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Abstract

In the application of classical nucleation theory (CNT) and all other theoretical

models of crystallization of liquids and glasses it is always assumed that nucleation

proceeds only after the supercooled liquid or the glass have completed structural

relaxation processes towards the metastable equilibrium state. Only employing such

assumption, the thermodynamic driving force of crystallization and the surface ten-

sion can be determined in the way it is commonly performed. The present paper

is devoted to the theoretical treatment of a different situation, when nucleation

proceeds concomitantly with structural relaxation. To treat the nucleation kinetics

theoretically for such cases, we need adequate expressions for the thermodynamic

driving force and the surface tension accounting for the contributions caused by the

deviation of the supercooled liquid from metastable equilibrium. In the present pa-

per, such relations are derived. They are expressed via deviations of structural order

parameters from their equilibrium values. Relaxation processes result in changes of

the structural order parameters with time. As a consequence, the thermodynamic

driving force and surface tension, and basic characteristics of crystal nucleation,

such as the work of critical cluster formation and the steady-state nucleation rate,

also become time-dependent. We show that this scenario may be realized in the

vicinity and below the glass transition temperature, and it may occur only if diffu-

sion (controlling nucleation) and viscosity (controlling the alpha-relaxation process)

in the liquid decouple. Analytical estimates are illustrated and confirmed by nu-

merical computations for a model system. The theory is successfully applied to

the interpretation of experimental data. Several further consequences of this newly

developed theoretical treatment are discussed in detail. In line with our previous

investigations, we reconfirm that only when the characteristic times of structural

relaxation are of similar order of magnitude or longer than the characteristic times

of crystal nucleation, elastic stresses evolving in nucleation may significantly affect

this process. Completing the analysis of elastic stress effects, for the first time ex-

pressions are derived for the dependence of the surface tension of critical crystallites

on elastic stresses. As the result, a comprehensive theoretical description of crys-

tal nucleation accounting appropriately for the effects of deviations of the liquid

from the metastable states and of relaxation on crystal nucleation of glass-forming

liquids, including the effect of simultaneous stress evolution and stress relaxation

2

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2020                   doi:10.20944/preprints202008.0719.v1

https://doi.org/10.20944/preprints202008.0719.v1


on nucleation, is now available. As one if its applications, this theoretical treat-

ment provides a new tool for the explanation of the low-temperature anomaly in

nucleation in silicate and polymer glasses (the so-called “breakdown” of CNT at

temperatures below the temperature of the maximum steady-state nucleation rate).

We show that this anomaly results from much more complex features of crystal

nucleation in glasses caused by deviations from metastable equilibrium (resulting in

changes of the thermodynamic driving force, the surface tension, and the work of

critical cluster formation, in the necessity to account of structural relaxation and

stress effects) than assumed so far.

1 Introduction

Despite its long tradition, due to its complexity, the theoretical analysis of crystal nucle-
ation and growth phenomena in glass-forming substances remains an actively developing
field of research, with a variety of new topics and applications [1, 2, 3, 4, 5, 6, 7]. In the
present paper, we address a particular but very important problem related to the descrip-
tion of the phase transformation kinetics that is specific for crystallization of glass-forming
liquids, the effects of the glass transition and of the structural relaxation of the super-
cooled liquid on the crystallization kinetics in the vicinity and below the glass transition
temperature.

The present study of the the kinetics of crystallization of glass-forming materials was
initiated by the following considerations. As shown in two preceding papers [8, 9], exper-
imental data on the steady-state nucleation rate, Jst, in crystal nucleation,

Jst = J0 exp

(
− Wc

kBT

)
, Wc =

1

3
σAc , Ac = 4πR2

c , Rc =
2σ

∆g
, (1)

for different glass-forming liquids can be interpreted with high accuracy in terms of clas-
sical nucleation theory (CNT) utilizing the Tolman equation [10],

σ(R) =
σ∞

1 +
2δ

R

, σ∞ = σ∞(Tm, pm) , δ = δ∞(Tm, pm) , (2)

for the description of the size or curvature dependence of the surface tension, σ(R), of
crystallites of critical size. In Eqs. (1) and (2), σ∞(Tm, pm) is the surface tension (referred
to the surface of tension) at a planar equilibrium coexistence of liquid and crystal, the
so-called Tolman parameter, δ∞(Tm, pm), determines its change with variations of the
radius in a first-order approximation (both quantities, σ∞ and δ∞, are functions of the
melting temperature, Tm, and the corresponding to it melting pressure, pm), Wc is the
work of critical cluster formation, Ac and Rc are the surface area and the radius (also
referred to the surface of tension) of the critical cluster modeled to be of spherical shape
(the possibility to treat crystal nucleation employing such model is explained in detail
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in [8, 9]), ∆g is the change of the bulk contributions to the Gibbs free energy per unit
volume of the crystal phase when the metastable liquid is transformed into the crystal,
kB is the Boltzmann constant and T the absolute temperature. Finally, J0 reflects the
kinetic mechanism of cluster formation and growth.

In [8, 9], σ∞ and δ were taken as fit parameters to reach an agreement with the ex-
perimental nucleation rates. In addition, theoretical estimates for the Tolman parameter
have been developed based on a generalization of the Stefan-Skapski-Turnbull rule [11, 12].
These theoretical estimates are shown to be in good agreement with the values obtained
by mentioned fitting procedure. Some of these results are presented in Fig. 1. It is evident
that, when assigning appropriate values to the parameters σ∞ and δ, the Tolman equa-
tion allows a good description of the experimental data down to the temperatures, Tmax,
corresponding to the maximum of the steady-state nucleation rate, Jst(Tmax). However,
a serious problem remains unresolved which is denoted frequently as the ”breakdown of
CNT” for T / Tmax. To reach an agreement between theory and experiment for lower
temperatures T / Tmax, additional factors affecting crystal nucleation have to be ac-
counted for going beyond the standard approach commonly employed in CNT.

Figure 1: Steady-state nucleation rates of several glass-forming melts (a) 22.4Na2O ·

28.0CaO · 49.6SiO2 (1N1C2S), b) Na2O · 2CaO · 3SiO2 (1N2C3S), c) 2Na2O · 1CaO · 3SiO2

(2N1C3S), d) Li2O · 2SiO2 (L2S), e) BaO · 2SiO2 (B2S)) utilizing the Tolman equation.

The parameters and the sources of the nucleation rate data are given in [8, 9]. By Tg,

the glass transition temperature is specified according to the definition proposed first by

Tammann (see text).

The origin of deviations of theoretical steady-state nucleation rates from experimental
data for temperatures below the temperature of the maximum steady-state nucleation
rates is a matter of continuous debate. This breakdown problem also cannot be resolved
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by the account of self-consistency corrections to the work of critical cluster formation
as demonstrated in our recent analysis [13]. As shown there, when self-consistency cor-
rections are introduced into the theory, the Tolman equation supplies us again with an
appropriate description of the dependence of the nucleation rate on temperature, but, sim-
ilarly to the results shown in Fig. 1, only down to Tmax and not in the range T / Tmax.
Consequently, in the temperature range below Tmax, additional features have to be in-
corporated into the model of crystal nucleation also in such more correct self-consistent
treatment to arrive at an agreement of theory and experiment.

Figure 2: Thermodynamic barrier for nucleation, Wc/kBT , versus temperature for a va-

riety of glass-forming liquids (the same liquids as shown in Fig. 1) in dependence on

temperature, T , and reduced temperature, T/Tm. Tm is the melting temperature.

In interpreting the steady-state nucleation rates shown in Fig. 1 in standard terms
of CNT, a behavior of the work of critical cluster formation on temperature would have
to be assumed as shown in Fig. 2. At temperatures above T ∼= Tmax, the work of criti-
cal cluster formation, Wc, decreases with decreasing temperatures as expected based on
CNT. However, for temperature below T / Tmax, Wc has to increase again for a proper
interpretation of the experimental data. Such behavior cannot be understood in terms of
standard concepts of CNT. The type of behavior as shown in Fig. 2 was observed long
ago in [14, 15], but meanwhile it was found to be a general feature of crystal nucleation
in glass-forming liquids. Consequently, its correct understanding is of essential interest in
the formulation of a comprehensive theory of these processes.

The following additional factors that could eventually provide an explanation of these
deviations of theoretical predictions from experimental data have been analyzed by us
in preceding papers: (i) Non-monotonic dependence of the surface tension on the size of
the critical crystal nucleus [14, 15, 16, 17], (ii) interplay of evolution of elastic stresses
and stress relaxation in crystal nucleation [17, 18, 19, 20, 21, 22, 23, 24], (iii) variation of
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the size of the structural units responsible for crystallization [25], (iv) effect of spatially
heterogeneous structure of glass-forming liquids on crystal nucleation [26, 27], (v) devia-
tions of the bulk state parameters of the critical clusters from the respective macroscopic
properties of the newly evolving crystalline phases [19, 28, 29, 30, 31, 32, 33, 34]. Further
detailed analysis of these suggestions and their implications is of high interest.

However, in the present paper we would like to follow another approach suggested
as a possible way of resolution of described above problem briefly already in [13, 24,
31, 32, 33, 35]. Its further advancement was stimulated by comprehensive experimental
investigations of the nucleation characteristics at low temperatures extending over much
more prolonged periods of time as it is commonly done in similar studies. They will be
presented in detail in [36]. In this treatment, mentioned peculiarities in crystallization at
temperatures below Tmax are correlated with the glass transition, more specifically, with
the effects resulting from deviations of supercooled liquid from its metastable equilibrium
state and of the relaxation of the liquid to this state on crystal nucleation. We will rely
here on the general concepts developed first in [35] and further advance this approach.

