive variation (MAXDP). The Narumi index of a graph G is defined as the product
of degrees of all its vertices:

NK(6) = T, de(v) (8)

The MAXDP is calculated as follow:

I._I.
S;=L+ Al_ I + YK —
i i =1 Z]Oz (dij"'l)k

)

which is calculated as the maximum positive value of AlL.

Regarding the SWCNT-COOH model, the continuous model was developed using three MD,
one is the same GNAR used for the pristine model. The other two are defined as follow. The first
one is the path/walk Randic shape indices that is calculated by summing, over the non-H atoms, the
ratios of the atomic path count over the atomic walk count of the same order k and, then, dividing
by the total number of non-H atoms (nSK). Since path/walk count ratio is independent of molecular
size, these descriptors can be considered as measures of molecular shape. Dragon calculates
path/walk shape indices from order 2 up to 5; the index of first order is not provided as the counts
of the paths and walks of length one is equal and, therefore, the corresponding molecular index
equals one for all molecules. The formula in this case is not reported in the Dragon manual.

Finally, the last molecular descriptor used is the so called lopping centric index (LOC), which
is calculated as the mean information content derived from the pruning partition of a graph:

LOC = Tk~ + log, ~& (10)

where nk is the number of terminal vertices removed at the kth step and nSK the number of
non-H atoms.
Results and Discussion

CNT effects on sub-mitochondrial particles (SMP).
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Herein, we present the in vitro assay on the inhibitory effect of the SWCNT-ligands (SWCNT-
pristine, SWCNT-COOH) at the range of concentration of 0.5-5 ug/ml over FO-ATPase using
isolated rat-liver sub-mitochondrial particles (isolated FOF1-ATPase) from mitochondrial inner
membrane. In general, we can see that the SWCNT-tested exhibit high ability to act as FO-ATPase
inhibitors (ATP-hydrolysis) at a range of concentration of 3-5 pg/ml. Besides, a concentration
dependence with significant statistical difference (p < 0.05) when compared with SMP (untreated-
SMP group) and the DMSO-treated SMP was observed. We note an oligomycin A-like pattern
(positive control group used) for both SWCNT-ligand in a range of concentration of 3-5 pg/ml
without significant statistical difference (p > 0.05) when compared with oligomycin A (Figure 1).
According to this, the treated-SMP from mixed CNT-ligand (5pg/ml) plus oligomycin A (1uM)
showed strongest FO-ATPase inhibition (p < 0.05) when compared with untreated-SMP and the
DMSO-treated SMP, and the remaining CNT-treated-SMP (3-5 pg/ml). Suggesting a strong
synergistic effect on FO0-ATPase inhibition (mitochondrial nanotoxicity). Details of these
experimental results can see in Figure 1.

FO0-ATPase + SWCNT-pristine
5

Isolated Submitochondrial
Particles (SMP)

m SMP
SMP m‘
m‘ Broken SMP
SMP

ABS 355nm

K
CNT
ki FO-ATP SWCNT-COOH b
Mitochondrial -. ase + ~C!
cristae \ % ’

ABS 355nm

Intermembrane space  ~._ .-  CNT

Outer mitochondrial
membrane

Figure 1. Representative results of FO-ATPase inhibition behavior-induced by SWCNT-pristine,
SWCNT-COOH on isolated-rat liver submitochondrial particles (SMP). Experimental conditions are
described under Methods section. Different treatments are depicted like untreated-
submitochondrial particles control (SMP), DMSO-treated SMP, CNT-treated SMP (1-5ug/ml),
Oligomycin A-treated SMP (FOF1-ATPase inhibitor used as positive control) and treated-SMP with
mixed SWCNT-ligand (5ug/ml) + Oligomycin A(1uM) to mimicking synergistic effects on FO-
ATPase inhibition was performed as additional control group. Results are representative of three
experiments (n=3). Symbols (¥, **, #) were used to denote statistical differences (p < 0.05). On the far
right we show the TEM image obtained for the samples of SWCNT-pristine, SWCNT-COOH.

