

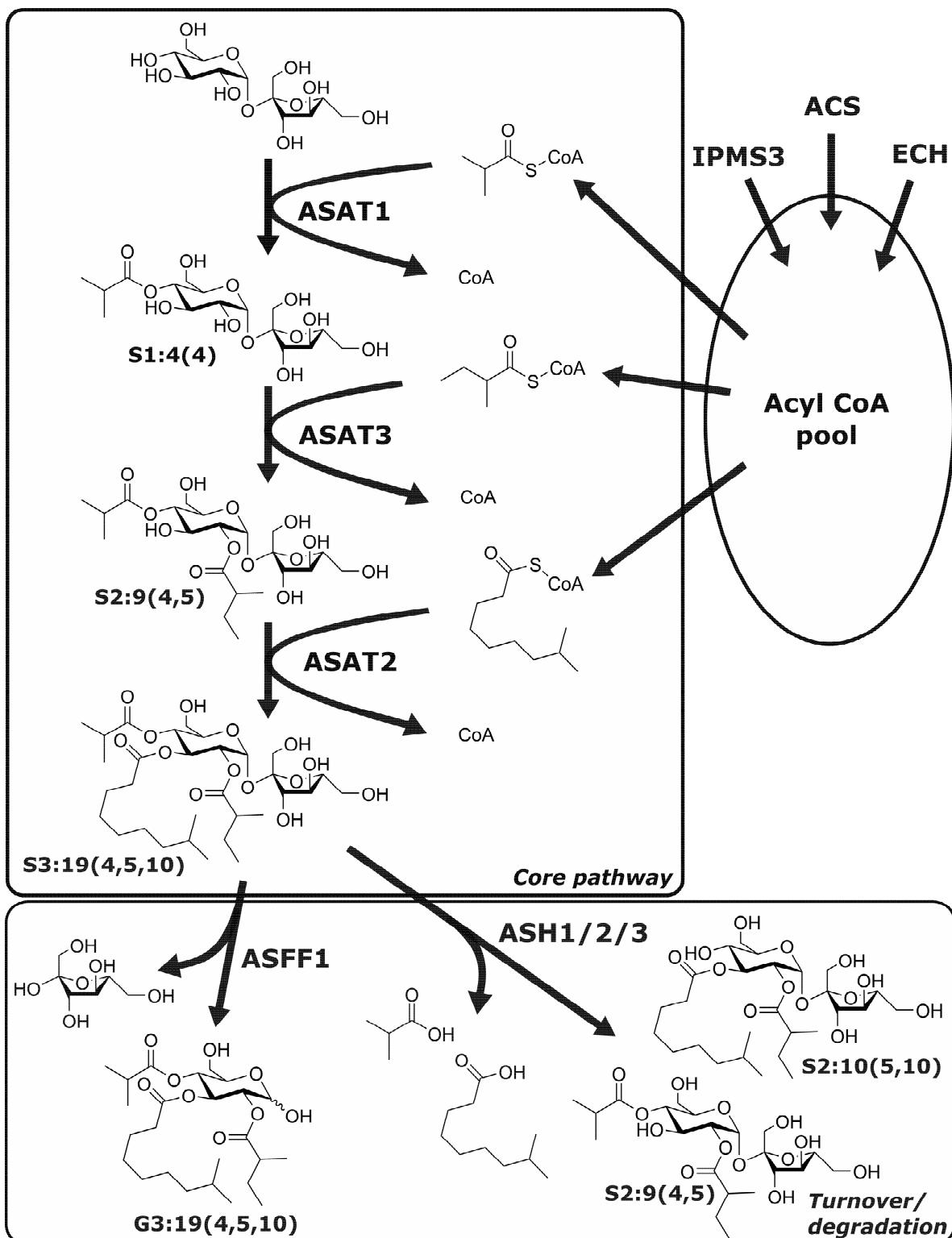
1 Article

2 

# An Integrated Analytical Approach Reveals Trichome 3 Acylsugar Metabolite Diversity in the Wild Tomato 4 *Solanum pennellii*

5 **Daniel B. Lybrand<sup>1</sup>, Thilani M. Anthony<sup>1</sup>, A. Daniel Jones<sup>1</sup> and Robert L. Last<sup>1,2,\*</sup>**6 <sup>1</sup> Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA;  
7 [dbleybrand@ucdavis.edu](mailto:dbleybrand@ucdavis.edu) (D.B.L); [thilani@chemistry.msu.edu](mailto:thilani@chemistry.msu.edu) (T.M.A); [jonesar4@msu.edu](mailto:jonesar4@msu.edu) (A.D.J)8 <sup>2</sup> Department of Plant Biology, Michigan State University, East Lansing, MI, USA9 \* Correspondence: [lastr@msu.edu](mailto:lastr@msu.edu)10 **Abstract:** Acylsugars constitute an abundant class of pest- and pathogen-protective Solanaceae  
11 family plant specialized metabolites produced in secretory glandular trichomes. *Solanum pennellii*  
12 produces copious triacylated sucrose and glucose esters, and the core biosynthetic pathway  
13 producing these compounds was previously characterized. We performed untargeted  
14 metabolomic analysis of *S. pennellii* surface metabolites from accessions spanning the species range,  
15 which indicated geographic trends in acylsugar profile and revealed two compound classes  
16 previously undescribed from this species, tetraacylglucoses and flavonoid aglycones. A  
17 combination of ultrahigh performance liquid chromatography high resolution mass spectrometry  
18 (UHPLC-HR-MS) and NMR spectroscopy identified variations in number, length, and branching  
19 pattern of acyl chains, and the proportion of sugar cores in acylsugars among accessions. The new  
20 dimensions of acylsugar variation revealed by this analysis further indicate variation in the  
21 biosynthetic and degradative pathways responsible for acylsugar accumulation. These findings  
22 provide a starting point for deeper investigation of acylsugar biosynthesis, an understanding of  
23 which can be exploited through crop breeding or metabolic engineering strategies to improve  
24 endogenous defenses of crop plants.25 **Keywords:** acylsugar; wild tomato; *Solanum pennellii*; secretory glandular trichome; specialized  
26 metabolism; intraspecific variation; metabolomics28 

## 1. Introduction

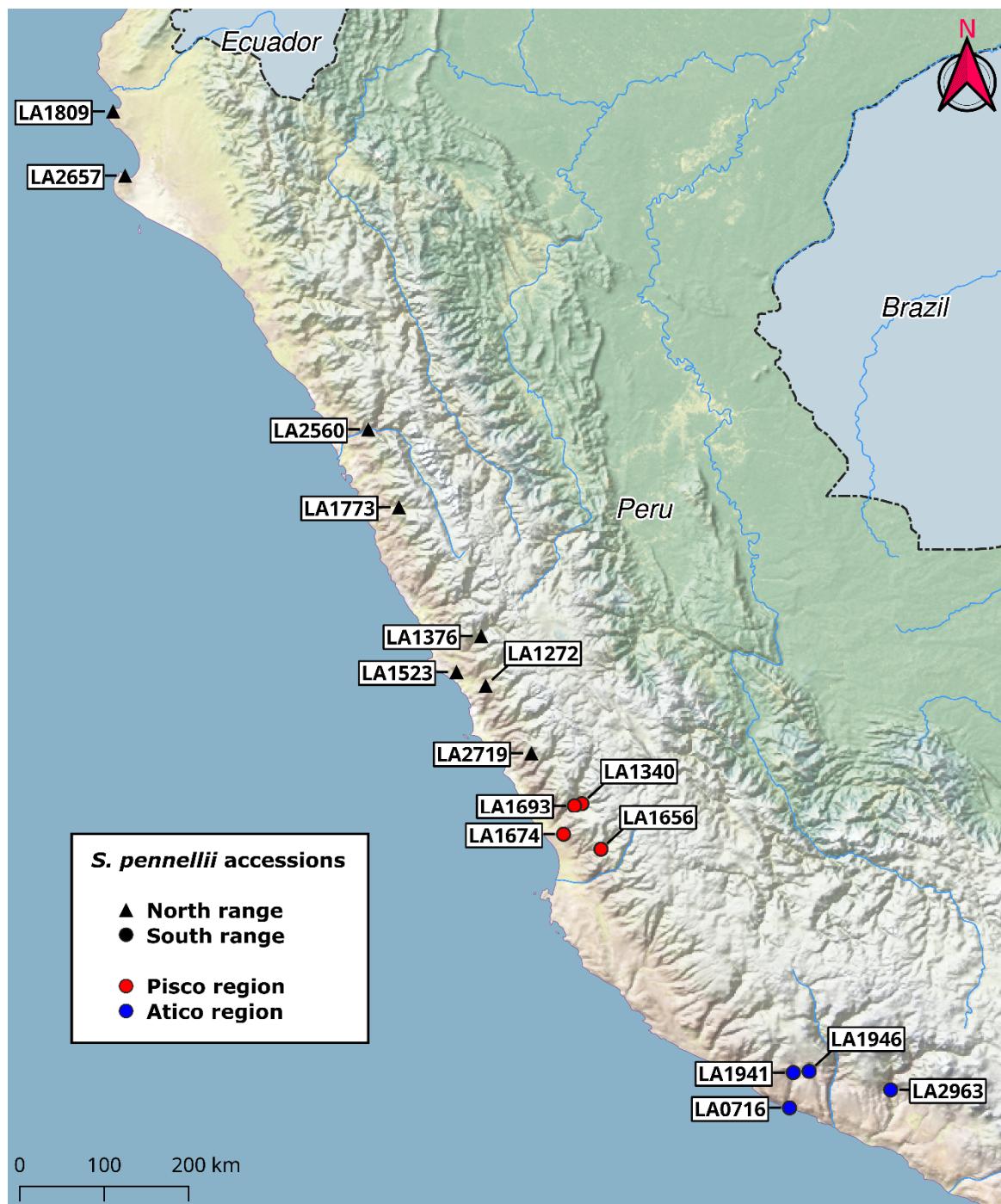

29 Plants produce thousands of lineage-specific compounds termed specialized metabolites [1].  
30 Unlike the highly conserved core pathways common to nearly all plants, specialized metabolic  
31 pathways evolve rapidly, leading to tremendous structural and functional diversity (e.g., terpenoids,  
32 flavonoids) [2–4]. These pathways and their products provide a chemical palette that mediates  
33 interactions between plants and biotic or abiotic stressors in their environments. Many of these  
34 specialized metabolites accumulate in specialized structures, including epidermal secretory  
35 glandular trichomes (SGTs) [5], which act as a first line of defense against herbivores and pathogens  
36 [6–9].37 Plants of the genus *Solanum*, which includes tomato, potato, and eggplant, possess multiple  
38 types of SGTs that produce a diverse array of specialized metabolites [10,11] including acylsugars,  
39 which accumulate to up to 20% leaf dry mass in the wild tomato *Solanum pennellii* [12]. *S. pennellii*  
40 acylsugars consist of sucrose or glucose cores esterified with fatty acid acyl groups of variable length  
41 and branching pattern (Fig. 1). These compounds defend *S. pennellii* and other *Solanum* species from  
42 insect pests including silverleaf whitefly (*Bemisia tabaci*), western flower thrips (*Frankliniella*  
43 *occidentalis*), and army beetworm (*Spodoptera exigua*) [13–15]. The antioviposition and antiherbivory  
44 properties of *S. pennellii* acylsugars prompted efforts to breed cultivated tomato (*Solanum*  
45 *lycopersicum*) varieties with *S. pennellii*-like acylsugar profiles [13,15,16]. Such efforts are aided by

46 knowledge of the genetic loci underlying acylsugar biosynthesis [15–18]. The *S. pennellii* core  
47 acylsugar biosynthetic pathway consists of three BAHD-family acylsugar acyltransferases (ASATs)  
48 that sequentially transfer acyl groups from coenzyme A (CoA) donors to a sucrose acceptor, yielding  
49 triacylsucroses (Fig. 1) [19]. As shown in Figure 1, enzymes involved in acyl CoA biosynthesis [e.g.,  
50 acyl CoA synthetase (ACS), enoyl CoA hydratase (ECH), and isopropylmalate synthase3 (IPMS3)]  
51 affect the structures of triacylsucroses by modulating the available pool of acyl CoA donors [20,21],  
52 while enzymes that selectively cleave acyl chains from intact acylsugars [acylsugar acylhydrolases  
53 (ASHs)] or hydrolyze triacylsucroses to form triacylglycoses [acylsucrose fructofuranosidase1  
54 (ASFF1)] influence steady-state acylsugar profiles and facilitate rapid acylsugar turnover [22–25].

