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Abstract: Herein, we present a combination of experimental and computational study on the 

mitochondrial F0F1-ATPase nanotoxicity inhibition induced by single-walled carbon nanotubes 

(SWCNT-pristine, SWCNT-COOH). To this end, the in vitro inhibition responses in 

submitochondrial particles (SMP) as F0F1-ATPase enzyme were strongly dependent on the 

concentration assay (from 3 to 5 µg/ml) for both types of carbon nanotubes. Besides, both 

SWCNTs show an interaction inhibition pattern like the oligomycin A (the specific mitochondria 

F0F1-ATPase inhibitor). Furthermore, the best crystallography binding pose obtained for the 

docking complexes based on the free energy of binding (FEB), fit well with the previous in vitro 

evidences from the thermodynamics point of view. Following an affinity order as: FEB 

(oligomycin A/F0-ATPase complex) = -9.8 kcal/mol > FEB (SWCNT-COOH/F0-ATPase complex) = 

- 6.8 kcal/mol ~ FEB (SWCNT-pristine complex) = -5.9 kcal/mol. With predominance of van der 

Waals hydrophobic nanointeractions with key F0-ATPase binding site residues (Phe 55 and Phe 

64). By the other hand, results on elastic network models, and fractal-surface analysis suggest that 

SWCNTs induce significant perturbations by triggering abnormal allosteric responses and signals 

propagation in the inter-residue network which could  affect the substrate recognition ligand 

geometrical specificity of the F0F1-ATPase enzyme in order (SWCNT-pristine > SWCNT-COOH).  

Besides, the performed Nano-QSTR models for both SWCNTs show that this method may be used 

for the prediction of the nanotoxicity induced by SWCNT. Overall, the obtained results may open 

new avenues toward to the better understanding and prediction of new nanotoxicity mechanisms, 

rational drug-design based nanotechnology, and potential biomedical application in precision 

nanomedicine.  
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Introduction  

The coupled mechanical co-rotating between the γ and ε subunits that form the 

mitochondrial F1-ATP synthase (complex V) favors the H+ protons flux necessary for ATP 

synthesis in all eukaryotic cells1, 2. This bioenergetic process involves several synchronized 

conformational changes which are critical for the survival or death of the cells1-3. In this 

regard, a few years ago has been shown that under pathological conditions like chronic 
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diseases as cancer, Alzheimer, Parkinson, MELAS syndrome, several toxic events, including 

nanotoxicity-induced by SWCNT may trigger F0F1ATPase dysfunction3-5. The ATP cellular reserves 

are abruptly consumed by a reverse biochemical reaction which paradoxically hydrolyses 

significant amounts of ATP   compromising the cellular homeostasis and viability3, 5. 

Several chemical agents (including carbon nanoparticles) have shown a high 

affinity/selectivity by the bioenergetic mechanisms based on ATP hydrolysis3, 5. Particularly, 

nanoparticle-based single-walled carbon nanotubes (SWCNTs) which have been studied by its 

selective nanotoxicity effects on mitochondria (mitotropic behavior)6-9.  

To the best of our knowledge, the toxicological modulation of mitochondrial ATP bioenergetic 

mechanisms released by the exposure with SWCNT has been insufficiently characterized in order to 

explain the mitochondrial nanotoxicity-induced by SWCNT. By the other hand, this mechanistic 

knowledge could be very useful to implement strategies on the named “precision mitochondrial 

nanomedicine” to improve selectivity for the treatment of brain, cardiac diseases, and cancer using 

the mitotropic behavior of SWCNT to address active pharmacological principles as new targeting of 

the mitochondrial F0F1-ATPase8-14. In this context, we hypothesize that SWCNT could acts 

mimicking the pharmacodynamic behavior of the Oligomycin A, which is the specific inhibitor 

of the mitochondrial ATP-hydrolysis that modulate the activity of the c-ring-F0-ATP hydrolase 

subunit. The c-ring-F0-ATP hydrolase subunit represent an uncoupling channel which is part of 

the mitochondrial permeability transition pore-induced associated to mitochondrial 

dysfunction and apoptosis15, 16. Following this idea, we suggest that SWCNT could promote 

the selective inhibition of the F0-ATPase under pathological conditions16-20.   
In this regard, computational approaches like molecular docking simulation, elastic network 

models, fractal-surface approaches linked to nano-quantitative-structure-toxicity relationships 

(Nano-QSAR/QSTR models) and others8, 21-24, could be efficiently applied to the exhaustive 

exploration of the underlying mechanisms of mitochondrial bioenergetic dysfunction (pathological 

ATP-hydrolysis) from the structural point of view for therapeutic purposes.  

Particularly, computational Nano-QSAR/QSTR approaches are essential tools to support 

the discovery process of toxicological effects of nanomaterials (SWCNT). Several 

approaches have been developed and applied recently able to predict potential harmfulness 

of nanoparticles and nanomaterials8-14. One of the most used is the so called nano-

quantitative-structure-toxicity-relationships (Nano-QSTR models) due to the fact that was 

successfully applied in very different fields25-27. This in silico tools have the quality of 

being versatile and reconfigurable to many problems. For example, the nano-quantitative-

structure-binding-relationship (Nano-QSBR) models is a type of Nano-QSTR which is able 

to associate the physico-chemical properties of nanomaterials (nanodescriptors) with the 

theoretical free energy of binding (FEB values, kcal/mol) obtained from the molecular 

docking studies and also to experimental nanotoxicological outputs13, 14, 28.    

Due to this, QSAR (Nano-QSTR) paradigm has been applied since the beginning of the 

“nano revolution” as a useful methodology able to support toxicity profiling of 

nanomaterials and CNT 29-33. Several approaches by many authors have been reported 

combining different molecular descriptors, methodologies and algorithms, including 

machine learning and deep learning32-40. In this sense, in strongly advisable use Nano-

QSTR approaches while performing toxicity profiling of CNT and nanomaterials also 

considering in silico approaches are strongly encouraged by authorities in order to improve 

the EU 3R principles (replacement, reduction, refinement) in Alternative Toxicology. 
Currently, the main limitation of these computational methods is to address a feasible mechanistic 

interpretation of the nanotoxicity phenomena at the atomic level, in many cases41.  