First, we will show how deviations of the supercooled liquid from the corresponding
metastable state affect the thermodynamic driving force of crystallization and the surface
tension. This analysis is then supplemented by the specification of the conditions at which
relaxation of the glass-forming liquid proceeds more slowly as compared to nucleation-
growth processes. In line with earlier investigations it is reconfirmed, in addition, that
only at such conditions, when the characteristic times of relaxation are longer than the
characteristic times of crystal nucleation, elastic stresses evolving in nucleation may signif-
icantly affect this process. Extending mentioned previous analysis, relations are derived
for the dependence of the surface tension of critical crystallites on elastic stresses. An
illustration of the analytical results will be presented then performing a quantitative treat-
ment of crystal nucleation in a slowly relaxing liquid for a model system developed and
widely employed in the description of the properties of glass-forming liquids and the glass
transition [18, 19]. In the model approach, we will not include the possible dependence of
the kinetic parameters like viscosity, diffusion coefficient, and structural relaxation time
on the degree of deviation of the liquid from metastable equilibrium. This topic will be
addressed in a future study, it will qualitatively not change the main conclusions derived
in the present analysis.

Two previously performed studies on the CNT-breakdown, partly including results of
experiments performed over prolonged times, can be traced in [37, 38]. In both studies it
was concluded that the above discussed deviations of theoretical steady-state nucleation
rates from experimental data for temperatures below the temperature of the maximum
steady-state nucleation rates are largely caused by the use of nucleation rate data that
have not yet reached the ultimate steady-state at the respective nucleation tempera-
tures. Based on the theory developed, here a much more comprehensive interpretation
is advanced: (i) Experimental results on the nucleation rates as shown in Fig. 1 are the
temporary steady-state nucleation rates established for the respective glass-forming melts
after a time-lag in nucleation, as described in CNT. Both steady-state nucleation rate
and time-lag depend on the initial state of the liquid and, in particular, on the degree of
its deviations from metastable equilibrium. Experiments and CNT are in full agreement
if such deviations from equilibrium are properly accounted for. (ii) Structural relax-
ation processes of the glass-forming liquid to the metastable equilibrium state result in
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slow variations of the temporary steady-state nucleation rates. (iii) The ultimate steady-
state nucleation regime is established only when the structural order parameters have
approached their equilibrium values. We show that the long times necessary to reach the
ultimate steady-state regime at temperatures below Tg are not just the classical nucle-
ation time lags (discussed in CNT assuming that the liquid has reached a metastable state
prior to intensive nucleation), instead they are predominantly related to the structural
relaxation of the glass. For very low temperatures, this ultimate steady-state may not
be reached at all in realistic measurement times. (iv) As a rule, elastic stresses evolving
in crystal nucleation will affect the steady-state nucleation rates for temperatures below
the nucleation rate maximum. They will lead to deviations from the curves describing
experimental data employing the Tolman equation. In this way, the present paper pro-
vides an alternative, more detailed interpretation of the problem of ”breakdown of CNT”:
If deviations of the structural order parameters of the glass-forming liquids from their
metastable equilibrium values and their relaxation processes are properly accounted for,
then CNT appropriately describes both the initial, the intermediate, and the final states
of crystal nucleation.

The paper is structured as follows. The basic ideas of the theoretical description of
crystal nucleation accounting for the effects of deviations of the state of the liquid from
metastable equilibrium and relaxation processes to this particular state are outlined in
Section 2. In Section 3 it is shown how deviations of the liquid from its metastable equi-
librium affect the thermodynamic driving force of crystallization and the surface tension.
Whether or not such deviations may result in changes of the crystal nucleation kinetics
depends on the ratio of the characteristic time scales of relaxation and crystal nucleation.
This topic is addressed in Section 4. The influence of the interplay of elastic stress evo-
lution and stress relaxation on nucleation is analyzed in Section 5. A discussion of the
results including a brief comparison with experimental data confirming them (Section 6)
and a summary of the conclusions (Section 7) complete the paper.

2 The Model: Basic Assumptions

In CNT, it is commonly assumed that crystal nucleation starts only after the liquid or
the glass have reached its metastable equilibrium state [18, 19, 39]. Only with such
assumption, the thermodynamic driving force of crystallization and the surface tension
can be determined in the way as it is commonly performed in CNT. In particular, the
thermodynamic driving force of crystallization is connected with the change of the Gibbs
free energy per unit volume of the crystal phase in the transformation of the metastable
liquid to the crystal. The surface tension is assumed to be equal to the respective value of
a critical crystallite in the metastable liquid and determined by indirect measurements,
computer simulations or taken as a fit parameter to arrive at an agreement between
theory and experiment. Utilizing CNT and employing the capillarity approximation and
the Stokes-Einstein-Eyring equation (that relates the diffusion coefficient to the viscosity
of the liquid), such approach can be confirmed theoretically [18, 19, 40] and also by a
variety of experimental data [41, 42, 43, 44, 45].

However, going beyond the capillarity approximation and the Stokes-Einstein-Eyring
equation, the situation becomes different [46, 47, 48]. In [24, 31, 33], a review of these
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non-trivial problems is given, and general theoretical considerations are outlined showing
that near and below the glass transition range the opposite situation can be realized,
structural relaxation processes may proceed slowly as compared with crystal nucleation.
In such cases, the nucleation kinetics can be significantly affected by structural relaxation
processes proceeding in the glass-forming melt as discussed from an experimental point of
view in [49, 50, 51, 52, 53]. Direct experimental data in support of the point of view that
nucleation may proceed concomitantly with relaxation are presented in an accompanying
paper [36]. Some of these experimental data will be shown here in Section 6. In the present
paper, we will reconfirm this point of view by proposing and analyzing a simple theoretical
model describing the effects of glass transition and relaxation of the supercooled liquid
on crystal nucleation.

Figure 3: Structural order parameter, ξ, and its equilibrium value, ξe, in dependence on

reduced temperature, θ = T/Tm. a) Dependence of the equilibrium value of the struc-

tural order parameter for the whole range of temperatures between melting or liquidus

temperature, Tm, and absolute zero as obtained in the framework of the lattice model

employed here. An outline of the basic ideas of this model and consequences can be

found in [18, 19, 47, 57, 58, 59]. b) Typical behavior of the structural order parameter,

ξ, in dependence on temperature in the vicinity of the glass transition range if the liquid

is cooled down and heated with the same constant rate of change of temperature. The

dependencies ξ(T ) are shown by full curves if the system is cooled down (blue curve)

and heated (red curve) with a constant rate (here taken equal to (dT/dt) = 1.3 K/s or

(dθ/dt) = 10−3s−1), the dashed curve shows the equilibrium value of this parameter in

the given range of temperature.

One strong argument in support of the explanation of the “breakdown” of CNT ad-
vanced here consists in the following considerations. Adopting the basic ideas in the
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interpretation of the physical nature of glasses and the glass transition as developed long
ago by Simon, Tammann, de Donder, Leontovich & Mandelstam, Kauzmann, Davies
& Jones, Tool, Prigogine & Defay, Bartenev, Volkenstein & Ptizyn and many others
[18, 19, 46, 47, 48, 54, 55, 56], near to the glass transition temperature (in the glass tran-
sition region), the metastable liquid is transformed into a frozen-in non-equilibrium state,
the glass. In the thermodynamic description, structural order parameters, {ξi}, have to
be introduced to account for such effects. They are required to describe the deviations
from metastable equilibrium. In the course of the glass transition, they are freezing-in,
i.e., become independent of time. Their behavior reflects the well-known feature of the
glass transition that the state of the liquid, respectively, the glass becomes dependent
on the cooling rate or the prehistory of the liquid. These deviations from metastable
equilibrium result in additional contributions to the thermodynamic driving force and the
surface tension as compared to the common treatment in CNT. They have to be incorpo-
rated, consequently, into the theoretical description to be able to appropriately describe
experimental data.

For that purpose, in the present analysis we utilize and generalize relations obtained
from a simple lattice-hole model of liquids derived and employed for the interpretation
of the properties of glasses. The model is described in detail in [18, 19, 47, 57, 58,
59]. A similar model has been used by Johari [60] in the analysis of the problem of
configurational and residual entropies of non-ergodic crystals and their entropy’s behavior
on glass formation. Details of the model can be traced in cited references, some of its
consequences are briefly reviewed in the Appendix as far as they are required for the
present analysis. Here we will employ directly some of the main results of these studies.

In particular, the metastable equilibrium value, ξe, of the structural order parameter,
ξ, is given by

(1− ξe(T ))
2

ln ξe(T )
= − 1

χ

(
T

Tm

)
. (3)

At the melting or liquidus temperature, T = Tm, the value of ξe should be approximately
equal to ξe(Tm) = 0.05 (corresponding to experimentally observed density differences
between liquid and crystal at the melting temperature [18, 19]). In the computations,
here we set χ = 3.32 for the realization of this condition [57, 58, 59].

A wealth of experimental data shows that the relaxation kinetics of glass-forming melts
to the respective metastable equilibrium states can be appropriately expressed in the form
[18, 19, 35, 61]

dξ

dt
= − 1

τR(T, p, ξ)
(ξ − ξe) , (4)

where the relaxation time τR(T, p, ξ) is a function of pressure, temperature and, in general,
of the set of structural order parameters. Here we assume that one structural order
parameter is sufficient for the description. Even at such assumption, as shown in [35,
61], Eq. (4) allows us to understand the origin of stretched exponential type relaxation
processes and results in estimates of the coefficients in the respective relaxation law in
agreement with experimental findings.

In the numerical computations, we start the cooling process at T = Tm. We cool the
system with a constant rate,

q =
dT

dt
= const , (5)
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down to the temperature where nucleation processes are studied. Since, dT and dt are
linearly dependent, we can always go over from a differentiation or integration with respect
to time to the respective procedures with respect to temperature (dT = qdt) and vice versa
(dt = dT/q) with different signs of the parameter q (q < 0 for cooling and q > 0 for heating
processes). Eq. (4) then takes the form

dξ

dT
= − 1

qτR
(ξ − ξe) . (6)

Solving this equation, we can determine ξ(T ) for any desired temperature, T ≤ Tm, in
the range of metastable initial states of the liquid.