Modeling FOATPase inhibition induced by SWCNTs

Herein, molecular docking was carried out in order to evaluate the influence of the carbon
nanotubes (SWCNT-pristine and SWCNT-COOH) in the FO-ATPase inhibition response. Herein,
the best docking binding pose from each modeled-CNT (SWCNT-pristine, SWCNT-COOH),
theoretically suggest that these CNT could act in the same biophysical environment that the
oligomycin A based on hydrophobic non-covalently interaction (-1t interactions) involving
phenylalanine hydrophobic residues (Phe 55 and Phe 64 of the chains C, D and M), which are
critically involved in the FO-ATPase inhibition (ATP-hydrolysis) in the FO-ATPase subunit active
binding-site. See Figure 2.
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Figure 2. Snapshots selection from molecular docking interactions obtained from the best binding
poses of the ligands as A) superimposed representation of oligomycin A and SWCNT-pristine, and
B) superimposed representation of oligomycin and SWCNT-pristine SWCNT-COOH interacting
with critical phenylalanine hydrophobic residues (Phe 55 and Phe 64: labelled red) which belong to
the target chains C, D and M in F0-ATPase subunit receptor. Please, note that Oligomycin A
(labelled green) corresponds to the control simulation experiment used here as reference due to this
ligand is the specific inhibitor of the FO-ATPase in all cases.

The free energy of binding (FEB)-values of the formed docking complexes following the order:
FEB (oligomycin A/FO-ATPase complex) = -9.8 kcal/mol > FEB (SWCNT-COOH/F(0-ATPase
complex) = -6.8 kcal/mol ~ FEB (SWCNT-pristine complex) = -5.9 kcal/mol with interatomic distance
of interaction lower than 5 A, in all the cases. Besides, we note that the presence of m-m interactions
like Y-shaped and pseudo parallel-displaced motif-orientation preferences for both single-walled
carbon nanotubes. Besides, a more electrostatically favored interactions in the CNT-sidewall than
the CNT-tips were observed in both simulations (SWCNT-pristine and SWCNT-COOH). Probably,
due to better orientation and stability between the planar-benzene-quadrupoles formed between
van der Waals surface from the modeled-SWCNT and the phenylalanine hydrophobic residues
(Phe 55 and Phe 64) of the F0-ATPase binding site and interacting in the same biophysical
environment that the FO-ATPase specific inhibitor (oligomycin A)"7.

Next, we carried out the theoretical modeling based on the local perturbation response
scanning maps (LPRS-maps). The LPRS maps are based in elastic network models (ENM models)
and have been widely recognized to study relevant conformational changes of target proteins (as
FO-ATPase under unbound and bound states) at the atomistic and molecular level*, It is well-
known that the ENM models could explain a large number the conformational differences based on
the perturbation pattens of the network formed by the target residues evaluated (Phe 55 and Phe
64) For this instance, LPRS maps generates a comprehensive visualizations of the F0-ATPase
inhibition response which allows evaluate allosteric signal propagations in response to external
perturbations under the presence of a given ligand (i.e., the oligomycin A as F0-ATPase-specific
inhibitor, SWCNT-pristine, and SWCNT-COOH. The results can see in the Figure 3.
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Figure 3. Perturbation response analysis for the F0-ATPase inhibition response. A) LPRS map
obtained for the unbound FO-ATPase as the control simulation experiment. Individual LPRS-maps
obtained from the best docking complexes (in the bound state for all the ligands tested) with
intensity bar color (on the right) for: B) oligomycin A/FO-ATPase complex, C) SWCNT-pristine/F0-
ATPase complex, and D) SWCNT-COOH/ FO-ATPase complex. All the LPRS-maps were established
in range of the low frequency normal modes in order to capture relevant fluctuations associated

with FO-ATPase catalytic function.