Then, in this work we propose for the first time, a combination of computational modeling 

approaches, based on molecular docking simulations, elastic network models, fractal-surface 

approaches and Nano-QSTR calculations, along with experimental validation to tackle the study of 

binding interactions between single-walled carbon nanotubes with the mitochondrial F0F1-ATPase 
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toward to contribute to the rational drug-design based nanotechnology, mitotarget-drug discovery 

and the new area of precision mitochondrial nanomedicine.  

Materials and methods 

Isolation of rat-liver sub-mitochondrial particles (SMP).  

The frozen RLM pellet was thawed and diluted with homogenization medium to contain 20 

mg of protein/ml. The mitochondrial suspension was subjected to sonic oscillation four times for 15 

s with 30 s intervals, using 80 watts at 4°C42-45. The suspension was then centrifuged at 9750 x g for 

10 min at 4°C and the submitochondrial particles in the supernatant were isolated by additional 

centrifugation in a Sorval SV-80 vertical rotor for one hour at 15 000 rev/min at 4°C, using 

discontinuous gradient containing 1ml of 0.5 M sucrose and 1 ml of 2.0 M sucrose in 5 mM Tris-

HCl, pH 7.4. Finally, the SMP were suspended in the isolation medium, and the final volume 

adjusted to give a stock suspension containing 1 mg of protein/ml.    

Standard incubation procedure.  

Mitochondria liver isolated and submitochondrial particles (SMP) were energized with 5 mM 

of potassium succinate (plus 2.5 μM of rotenone) in a standard incubation medium consisting of 125 

mM of sucrose, 65 of mM KCl, 2 mM of inorganic phosphate (K2HPO4) and 10 mM of HEPES-KOH 

pH 7.4 at 30 °C.42-45 

Determination of mitochondrial F0F1-ATPase inhibition in isolated rat-liver sub-mitochondrial particles 

(SMP). 

Isolated rat-liver sub-mitochondrial particles (isolated-F0F1-ATPase) (20 mg of protein) were 

incubated according the following experimental groups: 1) untreated SMP, 2) SMP + DMSO (100 

mM), 3) SMP+ SWCNT-samples (SWCNT-pristine, SWCNT-COOH) in the range of concentration of 

(0.5-5 µg/ml), 4) SMP + Oligomycin A (1 µM) as positive control, and 5) SMP + Oligomycin A (1 

µM) + SWCNT-samples at 5 µg/ml as additional control assay. The reactions are started by addition 

of enzyme as H+-c-ring/F0-ATPase (80 µg of protein). The total volume was 1ml. After 10 min at 

37°C, the reaction was stopped by addition of 0.5 trichloroacetic acid, 30% (w/v). Phosphate 

released by ATP hydrolysis is measured on 0.5 ml of molybdate reagent (10 mM ammonium 

molybdate in 2.5 M sulfuric acid), 1 ml of acetone and 0.5 ml of 0.4 M citric acid. After each 

addition, the tubes are homogenized for 10 s in a vortex mixer. The mitochondrial F0F1-ATPase 

inhibition (F0-ATPase inhibition) for each treatment was calculated by measuring the absorbance at 

355 nm42-45. Before all spectrophotometric F0-ATPase inhibition measurements, the blanks with each 

SWCNT were run and interferences absorbance peaks of SWCNT were not observed at 300–400 

nm42-45. Furthermore, each SWCNT-sample was added under continuous stirring by using magnetic 

stirrer cuvettes. 

Statistical procedures for the mitochondrial assays using SMP. 

Analysis of variance (ANOVA) followed by a post hoc Newman–Keuls multiple comparison 

test to determine statistical differences between F0-ATPase inhibition assay experimental groups 

was performed. All the biochemical tests by using isolated rat-liver mitochondria (RLM) and sub-

mitochondrial particles (SMP) were performed at least three times in triplicate. Normality and 

variance homogeneity were verified using Shapiro–Wilks and Levene tests, respectively, before 

using ANOVA analysis. In all cases, significance level was set in 5%.  

Molecular docking study  

Docking simulations were performed using Autodock tools mixed Autodock Vina to 

understand the strength of biochemical interactions across CNT-family member (pristine-CNT, 

CNT-OH, CNT-COOH), and oligomycin A on F0-ATPase. These binding in silico interactions were 
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performed only to explain hidden biophysical and pharmacodynamic mechanisms observed in the 

mitochondrial in vitro assays. For this instance, it was modeled only three types of single walled 

zig-zag SWCNTs (Hamada index n = 8, m = 0) like SWCNT(8.0), SWCNT-COOH(8.0) and SWCNT-

OH(8.0) as F0F1-ATPase ligands in order to reproduce and modeling some critical experimental 

conditions from CNT-properties like CNT-functionalization linked to observed F0-ATPase 

inhibition (ATP-hydrolysis inhibition) in isolated-RLM and isolated-SMP. Following this idea, the 

F0F1-ATPase C10 ring with oligomycin A from yeast (Saccharomyces cerevisiae) as the receptor (PDB 

ID: 5BPS, Resolution 2.1Å ) was obtained from the RCSB Protein Data Bank (PDB)46. It is important to 

note that, c-ring-F0-ATPase subunit.pdb x-ray structure from Saccharomyces cerevisiae (5BPS) can be 

used in the context of the present docking approaches taking into account that mitochondrial c-

ring-F0-ATPase subunit.pdb x-ray structure from Rattus norvegicus with oligomycin A has not been 

crystallized and included in the RCSB Protein Data Bank46. However, the oligomycin A-

pharmacodynamics mechanism is highly conserved in Rattus norvegicus according to previous 

experimental evidences17. 

Before the molecular docking, ATPase C10 ring molecular structure was optimized using the 

AutoDock Tools 4 software for AutoDock Vina. The algorithm includes the removal of 

crystallographic water molecules and all the co-crystallized ATPase C10 ring ligand molecules, such 

as Oligomycin A (Oligo A: C45H74O11 like ID: EFO) from ATPase C10 ring chains (B, E, K, L, M, O). 