In the computations, we employ expressions for the relaxation time of the form

τR = τ0 exp

(
Ua

RT

)
, Ua = U∗

a

(
T

T − T0

)
, τ0 =

h

kBT
(7)

with

T0 =
Tm

2
,

U∗
a

RT
(T )
g

= 7.5 ,
T

(T )
g

Tm

=
2

3
, (8)

as described in detail in [57, 58, 59]. Here Ua is the activation energy for the structural

relaxation processes considered, h is Planck’s constant, T
(T )
g is the glass transition tem-

perature defined in accordance with the suggestion by Tammann [62] correlating it with

a Newtonian viscosity, η, equal to η(T ) ∼= 1012 Pa s at T = T
(T )
g . These relations result in

τR = τ0 exp

(
7.5

T
(T )
g

T − T0

)
, τ0 =

h

kBT
. (9)

In the simplest approach used here we neglect the dependence of τR on the struc-
tural order parameter. Generalizations will be considered in further advancements of the
present model utilizing methods advanced in [18, 19, 20, 21, 35, 61, 63, 64, 65, 66] and
briefly discussed below. The behavior of the structural order parameter on cooling and
heating with a moderate constant rate of change of temperature is illustrated for this
model in Fig. 3.

The glass transition temperature, Tg, depends, in general, on cooling and heating rates
[18, 19, 54, 56]. However, we consider here processes of cooling of the liquid at typical
laboratory time-scales employed in the preparation of the samples for a detailed study of
nucleation phenomena. At such moderate cooling rates, the glass transition temperature
can be defined in line with the proposal by Tammann [62]. The important point, the noted
above very strong argument in support of the approach to the resolution of the problem
of the “breakdown” of CNT advanced here, is that, at these process conditions, the glass
transition temperature and the temperature of the maximum of the crystal nucleation
rate, Tmax and T

(T )
g , are directly correlated, they are close to each other, Tmax u T

(T )
g

[28, 41, 42, 43, 67, 68]. Consequently, the specific features occurring at the glass transition
temperature (Fig. 3) may be the origin for the problems in the theoretical interpretation
of experiments on measurements of steady-state nucleation rate illustrated in Fig. 1.

In the present paper, we present a confirmation of these ideas based on the analysis
of a particular model. In order to proceed in this direction, we have to solve in the next
step the problem how these specific features have to be incorporated into the description
of crystal nucleation.
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3 Implications for the Description of Crystal Nucle-

ation: Thermodynamic Aspects

As already noted in the introduction, in CNT it is assumed that the liquid has reached
its metastable equilibrium state first and only after this process is completed, nucleation
occurs. In such cases, we can employ in the description of crystal nucleation values of
the thermodynamic driving force and the surface tension obtained considering critical
crystallites to be formed in a metastable liquid. In terms of the model considerations
discussed in Section 2, this condition implies that the structural order parameter, ξ, has
reached its equilibrium value, ξ = ξe. This path of evolution corresponds to the situation
illustrated in Fig. 4b by a mechanical analogy of the motion of a particle in a force field,
as proposed by F. Simon and slightly modified by us accounting for potential energy
landscape approaches advanced by Goldstein (see [18, 19, 48, 69]).

However, on cooling the liquid from the melting or liquidus temperature, Tm, down
to temperatures T . T

(T )
g , the thermodynamic driving force and the surface tension may

become dependent not only on temperature, pressure, and composition of the liquid, but
also on the value of the structural order parameter, ξ, since the liquid is transferred into a
non-equilibrium state with a value of the structural order parameter, ξ, not corresponding
to metastable equilibrium, ξe,. As illustrated in Fig. 4a, such dependence has to be
accounted for near and below the glass transition temperature, T

(T )
g , i.e., at T . T

(T )
g .

Moreover, as shown in Fig. 4d, even a situation may occur for highly viscous liquids that
the evolution to thermodynamically more stable states is temporarily terminated when
the liquid is trapped in a local minimum of the potential energy landscape [69]. In order to
continue relaxation, another potential barrier has to be overcome by thermal fluctuations.

Such peculiar effects cannot be described by the relaxation model based on the ther-
modynamics of irreversible processes used here. It supplies us with the general trends
of evolution but, due to its simplicity, it does not cover such additional but, of course,
also possible details. However, in both cases, independent on whether the liquid evolves
towards metastable equilibrium or is trapped temporarily in a potential energy minimum,
as described in Figs. 4a and d, we have to specify how deviations of the state of the liquid
from metastable equilibrium affect both the thermodynamic driving force and the surface
tension. In terms of the thermodynamic description, we have to determine how these
basic quantities of nucleation theory depend on the structural order parameter. First,
we will now briefly outline some general considerations how to treat such problem and
then utilize, in addition, the model introduced in [18, 19] to arrive at definite quantitative
results.

Generally, any thermodynamic quantity, φ, describing the state of a liquid undergoing
crystallization processes depends on temperature, T , pressure, p, and composition, {xi},
provided the system is in a (metastable) equilibrium state. Here by {xi} the set of
molar fractions of the different components in the liquid is denoted. For systems in non-
equilibrium states, a dependence on an appropriate set of structural order parameters,
{ξj}, has to be accounted for, in addition. In the present paper, we restrict the analysis
to cases when one structural order parameter is sufficient for the description. We express
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this dependence as φ = φ(T, p, {xi}; ξ̃), where ξ̃ is defined as

ξ̃ =
(ξ − ξe)

ξe
. (10)

By a truncated Taylor expansion of φ = φ(T, p, {xi}; ξ̃) with respect ξ̃ we obtain

φ(T, p, {xi}; ξ̃) ∼= φe(T, p, {xi}) + Aφξ̃ +Bφξ̃
2 + . . . (11)

The first term in the right hand side of Eq. (11) supplies us with the value of φ in
thermodynamic equilibrium (φ = φe(T, p, {xi})), the additional terms account for changes
of this quantity due to deviations from equilibrium, they are equal to zero for ξ = ξe or
ξ̃ = 0.

Such approach can be employed also for the specification of the dependence of the
relaxation time on the structural order parameter considering U∗

a as a function of ξ̃. In a
first-order approximation, we obtain

U∗
a (T, p, {xi}; ξ̃) ∼= A0(T, p, {xi}) + Au(T, p, {xi})ξ̃ , Au(T, p, {xi}) < 0 . (12)

The inequality Au < 0 is a consequence of the fact that the viscosity of systems in non-
equilibrium is, on cooling, smaller than the respective equilibrium viscosity [18, 19, 24,
35, 61, 63, 64, 65, 66]. Here we will restrict the considerations to the specification of the
difference, ∆µ(T, p; ξ), in the chemical potential per particle and in the liquid and the
crystal and the surface tension, σ(T, p; ξ).

The change of the Gibbs free energy in cluster formation, we will express approximately
as [11, 13, 18, 19, 70]

∆G(n) ∼= −n∆µ(T, p; ξ) + γ(T, p; ξ)n2/3 , (13)

utilizing the notations

∆µ = d30∆g , γ(T, p; ξ) = Ωd20σ(T, p; ξ) , Ω = 4π

(
3

4π

)2/3

. (14)

Here d0 is a characteristic size parameter determined by the particle number density
(c = (1/d30)). Having at our disposal the values of ∆µ(T, p; ξ) and σ(T, p; ξ), we can
compute via Eq. (13) the work of formation of a cluster containing n particles. In the
present paper, we omit self-consistency corrections [13] to concentrate the attention onto
the main topic of the present analysis.

Assuming that the liquid has reached the appropriate metastable equilibrium state
prior to the initiation of nucleation (the condition ξ = ξe is fulfilled), the thermodynamic
driving force of crystal nucleation and the surface tension can be expressed as [9, 11, 12,
13, 70]

∆µ(T, p; ξ = ξe) ∼= ∆hm

(
1− T

Tm

)[
1− ∆cp

2∆sm

(
1− T

Tm

)]
, (15)

σ(T, p; ξ = ξe)

σ(Tm, pm)
∼=
(

T

Tm

)[
1− ∆cp

∆sm

(
1− T

Tm

)]
. (16)
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b)a) c)

d)

DG

Figure 4: Mechanical analogy for the interpretation of the differences between a) the

glass, b) the metastable liquid, and c) the stable crystalline state (T < Tm) as proposed

by Simon. In d), a modification of Simon’s picture of the vitreous state and its relation to

the crystalline state is given accounting for the potential energy landscape model of glass-

forming systems as advanced by Goldstein [69] (for more details, see [18, 19] (Section 2.6),

text and [48] where the figure is taken from).

Here ∆hm and ∆sm are the melting enthalpy and melting entropy per particle of the
crystal at the temperature, Tm, and the pressure, pm, ∆cp is the difference in specific
heats per particle in the liquid and the crystalline phases, respectively, also at (Tm, pm).
As the new element in the present analysis, we account now in addition for the possibility
that the liquid is not in a state of metastable equilibrium.

At fixed temperature and pressure, a spontaneous evolution of any thermodynamic
system is connected with a decrease of the Gibbs free energy [71, 72]. For the problem
under consideration, such processes can be illustrated by the motion of a ball in a force-
field as shown in Fig. 4a. The crystalline state corresponds to the lowest value of the
Gibbs free energy as illustrated in Fig. 4c. Relaxation processes result consequently in a
decrease of the thermodynamic force of crystallization.

In the considered here model, the differences between the Gibbs free energy per particle
are due to differences in the configurational contributions to this thermodynamic function.
As shown in [57] and briefly explained in the Appendix, the thermodynamic driving force

13

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2020                   doi:10.20944/preprints202008.0719.v1

https://doi.org/10.20944/preprints202008.0719.v1


of crystallization per particle of the liquid accounting for deviations from metastable
equilibrium gets the form

∆µ(T, p; ξ) ∼= ∆hm

(
1− T

Tm

)[
1− ∆cp(Tm, pm)

2∆sm

(
1− T

Tm

)]
+

kBTξe
2

ξ̃2 , (17)

i.e., the changes in the thermodynamic driving force of crystallization caused by deviations
from metastable equilibrium are given by (kBTξe/2)ξ̃

2.
On cooling, deviations of the state of the liquid from metastable equilibrium lead to

higher values of the configurational entropy as compared with its metastable equilibrium
state [18, 19, 47, 48]. In line with our approach to the determination of the surface tension
via entropy differences [9, 11, 12, 13, 70],

σ(T, p, ξ)

σ(Tm, pm)
=

T∆s(T, p; ξ)

Tm∆s(Tm, pm)
=

T

Tm

(
∆s(T, p; ξe) + sconf (ξ)− sconf (ξe)

∆s(Tm, pm)

)
, (18)

deviations from equilibrium result generally in higher values of the surface tension. By
sconf , the configurational contribution to the entropy per particle in the liquid is denoted.
For the particular model employed, we obtain the following correction term accounting
for deviations of the liquid from metastable equilibrium

σ(T, p, ξ)

σ(Tm, pm)
=

T

Tm

(
1− ∆cp

∆sm

(
1− T

Tm

)
+

sconf (ξ)− sconf (ξe)

∆sm

)
(19)

or
σ(T, p, ξ)

σ(Tm, pm)
=

T

Tm

[
1− ∆cp

∆sm

(
1− T

Tm

)
−
(
kBξe ln ξe
∆sm

)
ξ̃

]
. (20)

Consequently, both in the general case and in the particular realization utilizing the
lattice-hole model discussed here so far, on cooling processes, deviations of the state of
the liquid from equilibrium result in both an increase of the thermodynamic driving force
and in an increase of the surface tension monotonically increasing with increasing degree
of deviations from metastable equilibrium. Isothermal relaxation results in a decrease of
both the thermodynamic driving force and the surface tension.