55 Previous studies of acylsugar metabolism in *S. pennellii* focused on either the chemical  
56 substructures of acylsugars (i.e., sugar cores and acyl chains; [21,26,27]) or the enzymes that  
57 synthesize and degrade acylsugars (ACS, ASATs, ASFF1, ASHs, ECH, IPMS3) [19–23]. This work  
58 revealed that *S. pennellii* accumulates a mixture of acylglycoses and acylsucroses [26,28], collectively  
59 containing acyl chains with at least 13 unique structures [21,26,27]. Although most studies focused  
60 on the southern Peruvian *S. pennellii* LA0716 [29] acylsugars, [19,22,23,27,30–33], Shapiro and  
61 co-workers quantified abundance of acylsugar substructures from 19 accessions of *S. pennellii*  
62 distributed across the range of the species [26], while Ning and co-workers analyzed acylsugar acyl  
63 chains in 14 *S. pennellii* accessions to determine the genetic basis for differential accumulation of  
64 3-methylbutanoate and 2-methylpropanoate acyl chains in northern and southern regions of Peru  
65 [21]. Knowledge of relative acylsugar substructure abundances among related species or  
66 populations provides insight into the biosynthesis of these compounds, which facilitates use of  
67 acylsugars in crop defense and illuminates evolution of specialized metabolic pathways [15,21].

68 A complete understanding of acylsugar biosynthesis and evolution requires knowledge of  
69 specific acylsugar structures as revealed by metabolomic approaches, including untargeted liquid  
70 chromatography mass spectrometry (LC-MS) of intact molecules or structural resolution by NMR  
71 spectroscopy. For example, an early report on *S. pennellii* acylsugar metabolism in which Burke and  
72 co-workers partially characterized acylglycoses in *S. pennellii* LA0716 by NMR [28] provided  
73 information on the number of acyl chains and established esterification on the 2-, 3-, and 4-positions,  
74 which later facilitated discovery of the three ASATs constituting the core acylsugar biosynthetic  
75 pathway [19,34]. A combination of untargeted metabolomic analysis of acylsugars in *Solanum*  
76 *habrochaites* and *Petunia axillaris* [35,36] using LC-MS and NMR spectroscopy facilitated elucidation  
77 of core acylsugar pathways in these species [19,37].

78 Structural information about *in planta* intact acylsugars is essential for discovering and  
79 characterizing enzymes in the acylsugar biosynthetic pathway of a single species and for comparing  
80 pathways between species. To create a more complete picture of acylsugar diversity in *S. pennellii*,  
81 we combined untargeted ultrahigh performance liquid chromatography-high resolution mass  
82 spectrometry (UHPLC-HR-MS) and NMR spectroscopy to characterize the SGT metabolome of 16 *S.*  
83 *pennellii* accessions, revealing variation in levels of 43 specialized metabolites including 39  
84 acylsugars. We initially annotated all metabolites based on mass spectra and subsequently purified  
85 and resolved structures of selected acylsugars by NMR. Multivariate statistical analyses of these  
86 profiling data recognized specific compounds that distinguish various *S. pennellii* accessions from  
87 one another. Our analyses confirmed previous reports showing that acyl chain complement drives  
88 acylsugar variation between *S. pennellii* accessions [21,26], and revealed a positive correlation  
89 between expression of the ASFF1 gene that facilitates acylsucrose hydrolysis [22] and acylglucose  
90 accumulation. We also observed tetraacylglycoses and methyl flavonoids, two classes of compounds  
91 previously undescribed in *S. pennellii* SGTs.




92

93 **Figure 1.** The acylsugar biosynthetic pathway in *S. pennellii*. Enzymes including IPMS3, ACS, and  
 94 ECH contribute to production of the acyl CoA pool. ASATs constitute the core acylsugar pathway  
 95 and transfer acyl chains from acyl CoA molecules to a sucrose core. ASFF1 and ASHs catalyze  
 96 acylsugar turnover or degradation by hydrolyzing the fructose moiety of the sugar core and acyl  
 97 chains, respectively. Acylsugar nomenclature is as follows: the first letter indicates the sugar core  
 98 ("S" for sucrose, "G" for glucose); the number before the colon indicates the number of acyl chains;  
 99 the number after the colon indicates the sum of carbons in all acyl chains; the numbers in parentheses  
 100 indicate the number of carbons in individual acyl chains. ACS – acyl CoA synthetase; ASAT –  
 101 acylsucrose acyltransferase; ASFF – acylsucrose fructofuranosidase; ASH – acylsugar hydrolase; CoA  
 102 – coenzyme A; ECH – enoyl CoA hydratase; IPMS – isopropyl malate synthase.

103 **2. Results**104 *2.1 Experimental Design*

105 Previous studies indicated that wild tomato species including *Solanum pennellii* exhibit  
106 intraspecific variation in the amounts and types of acylsugars produced [21,26,38]. To identify  
107 geographic trends in acylsugar quantity and quality in *S. pennellii*, we extracted compounds from the  
108 surfaces of leaflets from 16 accessions spanning the 1500-km geographic range of the species (Fig. 2).  
109 Six biological replicates of each accession were sampled to capture intra-accession metabolic  
110 diversity. We included eight accessions from the northern portion of Peru (north range) and eight  
111 from the southern portion (south range) and classified two clusters of accessions within the south  
112 range by region including the southernmost Atico group and the Pisco group. A group of accessions  
113 from the Nazca region, described as *S. pennellii* var. *puberulum*, are trichome-deficient and exhibit  
114 minimal accumulation of acylsugars and transcripts of genes associated with acylsugar metabolism  
115 [26,39]; our pilot experiments confirmed the absence of detectable acylsugars in this group and these  
116 accessions were excluded from this study. All extracts were analyzed by UHPLC-HR-MS using  
117 positive-mode electrospray ionization.



**Figure 2.** Locations of *S. pennellii* accessions used in this study across the geographic range of the species in Peru. Accessions classified as belonging to the north range are denoted with black triangles, those classified as belonging to the south range with circles. South range accessions are further classified by region (red for Pisco, blue for Atico). This map was created using the open source QGIS software (<http://qgis.org>) and GPS coordinates for accession locations provided by the C.M. Rick Tomato Genetics Resource Center (TGRC; <http://tgrc.ucdavis.edu>).

## 126 2.2 Untargeted metabolomics reveals acylsugars and flavonoids in trichomes

127       Automated feature extraction and deconvolution of compound ions detected by  
128       UHPLC-HR-MS analysis of leaf dip extracts followed by filtering to remove low-quality features  
129       resulted in detection of 54 metabolic features. Based on annotation of collision induced dissociation  
130       spectra and comparisons to previously characterized trichome-localized metabolites in *Solanum* spp.  
131       [23,28,40] we categorized all 54 metabolic features as putative acylsugars or flavonoid aglycones. All  
132       annotated acylsugars possessed either a six-carbon monosaccharide core or a 12-carbon disaccharide  
133       core based on analysis of neutral losses from pseudomolecular ions and *m/z* of product ions.

134       Acylglucoses sharing acylation patterns are resolved as distinct  $\alpha$  and  $\beta$  anomers by  
135       reverse-phase chromatography but some acylglucose  $\beta$  anomers co-elute with  $\alpha$  anomers of  
136       later-eluting acylglucose isomers, precluding direct determination of the number of acylglucoses  
137       present in a sample from the number of acylsugar metabolic features detected. Examination of  
138       chromatograms and associated spectra for all features categorized as acylglucoses revealed that 32  
139       metabolic features with distinct retention times identified as acylglucoses collectively represent  $\alpha$   
140       and  $\beta$  anomers of 21 acylglucoses containing unique acyl chain complements. This consolidation  
141       reduced the 54 metabolic features assigned *in silico* to 43 metabolic features. We categorized these  
142       features as 18 triacylsucroses, 19 triacylglucoses, two tetraacylglucoses, and four flavonoids (Tables  
143       1 and 2).

144

145  
146  
147**Table 1.** Annotations of acylsugars in *S. pennellii*. RT = retention time (min);  $m/z_{\text{acc}}$  = accurate  $[\text{M}+\text{NH}_4]^+$  mass measured;  $m/z_{\text{ex}}$  = exact mass calculated from formula;  $\Delta m$  (ppm) = parts per million error between  $m/z_{\text{ex}}$  and  $m/z_{\text{acc}}$ ; fragment  $m/z$  = ions used for acyl chain determinations.