Oligomycin A a recognized classical inhibitor of F0F1-ATPase inhibition it was used as a control to 

compare the affinity and/or relevant interactions by re-docking procedure.  

This theoretical algorithm was performed to the c-ring F0-ATPase subunit using a grid box size 

with dimensions of X= 22 Å , Y= 22 Å , Z= 22 Å  and the c-ring F0-ATPase subunit grid box center 

X=19.917 Å , Y= 19.654 Å , Z= 29.844 Å  to evaluate the SWCNT-c-ring F0-ATPase interaction47, 

considering the oligomycin A environment to evaluate the SWCNT-surface affinity in the c-ring F0-

ATPase subunit active binding site.  

The docking free energy of binding output results (or FEB values) is defined by affinity (like 

ΔGbind values) for all docked poses of the formed complexes (SWCNT-F0ATPase) and include the 

internal steric forces of a given ligands (SWCNT) which can be expressed as the sum of individual 

molecular mechanics terms of standard-chemical potentials as: van der Waals interactions (ΔGvdW), 

hydrogen bond (ΔGH-bond), electrostatic interactions (ΔGelectrost), and intramolecular interactions 

(ΔGinternal) ligands (SWCNTs) from empirically validated Autodock Vina scoring function based on 

default Amber force-field parameters21-23.  

Then the (SWCNTs-F0-ATPase) complexes free energy of binding (FEBdock) was calculated 

based on the following scoring function:  

intGGGGGFEB electrostbondHvdWbinddock     
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ΔG= - RT(ln Ki), R (gas constant) is 1.98 cal*(mol*K)–1, and Ki represents the predicted 

inhibition constants at T = 298.15 K. The first term describes the van der Waals interaction as Aij/dij12 

(attractive Guassian function) and Bij/dij6 (repulsive hyparabolic function) to represent a typical 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 September 2020                   doi:10.20944/preprints202009.0014.v1

https://doi.org/10.20944/preprints202009.0014.v1


Lennard-Jones potential (SWCNT-F0ATPase). The Gaussian term is negative and the parabolic 

positive, dij is the surface distance calculated as dij = rij – Ri - Rj, where rij is the interatomic distance 

and Ri and Rj are the radii of the atoms in the pair of interaction of SWCNTi-F0ATPasej atoms. The 

second term is the pair consisting of an H-bond donor and an H-bond acceptor as a directional 12-

10 hydrogen-bonding potential term such as Cij/dij12 and Dij/dij10 (H-bonding potential with 

Goodford directionality), where E(t) is an angular weight factor to represents the hydrogen bonds 

directionality and dij follows the criteria mentioned above. Atoms with dij below of cutoff value of 7 

Å  were considered as interacting atoms21-23.  

The third term represents the Coulomb electrostatic potential stored for the formed complex 

(SWCNT/F0ATPase)ij of N charges (qi, qj) of pairs of charged atoms of SWCNT(i) and F0ATPase(j). For 

this instance, appropriated Gasteiger partial atomic charges of the F0ATPase enzyme were 

assigned. Herein, dij is the interatomic distance between the point charges as the reference positions 

of interaction based on distance-dependent dielectric constant. Herein, Autodock Vina based on 

Amber force field was parameterized with default options for the pristine-SWCNT, SWCNT-OH 

and SWCNT-COOH by summing up individual molecular mechanic contributions like: SWCNT-

intra-molecular contributions, SWCNT-aromaticity criterion and the set number of active torsions 

moving of each SWCNT-ligand following to general preparation procedures of ligand. For this 

instance, the fourth term of the equation (2) as (ΔGinternal) was used to validate the internal steric 

energy of each SWCNT-ligand including dispersion-repulsion energy and a torsional energy 

through the sum of the default Amber force field parameters (ligand conformation-independent 

parameters of the Autodock Vina scoring function)21-23. 

It is important to note that, docking dimensionality based on degree of freedom (DOF) for each 

SWCNT (SWCNT-pristine, SWCNT-COOH) like: SWCNT-atom position/translation (xi, yi, zi = 3), 

SWCNT-atom orientation/quarternion (q(xi), q(yi), q(zi), q(wi) = 4), SWCNT-number of rotable 

bonds/torsion (tor1, tor2, …, torn = Ntor) and SWCNT-total dimensionality (total DOF = 3 + 4 + n) not 

have a significant weight in the FEBdock based on the very small intra-molecular contributions of 

force field parameters of the SWCNT-ligand which were considered as rigid-bodies and 

considering the SWCNT-geometry optimization by ΔGinternal minimization of the SWCNT-ligands 

used in the present study 21-23. 

Local-perturbation response induced by SWCNT on the F0-ATPase subunit. 

In parallel with docking simulation a new model based elastic network model was 

performed to propose potential mechanism-based on the SWCNT-propensity to perturb the 

intrinsic motion of F0-ATPase subunit binding residues involved in the docking 

interactions. To this purpose, the F0-ATPase is represented as a network, or graph of the inter-

residue contacts from Cα-F0-ATPase atoms of a residue and the overall potential is simply the sum 

of harmonic potentials between interacting nodes (F0-ATPase residues). The network includes all 

interactions within a cutoff distance < 4 Å . Information about the orientation of each interaction 

with respect to the global coordinates system is considered within the force constant matrix and 

allows prediction of perturbed anisotropic motions48. The force constant of the F0-ATPase protein 

system can be described by a Kirchhoff or Hessian matrix (Hi,j) to evaluate  potential perturbations 

induced by SWCNT-ligand in the transduction properties of the F0-ATPase enzyme according to 

the following equation: 
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Where each Hi,j is a 3×3 matrix which holds the anisotropic informations regarding the 

orientation of residues (i, j-nodes). Each such sub matrix (or the "super element" of the Hi,j –Hessian 

matrix) is defined by the equation 4 as: 
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The second partial derivatives are the harmonic potentials V between interacting F0-ATPase 

residues. These partial derivatives are formed by a simple matrix of cosines and the off-diagonal 

super elements of the Hi,j –Hessian matrix are calculated according to equation 5 as: 

        

        

        























