The results on LPRS-maps show that both single-walled carbon nanotubes promote a
significant change in the perturbation patterns of the network of target residues compared with the
physiological condition represented by the unbound state of FO-ATPase. In this regard, we note
abrupt perturbations in several blocks of residues more pronounced for the SWCNT-pristine
(strong FO-ATPase inhibition) than the SWCNT-COOH (moderate FO-ATPase inhibition) during the
interaction with the F0-ATPase. Interestingly, the LPRS map of the SWCNT-pristine/F0-ATPase
complex mimicking the toxicodynamic behavior of the oligomycin A/F0-ATPase complex inducing
strong FO-ATPase inhibition (See Figure Figure 3, B and C) suggesting a similar pattern of allosteric
network perturbation. However, the LPRS map obtained from the SWCNT-COOH/F0-ATPase
complex exhibits a pattern of perturbation closer to the physiological condition maintaining a
certain coupling between the residues composing the FO-ATPase network suggesting the presence
of a moderate nanotoxicity-based FO-ATPase inhibition. The relevance of these results is that strong
local perturbations promote triggering strong allosteric responses in the j-effector residues from FO-
ATPase receptor affecting its mitochondrial catalytic function involving the signal transduction of
the perturbations from the block of i-sensor residues which trigger abnormal signals propagation
across inter-residue network for j-effector FO-ATPase residues. We could suggest that considering
the SWCNT-docking position, both ligands (SWCNT-pristine >> SWCNT-COOH) can theoretically
disrupt the H*proton flux dynamic in the mitochondrial H*-F0-ATPase subunit, compromising the
coupling between oxidative phosphorylation and electron transport in the respiratory chain
inducing potential bioenergetic dysfunction and the mitochondria nanotoxicitys?.

In order to quantify potential fractal geometrical perturbations, a fractal surface analysis was
carried out to model changes-based perturbations in the geometric surface of the binding effector
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residues of the FO-ATPase under unbound and bound state (i.e., under SWCNT-pristine and
SWCNT-COOH interactions)®. To this end, several fractal dimensions (FDs namely: Dsw, Dssw and
Dwsw) were calculated using the box-counting methods from the LPRS maps previously obtained®.
The Fractal Theory allows the mathematical modeling of the geometric complexity (across multiple
scales) and self-similarity (scale-invariant structure) from non-Euclidean real or virtual objects (as
SWCNT-tested). One of the most important properties in the fractal modeling is the degree of self-
similarity. Then, a topological fractal dimension near to 2 is categorized-like high complexity (high
variety of geometrical information) and low self-similarity, in opposite a topological fractal
dimension closer to 1 informs about little complexity and high self-similarity. Herein, the non-
Euclidean geometrical patterns were included according to the fractal dimension like FDsw, that
describes the surface geometric perturbations in the border of LPRS map fractal pattern®. The
FDgsw, characterizes the surface geometric perturbations on the white background, and the FDw:sw
the fractal perturbations pattern on the black background from the LPRS images calculated for each
simulation conditions. See Figure 4.
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Figure 4. Fractal spectrum based on the box-counting method performed to obtain the slopes of the
linear regression yields from binary black/white LPRS maps image-processing. These slopes
represent the fractal dimensions (FD: Dsw, Dssw, and Dwsw) for the best docking complexes namely:
A) unbound F0-ATPase, B) oligomycin A/FO-ATPase complex, C) SWCNT-pristine/FO-ATPase
complex, and D) SWCNT-COOH/ F0-ATPase complex.

Herein, the obtained FDs are related to the FO-ATPase surface and backbone non-Euclidean
geometry® 5 FDs, inform about how the FO-ATPase folding, packing density, solvent-accessibility,
and binding-interaction properties could be perturbed under the presence of different ligands
forming docking complexes (oligomycin A/F0-ATPase complex, SWCNT-pristine/FO-ATPase
complex, and SWCNT-COOH/F0-ATPase complex). In this context, we suggest that, SWCNT-
pristine with FDsw= 1.29 lead to a higher change in FO-ATPase roughness-based FD (FDsw) than the
SWCNT-COOH (FDsw = 1.45) which exhibits very similar features-based fractal dimension
compared physiological condition of unbound F0-ATPase used as control (FDsw = 1.45. These,
results fit with the previous on LPRS maps strongly suggesting that the SWCNT-pristine mimicking
the nanotoxicological behavior of the specific inhibitor oligomycin A with calculated equal to FDsw
=1.32 also low than the physiological condition of unbound FO-ATPase cited above. As previously
cited, a FD = 2 reveals high variety of geometrical information and low self-similarity, while FD = 1
represents little complexity and high self-similarity. By the other hand, the FD-values obtained for
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FDs+sw and FDwssw remain as unperturbed around 1.85 in all the cases revealing high complexity of
geometrical information® %.