| Name                   | RT    | Formula                                   | $m/z_{\text{acc}}$ | $m/z_{\text{ex}}$ | $\Delta m$ (ppm) | Fragment $m/z$                         |
|------------------------|-------|-------------------------------------------|--------------------|-------------------|------------------|----------------------------------------|
| <b>Triacylsucroses</b> |       |                                           |                    |                   |                  |                                        |
| S3:12(4,4,4)           | 2.21  | $\text{C}_{24}\text{H}_{40}\text{O}_{14}$ | 570.2778           | 570.2756          | 3.9              | 373.1872, 285.1326, 197.0809, 127.0395 |
| S3:13(4,4,5)           | 2.34  | $\text{C}_{25}\text{H}_{42}\text{O}_{14}$ | 584.2926           | 584.2913          | 2.2              | 387.2010, 299.1507, 197.0809, 127.0395 |
| S3:14(4,5,5)           | 2.59  | $\text{C}_{26}\text{H}_{44}\text{O}_{14}$ | 598.3075           | 598.3069          | 1.0              | 401.2178, 313.1668, 211.0951, 127.0396 |
| S3:15(5,5,5)           | 3.00  | $\text{C}_{27}\text{H}_{46}\text{O}_{14}$ | 612.3229           | 612.3226          | 0.5              | 415.2348, 313.1661, 211.0974, 127.0395 |
| S3:16(5,5,6)           | 3.44  | $\text{C}_{28}\text{H}_{48}\text{O}_{14}$ | 626.3392           | 626.3382          | 1.6              | 429.2489, 327.1810, 211.0946, 127.0373 |
| S3:16(4,4,8)           | 3.67  | $\text{C}_{28}\text{H}_{48}\text{O}_{14}$ | 626.3387           | 626.3382          | 0.8              | 429.2489, 285.1360, 197.0809, 127.0395 |
| S3:17(4,5,8)           | 4.23  | $\text{C}_{29}\text{H}_{50}\text{O}_{14}$ | 640.3543           | 640.3539          | 0.6              | 443.2710, 299.1541, 211.0974, 127.0395 |
| S3:17(4,4,9)           | 4.47  | $\text{C}_{29}\text{H}_{50}\text{O}_{14}$ | 640.3536           | 640.3539          | -0.5             | 443.2646, 285.1341, 197.0773, 127.0396 |
| S3:18(4,4,10)-1        | 5.45  | $\text{C}_{30}\text{H}_{52}\text{O}_{14}$ | 654.3699           | 654.3695          | 0.6              | 457.2864, 285.1360, 197.0837, 127.0395 |
| S3:18(4,4,10)-2        | 5.71  | $\text{C}_{30}\text{H}_{52}\text{O}_{14}$ | 654.3699           | 654.3695          | 0.6              | 457.2864, 285.1360, 197.0837, 127.0395 |
| S3:19(4,5,10)-1        | 6.24  | $\text{C}_{31}\text{H}_{54}\text{O}_{14}$ | 668.3856           | 668.3852          | 0.6              | 471.3013, 299.1507, 211.0974, 127.0395 |
| S3:19(4,5,10)-2        | 6.52  | $\text{C}_{31}\text{H}_{54}\text{O}_{14}$ | 668.3855           | 668.3852          | 0.5              | 471.3013, 299.1507, 211.1003, 127.0395 |
| S3:20(5,5,10)          | 7.57  | $\text{C}_{32}\text{H}_{56}\text{O}_{14}$ | 682.4011           | 682.4008          | 0.4              | 485.3103, 313.1661, 211.0974, 127.0395 |
| S3:20(4,4,12)          | 8.20  | $\text{C}_{32}\text{H}_{56}\text{O}_{14}$ | 682.4009           | 682.4008          | 0.2              | 485.3146, 285.1360, 197.0837, 127.0395 |
| S3:21(5,5,11)          | 8.56  | $\text{C}_{33}\text{H}_{58}\text{O}_{14}$ | 696.4166           | 696.4165          | 0.1              | 499.3259, 313.1661, 211.0974, 127.0395 |
| S3:21(4,5,12)          | 9.14  | $\text{C}_{33}\text{H}_{58}\text{O}_{14}$ | 696.4161           | 696.4165          | -0.6             | 499.3259, 299.1472, 211.0974, 127.0395 |
| S3:22(5,5,12)          | 10.26 | $\text{C}_{34}\text{H}_{60}\text{O}_{14}$ | 710.4319           | 710.4321          | -0.3             | 513.3442, 313.1661, 211.0974, 127.0395 |

148

149

150

**Table 1.** (cont'd)

| Name                               | RT              | Formula                                         | <i>m/z</i> <sub>acc</sub> | <i>m/z</i> <sub>ex</sub> | Δ <i>m</i><br>(ppm) | Fragment <i>m/z</i>                       |
|------------------------------------|-----------------|-------------------------------------------------|---------------------------|--------------------------|---------------------|-------------------------------------------|
| <b>Triacylsucroses</b><br>(cont'd) |                 |                                                 |                           |                          |                     |                                           |
| S3:23(5,6,12)                      | 11.24           | C <sub>35</sub> H <sub>62</sub> O <sub>14</sub> | 724.4471                  | 724.4478                 | -1.0                | 527.3616, 327.1810,<br>211.0946, 127.0373 |
| <b>Triacylglucoses</b>             |                 |                                                 |                           |                          |                     |                                           |
| G3:12(4,4,4)                       | 2.76;<br>2.84   | C <sub>18</sub> H <sub>30</sub> O <sub>9</sub>  | 408.2235                  | 408.2228                 | 1.7                 | 373.1872, 285.1326,<br>197.0809, 127.0395 |
| G3:13(4,4,5)                       | 3.12;<br>3.24   | C <sub>19</sub> H <sub>32</sub> O <sub>9</sub>  | 422.2392                  | 422.2385                 | 1.7                 | 387.2014, 299.1501,<br>197.0801, 127.0396 |
| G3:14(4,5,5)                       | 3.70;<br>3.83   | C <sub>20</sub> H <sub>34</sub> O <sub>9</sub>  | 436.2547                  | 436.2541                 | 1.4                 | 401.2178, 299.1466,<br>211.0951, 127.0374 |
| G3:15(5,5,5)                       | 4.42;<br>4.58   | C <sub>21</sub> H <sub>36</sub> O <sub>9</sub>  | 450.2705                  | 450.2698                 | 1.6                 | 415.2308, 313.1626,<br>211.0974, 127.0395 |
| G3:16(5,5,6)                       | 5.23;<br>5.41   | C <sub>22</sub> H <sub>38</sub> O <sub>9</sub>  | 464.2859                  | 464.2854                 | 1.1                 | 429.2489, 327.1810,<br>211.0946, 127.0395 |
| G3:16(4,4,8)-1                     | 5.56;<br>5.80   | C <sub>22</sub> H <sub>38</sub> O <sub>9</sub>  | 464.2861                  | 464.2854                 | 1.5                 | 429.2529, 285.1360,<br>197.0809, 127.0395 |
| G3:16(4,4,8)-2                     | 5.80;<br>6.04   | C <sub>22</sub> H <sub>38</sub> O <sub>9</sub>  | 464.2857                  | 464.2854                 | 0.7                 | 429.2529, 285.1360,<br>197.0809, 127.0395 |
| G3:17(4,5,8)-1                     | 6.46;<br>6.72   | C <sub>23</sub> H <sub>40</sub> O <sub>9</sub>  | 478.3011                  | 478.3011                 | 0.0                 | 443.2628, 299.1472,<br>211.0946, 127.0395 |
| G3:17(4,5,8)-2                     | 6.71;<br>6.99   | C <sub>23</sub> H <sub>40</sub> O <sub>9</sub>  | 478.3008                  | 478.3011                 | -0.6                | 443.2628, 299.1472,<br>197.0781, 127.0373 |
| G3:18(4,4,10)-1                    | 8.03;<br>8.33   | C <sub>24</sub> H <sub>42</sub> O <sub>9</sub>  | 492.3168                  | 492.3167                 | 0.2                 | 457.2779, 285.1326,<br>197.0809, 127.0395 |
| G3:18(4,4,10)-2                    | 8.33;<br>8.64   | C <sub>24</sub> H <sub>42</sub> O <sub>9</sub>  | 492.3170                  | 492.3167                 | 0.6                 | 457.2779, 285.1326,<br>197.0809, 127.0395 |
| G3:19(4,5,10)-1                    | 9.05;<br>9.34   | C <sub>25</sub> H <sub>44</sub> O <sub>9</sub>  | 506.3328                  | 506.3324                 | 0.8                 | 471.2970, 299.1472,<br>211.0974, 127.0395 |
| G3:19(4,5,10)-2                    | 9.34;<br>9.66   | C <sub>25</sub> H <sub>44</sub> O <sub>9</sub>  | 506.3328                  | 506.3324                 | 0.8                 | 471.2970, 299.1507,<br>211.0946, 127.0395 |
| G3:20(5,5,10)                      | 10.47;<br>10.72 | C <sub>26</sub> H <sub>46</sub> O <sub>9</sub>  | 520.3486                  | 520.3480                 | 1.2                 | 485.3146, 313.1661,<br>211.0974, 127.0395 |
| G3:20(4,4,12)                      | 11.10;<br>11.42 | C <sub>26</sub> H <sub>46</sub> O <sub>9</sub>  | 520.3483                  | 520.3480                 | 0.6                 | 485.3103, 285.1326,<br>197.0809, 127.0395 |
| G3:21(5,5,11)                      | 11.47;<br>11.75 | C <sub>27</sub> H <sub>48</sub> O <sub>9</sub>  | 534.3637                  | 534.3637                 | 0.0                 | 499.3215, 313.1626,<br>211.0974, 127.0373 |
| G3:21(4,5,12)                      | 12.10;<br>12.40 | C <sub>27</sub> H <sub>48</sub> O <sub>9</sub>  | 534.3636                  | 534.3637                 | -0.2                | 499.3290, 299.1507,<br>211.0974, 127.0395 |

151

152

153

**Table 1.** (cont'd)

| Name                            | RT              | Formula                                         | <i>m/z</i> <sub>acc</sub> | <i>m/z</i> <sub>ex</sub> | Δm (ppm) | Fragment <i>m/z</i>                                    |
|---------------------------------|-----------------|-------------------------------------------------|---------------------------|--------------------------|----------|--------------------------------------------------------|
| <b>Triacylglycoses</b> (cont'd) |                 |                                                 |                           |                          |          |                                                        |
| G3:22(5,5,12)                   | 13.10;<br>13.36 | C <sub>28</sub> H <sub>50</sub> O <sub>9</sub>  | 548.3794                  | 548.3793                 | 0.2      | 513.3442, 313.1661,<br>211.0974, 127.0395              |
| G3:23(5,6,12)                   | 14.02;<br>14.29 | C <sub>29</sub> H <sub>52</sub> O <sub>9</sub>  | 562.3938                  | 562.3950                 | -2.1     | 527.3471, 327.1848,<br>211.0960, 127.0372              |
| <b>Tetraacylglycoses</b>        |                 |                                                 |                           |                          |          |                                                        |
| G4:14(2,4,4,4)                  | 3.54;<br>3.79   | C <sub>20</sub> H <sub>32</sub> O <sub>10</sub> | 450.2343                  | 450.2334                 | 2.0      | 415.1946, 327.1417,<br>239.0891, 197.0809,<br>127.0373 |
| G4:15(2,4,4,5)                  | 4.10;<br>4.45   | C <sub>21</sub> H <sub>34</sub> O <sub>10</sub> | 464.2502                  | 464.2491                 | 2.4      | 429.2162, 341.1562,<br>239.0922, 197.0837,<br>127.0395 |

154

155  
156  
157  
158**Table 2.** Annotations of flavonoids in *S. pennellii*. RT = retention time (min); *m/z*<sub>acc</sub> = accurate [M+H]<sup>+</sup> mass measured; *m/z*<sub>ex</sub> = exact mass calculated from formula; Δm (ppm) = parts per million error between *m/z*<sub>ex</sub> and *m/z*<sub>acc</sub>; core = putative flavonol core based on molecular formula; # Me = number of methyl groups based on molecular formula and mass spectrum (Appendix Fig. S2).

| Name               | RT   | Formula                                        | <i>m/z</i> <sub>acc</sub> | <i>m/z</i> <sub>ex</sub> | Δm (ppm) | Core       | # Me |
|--------------------|------|------------------------------------------------|---------------------------|--------------------------|----------|------------|------|
| <b>Flavonoid A</b> | 3.04 | C <sub>17</sub> H <sub>14</sub> O <sub>6</sub> | 315.0869                  | 315.0863                 | 1.9      | kaempferol | 2    |
| <b>Flavonoid C</b> | 3.17 | C <sub>18</sub> H <sub>16</sub> O <sub>7</sub> | 345.0980                  | 345.0969                 | 3.2      | quercetin  | 3    |
| <b>Flavonoid D</b> | 4.00 | C <sub>19</sub> H <sub>18</sub> O <sub>7</sub> | 359.1137                  | 359.1125                 | 3.3      | quercetin  | 4    |
| <b>Flavonoid B</b> | 4.90 | C <sub>18</sub> H <sub>16</sub> O <sub>6</sub> | 329.1025                  | 329.1020                 | 1.5      | kaempferol | 3    |