For heating processes, the situation remains the same with respect to the thermody-
namic driving force (it is larger as compared to the state of metastable equilibrium of
the liquid). However, deviations from equilibrium may result in a decrease of the surface
tension as far as the condition ξ̃ < 0 is fulfilled. This reduction of the surface tension
may eventually result in an increase of the intensity of crystal nucleation, as discussed in
detail in [66]. Such effects are expected to be of significant importance also for the correct
description of cold crystallization widely discussed in polymer physics [43]. However, here
we concentrate the attention to crystallization processes proceeding after or in the course
of cooling a liquid leaving mentioned problem to a future analysis.

In the present study, we will employ these general consequences and particular results
accounting also for a much more complex behavior of real systems as compared to the
features described by the simple lattice-hole model discussed so far. On one hand, we
could utilize an approach as described with Eq. (11) not involving any particular model.
It leads to the following expressions for the thermodynamic driving force

∆µ(T, p; ξ) ∼= ∆hm

(
1− T

Tm

)[
1− ∆cp(Tm, pm)

2∆sm

(
1− T

Tm

)
+ Ω∆µξ̃

2

]
(21)
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Figure 5: Determination of the dependence of a) the thermodynamic driving force and

b) the surface tension on reduced temperature, θ = T/Tm, for the cases when the liquid

deviates on cooling from metastable equilibrium in the form as illustrated in Fig. 3. The

curves are drawn based on Eqs. (23) and (24) with values of the parameters equal to

Ω∆µ = Ωσ = 0, 100, 250, 500, 750, 1000. Simultaneously also the respective dependencies

are given for the case that the liquid retains always in a state of metastable equilibrium

(ξ̃ = 0 or Ω∆µ = Ωσ = 0). Parameters are taken widely from our recent paper [13]:

Tm = 1307 K, ∆Hm = 9.744 · 108 J/m3, and ∆cp/∆sm = 0.275, d0 = 4.8 · 10−10 m,

σ∞ = 0.170 J/m2.

and the surface tension

σ(T, p, ξ)

σ(Tm, pm)
=

T

Tm

[
1− ∆cp

∆sm

(
1− T

Tm

)
+ Ωσ ξ̃

]
. (22)

However, here we will employ the following relations for these dependencies being straight-
forward generalizations of Eqs. (17) and (19) obtained in terms of the simple lattice-hole
model described in the Appendix:

∆µ(T, p; ξ) ∼= ∆hm

(
1− T

Tm

)[
1− ∆cp(Tm, pm)

2∆sm

(
1− T

Tm

)]
+ Ω∆µ

(
kBTξe

2

)
ξ̃2 , (23)

σ(T, p, ξ)

σ(Tm, pm)
=

T

Tm

[
1− ∆cp

∆sm

(
1− T

Tm

)
− Ωσ

(
kBξe ln ξe
∆sm

)
ξ̃

]
. (24)

Note that, since ξe < 0 holds, deviations from metastable equilibrium result in an increase
of the surface tension as it should be generally the case. Qualitatively, both models given
by Eqs. (21) and (22), respectively, Eqs. (23) and (24), lead to similar results. Only
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Figure 6: Determination of the dependence of the work of critical cluster formation

on reduced temperature, θ = T/Tm, for the cases when the liquid deviates on cool-

ing from metastable equilibrium in the form as illustrated in Fig. 3. The curves

are drawn based on Eq. (23), (24), and (25) with values of the parameters equal to

Ω∆µ = Ωσ = 100, 250, 500, 750, 1000, again. Simultaneously also the respective dependen-

cies are given for the case that the liquid retains always in a state of metastable equilibrium

(ξ̃ = 0 or Ω∆µ = Ωσ = 0). Again, the liquid deviates on cooling from metastable equi-

librium in the form as illustrated in Fig. 3. For the values of the other parameters, see

caption to Fig. 5.

for systems where the value of the structural order parameter may affect the thermody-
namic driving force and the surface tension significantly, deviations of the liquid from
metastable equilibrium may be of relevance for nucleation and growth in crystallization.
Consequently, we will assign such values to the parameters Ω∆µ and Ωσ that this necessary
condition for the applicability of our model is fulfilled.

Having at our disposal the expressions for the thermodynamic driving force of crystal-
lization and the surface tension, we can compute the value of the work of critical cluster
formation in dependence on temperature via Eq. (1) [8, 9, 13, 18, 19]. With c∆µ = ∆g,
we obtain from Eq. (1)

Wc(T, p; ξ) = ∆G(nc) =
16π

3

σ3(T, p; ξ)

(c∆µ(T, p; ξ))2
, c =

1

d30
, (25)

where ∆µ and σ are given by Eqs. (23) and (24). The dependence of ξ̃ on temperature
is taken from the results of computations described here earlier and presented in Fig. 3.
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Figure 7: Dependence of a) the structural order parameter, ξ, and b) the work of critical

cluster formation, Wc, on reduced temperature for different cooling rates, qc = |dT/dt| as

specified in the figure. Here we assigned to the parameters the following values Ω∆µ =

Ωσ = 250.

The results of computations of Wc are shown in Fig. 6. In comparison to Wc(T, p; ξ)
and σ(T, p; ξ), also the work of critical cluster formation is presented for the case that on
cooling the system is retained in the respective metastable equilibrium state of the liquid,
i.e., for the case Wc(T, p; ξe). A comparison with Fig. 2 shows a complete qualitative
agreement. The account of deviations of the state of the liquid respectively the glass
leads to a course of the work of critical cluster formation as it has to be the case to
interpret correctly the experimental data.

Once the structural order parameter depends on cooling rate, also surface tension,
thermodynamic driving force and work of critical cluster formation at some given tem-
perature depend on the cooling rate the system is transferred to it. This feature is
illustrated in Fig. 7. It is shown that variations of the cooling rate may result in signifi-
cant changes of the dependence of the work of critical cluster formation on temperature.
It is evident that the curves are, again, qualitatively similar to the results given in Fig. 2
showing the course of the work of critical cluster formation required for an interpretation
of experimental data.

In experiments on crystal nucleation, the nucleation temperature may be established
also in alternative ways. Consequently, the degree of deviation from metastable equilib-
rium reached initially at the chosen nucleation temperature may be different for different
thermal history. In modeling a particular experimental situation, one has to account
therefore how the initial state is established to obtain the correct initial values of the
structural order parameter, and as its consequence, the thermodynamic driving force and
the surface tension. The method of description of the nucleation kinetics requires exclu-
sively the knowledge of this initial value of the structural order parameter. Here we will
retain with the model of cooling with a constant rate down to the nucleation temperature
for the specification of the initial value of the structural order parameter.
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As the next step we have now to analyze at which conditions the results shown in
Fig. 6 and 7 or reached via alternative ways to generate the initial state may significantly
affect the nucleation kinetics.

4 Implications for the Description of Crystal Nucle-

ation: Kinetic Aspects

4.1 Relaxation and Crystal Nucleation: Analytical Estimates

Whether or not or to which extent the considerations outlined in Section 3 will be of
relevance for the description of crystal nucleation depends on the answer to the question,
what the characteristic time-scales of crystal nucleation are in comparison with the char-
acteristic times of relaxation of the liquid to the metastable equilibrium state. Here we
would like to demonstrate first, why in CNT it is so far generally assumed that relaxation
is practically completed prior to nucleation.

In order to answer this question one has to define first a characteristic time-scale
of crystal nucleation. As such time-scale, we will employ (as it is conventionally done
[18, 19, 39, 40, 73, 74, 75, 76]) the average time, ⟨τ⟩, of formation of the first supercritical
crystal nucleus. As shown recently in [77], the average time of formation of the first
supercritical nucleus can be expressed in a good approximation as

⟨τ⟩ ∼= τns + ⟨τ⟩ss , ⟨τ⟩ss =
1

JstV
. (26)

Here τns is the time-lag in nucleation, the characteristic time required to establish a
steady-state cluster size distribution up to clusters of critical sizes [18, 19, 78]. Provided
steady-state conditions with respect to nucleation are established, the following relation,

⟨τ⟩ = ⟨τ⟩ss =
1

JstV
, (27)

holds for the time required to form the first supercritical cluster at such conditions. Here
Jst(T ) is the steady-state nucleation rate per unit volume and V is the volume of the
ambient phase, in our case, the liquid.

The time-lag and the steady-state nucleation rate in application to crystal nucleation
can be expressed as [13, 18, 19]

τns =
2ωσkBT

(d0∆g)2

(
1

D

)
=

ω

2

(
kBT

σd20

)(
R2

c

D

)
, (28)

Jst = c

√
σ

kBT

(
2D

d0

)
exp

(
− Wc

kBT

)
. (29)

Here D is the diffusion coefficient governing the aggregation kinetics, the numerical factor
ω varies in the range 1 ≤ ω ≤ 4 depending on the method employed in the derivation of
Eq. (28). According to Eq. (26), both quantities, τns and ⟨τ⟩ss, contribute to the average
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Figure 8: Dependence of the ratio of time-lag in nucleation and Maxwellian relaxation

time, τns/τR, on the reduced temperature for the model system under consideration if a)

the Stokes-Einstein-Eyring equation is utilized (Eq. (35)), and b) in the general and more

correct approach that decoupling of diffusion and relaxation is accounted for (Eq. (42)).