2

,

2

,

2

,

2

,

2

,

2

,

2

,

2

,

2

,

,

ji

ijij

ji

ijij

ji

ijij

ji

ijij

ji

ijij

ji

ijij

ji

ijij

ji

ijij

ji

ijij

ji

s

ZZZZ

s

YYZZ

s

XXZZ

s

ZZYY

s

YYYY

s

XXYY

s

ZZXX

s

YYXX

s

XXXX

H







(5) 

where γ is an interaction constant. The si,j is the instantaneous distance between nodes or 

residues i and  j. The diagonal super elements are calculated by: 

𝐻𝑖,𝑖 = − ∑ 𝐻𝑖,𝑗
𝑁
𝑗=1,𝑗≠𝑖  (6) 

Herein, the force constant matrix Hi,j holds information regarding the F0-ATPase-residues 

position/orientation. The inverse of the Hessian matrix is the covariance matrix of 3N multi-variant 

Gaussian distribution where p is an empirical parameter according to the equation (7) for the new 

off-diagonal elements of the Hessian matrix which hold the desired information on the residue-

fluctuations including the F0-ATPase binding-site residues (i, j) involved in the SWCNT-F0-ATPase 

docking interactions.  
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Then, we tackle the construction of the local perturbation response scanning maps (LPRS 

maps) by setting the following conditions: i) unbound F0-ATPase as the control simulation 

experiment, ii) oligomycin A + F0-ATPase, iii) SWCNT-pristine + F0-ATPase, and SWCNT-COOH + 

F0-ATPase. 

Performing Nano-QSTR approaches 

The Nano-QSTR models have been developed using a linear regression approach to predict the 

mitochondrial F0F1-ATPase inhibition values of the SWCNT herein studied. The values used for 

the development of the continuous model were obtained from molecular docking experiments 

considering the free energy of binding (FEB values) obtained from the complexes SWCNT-

pristine/F0-ATPase, and SWCNT-COOH/F0-ATPase. For this purpose, two different sets for both 
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ligands (SWCNT-pristine, SWCNT-COOH) were efficiently built. Considering the three 

recognized categories of geometric topologies as: zig-zag-SWCNT (Hamada index m = 0, n > 0), 

amchair-SWCNT (Hamada index m = n) and chiral-SWCNT, characterized by Hamada index (n, 

m), with m > 0 and m ≠ n; and with its enantiomers (or mirror images) present Hamada index (m,n), 

which is different from (n, m) no reflection symmetry13, 14. Then, regression Nano-QSTR models 

were developed using the linear regression tool implemented in the Statistica®  suite. 

The validation of the Nano-QSTR model was performed using the cross-validation module 

implemented in the software. This procedure is aimed at assessing the predictive accuracy of a 

model. The test randomly split the dataset into a training set and a validation set, ensuring that if an 

entry was included in the test set it could not be used in the validation test. In so doing, the model 

was developed using the cases in the training or learning sample, which, in our study, was 70% of 

the dataset. The predictive accuracy was then assessed using the remaining 30% of the dataset. 

Finally, the performance of the model was evaluated using the residuals, R and R2 and other 

relevant statistics. Regarding the molecular descriptors (MD), we used the DRAGON 7.0®  software 

to calculate the variables that have been used for the development of the models. This software 

suite is able to calculate up to 7,500 different descriptors, belonging to very different classes, such as 

topological, 2D, 3D, connectivity, and so on49. In order to select the best subset of MD, we have 

performed a feature selection process using a forward stepwise methodology33 for both models. At 

the end of this procedure, we were able to develop the pristine and the carboxylate model using 

respectively two and three MD belonging to the Topological class. The two MD used in the 

SWCNT-pristine model are the Narumi geometric topological index (GNar) and the electro-

topological positive variation (MAXDP). The Narumi index of a graph G is defined as the product 

of degrees of all its vertices: 

NK(𝐺) =  ∏ 𝑑𝐺(𝑣𝑖)
𝑛
𝑖=1         (8) 

The MAXDP is calculated as follow: 

                       𝑆𝑖 = 𝐼𝑖 +  ∆𝐼𝑖= 𝐼𝑖 + ∑
𝐼𝑖−𝐼𝑗

(𝑑𝑖𝑗+1)
𝑘

𝑛𝑆𝐾
𝐽0𝑖                                            (9) 

which is calculated as the maximum positive value of ΔIi. 

Regarding the SWCNT-COOH model, the continuous model was developed using three MD, 

one is the same GNAR used for the pristine model. The other two are defined as follow. The first 

one is the path/walk Randic shape indices that is calculated by summing, over the non-H atoms, the 

ratios of the atomic path count over the atomic walk count of the same order k and, then, dividing 

by the total number of non-H atoms (nSK). Since path/walk count ratio is independent of molecular 

size, these descriptors can be considered as measures of molecular shape. Dragon calculates 

path/walk shape indices from order 2 up to 5; the index of first order is not provided as the counts 

of the paths and walks of length one is equal and, therefore, the corresponding molecular index 

equals one for all molecules. The formula in this case is not reported in the Dragon manual. 

Finally, the last molecular descriptor used is the so called lopping centric index (LOC), which 

is calculated as the mean information content derived from the pruning partition of a graph:  

            𝐿𝑂𝐶 = ∑ 𝑘  
𝑛𝑘

𝑛𝑆𝐾
∗  𝑙𝑜𝑔2

𝑛𝑘

𝑛𝑆𝐾
                              (10) 

where nk is the number of terminal vertices removed at the kth step and nSK the number of 

non-H atoms. 

Results and Discussion 

CNT effects on sub-mitochondrial particles (SMP).  
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Herein, we present the in vitro assay on the inhibitory effect of the SWCNT-ligands (SWCNT-

pristine, SWCNT-COOH) at the range of concentration of 0.5-5 µg/ml over F0-ATPase using 

isolated rat-liver sub-mitochondrial particles (isolated F0F1-ATPase) from mitochondrial inner 

membrane. In general, we can see that the SWCNT-tested exhibit high ability to act as F0-ATPase 

inhibitors (ATP-hydrolysis) at a range of concentration of 3-5 µg/ml. Besides, a concentration 

dependence with significant statistical difference (p < 0.05) when compared with SMP (untreated-

SMP group) and the DMSO-treated SMP was observed. We note an oligomycin A-like pattern 

(positive control group used) for both SWCNT-ligand in a range of concentration of 3-5 µg/ml 

without significant statistical difference (p > 0.05) when compared with oligomycin A (Figure 1).  