159

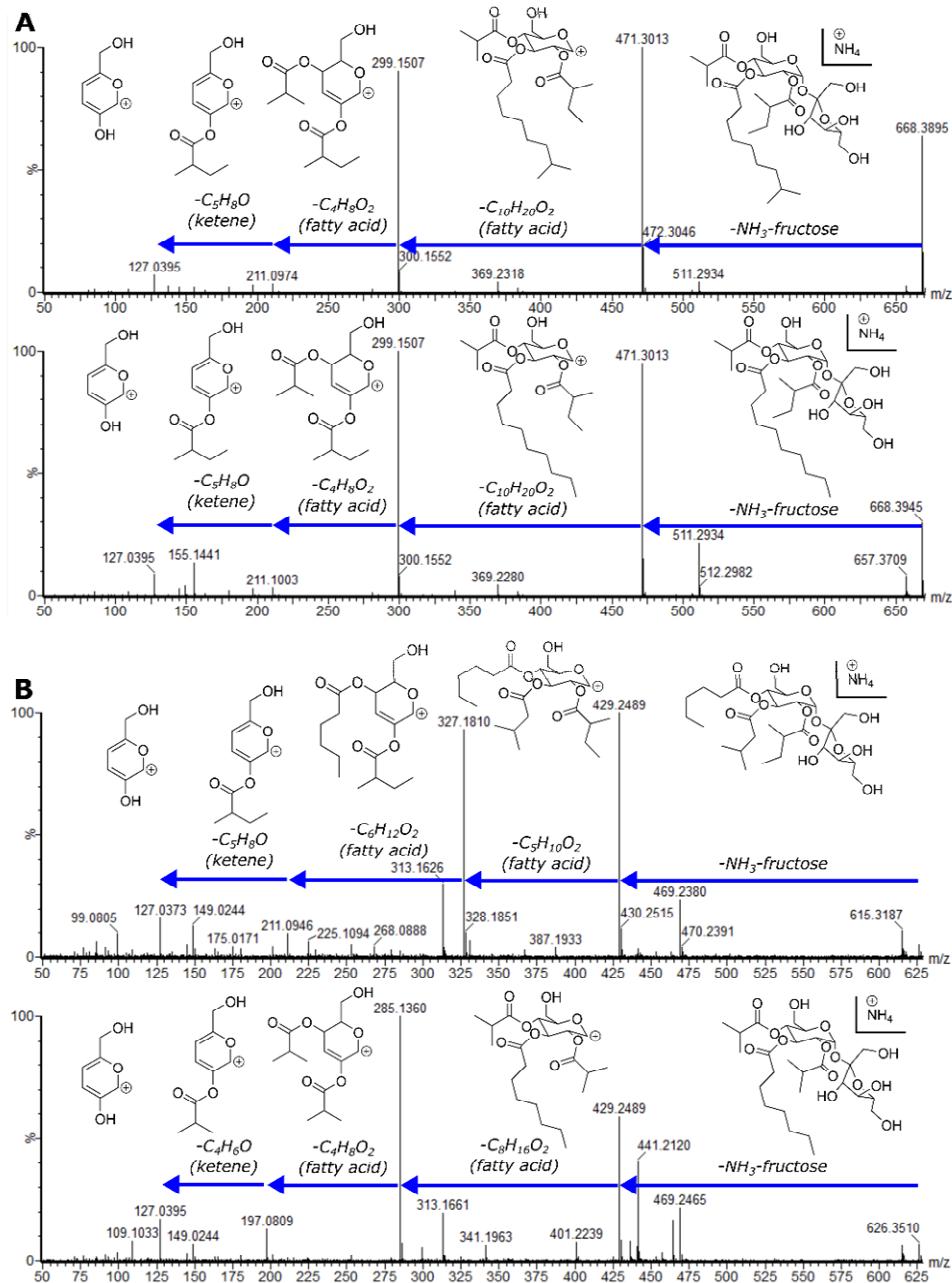
160 2.3 Acylsugar core composition varies across the *S. pennellii* geographic range161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171

Absolute quantification of total acylsucroses and acylglucoses in 16 accessions of *S. pennellii* revealed variation in total acylsugar accumulation (from 133 μmol/g dry weight (DW) in LA2657 to 340 μmol/g DW in LA2560) and relative abundance of acylglucoses and acylsucroses (from 42% acylglucoses in LA2963 to 95% acylglucoses in LA0716) (Table 3; Fig. S1A,B). While we found no discernable geographic trends in total acylsugar accumulation (Table 3; Fig. S1A), higher relative abundance of acylglucoses was observed in southern accessions compared with northern accessions. In the northern extent of the range, acylglucose composition varied from 56% (LA2657) to 70% (LA2719), while in the southern span, values ranged from 77% (LA1693) to 95% (LA0716) acylglucose. The south accession LA2963 is a notable exception to this trend, showing a lower acylglucose composition (42%) than any other accession (Table 3; Fig. S1B).

172  
173  
174  
175  
176

**Table 3.** Acylsugar accumulation and percent acylglucose in accessions of *S. pennellii* as determined by UHPLC-MS-MS. Values are presented as mean  $\pm$  SD ( $n = 6$ ). Results of analysis of variance and Tukey's mean-separation test are indicated as letters. Accessions that do not have at least one letter in common are significantly different from one another ( $p < 0.05$ ). The range and region of each accession within Peru is also indicated.

| Accession | Total acylsugars ( $\mu\text{mol/g DW}$ ) | Tukey's MST | % acylglucose | Tukey's MST | Range | Region |
|-----------|-------------------------------------------|-------------|---------------|-------------|-------|--------|
| LA1809    | 136 $\pm$ 27                              | B           | 69 $\pm$ 4    | CDE         | North |        |
| LA2657    | 133 $\pm$ 28                              | B           | 56 $\pm$ 6    | EF          | North |        |
| LA2560    | 340 $\pm$ 64                              | A           | 65 $\pm$ 6    | CDE         | North |        |
| LA1773    | 237 $\pm$ 98                              | AB          | 66 $\pm$ 2    | CDE         | North |        |
| LA1376    | 261 $\pm$ 105                             | AB          | 70 $\pm$ 7    | CDE         | North |        |
| LA1523    | 158 $\pm$ 68                              | B           | 65 $\pm$ 8    | CDE         | North |        |
| LA1272    | 163 $\pm$ 109                             | B           | 58 $\pm$ 4    | DEF         | North |        |
| LA2719    | 218 $\pm$ 44                              | AB          | 70 $\pm$ 3    | BCDE        | North |        |
| LA1340    | 166 $\pm$ 39                              | B           | 80 $\pm$ 10   | ABC         | South | Pisco  |
| LA1693    | 193 $\pm$ 88                              | AB          | 77 $\pm$ 7    | ABCD        | South | Pisco  |
| LA1674    | 248 $\pm$ 83                              | AB          | 90 $\pm$ 4    | A           | South | Pisco  |
| LA1656    | 269 $\pm$ 54                              | AB          | 90 $\pm$ 4    | AB          | South | Pisco  |
| LA1946    | 257 $\pm$ 94                              | AB          | 82 $\pm$ 20   | ABC         | South | Atico  |
| LA1941    | 244 $\pm$ 66                              | AB          | 95 $\pm$ 2    | A           | South | Atico  |
| LA2963    | 183 $\pm$ 38                              | B           | 42 $\pm$ 6    | F           | South | Atico  |
| LA0716    | 238 $\pm$ 75                              | AB          | 95 $\pm$ 2    | A           | South | Atico  |


177

#### 178 2.4 Variable acyl chain and sugar composition yield acylsugar diversity

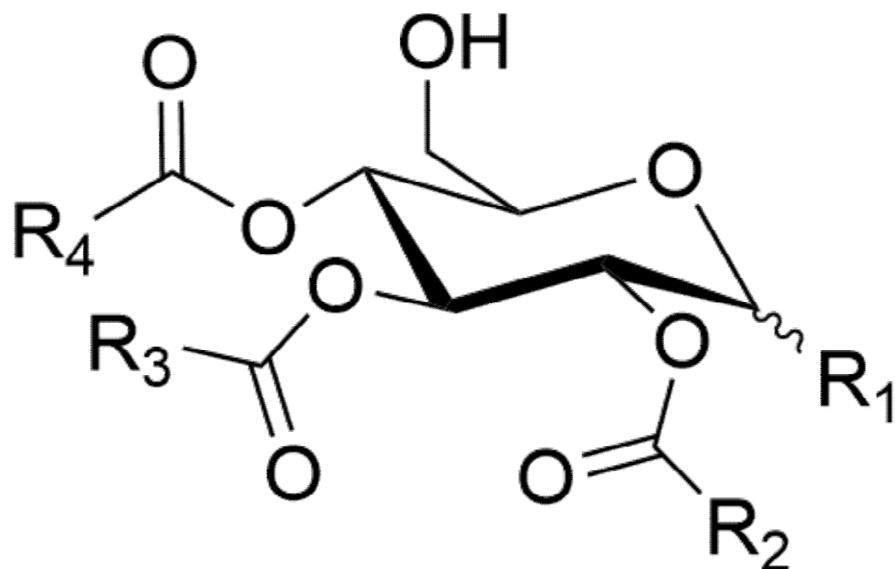
179 Annotation of the 39 acylsugars present in our dataset revealed 26 unique molecular formulas,  
180 including multiple structural isomers (Table 1). As no alternative sugar cores other than glucose and  
181 sucrose have been reported from *S. pennellii*, this isomerism is likely driven by variation in acyl  
182 chains or positions of specific acylations. Six pairs of structural isomers had indistinguishable mass  
183 spectra (Fig. 3A; Table 1). This suggests two possible non-mutually exclusive types of acylsugar  
184 structural isomerism: acylsugars with similar complements of acyl chains but differing in acyl chain  
185 positions (positional isomers), and acylsugars bearing acyl chains with identical chemical formulas  
186 but different branching patterns (acyl chain structural isomers). The latter hypothesis is supported  
187 by previous reports of unbranched, *iso*-branched, and *anteiso*-branched acyl chains in *S. pennellii*  
188 acylsugars [18,21,26]. Additional structural isomers differ in the number of carbons present in  
189 individual constituent acyl chains (Fig. 3B; Table 1), while maintaining constant the total number of  
190 acyl carbons. The presence of two tetraacylglycosides in the dataset, G4:14(2,4,4,4) and G4:15(2,4,4,5),  
191 also indicates variation in the number of acylsugar acylations. In contrast, neither mono- nor  
192 di-acylated sugars were observed, although these are intermediates in tri- and tetraacylated sugar  
193 biosynthesis [19].

194 All but one of the annotated triacylsucroses [S3:17(4,4,9)] in our dataset show patterns of acyl  
195 group neutral losses in their mass spectra that mirror those observed in at least one triacylglycoside  
196 (Table 1). We hypothesized that pairs of acylsucroses and acylglucosides with similar neutral mass  
197 losses possessed identical acyl chain complements, consistent with the current model of *S. pennellii*  
198 acylsugar biosynthesis in which cleavage of acylsucrose glycosidic bonds by ASFF1 removes the  
199  $\beta$ -fructofuranose rings to yield acylglucosides [22]. These observations indicate that variation in the  
200 identity of acyl chains, number of acyl chains, and identity of sugar core all contribute to the  
201 acylsugar diversity in *S. pennellii*. While the presence of multiple acylsugar structural isomers with  
202 identical mass spectra implies isomeric acyl chains, and the similarity in neutral losses between

203 acylsucroses and acylglucoses suggests identical chain elemental composition but not necessarily  
 204 topology, the mass spectrometry techniques applied could not establish key structural features,  
 205 leading us to resolve their structures using NMR.