The results of fractal surface perturbation suggest that the SWCNT-pristine can induce
significant changes in the geometrical selectivity of the FO-ATPase like oligomycin A. It is well-
known that perturbation (global and local perturbations) in the three-dimensional spatial arrangement
of atoms composing effector residues (j-effector allosteric residues) of proteins can be studied using
their FDs. Fractal surface-perturbations could negatively impact on catalytic function of FO-ATPase,
affecting irreversibly the structural properties of the binding cavities, which are the paramount
importance in the complementary processes like substrate recognition and ligand geometrical
specificity. [64] Probably, topologically perturbed van der Waals fractal-surface of FO-ATPase after
the docking interaction with SWCNT-COOH could theoretically explain the moderate
mitochondrial nanotoxicity observed from the SWCNT-COOH/F0-ATPase docking complex (refer
to Figure 3, A and D).

Lastly, we carried out a nano-quantitative-structure-toxicity-relationship approaches (Nano-
QSRT models) in order to evaluate the influence of additional geometric properties of the ligands
SWCNT-pristine and SWCNT-COOH based on the well-known relationship between the topology
geometry-based on n,m-Hamada index with their nanotoxicological properties (i.e., SWCNT-
mitotoxicity).

Performed Nano-QSTR models

As reported in the Material and methods section, the Nano-QSTR model for SWCNT-pristine
was developed using only two variables belonging to the topological index category. The observed
vs predicted values and the other relevant statistics, are reported in the Table 1, Table 2, and

Figure 5, respectively.

Table 1. Results of the Nano-QSTR regression model for mitochondrial FO-ATPase
inhibition induced by SWCNT-pristine.

. .. Data Data Data 1o
SWCNT-pristine (n,m) Observed | Predicted | Resids Cross-validation®»
amchair 3.3 -20.00000 | -18.93350 | -1.06650 training
amchair 4.4 -19.70000 | -18.83954 | -0.86046 training
amchair 5.5 -18.80000 | -18.77444 | -0.02556 training
amchair 6.6 -18.50000 | -18.72592 | 0.22592 validation
amchair 7.7 -18.20000 | -18.68908 | 0.48908 training
amchair 8.8 -17.50000 | -18.66083 | 1.16083 training
amchair 9.9 -17.20000 | -18.63872 | 1.43872 training
chiral 3.2 -17.20000 | -16.28865 | -0.91135 validation
chiral 4.1 -17.20000 | -15.58908 | -1.61092 training
chiral 4.2 -17.00000 | -15.84427 | -1.15573 training
chiral 4.3 -16.30000 | -15.96788 | -0.33212 training
chiral 5.1 -16.20000 | -15.56891 | -0.63109 validation
chiral 5.2 -16.20000 | -15.44925 | -0.75075 training
chiral 5.3 -16.00000 | -15.63349 | -0.36651 training
chiral 5.4 -16.00000 | -15.72809 | -0.27191 training
chiral 6.1 -16.00000 | -15.26864 | -0.73136 validation
chiral 6.2 -15.90000 | -15.19863 | -0.70137 training
chiral 6.3 -15.90000 | -15.37446 | -0.52554 training
chiral 6.4 -15.90000 | -15.47126 | -0.42874 training
chiral 6.5 -15.80000 | -15.39773 | -0.40227 validation
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chiral 7.1 -15.70000 | -15.02346 | -0.67654 training
chiral 7.2 -15.40000 | -15.17288 | -0.22712 training
chiral 7.3 -15.40000 | -15.10112 | -0.29888 training
chiral 7.4 -15.20000 | -15.24345 | 0.04345 validation
chiral 7.5 -15.20000 | -15.34078 | 0.14078 training
chiral 7.6 -15.20000 | -15.28875 | 0.08875 training
chiral 8.1 -15.00000 | -15.03210 | 0.03210 training
chiral 8.2 -15.00000 | -14.77537 | -0.22463 validation
chiral 8.3 -14.90000 | -15.23422 | 0.33422 training
chiral 8.4 -14.80000 | -15.08583 | 0.28583 training
chiral 8.5 -14.70000 | -15.15833 | 0.45833 training
chiral 8.6 -14.70000 | -15.24567 | 0.54567 validation
chiral 8.7 -14.70000 | -15.20136 | 0.50136 training
chiral 9.3 -14.60000 | -14.79209 | 0.19209 training
chiral 9.4 -14.50000 | -15.12489 | 0.62489 training
chiral 9.5 -14.50000 | -15.11612 | 0.61612 validation
chiral 9.6 -14.50000 | -15.09848 | 0.59848 training
chiral 9.7 -14.30000 | -15.29203 | 0.99203 training
zig zag 3.0 -14.30000 | -15.37860 | 1.07860 training
zig zag 4.0 -14.10000 | -14.00654 | -0.09346 validation
zig zag 5.0 -13.70000 | -14.00654 | 0.30654 training
zig zag 6.0 -13.70000 | -13.79221 | 0.09221 training
zig zag 7.0 -13.60000 | -13.62087 | 0.02087 training
zig zag 8.0 -13.30000 | -13.48024 | 0.18024 validation
zig zag 9.0 -12.90000 | -13.36294 | 0.46294 training