As earlier, Ω∆µ = Ωσ = 250.

time of formation of the first supercritical nucleus, ⟨τ⟩. However, as demonstrated in [77],
their contributions are quite different in different temperature ranges.

In order to prove this statement, we have a brief look at the ratio (τns/⟨τ⟩ss). Near to
the melting temperature, it obeys the inequality

τns
⟨τ⟩ss

= τns(JstV ) ∼= ω

√
kBT

σ

(
R2

cV

d60

)
exp

(
− Wc

kBT

)
≪ 1 at T → Tm . (30)

Both the critical cluster radius, Rc, and the work of critical cluster formation, Wc, diverge
at the approach to Tm, however, the exponential term dominates resulting in τns/⟨τ⟩ss → 0
at T → Tm. This dominance is extended down to temperatures near but sufficiently away
from temperatures, Tmax, corresponding to the maximum of the steady-state nucleation
rate. For lower temperatures, the inequality is reversed, i.e., (τns/⟨τ⟩ss) becomes con-
siderably larger than one [46, 47, 48]. We arrive at the conclusion that, in the range of

temperatures of interest for us (T / 1.2T
(T )
g ) near and below the glass transition temper-

ature, the average time of formation of the first supercritical nucleus is determined by the
time-lag in nucleation,

⟨τ⟩ ∼= τns =
ω

2

(
kBT

σd20

)(
R2

c

D

)
at T / 1.2T (T )

g . (31)

Consequently, we have finally to analyze how time-lag and relaxation time are related in
the considered range of temperatures.

In order to arrive at the respective estimates, in CNT commonly two additional as-
sumptions are introduced. First, the Stokes-Einstein-Eyring equation [18, 19]

D ∼=
kBT

d0η
(32)
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Figure 9: Dependence of the structural order parameter on time for different values of the

reduced temperature, θ = T/Tm. The evolution in time is caused by isothermal relaxation

to the metastable equilibrium state described by Eq. (4).

is utilized, correlating diffusion coefficient, D, and Newtonian viscosity, η. As a second
step, the relaxation time can be expressed by the viscosity via the Maxwell relation
[18, 19, 43, 79, 80]

τR =
η

G∗ , G∗ =
E

2(1 + γ)
. (33)

Here G∗ is the infinite frequency shear modulus, E is Young’s modulus and γ is the
Poisson number. The relation between viscosity and relaxation time can be written also
in the form [18, 19]

τR ∼=
d30
kBT

η . (34)

In the present model analysis, we will utilize latter result. A combination of Eqs. (31),
(32), and (34) results in

⟨τ⟩ ∼= τns =
ω

2

(
kBT

σd40

)
R2

cτR ∝
(
kBT

σd20

)
n2/3
c τR at T / 1.2T (T )

g . (35)

Employing, finally, the capillarity approximation in the description of experimental data
on steady-state nucleation rates, typical values of the term (kBT/σd

2
0) in Eq. (35) are found

in the range of 102 − 103 [18, 19, 40]. Provided these estimates and the underlying them
assumptions are true, then the characteristic times of nucleation, ⟨τ⟩ ∼= τns, are always
much larger as compared to the times of relaxation, τR, to the metastable equilibrium
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Figure 10: Time dependence of the work of critical cluster formation caused by isothermal

relaxation of the structural order parameter illustrated in Fig. 9 for reduced temperatures

θ = 0.6, 0.61, 0.62, 0.62, 0.64, 0.65, 0.66. The evolution starts with a value of ξ obtained

on cooling with a rate of change of temperature as described in Fig. 3 (see text).

state of the liquid, i.e., nucleation proceeds only after the liquid is transferred into the
respective metastable state. However, is this conclusion really always correct?

As discussed in detail in [13, 17, 18, 19, 28, 81], the interpretation of experimental data
on steady-state nucleation rates utilizing the capillarity approximation results as a rule in
serious problems. In particular, to the size parameter, d0, values have to be assigned to
which do not correspond to their original meaning, the values are too small. This is one of
the reasons for the high values in the estimates of the parameter (kBT/σd

2
0) in Eq. (35).

The introduction of a curvature dependence of the surface tension partly resolves these
problems and results in estimates of the order ⟨τ⟩ ∼= τns ∼= τR near to the maximum of the
steady-state nucleation rate. Further, one can also advance theoretical arguments leading
to the conclusion that sufficiently below T

(T )
g the inequality τns ≪ τR should hold as a

rule [24, 46, 47, 48]. We will return here to this topic in Section 5.
Another serious argument against the conclusions derived from Eq. (35) (relaxation

proceeds always prior to nucleation) is connected with another assumption involved in
its derivation. It consists in the application of the Stokes-Einstein-Eyring relation in the
description of crystal nucleation. It is well-known that this relation is as a rule fulfilled
only above a certain decoupling temperature, Td [82], but not in the range T ≤ Td

∼=
(1.1− 1.2)T

(T )
g . In the model computations, we will set Td = 1.2T

(T )
g . In such case, based
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Figure 11: Time dependence of the steady-state nucleation rate caused by isother-

mal relaxation of the structural order parameter illustrated in Fig. 9 and the work

of critical cluster formation illustrated in Fig. 10 for reduced temperatures θ =

0.6, 0.61, 0.62, 0.62, 0.64, 0.65, 0.66. The evolution starts with a value of ξ obtained on

cooling with a rate of change of temperature as described in Fig. 3 (see text).

on Eq. (31), we obtain

⟨τ⟩ ∼= τns =
ω

2

(
kBT

σd20

)(
R2

c

DτR

)
τR at T / Td

∼= 1.2T (T )
g (36)

instead of Eq. (35). This relation, Eq. (36), will lead, in general, to quite different pre-
dictions as compared with Eq. (35).

In particular, in [83] effects of decoupling of diffusion and viscosity on crystal growth
have been analyzed for a variety of liquids, including those presented in Fig. 1. The tem-
perature dependence of viscosity is described in a wide temperature range of temperatures
with good accuracy by the Vogel-Fulcher-Tammann (VFT) equation,

η = η0 exp

(
E∗

kB(T − T0)

)
. (37)

To account appropriately for decoupling of diffusion and viscosity, a simple model was
employed adapting a suggestion formulated by Rössler [84]. The diffusion coefficient was
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supposed to behave differently above and below the decoupling temperature Td as

D =



D0 exp

(
− E∗
kB(T − T0)

)
for T ≥ Td

D0 exp

− E∗

kBT

(
1− T0

Td

)
 for T ≤ Td

(38)

Here it is accounted for that the mechanism controlling crystal growth changes from a
liquid-like mode, correlated with the dynamics of relatively large cooperatively rearrang-
ing regions, into a solid-state-like (faster) diffusion mode governed by an Arrhenius-type
process. In the latter mode, the activation energy for diffusion does not depend on tem-
perature [85] (see also [86, 87, 88, 89]). With such assumption, the time-lag in nucleation
has to be expected according to Eq. (28) to exhibit also a temperature dependence of
Arrhenius type. This expectation is confirmed by experimental data on the time-lag in
crystal nucleation discussed in [17]. Eq. (38) we will utilize in the present model analysis
of the effect of relaxation of the liquid on crystal nucleation. The implementation of these
ideas into the model analysis will be discussed in the next section.

4.2 Relaxation and Crystal Nucleation: Numerical Computa-

tions

We model crystal nucleation and growth processes by the standard set of kinetic equa-
tions employed in CNT [18, 19] in the form as described in [13] and their analytical
consequences. Kinetic aspects enter CNT by the appropriate diffusion coefficient, D,
or the Newtonian viscosity, η, of the liquid. As discussed in detail in [13, 18, 19], the
attachment coefficients can be written in the form

w(+)(n, t) = Ω
D

d20
n2/3 , w(+)(n, t) = Ω

kBT

d30η
n2/3 . (39)

Consequently, as the first of the tasks in the analysis of the effects of deviations of the
liquid from metastable equilibrium and relaxation on crystallization, we have to formulate
the prescription how we are going to express the diffusion coefficient of the particles in
the liquid for the model considered.

As already noted in Section 2, we describe the dependence of relaxation time on
temperature via Eqs. (7), (8) and (9). A combination of Eqs. (9) and (34) yields the
following expression for the viscosity

η =
kBT

d30
τR =

kBT

d30τ0
exp

(
7.5

T
(T )
g

T − T0

)
. (40)
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Figure 12: Time dependence of the work of critical cluster formation and the steady-state

nucleation rate caused by isothermal relaxation of the structural order parameter for a

reduced temperature equal to θ = 0.64 (see text).

In analogy to Eq. (38), the diffusion coefficient can be expressed then as

D =



(
d20
τ0

)
exp

(
−7.5

T (T )
g

T − T0

)
for T ≥ Td

(
d20
τ0

)
exp

(
−7.5

T (T )
g

T

(
Td

Td − T0

))
for T ≤ Td

(41)

With these relations, we obtain from Eq. (36)

⟨τ⟩ ∼= τns ,
τns
τR

=
ω

2

(
kBT

σd20

)(
R2

c

d20

)
exp

(
− 7.5T

(T )
g T0(Td − T )

T (T − T0)(Td − T0)

)
(42)

T / Td
∼= 1.2T (T )

g

In comparison with Eq. (36), an exponential term occurs in Eq. (42). Being equal to
one at T = Td, this term decreases significantly and monotonically with a decrease of
temperature becoming equal to zero at T = T0. It follows that the characteristic time of
nucleation may become much shorter in this range of temperatures than the relaxation
time. This conclusion is illustrated in Fig. 8. Such behavior is not found if the Stokes-
Einstein-Eyring equation is utilized in the theoretical description.