206


207 **Figure 3.** CID mass spectra of acylsugar structural isomers. (A) Mass spectra of S3:19(4,5,10)-1 (top)  
 208 and S3:19(4,5,10)-2 (bottom). Structures of both compounds were resolved by NMR (Fig. 4). (B) Mass  
 209 spectra of S3:16(5,5,6) (top) and S3:16(4,4,8) (bottom). Structures of these compounds were not  
 210 resolved by NMR, and the specific branching patterns and positions of acyl chains are unknown.

## 211 2.5 NMR spectroscopy resolves structural relationships between acylsugars

212 We selected 10 acylsugars for purification and structural resolution by NMR, including five  
 213 triacylsucroses (S3:12(4,4,4), S3:18(4,4,10)-1, S3:18(4,4,10)-2, S3:19(4,5,10)-1, and S3:19(4,5,10)-2) and  
 214 five triacylglucoses (G3:12(4,4,4), G3:18(4,4,10)-1, G3:18(4,4,10)-2, G3:19(4,5,10)-1, and  
 215 G3:19(4,5,10)-2) (Table 1; Fig. 4; See Tables S6- S15, Figs. S3-62 for NMR chemical shifts and spectra).  
 216 NMR spectroscopy confirmed that all examined disaccharide-containing acylsugars possess a  
 217 sucrose core while all monosaccharide acylsugars are based on glucose, consistent with previous

218 analyses of *S. pennellii* acylsugars [23,26,28]. NMR analysis further revealed that all are acylated at  
 219 the 2-, 3-, and 4- hydroxyls of the pyranose ring, also consistent with previous reports [23,28]. The  
 220 structures of two compounds, G3:12(4,4,4) and S3:19(4,5,10)-1, matched two previously published  
 221 acylsugar structures [23,28].

222 We tested the hypotheses that acylsugar isomers with indistinguishable mass spectra possess  
 223 either identical complements of acyl chains attached to different positions of the sugar core or  
 224 isomeric acyl chains with different branching patterns. The structures of four pairs of isomers were  
 225 compared, including two pairs each of acylsucrose and acylglucose isomers (S3:18(4,4,10)-1/2,  
 226 S3:19(4,5,10)-1/2, G3:18(4,4,10)-1/2, G3:19(4,5,10)-1/2). In each case, both isomers had identical  
 227 configurations of acyl chains at the 2- and 4- positions. However, for all four isomeric pairs, we  
 228 observed an *iso*-branched 10-carbon acyl chain ( $R_3 = (Me)_2CH(CH_2)_6$ ) in the earlier-eluting isomer  
 229 and an unbranched 10-carbon acyl chain ( $R_3 = Me(CH_2)_8$ ) in the later-eluting isomer (Fig. 4). This  
 230 demonstrates that acylsugar diversity is influenced by differences in acyl chain branching patterns  
 231 as well as variation in the molecular formulas of constituent acyl chains. We also compared the  
 232 structures of acylsucroses and acylglucoses with similar neutral loss patterns. The acylation pattern  
 233 of each of the five purified acylsucroses was identical to that of its analogous purified acylglucose  
 234 (e.g., S3:12(4,4,4) and G3:12(4,4,4); S3:19(4,5,10)-1 and G3:19(4,5,10)-1; Fig. 4). This is consistent with  
 235 the hypothesis that these acylsucroses are biosynthetic precursors of the analogous acylglucoses.



**S3:12(4,4,4)**  $R_1 = Fru; R_2 = R_3 = R_4 = Me_2CH$

**G3:12(4,4,4)**  $R_1 = OH; R_2 = R_3 = R_4 = Me_2CH$

**S3:18(4,4,10)-1**  $R_1 = Fru; R_2 = R_4 = Me_2CH; R_3 = Me_2CH(CH_2)_6$

**G3:18(4,4,10)-1**  $R_1 = OH; R_2 = R_4 = Me_2CH; R_3 = Me_2CH(CH_2)_6$

**S3:18(4,4,10)-2**  $R_1 = Fru; R_2 = R_4 = Me_2CH; R_3 = Me(CH_2)_8$

**G3:18(4,4,10)-2**  $R_1 = OH; R_2 = R_4 = Me_2CH; R_3 = Me(CH_2)_8$

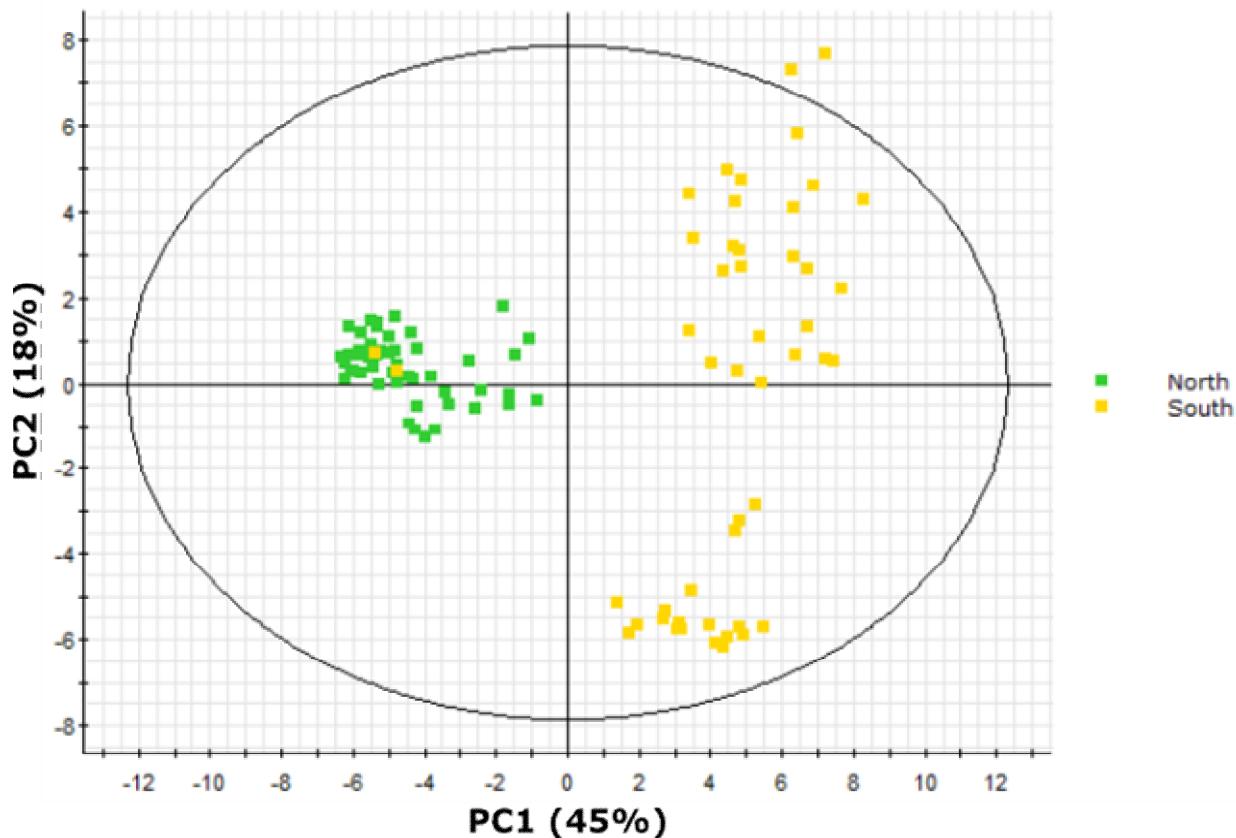
**S3:19(4,5,10)-1**  $R_1 = Fru; R_2 = MeCH_2MeCH; R_3 = Me_2CH(CH_2)_6; R_4 = Me_2CH$

**G3:19(4,5,10)-1**  $R_1 = OH; R_2 = MeCH_2MeCH; R_3 = Me_2CH(CH_2)_6; R_4 = Me_2CH$

**S3:19(4,5,10)-2**  $R_1 = Fru; R_2 = MeCH_2MeCH; R_3 = Me(CH_2)_8; R_4 = Me_2CH$

236 **G3:19(4,5,10)-2**  $R_1 = OH; R_2 = MeCH_2MeCH; R_3 = Me(CH_2)_8; R_4 = Me_2CH$

237        **Figure 4.** NMR-resolved structures of acylsugars purified from *S. pennellii*. For acylsucroses, the R<sub>1</sub>  
238        group is observed only in the  $\alpha$  configuration. For each acylglucose, two distinct anomers are  
239        observed with group R<sub>1</sub> in either the  $\alpha$  or  $\beta$  configuration. Fru =  $\beta$ -fructofuranose.


240        **2.6 Flavonoids vary by core and degree of methylation**

241        Our dataset contained four methylated flavonoid aglycones. Methyl flavonoid molecular  
242        formulas were consistent with di-, tri-, and tetramethylated derivatives of tetra- and  
243        pentahydroxylated flavonols (Table 2), resembling the methylated myricetins observed in *S.*  
244        *habrochaites* and *S. lycopersicum* [40–42]. Two kaempferol-like tetrahydroxylated flavonoids were  
245        observed possessing two and three methylations (denoted as flavonoids A and B), while two  
246        quercetin-like pentahydroxylated flavonoids were observed possessing three and four methylations  
247        (flavonoids C and D). As *S. lycopersicum* accumulates glycosylated derivatives of the flavonols  
248        kaempferol and quercetin (tetra- and pentahydroxylated, respectively) in type VI trichomes [6,42],  
249        we hypothesized that the methylated flavonoids observed in *S. pennellii* leaf dips were also  
250        kaempferol- and quercetin-derived. While analysis of flavonoid mass spectra indicated molecular  
251        formulas and presence of methyl groups, few low-mass fragment ions were present in the spectra to  
252        aid in further structural assignment previously demonstrated with myricetin derivatives (Fig. S2)  
253        [43]. Nevertheless, our results indicated flavonoid diversity in terms of both flavonol core and  
254        degree of methylation.

255        **2.7 Multivariate analysis implicates short branched acyl chains in north-south acylsugar variation**

256        We used the full dataset representing 43 specialized metabolites in 16 accessions of *S.*  
257        *pennellii* to identify metabolite-based differences between accessions across the geographic range.  
258        Due to overlapping retention times observed with some acylglucose anomers and the resulting  
259        difficulty in assigning accurate abundances to individual acylglucoses, we used the original dataset  
260        containing 54 metabolite features obtained prior to spectral interpretation instead of the dataset  
261        containing the 43 unique metabolites. Unsupervised principal component analysis (PCA) of  
262        metabolites signal abundances of all accessions revealed clear separation of accessions in the north  
263        range from those in the south range with the exception of two outliers (Fig. 5). These samples both  
264        represent individuals of south range accession LA1946 that cluster with north range samples; we  
265        hypothesize that this is due to seed contamination or sample tracking error.