According to this, the treated-SMP from mixed CNT-ligand (5µg/ml) plus oligomycin A (1µM) 

showed strongest F0-ATPase inhibition (p < 0.05) when compared with untreated-SMP and the 

DMSO-treated SMP, and the remaining CNT-treated-SMP (3-5 µg/ml). Suggesting a strong 

synergistic effect on F0-ATPase inhibition (mitochondrial nanotoxicity). Details of these 

experimental results can see in Figure 1. 

 

Figure 1. Representative results of F0-ATPase inhibition behavior-induced by SWCNT-pristine, 

SWCNT-COOH on isolated-rat liver submitochondrial particles (SMP). Experimental conditions are 

described under Methods section. Different treatments are depicted like untreated-

submitochondrial particles control (SMP), DMSO-treated SMP, CNT-treated SMP (1-5µg/ml), 

Oligomycin A-treated SMP (F0F1-ATPase inhibitor used as positive control) and treated-SMP with 

mixed SWCNT-ligand (5µg/ml) + Oligomycin A(1µM) to mimicking synergistic effects on F0-

ATPase inhibition was performed as additional control group. Results are representative of three 

experiments (n=3). Symbols (*, **, #) were used to denote statistical differences (p < 0.05). On the far 

right we show the TEM image obtained for the samples of SWCNT-pristine, SWCNT-COOH. 

Modeling F0ATPase inhibition induced by SWCNTs 

Herein, molecular docking was carried out in order to evaluate the influence of the carbon 

nanotubes (SWCNT-pristine and SWCNT-COOH) in the F0-ATPase inhibition response. Herein, 

the best docking binding pose from each modeled-CNT (SWCNT-pristine, SWCNT-COOH), 

theoretically suggest that these CNT could act in the same biophysical environment that the 

oligomycin A based on hydrophobic non-covalently interaction (π-π interactions) involving 

phenylalanine hydrophobic residues (Phe 55 and Phe 64 of the chains C, D and M), which are 

critically involved in the F0-ATPase inhibition (ATP-hydrolysis) in the F0-ATPase subunit active 

binding-site. See Figure 2. 
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Figure 2. Snapshots selection from molecular docking interactions obtained from the best binding 

poses of the ligands as A) superimposed representation of oligomycin A and SWCNT-pristine, and 

B) superimposed representation of oligomycin and SWCNT-pristine SWCNT-COOH interacting 

with critical phenylalanine hydrophobic residues (Phe 55 and Phe 64: labelled red) which belong to 

the target chains C, D and M in F0-ATPase subunit receptor. Please, note that Oligomycin A 

(labelled green) corresponds to the control simulation experiment used here as reference due to this 

ligand is the specific inhibitor of the F0-ATPase in all cases. 

The free energy of binding (FEB)-values of the formed docking complexes following the order: 

FEB (oligomycin A/F0-ATPase complex) = -9.8 kcal/mol > FEB (SWCNT-COOH/F0-ATPase 

complex) = -6.8 kcal/mol ~ FEB (SWCNT-pristine complex) = -5.9 kcal/mol with interatomic distance 

of interaction lower than 5 Å , in all the cases. Besides, we note that the presence of π-π interactions 

like Y-shaped and pseudo parallel-displaced motif-orientation preferences for both single-walled 

carbon nanotubes. Besides, a more electrostatically favored interactions in the CNT-sidewall than 

the CNT-tips were observed in both simulations (SWCNT-pristine and SWCNT-COOH). Probably, 

due to better orientation and stability between the planar-benzene-quadrupoles formed between 

van der Waals surface from the modeled-SWCNT and the phenylalanine hydrophobic residues 

(Phe 55 and Phe 64) of the F0-ATPase binding site and interacting in the same biophysical 

environment that the F0-ATPase specific inhibitor (oligomycin A)17.  

Next, we carried out the theoretical modeling based on the local perturbation response 

scanning maps (LPRS-maps). The LPRS maps are based in elastic network models (ENM models) 

and have been widely recognized to study relevant conformational changes of target proteins (as 

F0-ATPase under unbound and bound states) at the atomistic and molecular level48, It is well-

known that the ENM models could explain a large number the conformational differences based on 

the perturbation pattens of the network formed by the target residues evaluated (Phe 55 and Phe 

64) For this instance, LPRS maps generates a comprehensive visualizations of the F0-ATPase 

inhibition response which allows evaluate allosteric signal propagations in response to external 

perturbations under the presence of a given ligand (i.e., the oligomycin A as F0-ATPase-specific 

inhibitor, SWCNT-pristine, and SWCNT-COOH. The results can see in the Figure 3. 
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Figure 3. Perturbation response analysis for the F0-ATPase inhibition response. A) LPRS map 

obtained for the unbound F0-ATPase as the control simulation experiment. Individual LPRS-maps 

obtained from the best docking complexes (in the bound state for all the ligands tested) with 

intensity bar color (on the right) for: B) oligomycin A/F0-ATPase complex, C) SWCNT-pristine/F0-

ATPase complex, and D) SWCNT-COOH/ F0-ATPase complex. All the LPRS-maps were established 

in range of the low frequency normal modes in order to capture relevant fluctuations associated 

with F0-ATPase catalytic function. 