Having at our disposal the tools for the analysis, we can get the desired information
on the nucleation behavior by solving the respective kinetic equations or utilizing the
analytical expressions, Eqs. (25) and (29). Hereby, we always start at the melting tem-
perature and cool the system with a given rate down to a specified temperature near or
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Figure 13: Change of a) the modified structural order parameter (defined by Eq. (45))

and b) the steady-state nucleation rate in reduced form (Eq. (46)) at isothermal annealing

in dependence on the reduced time, t̃ = (t/τR).

below T
(T )
g . Reaching the value of the chosen temperature, we follow the development of

the nucleation rate. We suppose that initially a value of the structural order parameter
is reached as described in Fig. 3. Isothermal relaxation of the structural order parameter
towards its equilibrium value results in changes of the work of critical cluster formation
and the steady-state nucleation rate. The results are shown for different values of reduced
temperature in Figs. 9-11. For a relatively high value of temperature in the glass transi-
tion range (θ = 0.64), the time evolution of the work of critical cluster formation and the
steady-state nucleation rate is shown in Fig. 12.

The behavior illustrated with Figs. 9-12 can be interpreted analytically. According
to Eqs. (4) and (10), the change of the structural order parameter caused by isothermal
relaxation processes is given by

dξ̃

dt
= − ξ̃

τR(T, p, ξ)
, ξ̃ =

(ξ − ξe)

ξe
. (43)

As shown in [35, 61], an account of the dependence of the relaxation time on the structural
order parameter results in stretched exponential (Kohlrausch or Jenckel) relations for the
description of the relaxation behavior. Here we assume that the relaxation time depends
only on pressure and temperature kept constant in the experiment analyzing nucleation.
Consequently, Eq. (43) yields then

ξ̃(t̃) = ξ̃(0) exp
(
−t̃
)
, t̃ =

t

τR(T, p)
. (44)

Employing this result, one obtains the dependencies for the work of critical cluster for-
mation and the steady-state nucleation rate as shown in the figures.

For a comparison of the behavior of the structural order parameter at different tem-
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peratures, we introduce in addition the quantity

ξ̃m =
ξ(0)− ξ(t̃)

ξ(0)− ξe
=

1

ξ(0)− ξe

[
(ξ(0)− ξe)− (ξ(t̃)− ξe)

]
= 1− exp

(
−t̃
)
. (45)

This quantity varies always from zero to one. Its time dependence is shown in Fig. 13a, in
line with Eq. (45) its course does not depend on temperature. In similarly reduced units,

J̃st(t) =
Jst(ξ(t))− Jst(ξ(t = 0))

Jst(ξe)− Jst(ξ(t = 0))
, (46)

the change of the steady-state nucleation rate in isothermal annealing is shown in Fig. 13b
in dependence on the reduced time, t̃ = (t/τR(θ)). ξ(t = 0) is the initial value of the
structural order parameter reached on cooling by the chosen rate and ξe is the value at
metastable equilibrium of the liquid. As evident, the curves coincide widely. The charac-
teristic time to reach the ultimate value of the steady-state nucleation rate is determined,
consequently, by the structural relaxation time.

It follows that the characteristic times of approach of the ultimate time-independent
steady-state nucleation rates near and below the glass transition temperature are deter-
mined for all temperatures studied by the Maxwellian relaxation time. In line with the
results shown in Fig. 8, the relaxation time is much larger as compared to the time-lag in
nucleation. Consequently, we have here a situation quite different to the standard situa-
tion at isothermal crystallization widely analyzed in CNT, the approach to steady-state
conditions is not governed here by the time-lag in nucleation but by the relaxation time
of the liquid to the metastable equilibrium state (cf. [37, 38]). Note that this effect will
be even more pronounced if relaxation is described more correctly be stretched exponen-
tial relaxation. The corresponding quantitative modifications will be studied in a future
analysis, qualitatively, the results as outlined here will remain the same.

5 Account of Stress Evolution and Stress Relaxation

in Crystal Nucleation

Crystallization of liquids or solids is accompanied by a change of the volume per unit
mass or per particle. These deviations of the volume may result in the evolution of elastic
stresses in crystal nucleation and growth in solids. Such stresses are of negligible effect
in crystallization in liquids at sufficiently low viscosities. However, on cooling a liquid,
in the vicinity of the glass-transition temperature and below elastic stresses may evolve
and have to be accounted for in the description of crystal nucleation [90, 91] and crystal
growth [92, 93] processes.

A theory accounting for the interplay of stress development and stress relaxation
on crystal nucleation has been developed in [18, 19, 20, 21] and applied by us to the
description of crystal nucleation in glass-forming liquids in [17, 22, 23, 24]. In [23], it was
shown that the account only of elastic stresses cannot explain to full extent the differences
of theoretical results and experimental data on the steady-state nucleation rates as shown
in Fig. 1. However, stresses have to be accounted for and, by this reason, we will briefly
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analyze here in which way they either increase or decrease the effect of deviations of the
liquid from the metastable equilibrium state on crystal nucleation. Moreover, we extend
here the analysis of elastic stress effects in nucleation accounting for their influence on
the surface tension of critical crystallites of the newly evolving phase.

Incorporating elastic stresses into the description of crystal nucleation, the change of
the Gibbs free energy in cluster formation has to be written instead of Eq. (13) in the
form [13, 18, 19, 20, 21]

∆G(n) ∼= −n(∆µ(T, p; ξ)− ε(n)) + γ(T, p; ξ)n2/3 . (47)

If nucleation proceeds in a Hookean solid (for that case we use the notation ε = ε0), the
parameter ε = ε0 is determined by the elastic constants of both phases and (provided,
as assumed here, that stresses are caused by density difference in both phases) does not
depend on the number of particles in the crystallite. As shown in detail in [18, 19, 90],
this parameter can become comparable in magnitude with ∆µ.

Figure 14: Dependence of the ratio (ε(nc)/ε0) on the ratio τns/τR according to Eq. (48).

This ratio determines the decrease of the thermodynamic driving force in crystal nucle-

ation caused by elastic stresses accounting for stress evolution and stress relaxation in

highly viscous liquids.

For crystal nucleation in viscous liquids, the effective value of the stress parameter ε is
determined by the interplay of stress evolution (caused by the formation of a crystallite)
and stress relaxation accompanying this process. Assuming, as done here, that relaxation
is described by Maxwell’s relaxation law, the effective value of ε for a crystallite of critical
size is given by

ε(nc)

ε0
∼=

τR
τns

[
1− exp

(
−τns
τR

)]
. (48)
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Accounting for Eqs. (36) and (42), Eq. (48) describes, at least, qualitatively correctly, the
transition from nucleation in a liquid to nucleation in a solid as illustrated in Fig. 14. In
Fig. 15, this ratio, (ε(nc)/ε0), is shown in dependence on reduced temperature. For high
temperatures near to the melting temperature, Tm, elastic stresses relax in the course of
formation of a critical crystallite. For temperatures below the glass transition tempera-
ture, relaxation can be neglected and crystal nucleation proceeds as in a Hookean solid.
An account of stretched exponential relaxation or a dependence of the relaxation time on
the structural order parameter leads to an increase of ε(nc) as compared with Eq. (48)
[20, 21].

Moreover, in line with cited previous studies, we use here the structural relaxation
time for the description of stress relaxation. Of course, as discussed from a theoretical
point of view in [80, 92] and confirmed by experiment, the characteristic times of stress
relaxation may differ from the structural relaxation times. Such modifications do not lead
to qualitative changes of the main conclusion: Elastic stress effects may affect crystal
nucleation only in cases when the structural relaxation time is considerably larger than
the time-lag in nucleation, i.e., at conditions when crystallization proceeds concomitantly
with structural relaxation. Their role in crystal nucleation increases with decreasing
temperature.

Figure 15: Dependence of the ratio (ε(nc)/ε0) on temperature computed a) via Eqs. (35)

and (48) and b) via Eqs. (42) and (48). Only when decoupling of diffusion and relaxation

is accounted for, a correct description of essential features of elastic stress effects on

crystallization is incorporate in the theory, the transition from a viscous liquid at high to

a Hookean solid a low temperatures.

Completing previous studies, finally, we would like to advance estimates now of the
effect of elastic stresses on the surface tension. Melting a critical crystallite, the elastic
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energy generated by its evolution results in an additional contribution to the melting
enthalpy. Utilizing the methods developed in [9, 11, 12, 13, 70] and applied here in the
derivation of Eq. (20), we may formulate similarly to Eq. (18) the following relation to
account for the dependence of the surface tension on elastic stresses

σ(T, p, ξ, ε)

σ(Tm, pm)
=

T∆s(T, p; ξ) + ε

Tm∆s(Tm, pm)
, (49)

resulting instead of Eq. (20) in

σ(T, p, ξ, ε)

σ(Tm, pm)
=

T

Tm

[
1− ∆cp

∆sm

(
1− T

Tm

)
−
(
kBξe ln ξe
∆sm

)
ξ̃

]
+

ε(nc)

Tm∆sm
, (50)

or, with Eq. (48), in

σ(T, p, ξ, ε)

σ(Tm, pm)
=

T

Tm

[
1− ∆cp

∆sm

(
1− T

Tm

)
−
(
kBξe ln ξe
∆sm

)
ξ̃

]
+ (51)

+
ε0

Tm∆sm

(
τR
τns

)[
1− exp

(
−τns
τR

)]
.

It follows as a consequence that elastic stresses not only result in a decrease of the ther-
modynamic force of crystallization, but also in an increase of the surface tension. Latter
property is expected to enhance considerably the effect of elastic stresses on crystal nucle-
ation and has to be accounted for in the complete resolution of the problems illustrated
here with Fig. 1. A detailed study of the consequences of the changes of the surface
tension on crystal nucleation in highly viscous liquids is consequently a highly interesting
task and will be performed in near future.

As a general conclusion we can state that the interplay of elastic stress evolution
and elastic stress relaxation becomes of importance for crystal nucleation at the same
conditions when deviations of the liquid from its metastable state have to be accounted
for in the description of crystal nucleation. Both factors (deviations from metastable
equilibrium and stresses) act consequently as a rule simultaneously. Their effects are
determined by the ratio τns/τR of time-lag in nucleation and Maxwellian relaxation time.
Elastic stress effects result in an increase of the surface tension and a decrease of the
thermodynamic driving force of crystal nucleation and, consequently, in an increase of
the work of critical cluster formation, i.e., they enhance the effects caused by deviations
of the liquid from metastable equilibrium on cooling.