266        An orthogonal partial least squares/projection to latent structures discriminant analysis  
267        (OPLS-DA) model successfully classified 100% of north range samples and 94% of south range  
268        samples (Table 4), indicating that metabolite features ranked by the model were good predictors of  
269        geographic origin (Table S16). The abundance of each metabolite feature was correlated with either  
270        the north or south range samples. Structural characteristics of the five metabolite features showing  
271        the strongest quantitative correlation with either sample class were compared. Three acylglucoses  
272        [G3:15(5,5,5), G3:16(5,5,6), G3:21(5,5,11)] and two acylsucroses [S3:16(5,5,6), S3:21(5,5,11)] showed  
273        the strongest correlation with north range accessions, while four acylglucoses (G3:12(4,4,4),  
274        G3:13(4,4,5), G3:18(4,4,10)-2, G3:19(4,5,10)-2) and one acylsucrose (S3:18(4,4,10)-2), showed the  
275        strongest correlation with south range accessions. Four acylsugars enriched in the south range  
276        (G3:12(4,4,4), G3:18(4,4,10)-2, G3:19(4,5,10)-2, S3:18(4,4,10)-2) were structurally characterized by  
277        NMR in this study (Fig. 4), while a fifth [G3:14(4,5,5)] was annotated in previous work [23]. All  
278        four-carbon acyl chains in these acylsugars are 2-methylpropanoate, while only one of the  
279        five-carbon chains in the G3:14(4,5,5) compound is 3-methylbutanoate; the other five-carbon acyl  
280        chains in G3:14(4,5,5) and G3:19(4,5,10)-2 are 2-methylbutanoate. While we cannot definitively  
281        identify the branching pattern of five-carbon acyl chains in the metabolites associated with the north  
282        range, our findings agree with previously observed trends in *S. pennellii* favoring accumulation of  
283        four-carbon 2-methylpropanoate chains in southern accessions and five-carbon 3-methylbutanoate  
284        chains in northern accessions, with five-carbon 2-methylbutanoate chains abundant across the range  
285        [21,26].

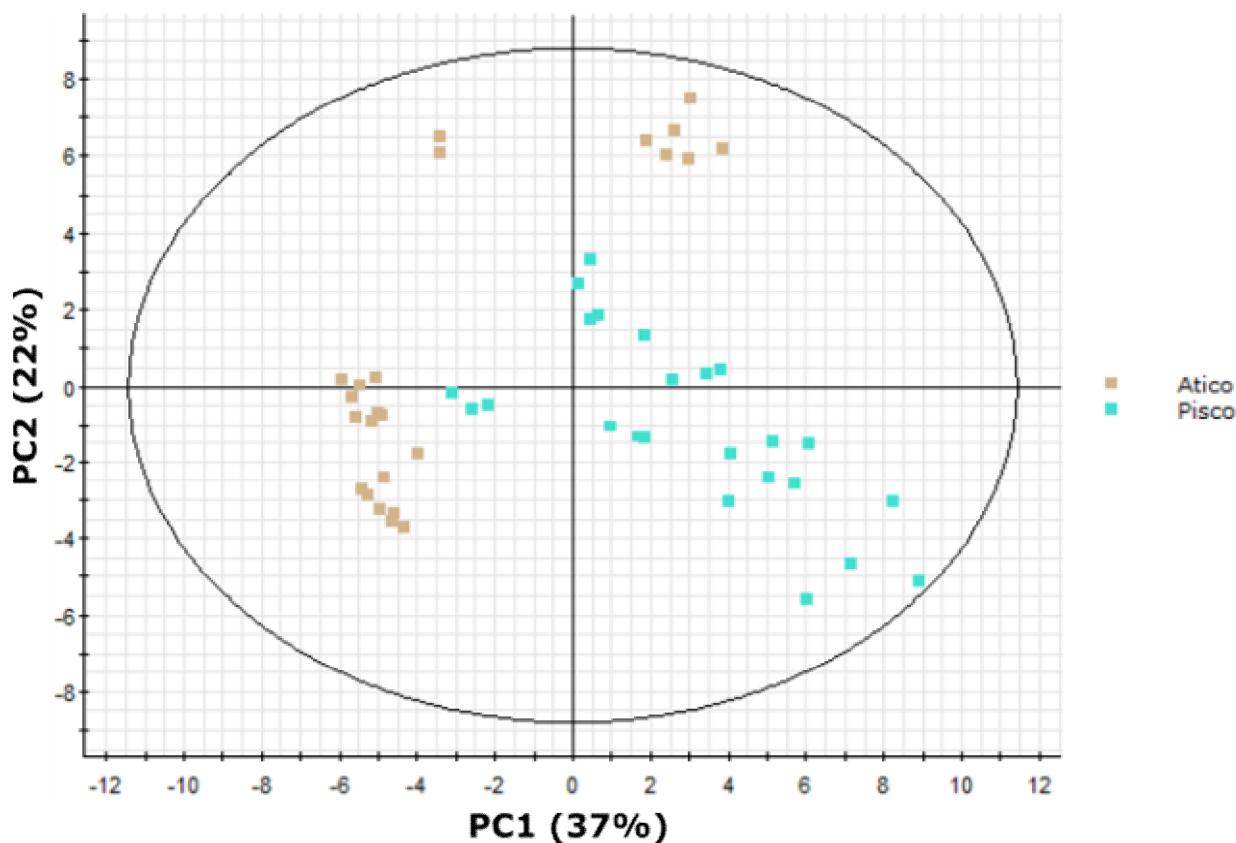


286

287 **Figure 5.** PCA scores plot of samples from 16 *S. pennellii* accessions from across Peru separated by  
 288 abundances of 54 metabolite features identified in trichome extracts by UHPLC-HR-MS. Samples  
 289 from the North range are indicated in green, while samples from the South range are indicated in  
 290 yellow (see Fig. 2 for details on geographic range). Principal component 1 (PC1) accounted for  
 291 approximately 45% of the variance in the dataset and drove strong separation between north and  
 292 south accessions, while PC2 accounted for 18% of the variance and associated primarily with  
 293 variation within the south range accessions.

294  
295

**Table 4.** OPLS-DA model performance. The table indicates the percentage of test samples that each model classified correctly, incorrectly, or was unable to classify.


|                              | <i>n</i> | % Correct | % Incorrect | % Unknown |
|------------------------------|----------|-----------|-------------|-----------|
| <b>Full range (N = 96)</b>   |          |           |             |           |
| North                        | 48       | 100       | 0           | 0         |
| South                        | 48       | 94        | 4           | 2         |
| <b>South range (N = 48)</b>  |          |           |             |           |
| Pisco                        | 24       | 67        | 4           | 29        |
| Atico                        | 24       | 77        | 4           | 19        |
| <b>Atico region (N = 24)</b> |          |           |             |           |
| LA0716/LA1941/LA1946         | 18       | 97        | 0           | 3         |
| LA2963                       | 6        | 100       | 0           | 0         |

296

297 2.8 Variation in medium-length acyl chains drives variation within the south range

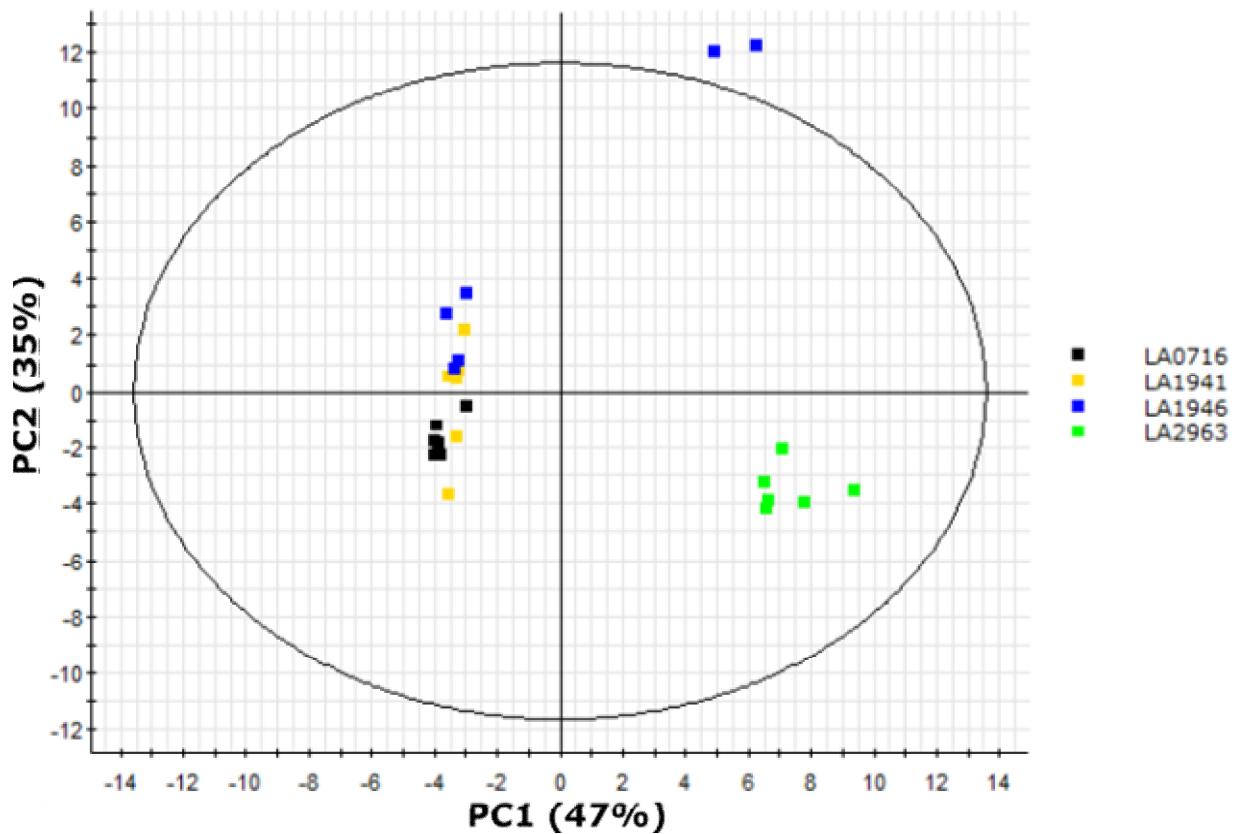
298 As our PCA also indicated substantial intragroup variation in south range samples (Fig. 5), we  
 299 performed additional multivariate analyses to distinguish profiles within south range plant extracts  
 300 (Fig. 6). These accessions form two distinct geographic clusters from the Pisco or Atico regions (Fig.

301 2). An OPLS-DA model of Pisco and Atico samples successfully classified 67% of Pisco region  
 302 samples and 77% of Atico region samples but misclassified or was unable to classify 28% of all  
 303 samples (Table 4), indicating that this model performed poorly when compared to our north/south  
 304 range OPLS-DA model. However, the model still recognized metabolites that had strong  
 305 quantitative correlation with either the Pisco or Atico region samples (Table S17). The top five  
 306 compounds demonstrating strong correlation with Pisco region samples comprised four  
 307 acylglucoses [G3:16(4,4,8)-1, G3:16(4,4,8)-2, G3:17(4,5,8)-1, and G3:17(4,5,8)-2] and one acylsucrose  
 308 [S3:17(4,4,9)], while the top five metabolites correlating with the Atico region samples consisted of  
 309 two acylglucoses [G3:20(4,4,12), G3:21(4,5,12)], two acylsucroses [S3:20(4,4,12), S3:21(4,5,12)], and  
 310 one flavonoid (flavonoid A). The medium-length acyl chains (defined here as possessing more than  
 311 five carbons) in correlative features show a sharp distinction between the two regions with four of  
 312 five acylsugars more abundant in the Pisco region accessions bearing an eight-carbon acyl chain and  
 313 all four acylsugars that are more abundant in the Atico region containing a 12-carbon acyl chain,  
 314 while four- and five-carbon acyl chains have a similar distribution between the two regions. This  
 315 suggests medium-length acyl chain variation as the key driver in separation of accessions from the  
 316 Pisco and Atico region.