The results on LPRS-maps show that both single-walled carbon nanotubes promote a 

significant change in the perturbation patterns of the network of target residues compared with the 

physiological condition represented by the unbound state of F0-ATPase. In this regard, we note 

abrupt perturbations in several blocks of residues more pronounced for the SWCNT-pristine 

(strong F0-ATPase inhibition) than the SWCNT-COOH (moderate F0-ATPase inhibition) during the 

interaction with the F0-ATPase. Interestingly, the LPRS map of the SWCNT-pristine/F0-ATPase 

complex mimicking the toxicodynamic behavior of the oligomycin A/F0-ATPase complex inducing 

strong F0-ATPase inhibition (See Figure Figure 3, B and C) suggesting a similar pattern of allosteric 

network perturbation. However, the LPRS map obtained from the SWCNT-COOH/F0-ATPase 

complex exhibits a pattern of perturbation closer to the physiological condition maintaining a 

certain coupling between the residues composing the F0-ATPase network suggesting the presence 

of a moderate nanotoxicity-based F0-ATPase inhibition. The relevance of these results is that strong 

local perturbations promote triggering strong allosteric responses in the j-effector residues from F0-

ATPase receptor affecting its mitochondrial catalytic function involving the signal transduction of 

the perturbations from the block of i-sensor residues which trigger abnormal signals propagation 

across inter-residue network for j-effector F0-ATPase residues. We could suggest that considering 

the SWCNT-docking position, both ligands (SWCNT-pristine >> SWCNT-COOH) can theoretically 

disrupt the H+-proton flux dynamic in the mitochondrial H+-F0-ATPase subunit, compromising the 

coupling between oxidative phosphorylation and electron transport in the respiratory chain 

inducing potential bioenergetic dysfunction and the mitochondria nanotoxicity8. 

In order to quantify potential fractal geometrical perturbations, a fractal surface analysis was 

carried out to model changes-based perturbations in the geometric surface of the binding effector 
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residues of the F0-ATPase under unbound and bound state (i.e., under SWCNT-pristine and 

SWCNT-COOH interactions)8. To this end, several fractal dimensions (FDs namely: DBW, DBBW and 

DWBW) were calculated using the box-counting methods from the LPRS maps previously obtained50. 

The Fractal Theory allows the mathematical modeling of the geometric complexity (across multiple 

scales) and self-similarity (scale-invariant structure) from non-Euclidean real or virtual objects (as 

SWCNT-tested). One of the most important properties in the fractal modeling is the degree of self-

similarity. Then, a topological fractal dimension near to 2 is categorized-like high complexity (high 

variety of geometrical information) and low self-similarity, in opposite a topological fractal 

dimension closer to 1 informs about little complexity and high self-similarity. Herein, the non-

Euclidean geometrical patterns were included according to the fractal dimension like FDBW, that 

describes the surface geometric perturbations in the border of LPRS map fractal pattern50. The 

FDB+BW, characterizes the surface geometric perturbations on the white background, and the FDW+BW 

the fractal perturbations pattern on the black background from the LPRS images calculated for each 

simulation conditions. See Figure 4. 

 

Figure 4. Fractal spectrum based on the box-counting method performed to obtain the slopes of the 

linear regression yields from binary black/white LPRS maps image-processing. These slopes 

represent the fractal dimensions (FD: DBW, DBBW, and DWBW) for the best docking complexes namely: 

A) unbound F0-ATPase, B) oligomycin A/F0-ATPase complex, C) SWCNT-pristine/F0-ATPase 

complex, and D) SWCNT-COOH/ F0-ATPase complex. 

Herein, the obtained FDs are related to the F0-ATPase surface and backbone non-Euclidean 

geometry8, 50 FDs, inform about how the F0-ATPase folding, packing density, solvent-accessibility, 

and binding-interaction properties could be perturbed under the presence of different ligands 

forming docking complexes (oligomycin A/F0-ATPase complex, SWCNT-pristine/F0-ATPase 

complex, and SWCNT-COOH/F0-ATPase complex). In this context, we suggest that, SWCNT-

pristine with FDBW = 1.29 lead to a higher change in F0-ATPase roughness-based FD (FDBW) than the 

SWCNT-COOH (FDBW = 1.45) which exhibits very similar features-based fractal dimension 

compared physiological condition of unbound F0-ATPase used as control (FDBW = 1.45. These, 

results fit with the previous on LPRS maps strongly suggesting that the SWCNT-pristine mimicking 

the nanotoxicological behavior of the specific inhibitor oligomycin A with calculated equal to FDBW 

= 1.32 also low than the physiological condition of unbound F0-ATPase cited above. As previously 

cited, a FD ≈ 2 reveals high variety of geometrical information and low self-similarity, while FD ≈ 1 

represents little complexity and high self-similarity. By the other hand, the FD-values obtained for 
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FDB+BW and FDW+BW remain as unperturbed around 1.85 in all the cases revealing high complexity of 

geometrical information8, 50. 

The results of fractal surface perturbation suggest that the SWCNT-pristine can induce 

significant changes in the geometrical selectivity of the F0-ATPase like oligomycin A. It is well-

known that perturbation (global and local perturbations) in the three-dimensional spatial arrangement 

of atoms composing effector residues (j-effector allosteric residues) of proteins can be studied using 

their FDs. Fractal surface-perturbations could negatively impact on catalytic function of F0-ATPase, 

affecting irreversibly the structural properties of the binding cavities, which are the paramount 

importance in the complementary processes like substrate recognition and ligand geometrical 

specificity. [64] Probably, topologically perturbed van der Waals fractal-surface of F0-ATPase after 

the docking interaction with SWCNT-COOH could theoretically explain the moderate 

mitochondrial nanotoxicity observed from the SWCNT-COOH/F0-ATPase docking complex (refer 

to Figure 3, A and D). 

Lastly, we carried out a nano-quantitative-structure-toxicity-relationship approaches (Nano-

QSRT models) in order to evaluate the influence of additional geometric properties of the ligands 

SWCNT-pristine and SWCNT-COOH based on the well-known relationship between the topology 

geometry-based on n,m-Hamada index with their nanotoxicological properties (i.e., SWCNT-

mitotoxicity).  

Performed Nano-QSTR models 

As reported in the Material and methods section, the Nano-QSTR model for SWCNT-pristine 

was developed using only two variables belonging to the topological index category. The observed 

vs predicted values and the other relevant statistics, are reported in the Table 1, Table 2, and 

Figure 5, respectively.   

Table 1. Results of the Nano-QSTR regression model for mitochondrial F0-ATPase 

inhibition induced by SWCNT-pristine. 