Data sets: training ® and validation sets ®.
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Figure 5. Results of observed vs. predicted values obtained for the Nano-QSTR regression
model performed for the SWCNT-pristine data.

Table 2. Results of the relevant statistic parameters obtained from the Nano-QSTR
regression model for SWCNT-pristine.

Statistic parameters Value

As can be seen in the Table 1 and 2, the Nano-QSTR model shows an overall accuracy and a
goodness of fit high, thus indicating this model can be used for a continuous prediction of the
likelihood induced mitochondria nanotoxicity inhibition on FOF1-ATPase by interaction with
SWCNT-pristine (AFEB_1)). In this regard, the best Nano-QSTR regression model is based on the
linear equation 11 as:

f(FEB_1) = —8.24425(GNar) + 0.614121(MAXDP) — 2.87142  (11)

Afterward, we performed Nano-QSTR model for SWCNT-COOH. For this instance, was
carried out a QSTR regression model by using three variables and as in the case of the previous
model (i.e., using SWCNT-pristine). Herein, the results obtained on observed vs predicted values,
and the other relevant statistics parameters are summarized in the Table 3, Table 4, and Figure 6,
respectively.

Table 3. Results of the Nano-QSTR regression model for mitochondrial FO-ATPase
inhibition induced by SWCNT-COOH.

SWCNT-COOH (n,m) Data Data Data
Observed Predicted Resids

Cross-validation®»
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chiral 4.2 -27.60000 -27.01059 -0.58941 training
chiral 4.3 -26.90000 -25.00316 -1.89684 training
chiral 5.1 -26.70000 -28.51704 1.81704 validation
chiral 5.2 -26.60000 -24.71436 -1.88564 training
chiral 5.3 -26.40000 -25.08549 -1.31451 training
chiral 5.4 -26.40000 -24.19447 -2.20553 training
chiral 6.1 -26.30000 -27.20385 0.90385 validation
chiral 6.2 -25.90000 -24.54620 -1.35380 training
chiral 6.3 -25.40000 -25.47553 0.07553 training
chiral 6.4 -25.00000 -24.13724 -0.86276 training
chiral 6.5 -24.80000 -24.44496 -0.35504 validation
chiral 7.1 -24.70000 -25.21534 0.51534 training
chiral 7.2 -24.60000 -26.28422 1.68422 training
chiral 7.3 -24.50000 -24.04522 -0.45478 training
chiral 7.4 -24.30000 -24.52728 0.22728 validation
chiral 7.5 -24.30000 -23.88676 -0.41324 training
chiral 7.6 -24.30000 -23.32855 -0.97145 training
chiral 8.1 -24.10000 -26.95336 2.85336 training
chiral 8.2 -24.10000 -23.51211 -0.58789 validation
chiral 8.3 -24.10000 -25.39320 1.29320 training
chiral 8.4 -24.00000 -24.63822 0.63822 training
chiral 8.5 -23.70000 -24.27680 0.57680 training
chiral 8.6 -23.50000 -22.90990 -0.59010 validation
chiral 8.7 -23.50000 -24.89841 1.39841 training
chiral 9.3 -23.00000 -23.42979 0.42979 training
chiral 9.4 -22.60000 -24.13724 1.53724 training
chiral 9.5 -22.50000 -23.71859 1.21859 validation
chiral 9.6 -22.40000 -23.16039 0.76039 training
chiral 9.7 -22.20000 -23.53151 1.33151 training
zig zag 3.0 -22.10000 -25.42752 3.32752 training
zig zag 4.0 -21.70000 -20.86901 -0.83099 validation
zig zag 5.0 -21.50000 -20.86901 -0.63099 training
zig zag 6.0 -21.40000 -20.17126 -1.22874 training
zigzag 7.0 -21.10000 -19.61305 -1.48695 training
zig zag 8.0 -20.90000 -19.19440 -1.70560 validation
zig zag 9.0 -17.30000 -18.91530 1.61530 training