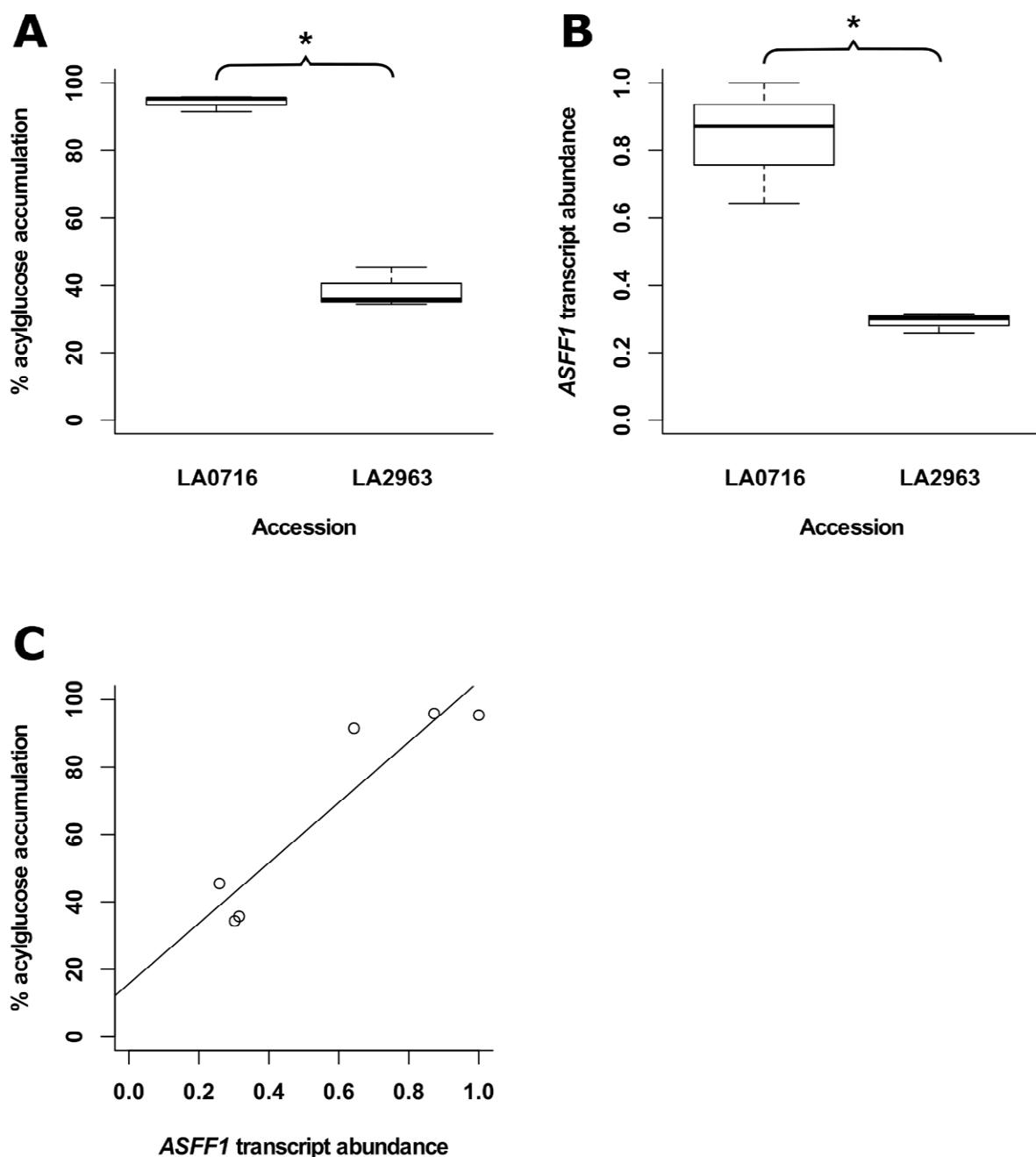
317

318 **Figure 6.** PCA scores plot of samples from eight *S. pennellii* accessions from the southern portion of  
 319 the range of the species in Peru separated by abundances of 54 metabolite features identified in  
 320 trichome extracts by UHPLC-HR-MS. Samples from the Atico region are indicated in tan, while  
 321 samples from the Pisco region are indicated in light blue (see Fig. 2 for details on regions). Separation  
 322 is observed between Atico and Pisco samples. However, Atico region samples exhibit bimodal  
 323 clustering. PC1 accounted for 47% of variance and described most of the variation between accession  
 324 LA2963 samples and other Atico region accessions, while PC2 accounted for 35% of variance and  
 325 described primarily variation within the main Atico cluster.


326

327 2.9 LA2963 segregates from other Atico region accessions due to high acylsucrose content

328 The bimodal clustering of Atico region samples revealed by PCA (Fig. 6) indicates chemical  
329 diversity among accessions that are < 150 km apart, in contrast to previously reported trends in  
330 acylsugar diversity observed between accessions separated by > 1000 km (Fig. 5; Table S.12) [21,26].  
331 We explored this diversity using multivariate analysis. PCA of the four Atico region accessions  
332 (LA0716, LA1941, LA1946, and LA2963) showed two major clusters (Fig. 7). One cluster contained  
333 all biological replicates of accessions LA0716 and LA1941 along with four samples of LA1946 [both  
334 LA1946 samples outside this cluster represent outliers that clustered with north range accessions in  
335 our north/south PCA (Fig. 5)]. The other major cluster contained all samples of accession LA2963.


336 An OPLS-DA model discriminating between LA2963 samples and all other Atico region  
337 accessions correctly classified 97% of samples from the main Atico cluster and 100% of LA2963  
338 samples (Table 4), indicating that metabolite features ranked by the model were good predictors of  
339 sample group (Table S18). Compounds that were more abundant in the main Atico cluster included  
340 four acylglucoses [G3:18(4,4,10)-1, G3:18(4,4,10)-2, G3:19(4,5,10)-1, G3:20(4,4,12)] and one flavonoid  
341 (flavonoid A) while molecules correlated with the anomalous accession LA2963 included five  
342 acylsucroses [S3:18(4,4,10)-1, S3:19(4,5,10)-1, S3:19(4,5,10)-2, S3:20(4,4,12), S3:21(4,5,12)]. This  
343 indicates relative acylsucrose and acylglucose abundance as the key driver of separation between  
344 LA2963 samples and other Atico region samples, and was consistent with our initial analysis of *S.*  
345 *pennellii* sugar core abundance, which indicated accession LA2963 as an outlier among southern  
346 accessions that possessed low acylglucose content (Table 3; Fig. S1B).

347 Two of the acylsucroses correlated with accession LA2963 (S3:18(4,4,10)-1, S3:19(4,5,10)-1) have  
348 structures consistent with precursors of two acylglucoses correlated with the main Atico cluster  
349 (G3:18(4,4,10)-1, G3:19(4,5,10)-1; described above; Fig. 4), while a third compound correlated with  
350 LA2963 [S3:20(4,4,12)] has a fragmentation pattern consistent with a possible precursor of another  
351 Atico cluster-correlated acylglucose [G3:20(4,4,12)] (Table 1). The ASFF1 enzyme hydrolyzes  
352 acylsucroses yielding acylglucoses in *S. pennellii* LA0716 [22]. We hypothesized that low ASFF1  
353 activity in plants of accession LA2963 relative to other Atico region accessions contributed to the low  
354 accumulation of acylglucoses in this accession and corresponding high accumulation of  
355 acylsucroses. To test this hypothesis, we investigated whether there is a correlation between the  
356 relative accumulation of acylglucoses and expression of the ASFF1 gene by saponification of  
357 acylsugar extracts and UHPLC-MS-MS sugar core quantification, and relative quantification of  
358 ASFF1 transcript abundance by RT-qPCR in paired leaflets from three biological replicates of *S.*  
359 *pennellii* LA0716 and LA2963 (Fig. 8). Acylglucoses constituted 94% of acylsugars in LA0716 but only  
360 38% of acylsugars in LA2963 (Fig. 8A), consistent with our previous sugar core quantification results  
361 (Table 3; Fig. S1B), while ASFF1 transcripts were 2.9-fold more abundant in LA0716 than in LA2963  
362 (Fig. 8B). Linear regression analysis indicated a positive correlation between ASFF1 transcript  
363 abundance and percentage of acylsugars accumulating as acylglucoses ( $R^2 = 0.84$ ; Fig. 8C). This  
364 correlation supports the role of the ASFF1 gene in determining acylsugar core composition in *S.*  
365 *pennellii* [22] and further suggests a role for transcriptional regulation of ASFF1 in intraspecific sugar  
366 core variation.



367

368 **Figure 7.** PCA scores plot of samples from four *S. pennellii* accessions in the Atico region of Peru  
369 separated by abundances of 54 metabolite features identified in trichome extracts by  
370 UHPLC-HR-MS. Samples from accession LA0716 are indicated in black, samples from accession  
371 LA1941 in yellow, samples from accession LA1946 in blue, and samples from accession LA2963 in  
372 green (see Fig. 2 for details of the Atico region). PC1 accounted for 47% of variance and described  
373 most of the variation between accession LA2963 samples and other Atico region accessions, while  
374 PC2 accounted for 35% of variance and described primarily variation within the main Atico cluster.



375

376 **Figure 8.** Analysis of acylglucose accumulation and *ASFF1* transcript abundance in paired leaflets of  
 377 *S. pennellii* accessions LA0716 and LA2963. (A) Percentage of total acylsugars accumulating as  
 378 acylglucoses. (B) Relative abundance of *ASFF1* transcripts. (C) Linear regression of *ASFF1* transcript  
 379 abundance and percentage of acylsugars accumulating as acylglucoses ( $R^2 = 0.84$ ). “\*”  
 380 indicates  $p < 0.05$  (analysis of variance);  $n = 3$  for both accessions.

381 **3. Discussion**

382 To capitalize on the protective properties of acylsugars, plant breeders are creating tomato lines  
 383 with altered acylsugar profiles and increased insect resistance [15–18,44,45]. This process is  
 384 facilitated by knowledge of acylsugar protective properties [13] and the genetic basis for acylsugar  
 385 biosynthesis and diversity [15–18]. Characterization of the acylsugars found in *S. pennellii* is essential  
 386 for elucidating and evaluating protective benefits of specific compounds and of pathways involved

387 in acylsugar biosynthesis and degradation. Our analysis of metabolites extracted from the surface of  
388 *S. pennellii* leaflets annotated a total of 43 specialized metabolites consisting of 18 acylsucroses, 21  
389 acylglucoses, and four flavonoids. UHPLC-MS analysis alone indicated the presence of two  
390 tetraacylglucoses (Table 1), a type of acylsugar previously unknown in *S. pennellii*, as well as four  
391 methyl flavonoids (Table 2), a class of compounds known from the related tomatoes *S. lycopersicum*  
392 and *S. habrochaites* but previously unknown in this species [6,40–43]. A combination of UHPLC-MS  
393 and NMR spectroscopy indicated both acyl chain length and branching pattern as mechanisms of  
394 acylsugar isomerism and confirmed that acylglucose structures are consistent with acylsucrose  
395 hydrolysis products (Table 1; Fig. 4, Fig. 3). Multivariate analysis of our UHPLC-MS dataset  
396 provided additional confirmation of the differential accumulation of short branched acyl chains in  
397 acylsugars from northern and southern *S. pennellii* accessions (Fig. 5; Table S16) and revealed  
398 geographic variation between smaller sub-regions within the range of the species (Fig. 6; Fig. 7).  
399 Accessions from the Pisco and Atico regions were distinguished by enrichment of eight-carbon acyl  
400 chains in the former and 12-carbon acyl chains in the latter (Table S17). Within the Atico region, the  
401 acylsugar profile of accession LA2963 differs from that of nearby accessions primarily due to low  
402 acylglucose abundance compared to other Atico region accessions (Fig. 8A). The new dimensions of  
403 acylsugar variation discovered in this work demonstrate that aspects of acylsugar biosynthesis and  
404 degradation within and beyond the core pathway await characterization.