SWCNT-pristine (n,m) 
Data 

Observed 

Data 

Predicted 

Data 

Resids 
Cross-validation(a,b) 

amchair 3.3 -20.00000 -18.93350 -1.06650 training 

amchair 4.4 -19.70000 -18.83954 -0.86046 training 

amchair 5.5 -18.80000 -18.77444 -0.02556 training 

amchair 6.6 -18.50000 -18.72592 0.22592 validation 

amchair 7.7 -18.20000 -18.68908 0.48908 training 

amchair 8.8 -17.50000 -18.66083 1.16083 training 

amchair 9.9 -17.20000 -18.63872 1.43872 training 

chiral 3.2 -17.20000 -16.28865 -0.91135 validation 

chiral 4.1 -17.20000 -15.58908 -1.61092 training 

chiral 4.2 -17.00000 -15.84427 -1.15573 training 

chiral 4.3 -16.30000 -15.96788 -0.33212 training 

chiral 5.1 -16.20000 -15.56891 -0.63109 validation 

chiral 5.2 -16.20000 -15.44925 -0.75075 training 

chiral 5.3 -16.00000 -15.63349 -0.36651 training 

chiral 5.4 -16.00000 -15.72809 -0.27191 training 

chiral 6.1 -16.00000 -15.26864 -0.73136 validation 

chiral 6.2 -15.90000 -15.19863 -0.70137 training 

chiral 6.3 -15.90000 -15.37446 -0.52554 training 

chiral 6.4 -15.90000 -15.47126 -0.42874 training 

chiral 6.5 -15.80000 -15.39773 -0.40227 validation 
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chiral 7.1 -15.70000 -15.02346 -0.67654 training 

chiral 7.2 -15.40000 -15.17288 -0.22712 training 

chiral 7.3 -15.40000 -15.10112 -0.29888 training 

chiral 7.4 -15.20000 -15.24345 0.04345 validation 

chiral 7.5 -15.20000 -15.34078 0.14078 training 

chiral 7.6 -15.20000 -15.28875 0.08875 training 

chiral 8.1 -15.00000 -15.03210 0.03210 training 

chiral 8.2 -15.00000 -14.77537 -0.22463 validation 

chiral 8.3 -14.90000 -15.23422 0.33422 training 

chiral 8.4 -14.80000 -15.08583 0.28583 training 

chiral 8.5 -14.70000 -15.15833 0.45833 training 

chiral 8.6 -14.70000 -15.24567 0.54567 validation 

chiral 8.7 -14.70000 -15.20136 0.50136 training 

chiral 9.3 -14.60000 -14.79209 0.19209 training 

chiral 9.4 -14.50000 -15.12489 0.62489 training 

chiral 9.5 -14.50000 -15.11612 0.61612 validation 

chiral 9.6 -14.50000 -15.09848 0.59848 training 

chiral 9.7 -14.30000 -15.29203 0.99203 training 

zig zag 3.0 -14.30000 -15.37860 1.07860 training 

zig zag 4.0 -14.10000 -14.00654 -0.09346 validation 

zig zag 5.0 -13.70000 -14.00654 0.30654 training 

zig zag 6.0 -13.70000 -13.79221 0.09221 training 

zig zag 7.0 -13.60000 -13.62087 0.02087 training 

zig zag 8.0 -13.30000 -13.48024 0.18024 validation 

zig zag 9.0 -12.90000 -13.36294 0.46294 training 
Data sets: training (a) and validation sets (b). 
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Figure 5. Results of observed vs. predicted values obtained for the Nano-QSTR regression 

model performed for the SWCNT-pristine data. 

Table 2. Results of the relevant statistic parameters obtained from the Nano-QSTR 

regression model for SWCNT-pristine. 

Statistic parameters Value 

Multiple R 

 
0.911445 

Multiple R² 0.830731 

Adjusted R² 0.819811 

SS Model 77.70196 

df Model 2 

MS Model 38.85098 

SSResidual 15.83245 

df Residual 31 

MS Residual 0.510724 

F 76.07035 

P 0 

As can be seen in the Table 1 and 2, the Nano-QSTR model shows an overall accuracy and a 

goodness of fit high, thus indicating this model can be used for a continuous prediction of the 

likelihood induced mitochondria nanotoxicity inhibition on F0F1-ATPase by interaction with 

SWCNT-pristine (f(FEB_1)). In this regard, the best Nano-QSTR regression model is based on the 

linear equation 11 as: 
f(FEB_1) = −8.24425(GNar) + 0.614121(MAXDP) − 2.87142        (𝟏𝟏)      

Afterward, we performed Nano-QSTR model for SWCNT-COOH. For this instance, was 

carried out a QSTR regression model by using three variables and as in the case of the previous 

model (i.e., using SWCNT-pristine). Herein, the results obtained on observed vs predicted values, 

and the other relevant statistics parameters are summarized in the Table 3, Table 4, and Figure 6, 

respectively.   

Table 3. Results of the Nano-QSTR regression model for mitochondrial F0-ATPase 

inhibition induced by SWCNT-COOH. 

SWCNT-COOH (n,m) 

 

Data 

Observed 

Data 

Predicted 

Data 

Resids 
Cross-validation(a,b) 

amchair 3.3 -34.80000 -33.04305 -1.75695 training 

amchair 4.4 -33.10000 -31.92664 -1.17336 training 

amchair 5.5 -32.30000 -31.36844 -0.93156 training 

amchair 6.6 -32.30000 -30.81023 -1.48977 validation 

amchair 7.7 -29.80000 -30.53113 0.73113 training 

amchair 8.8 -29.10000 -30.25203 1.15203 training 

amchair 9.9 -29.00000 -29.97293 0.97293 training 

chiral 3.2 -28.50000 -26.92826 -1.57174 validation 

chiral 4.1 -27.90000 -26.16358 -1.73642 training 
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chiral 4.2 -27.60000 -27.01059 -0.58941 training 