Data sets: training® and validation sets®.

Table 4. Results of the relevant statistic parameters obtained from the Nano-QSTR

regression model for SWCNT-COOH.
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Figure 6. Results of observed vs. predicted values obtained for the Nano-QSTR regression
model performed for the SWCNT-COOH data.

For the case of SWCNT-COOH data set the final Nano-QSTR regression model to predicts
the mitochondrial FO-ATPase inhibition (f(FEB_2)) is represented by the linear equation 12 as:

f(FEB_2) = —1005.47(GNar) — 1401.69(PW5) — 139.55(LOC) — 2326.4  (12)

Overall, the proposed methodologies rigorously obey the Organization for Economic Co-
operation and Development (OECD) and the International Organization for Standardization
guidelines for development of alternative methods for Computational Nanotoxicology®'.
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Conclusions

In the present study we present a combination of experimental and computational
approaches to tackle the SWCNT nanotoxicity based on the mitochondrial FOF1-ATPase inhibition.
Experimental evidences supported that the in wvitro FOF1-ATPase inhibition responses in
submitochondrial particles (SMP) are strongly dependent on the higher level of concentration (from
3 to 5 pg/ml) in both types of carbon nanotubes (SWCNT-pristine and SWCNT-COOH) evaluated.
In addition, both types of carbon nanotubes show an interaction inhibition pattern for the FOF1-
ATPase enzyme, similar to the oligomycin A (specific FOF1-ATPase inhibitor). By the other hand,
the best binding pose for the obtained complexes fit well with the previous experimental results.
The free energy of binding (FEB-values) for the formed docking complexes following the affinity
order as: FEB (oligomycin A/FO-ATPase complex) = -9.8 kcal/mol > FEB (SWCNT-COOH/F0-ATPase
complex) = - 6.8 kcal/mol ~ FEB (SWCNT-pristine complex) = -59 kcal/mol with relevant
interatomic distance of interaction lower than 5 A, in all the cases and with predominance of van
der Waals hydrophobic interactions with critical FO-ATPase binding site residues (Phe 55 and Phe
64) belonging to the same biophysical environment that the oligomycin A inhibitor. In addition,
results on elastic network models (LPRS-maps) show that both SWCNT-pristine and SWCNT-
COOH promote an abrupt perturbations in several blocks of residues more pronounced for the
SWCNT-pristine (strong FO-ATPase nanotoxicity inhibition) than the SWCNT-COOH (moderate FO-
ATPase nanotoxicity inhibition) triggering pertubation on the allosteric responses, abnormal signals
propagation across inter-residue network of the FOF1-ATPase. In accordance to this, results on
fractal-surface of interactions suggest that, the SWCNT-interactions topologically affect the van der
Waals fractal-surface of FO-ATPase (SWCNT-pristine > SWCNT-COOH) inducing from strong to
moderate mitochondrial nanotoxicity. Lastly, the predictive Nano-QSTR models show that a linear
correlation between SWCNT topology and the nanotoxicity induced is present and can be predicted
using a Nano-QSTR approach.

Finally, this results open new opportunities toward to the better better understanding of the
molecular nanotoxicity mechanisms, relevance of mitotarget-drug discovery and rational drug-
design based nanotechnology with potential biomedical application in precision nanomedicine.
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