6 Discussion

In CNT it is assumed commonly that relaxation processes of the liquid undergoing crys-
tallization to the respective metastable equilibrium state proceed prior to crystallization.
Only in such cases, the determination of the thermodynamic driving force and the surface
tension for crystallites in the metastable liquid is appropriate for the description of the
thermodynamic aspects of crystal nucleation and growth. In such situation, the initial
time-dependence of the nucleation rate is caused by time-lag effects connected with the
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Figure 16: Experimental data for the time dependence of the work of critical cluster

formation, Wc(t)/kBT , and the steady-state nucleation rate, Jst(t), caused by isothermal

relaxation. The crystal-nucleation experiments were performed with Li2O · 2SiO2 (L2S)

at a temperature T = 430 ◦C. The average trends are given in Fig. 16a in line with

the phenomenological theory developed in the present study. However, there are strong

indications in the detailed analysis of experimental data that the approach to metastable

equilibrium is more complex. Temporarily, the liquid may be trapped in local minima of

the potential energy landscape as illustrated in Fig. 4d resulting in a step-wise change

of the work of critical cluster formation and the steady-state nucleation rate as shown in

Fig. 16b. For the details of this and further experiments, see [36].

establishment of a steady-state cluster size distribution up to crystallites of critical sizes
as suggested first by Zeldovich and advanced then by many others [18, 19, 94, 95].

Extending previous studies, here we developed for the first time a detailed quantitative
description modeling the opposite situation, when the typical relaxation times of the liquid
to the metastable liquid are large as compared with the time-lag in nucleation. As shown
here, (i) such situation occurs as a general rule when diffusion and viscosity or relaxation
decouple (Fig. 8). Once this is the case, (ii) the state of the liquid established initially on
cooling (or by variations of other control parameters like pressure) differs from the one
of the metastable liquid (Fig. 3). It depends significantly on the cooling rate or, more
generally, on the particular way the liquid is transferred to the state where nucleation is
analyzed. (iii) These deviations will significantly affect the nucleation rate if the surface
tension and the thermodynamic driving force of crystallization depend to a sufficiently
large degree on the deviations from metastable equilibrium (modeled by one or a set of
structural order parameters; see Figs. 5-7). (iv) Relaxation of the liquid proceeding slowly
as compared to nucleation affects significantly nucleation and growth processes. It leads
to properties as illustrated in Figs. 9-13. The steady-state nucleation rate varies with
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time but this is a quite different mechanism as compared to the change of the nucleation
rate with time studied first by Zeldovich. Here it is the Maxwellian relaxation time which
determines the time of approach of ultimate time-independent conditions in the relaxing
liquid. (v) Elastic stress effects act in line with the effects of deviations of the liquid from
the metastable state resulting in an increase of the work of critical cluster formation and a
decrease of the steady-state nucleation rates (see Figs. 14-15). Their effects on nucleation
increase with decreasing temperature and, as the rule, they have also have to be accounted
for in a comprehensive correct treatment of crystal nucleation in glass-forming liquids near
and below the glass transition temperature.

An experimental realization of a type of behavior as studied theoretically in the present
analysis is shown in Fig. 16a. It shows a time-dependence of the work of critical cluster
formation and the steady-state nucleation rate being qualitatively identical to the theo-
retical results illustrated in Fig. 12. A detailed description of the experimental data with
similar curves obtained for this and other temperatures is given in [36]. However, there
are strong indications in the detailed analysis of experimental data that the approach to
metastable equilibrium is more complex as compared to the results shown here in Figs. 12
and 16a supplying us with the average general trend in the evolution of the crystallization
kinetics. Temporarily, the liquid may be trapped in local minima of the potential energy
landscape as illustrated in Fig. 4d resulting in a step-wise change of the work of critical
cluster formation and the steady-state nucleation rate. This feature observed in the ex-
periments is shown in Fig. 16b. Its analysis and further proof requires, as we believe, a
detailed microscopic analysis of the effects of structural relaxation on crystal nucleation
at temperatures sufficiently below the glass transition temperature.

In Fig. 17, the steady-state nucleation rates, J(θ, ξ(0)), are given as functions of
temperature for the cases that the structural order parameter is equal to its value reached
on cooling (Fig. 3) and after complete relaxation to metastable equilibrium, J(θ, ξe).
Changes of the steady-state nucleation rates resulting from the relaxation of the structural
order parameter are indicated by arrows. The characteristic times of change of the steady-
state nucleation rates are determined by the value of the Maxwellian relaxation time (see
also Fig. 13). By this reason, the values for the steady-state nucleation rate reported
in different experimental studies depend in this temperature range significantly on the
duration of the experiments. For sufficiently low temperatures the metastable liquid may
never be reached in typical time scales of experimental studies. However, in any case, it
is always really the steady-state nucleation rate which is measured in the system for the
time scales under consideration and its variations with time are not caused by time-lag
effects.

Two additional conclusion can be drawn from the results of our analysis illustrated in
Fig. 17: Crystal nucleation may be observed in systems at low temperatures sometimes
only after sufficiently prolonged isothermal annealing (cf. [49, 50, 51, 52, 53]). Relaxation
does not occur prior to crystal nucleation in glasses because it inhibits crystal nucleation
but, in contrast, it catalyzes nucleation. It leads in the course of annealing to sufficiently
low values of the work of critical cluster formation resulting in sufficiently large nucleation
rates which can be observed experimentally (cf. [41, 42, 43, 44]).

A comparison of Figs. 1 and 17 shows that the mechanisms of crystal nucleation studied
in this paper supply us with an straightforward explanation of the so-called “breakdown”
of CNT at temperatures below the temperature, Tmax. In cooling the liquid, near to
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Figure 17: Steady-state nucleation rates, J(θ, ξ(0)), are shown as functions of temperature

for the cases that the structural order parameter is equal to its value reached on cooling

(for a cooling rate as employed in Fig. 3 (blue curve)) and after complete relaxation to

metastable equilibrium, J(θ, ξe) (black curve), representing the ultimately reached steady-

state nucleation rates. In accordance with the results of analysis presented in Fig. 13, the

values of the Maxwellian relaxation times determine the time of evolution to metastable

equilibrium. Their values for different temperatures are also given in the figure. In this

illustration, elastic stress effects are not incorporated. Their account results in shifts of

both curves to lower values in the temperature range where blue and black curves deviate.

the glass transition temperature deviations of the state of the liquid from metastable
equilibrium result in nucleation rates described by the blue curve. These curves deviate
from the black curve obtained in terms of CNT not accounting appropriately for such
effects. Our approach and its results confirm the point of view that mentioned anomaly
can be treated in terms of CNT and is a particular realization of even much more complex
and intriguing features of crystal nucleation than commonly assumed so far (cf. [37, 38]).

Finally, we would like to underline once again that in the temperature range where
deviations of the liquid from its metastable initial state have to be accounted for in
the description of nucleation ((τns/τR) ≪ 1) also the interplay of evolution of elastic
stresses and stress relaxation affects considerably crystal nucleation. Accounting for such
stress effects, the black curve in Fig. 17 will never be reached even for infinite relaxation
times. As shown in Section 5, a correct description of the effect of elastic stresses in
crystallization in the transition of a liquid from low-viscosity fluid to high-viscosity fluid
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and/or solid requires the fulfilment of this inequality ((τns/τR) ≪ 1). Once one has to
expect that sufficiently below Tg the glass behaves as a solid, always this inequality will
be realized with decreasing temperature. This consequence leads also to the conclusion
that deviations of the liquid from its metastable state have to be accounted for, as a rule,
if crystal nucleation is described near and below Tg. A detailed analysis of the effect of
elastic stresses on crystallization has been performed recently by us in [17] as one possible
method of resolution of the low temperature anomaly in the theoretical description of
crystal nucleation. The account of the effect of elastic stresses on the surface tension, as
described in the present paper, will increase its influence on crystal nucleation. A detailed
analysis of the consequences of stress effects on the surface tension and its consequences
will be performed in a future analysis.

Note also that, in general, self-consistency corrections have to be accounted for in
the determination of the work of critical cluster formation, as discussed in detail in one
of our preceding papers [13]. Such corrections will, however, not change the general
results derived here and by this reason are omitted in the present paper for clarity of
the presentation. As shown in cited paper, self-consistency corrections do not affect the
results of theoretical analysis if the process is studied by solving the set of kinetic equations
modeling crystal nucleation and growth in the framework of CNT. This model can be used
also in the analysis of the spectrum of problems analyzed in the present paper. In addition
to the conventional procedure, one has to add then Eqs. (4) and (5) to model the change
of the structural order parameter with time and/or temperature and to take into account
changes of the kinetic coefficients (Eq. (39)) accounting for stress evolution and stress
relaxation. Latter procedure can be performed employing the results outlined in [92, 93].
Utilizing this set of kinetic equations one can arrive at a more detailed description of
nucleation and growth accounting appropriately for effects of glass transition, structural
relaxation, and the interplay of stress development and stress relaxation at any desired
path of change of temperature (or other external control parameters). In particular, one
can describe in such approach the influence of preformed nuclei on crystal nucleation
kinetics in glasses near and below the glass transition temperature as studied, for the case
of soda-lime-silica glasses, experimentally in [96, 97]. The general conclusions derived in
the present analysis will remain, of course, unchanged in such more detailed description.

7 Conclusions

1. On cooling, a liquid is transferred, in the glass transition range and below it, into
a thermodynamically non-equilibrium state, the glass. Therefore, its properties be-
come different from the properties at the corresponding (relaxed) metastable equi-
librium state. As a consequence, the main thermodynamic and kinetic parameters
determining the rate of crystal nucleation become dependent on such deviations
from metastable equilibrium. These deviations result, in particular, in changes of
the theoretical estimates of the steady-state nucleation rates and the time-lag in nu-
cleation. The glass transition temperature and the properties of the glass depend on
cooling and heating rates or, more generally, on the path the system is transferred
into the state where nucleation is studied. Consequently, accounting for deviations
of the state of the liquid from metastable equilibrium, its dependence on cooling
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and heating rates or the way the system is transferred into the respective state has
to be determined.