chiral 4.3 -26.90000 -25.00316 -1.89684 training 

chiral 5.1 -26.70000 -28.51704 1.81704 validation 

chiral 5.2 -26.60000 -24.71436 -1.88564 training 

chiral 5.3 -26.40000 -25.08549 -1.31451 training 

chiral 5.4 -26.40000 -24.19447 -2.20553 training 

chiral 6.1 -26.30000 -27.20385 0.90385 validation 

chiral 6.2 -25.90000 -24.54620 -1.35380 training 

chiral 6.3 -25.40000 -25.47553 0.07553 training 

chiral 6.4 -25.00000 -24.13724 -0.86276 training 

chiral 6.5 -24.80000 -24.44496 -0.35504 validation 

chiral 7.1 -24.70000 -25.21534 0.51534 training 

chiral 7.2 -24.60000 -26.28422 1.68422 training 

chiral 7.3 -24.50000 -24.04522 -0.45478 training 

chiral 7.4 -24.30000 -24.52728 0.22728 validation 

chiral 7.5 -24.30000 -23.88676 -0.41324 training 

chiral 7.6 -24.30000 -23.32855 -0.97145 training 

chiral 8.1 -24.10000 -26.95336 2.85336 training 

chiral 8.2 -24.10000 -23.51211 -0.58789 validation 

chiral 8.3 -24.10000 -25.39320 1.29320 training 

chiral 8.4 -24.00000 -24.63822 0.63822 training 

chiral 8.5 -23.70000 -24.27680 0.57680 training 

chiral 8.6 -23.50000 -22.90990 -0.59010 validation 

chiral 8.7 -23.50000 -24.89841 1.39841 training 

chiral 9.3 -23.00000 -23.42979 0.42979 training 

chiral 9.4 -22.60000 -24.13724 1.53724 training 

chiral 9.5 -22.50000 -23.71859 1.21859 validation 

chiral 9.6 -22.40000 -23.16039 0.76039 training 

chiral 9.7 -22.20000 -23.53151 1.33151 training 

zig zag 3.0 -22.10000 -25.42752 3.32752 training 

zig zag 4.0 -21.70000 -20.86901 -0.83099 validation 

zig zag 5.0 -21.50000 -20.86901 -0.63099 training 

zig zag 6.0 -21.40000 -20.17126 -1.22874 training 

zig zag 7.0 -21.10000 -19.61305 -1.48695 training 

zig zag 8.0 -20.90000 -19.19440 -1.70560 validation 

zig zag 9.0 -17.30000 -18.91530 1.61530 training 

Data sets: training(a) and validation sets(b). 

 

Table 4. Results of the relevant statistic parameters obtained from the Nano-QSTR 

regression model for SWCNT-COOH. 
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Statistic parameters  Value 

Multiple R 

 
0.918915 

Multiple R² 0.844404 

Adjusted R² 0.828845 

SS Model 366.1187 

df Model 3 

MS Model 122.0396 

SSResidual 67.46364 

df Residual 30 

MS Residual 2.248788 

F 54.26905 

P 0.000000 

 

 

Figure 6. Results of observed vs. predicted values obtained for the Nano-QSTR regression 

model performed for the SWCNT-COOH data. 

 

For the case of SWCNT-COOH data set the final Nano-QSTR regression model to predicts 

the mitochondrial F0-ATPase inhibition (f(FEB_2)) is represented by the linear equation 12 as: 

 

f(FEB_2) = −1005.47(𝐺𝑁𝑎𝑟) − 1401.69(𝑃𝑊5) − 139.55(𝐿𝑂𝐶) − 2326.4      (𝟏𝟐) 

 

Overall, the proposed methodologies rigorously obey the Organization for Economic Co-

operation and Development (OECD) and the International Organization for Standardization 

guidelines for development of alternative methods for Computational Nanotoxicology51. 
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Conclusions 

In the present study we present a combination of experimental and computational 

approaches to tackle the SWCNT nanotoxicity based on the mitochondrial F0F1-ATPase inhibition. 

Experimental evidences supported that the in vitro F0F1-ATPase inhibition responses in 

submitochondrial particles (SMP) are strongly dependent on the higher level of concentration (from 

3 to 5 µg/ml) in both types of carbon nanotubes (SWCNT-pristine and SWCNT-COOH) evaluated. 

In addition, both types of carbon nanotubes show an interaction inhibition pattern for the F0F1-

ATPase enzyme, similar to the oligomycin A (specific F0F1-ATPase inhibitor). By the other hand, 

the best binding pose for the obtained complexes fit well with the previous experimental results. 

The free energy of binding (FEB-values) for the formed docking complexes following the affinity 

order as: FEB (oligomycin A/F0-ATPase complex) = -9.8 kcal/mol > FEB (SWCNT-COOH/F0-ATPase 

complex) = - 6.8 kcal/mol ~ FEB (SWCNT-pristine complex) = -5.9 kcal/mol with relevant 

interatomic distance of interaction lower than 5 Å , in all the cases and with predominance of van 

der Waals hydrophobic interactions with critical F0-ATPase binding site residues (Phe 55 and Phe 

64) belonging to the same biophysical environment that the oligomycin A inhibitor. In addition, 

results on elastic network models (LPRS-maps) show that both SWCNT-pristine and SWCNT-

COOH promote an abrupt perturbations in several blocks of residues more pronounced for the 

SWCNT-pristine (strong F0-ATPase nanotoxicity inhibition) than the SWCNT-COOH (moderate F0-

ATPase nanotoxicity inhibition) triggering pertubation on the allosteric responses, abnormal signals 

propagation across inter-residue network of the F0F1-ATPase. In accordance to this, results on 

fractal-surface of interactions suggest that, the SWCNT-interactions topologically affect the van der 

Waals fractal-surface of F0-ATPase (SWCNT-pristine > SWCNT-COOH) inducing from strong to 

moderate mitochondrial nanotoxicity. Lastly, the predictive Nano-QSTR models show that a linear 

correlation between SWCNT topology and the nanotoxicity induced is present and can be predicted 

using a Nano-QSTR approach. 

Finally, this results open new opportunities toward to the better better understanding of the 

molecular nanotoxicity mechanisms, relevance of mitotarget-drug discovery and rational drug-

design based nanotechnology with potential biomedical application in precision nanomedicine.  
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