2. Experiments on the determination of the steady-state nucleation rate and the time
lag in nucleation are normally performed by transferring the liquid into the desired
initial state at moderate cooling rates. At such process conditions, the glass transi-
tion takes place at a temperature T

(T )
g , defined by Tammann as the temperature at

which the liquids Newtonian viscosity, η, is equal to η
(
T

(T )
g

)
∼= 1012 Pa s. At such

typical experimental conditions, the glass transition temperature and the tempera-
ture of the maximum crystal nucleation rate, Tmax and T

(T )
g , are close, Tmax u T

(T )
g .

Consequently, the hypothesis can be advanced that specific features of crystal nucle-
ation occurring at the glass transition temperature and below it may be the origin
for the problems in the theoretical interpretation of experimental results on steady-
state nucleation rates near and below the maximum of the steady-state nucleation
rate.

3. As shown here, deviations from metastable equilibrium (caused by cooling and the
resulting transfer of a relaxed supercooled liquid into a glassy state) are always ac-
companied by an increase both of the thermodynamic driving force of crystallization
and the surface tension. Consequently, isothermal annealing processes in the course
of nucleation (relaxation of the glassy state towards metastable equilibrium) are ac-
companied by a decrease of both the thermodynamic driving force of crystallization
and the surface tension. As one of the consequences of these processes, isothermal
relaxation leads, as a rule, to a decrease of the work of critical cluster formation and
an increase of the steady-state nucleation rates.

4. The effect of described above deviations of the liquid from metastable equilibrium
on crystal nucleation depends on the ratio of the characteristic time scales of nu-
cleation, ⟨τ⟩, and relaxation, τR. In the range of temperatures of relevance for the

present study, T / 1.2T
(T )
g , the average time of formation of the first supercritical

nucleus, ⟨τ⟩, is approximately equal to the time-lag in nucleation, ⟨τ⟩ ∼= τns. If the
capillarity approximation and the Stokes-Einstein-Eyring equation are assumed to
be fulfilled, then the inequality τR ≪ τns is always satisfied and relaxation is always
completed prior to crystal nucleation. However, these two assumptions are known
to be of limited validity. If they are removed, both cases τR ≪ τns and τR ≫ τns
may be realized and crystallization may proceed prior to relaxation. Provided the
latter condition, τR ≫ τns, is fulfilled, then nucleation proceeds concomitantly with
relaxation. For its description, expressions for the thermodynamic driving force and
the surface tension have to be employed where deviations of the state of the liquid
from metastable equilibrium are accounted for. Consequently, at such conditions,
they may be responsible for the deviations of theoretical predictions of steady-state
nucleation rates from experimental data as illustrated in Fig. 1. The validity of this
hypothesis is proven in the present study.

5. Provided the condition τR ≫ τns is fulfilled, moderate variations of the state of
the liquid with time in the course of nucleation and growth take place. As one
consequence, steady-state nucleation rates may change also slowly with time. The
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characteristic time-scales of such variations of the state of the liquid and the steady-
state nucleation rate are determined by the Maxwellian relaxation times. They may
be very large, so that they are frequently not reached in experimental analyses of
nucleation below Tg. Anyway, the experimental studies performed and exhibiting
the ”breakdown of CNT”-problem represent measurements of the steady-state nu-
cleation rates for the time interval where they are performed. In this sense, they
remain correct and they are described by CNT, if, as shown here, deviations of the
state of the liquid from metastable equilibrium are accounted for. In those measure-
ments, the liquid had not reached metastable equilibrium and, as a consequence,
the ultimate steady-state nucleation regime of nucleation was not established. In
fact, at sufficiently deep supercooling, the metastable liquid may not be reached at
all at reasonable laboratory time scales. Consequently, the computations employing
the method outlined in the present paper provide an independent confirmation that
the low temperature anomaly in silicate glasses is a particular realization of even
more complex, intriguing features of crystal nucleation than commonly assumed so
far.

6. Since relaxation is connected with an increase of the steady-state nucleation rates,
crystal nucleation may be observed in systems at low temperatures sometimes only
after sufficiently prolonged isothermal annealing. Relaxation does not occur prior
to nucleation in such cases because it inhibits crystal nucleation but, in contrast, it
leads to sufficiently low values of the work of critical cluster formation resulting in
sufficiently large nucleation rates which can be observed experimentally.

7. The condition, τR ≫ τns, which has to be fulfilled that glass transition and relaxation
may affect nucleation leads simultaneously to the requirement that elastic stresses
may become of significant importance for the specification of the thermodynamic
driving force and the surface tension. Elastic stresses result in a decrease of the
thermodynamic driving force and, as shown here for the first time, in an increase
of the surface tension. In this way, they act in the same direction as deviations of
the state of the liquid from equilibrium leading to an increase of the work of critical
cluster formation. Experimental data on crystal nucleation near and below the
glass transition are consequently always affected by both factors - deviations from
metastable equilibrium and elastic stresses - once the inequality τR ≫ τns holds.

8. Finally, the present analysis indicates the possibility of existence of crystal nucle-
ation flashes during heating. They are expected to be of significant importance, in
particular, for the correct description of cold crystallization, a phenomenon widely
discussed in polymer physics. This highly interesting consequence of the formalism
presented here will be analyzed in detail in a future study. However, this is only one
in the wide spectrum of its possible applications to the description of crystal nucle-
ation and growth processes where the advanced here method of theoretical analysis
is believed to lead to new insights.
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Appendix: Some Features of the Lattice-Hole Model

Employed in the Present Analysis

The thermodynamic functions of the liquid are described in the framework of the lattice-
hole model used in the present analysis by the sum of contributions resulting from the
thermal motion of the molecules of the liquid supplemented by configurational contribu-
tions described by the structural order parameter, ξ. The configurational contribution to
the molar volume (or the excess volume) is given by [18, 19]

Vconf
∼= NAv0(p, T )ξ . (A1)

Here NA is the Avogadro number. The configurational contribution to the enthalpy,
Hconf , of one mole of the liquid is described in the framework of this lattice-hole model
via the molar heat of evaporation, ∆Hev(Tm), of the liquid at the melting temperature as

Hconf = χ1∆Hev(Tm)ξ . ∆Hev(Tm) ∼= χ2RTm with χ2 = 20 . (A2)

The parameter χ1 will be determined later.
The configurational part of the entropy per mole is described in this model via the

conventional mixing term

Sconf = −R

(
ln(1− ξ) +

ξ

1− ξ
ln ξ

)
. (A3)

Employing a truncated Taylor expansion of Sconf (ξ) in the vicinity of ξ = ξe, the difference
Sconf (ξ)− Sconf (ξe) can be written approximately as

Sconf (ξ)− Sconf (ξe) ∼= −R ln ξe (ξ − ξe) = −R(ξe ln ξe)ξ̃ , (A4)

where ξ̃ is defined by Eq. (10).
With H = U + pV , we obtain for the configurational contribution to the internal

energy the relation
Uconf = [χ1∆Hev(Tm)− pv0(p, T )] ξ . (A5)

Finally, employing the definition of Gibbs’ free energy, G = U − TS + pV , we arrive at

Gconf = χ1∆Hev(Tm)ξ +RT

(
ln(1− ξ) +

ξ

1− ξ
ln ξ

)
. (A6)

The equilibrium value of the structural order parameter, ξ = ξe, is determined via the
relation (∂Gconf/∂ξ)p,T = 0. With Eqs. (A2) and (A6), we obtain the following result

(1− ξe)
2

ln ξe
= − 1

χ

(
T

Tm

)
where χ = χ1χ2 . (A7)

Knowing the value of χ2 (c.f. Eq. (A2)), we determine the value of the parameter χ1

demanding that at T = Tm the value of ξe should be approximately equal to 0.05 (corre-
sponding to experimentally observed density differences between liquid and crystal at the
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melting temperature, Tm [18, 19]). In the computations performed here we set χ2 = 20
and χ1 = 0.166 resulting in χ = 3.32.

As it should be the case, in the vicinity of the state of configurational equilibrium
(defined via the condition (∂Gconf/∂ξ)|p,T,ξ=ξe

= 0), we obtain from Eq. (A6) after per-
forming a truncated Taylor expansion the result

Gconf (p, T, ξ) ∼= Gconf (p, T, ξe) +
1

2

(
∂2Gconf

∂ξ2

)∣∣∣∣
p,T,ξ=ξe

(ξ − ξe)
2 . (A8)

The value of G
(2)
e = (∂2Gconf/∂ξ

2)|ξ=ξe > 0 at equilibrium can now be easily calculated
based on Eqs. (A6) and (A7). For the considered case of small values of ξ, we get as a
sufficiently correct estimate estimate [57]

G(2)
e

∼=
RT

ξe
. (A9)

Eqs. (A4) and (A9) are used in the present analysis for the generalization of the expressions
for the thermodynamic driving force and the surface tension in the description of crystal
nucleation.
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[84] E. Rössler, Indications for a change of diffusion mechanism in supercooled liquids,
Phys. Rev. Lett. 65, 1595-1598 (1990).

43

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2020                   doi:10.20944/preprints202008.0719.v1

https://doi.org/10.20944/preprints202008.0719.v1


[85] Ya. I. Frenkel, The Kinetic Theory of Liquids (Oxford University Press, Oxford,
1946).

[86] M. Gao and J. H. Perepezko, Separating β-relaxation from α-relaxation in fragile
metallic glasses based on ultrafast flash differential scanning calorimetry, Phys. Rev.
Materials 4, 025602/1-12 (2020).

[87] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University
Press, Oxford, 1987).

[88] G. P. Johari, Decrease in heat capacity and enthalpy of an aging glass - a conflict
with standard procedure for determining enthalpy loss and fictive temperature, Ther-
mochica Acta, in press; doi:10.1016/j.tca.2020.178715.

[89] N. Okamoto and M. Oguni, Discovery of crystal nucleation proceeding much below
the glass transition temperature, Solid State Communications 99, 53-56 (1996).
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