405 Our findings indicate that additional acyltransferase activities involved in *S. pennellii*  
406 acylsugar biosynthesis remain to be identified. We annotated two previously unreported  
407 tetraacylglucoses, both containing acetyl groups (Table 1). While tetraacylated sugars with acetyl  
408 groups are common in *S. habrochaites* and *S. lycopersicum*, they are absent from published analyses of  
409 *S. pennellii* acylsugars [21,26,35]. Thus far, three ASATs involved in acylsugar biosynthesis, each  
410 performing a single acylation step, have been identified in *S. pennellii* [19]. The presence of  
411 tetraacylglucoses in this species requires a fourth acylation step, which could be performed by one of  
412 the previously described acyltransferases from the *S. pennellii* acylsugar pathway (*i.e.*, ASAT1/2/3) or  
413 by an acyltransferase not previously implicated in acylsugar biosynthesis. In *S. lycopersicum*,  
414 acetylation of triacylsucroses is performed by ASAT4 [46]. The *S. pennellii* ASAT4 locus is therefore  
415 worth investigating as a candidate acylsugar acetyltransferase in this species. Explicit searches using  
416 extracted ion chromatograms of anticipated ion masses revealed no tetraacylsucroses. These  
417 compounds may accumulate at levels below the detection threshold. Alternatively, tetraacylglucoses  
418 may not be hydrolysis products of tetraacylsucroses, but rather derived via direct acylation of  
419 triacylglucoses. Further characterization of acyltransferases is necessary to determine the origins of  
420 tetraacylated sugars in *S. pennellii*.

421 Our analysis also revealed previously unreported intraspecific differences in acylsugar acyl  
422 chain accumulation. Prior studies confirmed eight- and 12-carbon acyl chains in *S. pennellii*  
423 acylsugars [21,26], and we identified differential accumulation of acylsugars containing these acyl  
424 chains between accessions from the Pisco and Atico regions (Table S17). Differences in abundance of  
425 eight- and 12-carbon acyl chain-containing acylsugars may reflect differences in acyl CoA  
426 availability, ASAT-catalyzed incorporation of acyl chains into acylsugars, or acylsugar turnover.  
427 Interspecific variation at genetic loci encoding enoyl CoA hydratase (ECH) and acyl CoA synthetase  
428 (ACS) enzymes leads to a high proportion of 10-carbon relative to 12-carbon acyl chains in *S. pennellii*  
429 LA0716 and a high proportion of 12-carbon relative to 10-carbon acyl chains in *S. lycopersicum* M82  
430 [20]. Differences in substrate specificity of these enzymes among *S. pennellii* accessions could lead to  
431 variation in medium-length acyl CoA pools and subsequent incorporation of medium-length acyl  
432 chains into acylsugars. Alternatively, variation in ASAT affinity for acyl CoAs among accessions  
433 may explain differences in acyl chain incorporation even if similar acyl CoA pools are present across  
434 accessions. Finally, differential accumulation of eight- and 12-carbon acyl chain-containing  
435 acylsugars may reflect differences in acylsugar turnover rates between *S. pennellii* accessions. The  
436 ASH carboxylesterase enzymes facilitate acylsugar degradation in *S. lycopersicum* and *S. pennellii*  
437 primarily by removing acyl chains from the 3-position of acylsucroses and acylglucoses [23]. NMR  
438 spectra of acylsugars in *S. pennellii* consistently show medium-length R3 chains while groups R2 and  
439 R4 are exclusively short four- or five-carbon acyl chains (Fig. 4) [23], suggesting that eight- and

440 12-carbon acyl chains could be removed by ASHs. Mass spectra indicated the presence of eight- and  
441 12-carbon acyl chains in our dataset but the corresponding acylsugars were not selected for  
442 purification and structural resolution by NMR. As both straight and branched 8- and 12-carbon acyl  
443 chains have been observed in *S. pennellii* acylsugars [21,26,27], further structural characterization of  
444 these acylsugars by NMR is warranted for deeper exploration of their biosynthetic origins.

445 In addition to uncovering variation in acylsugar acyl chains, we identified variation in sugar  
446 core proportion within the Atico region. The proportion of acylglucoses in the southern accession  
447 LA2963 (42%) was less than half of that observed for nearby accessions from the Atico region  
448 (82-95%) (Table 3; Fig. S1). We tested the hypothesis that the proportion of acylsugars accumulating  
449 as acylglucoses in *S. pennellii* could be associated with levels of the ASFF1 enzyme, which hydrolyzes  
450 acylsucroses to acylglucoses in accession LA0716 [22]. A combination of UHPLC-MS-MS and  
451 RT-qPCR demonstrated that the percentage of acylsugars accumulating as acylglucoses correlated  
452 with abundance of ASFF1 transcripts in two accessions from the Atico region, LA0716 and LA2963  
453 (Fig. 8C). Combined with the observation that knockout of the ASFF1 gene in *S. pennellii* LA0716  
454 abolishes acylglucose accumulation [22], our findings suggest that low levels of ASFF1 expression  
455 lead to a low proportion of acylglucoses in *S. pennellii* LA2963. Additional work is needed to dissect  
456 the mechanism leading to differences in transcript accumulation in these southern accessions.

457 Our current understanding of acylsugar biosynthesis in *Solanum* was achieved primarily  
458 through interspecific comparison of acylsugar phenotypes and analysis of variation in the  
459 underlying genetic loci [19-22,46]. The intraspecific variations in *S. pennellii* acylsugar phenotype  
460 reported here provide a basis for further pathway analyses. The dimensions of acylsugar variation  
461 within *S. pennellii* are potentially linked to all known components of acylsugar metabolism including  
462 enzymes in auxiliary pathways that generate acylsugar precursors (e.g., IMPS3, ECH, ACS),  
463 activities of the core acylsugar biosynthetic pathway (i.e., ASATs), and enzymes that degrade or  
464 remodel acylsugars (e.g., ASHs and ASFF1). The presence of tetraacylglucoses indicates  
465 undiscovered core pathway acyltransferase activity in the form of new ASATs or broader substrate  
466 specificity of existing ASATs. Differential accumulation of eight-carbon and 12-carbon acyl  
467 chain-containing acylsugars among *S. pennellii* accessions may reflect variation in biosynthesis of  
468 medium-length acyl CoA precursors to acylsugars by enzymes like ACS and ECH, variation in ASAT  
469 affinity for medium-length acyl CoAs in the core acylsugar pathway, or variation in ASH  
470 affinity for medium-length acyl chain-containing acylsugars during acylsugar degradation and  
471 turnover. The correlation between relative acylsugar core abundance and ASFF1 expression  
472 indicates a role for gene regulation in affecting acylsugar composition. Further investigation of  
473 acylsugar structures, biochemical characterization of enzymes in the pathway, and an  
474 understanding of genetic regulatory networks governing pathway expression will facilitate efforts to  
475 improve the endogenous defenses of Solanaceae crops with a variety of techniques ranging from  
476 marker-assisted selection to CRISPR/Cas9-mediated gene editing and synthetic biology approaches.

#### 477 4. Materials and Methods

##### 478 4.1 Plant material

479 Seeds of all *S. pennellii* accessions were obtained from the C.M. Rick Tomato Genetics Resource  
480 Center (TGRC; University of California, Davis, CA). Seeds were treated with 2.6% sodium  
481 hypochlorite for 30 min and subjected to three 5-min rinses in de-ionized water before sowing on  
482 moist Whatman grade 1 filter paper (Sigma-Aldrich, St. Louis, MO) in Petri dishes. Seeds were kept  
483 in the dark at room temperature and transplanted upon germination. Additional details of plant  
484 growth are in Table S1.

##### 485 4.2 Acylsugar extraction

486 Single leaflets from the youngest fully expanded leaves of individual *S. pennellii* plants at 16  
487 weeks post-germination were harvested and placed into pre-washed 10 x 75 mm borosilicate glass  
488 test tubes. Leaflets were collected from six individual plants of each *S. pennellii* accession, with an

489 empty test tube included as a process blank. To each tube, 1 mL of a 3:3:2 mixture of  
490 acetonitrile/isopropanol/water containing 0.1% formic acid and 0.25  $\mu$ M telmisartan internal  
491 standard was added. Tubes were vortexed for 30 s and solvent decanted into 2-mL glass  
492 autosampler vials. Equal volumes of each extract (excluding the process blank) were combined to  
493 create a pooled quality control (QC) sample. Vials were sealed with polytetrafluoroethylene  
494 (PTFE)-lined caps and stored at -20°C for later processing.

495 *4.3 Metabolomic analysis by UHPLC-MS*

496 Aliquots of *S. pennellii* acylsugar extracts, process blank, and QC sample were diluted 100-fold  
497 in 1:1 methanol/water containing 0.1% formic acid in new 2-mL autosampler vials. Five aliquots of  
498 the diluted process blank and QC samples were prepared and analyzed. Analyte samples were  
499 injected in a randomized order while process blank and QC samples were injected at regular  
500 intervals. Samples were subjected to UHPLC-MS analysis using an Acquity I-class pump coupled to  
501 a G2-XS QToF mass spectrometer (Waters Corporation, Milford, MA). Separations were performed  
502 by reverse phase (C18) chromatography using a 20 min gradient and mass spectra were acquired in  
503 continuum format from 2 to 18 min using quasi-simultaneous acquisition of low- and high-energy  
504 spectra (MS<sup>E</sup>). Additional details of the UHPLC-MS method are in Table S2.

505 *4.4 Untargeted metabolomics data processing*

506 For untargeted metabolomic analysis, data were initially processed using Progenesis QI v2.4  
507 software (Nonlinear Dynamics Ltd., Newcastle, UK). Leucine enkephalin lockmass correction (*m/z*  
508 556.2766) was applied during run importation and all runs were aligned to retention times of a bulk  
509 pool run automatically selected by the software. Peak picking was carried out on features eluting  
510 between 2.15 and 14.5 min using an automatic sensitivity level of 5 (most sensitive) without  
511 restriction on minimum chromatographic peak width. This resulted in detection of 2361 compound  
512 ions. Spectral deconvolution was carried out considering the following possible adduct ions:  
513 M+H-H<sub>2</sub>O, M+H, M+NH<sub>4</sub>, M+Na, M+K, M+C<sub>2</sub>H<sub>8</sub>N, 2M+H, 2M+NH<sub>4</sub>, 2M+Na, 2M+K, 2M+C<sub>2</sub>H<sub>8</sub>N.  
514 After deconvolution, 1559 compound ions remained.

515 To remove features from the dataset introduced by solvents, glassware, or instrumentation,  
516 several filters were applied to the 1559 compound ions remaining after deconvolution. Compounds  
517 with the highest mean abundance in process blank samples, maximum abundance less than 0.5% of  
518 the most abundant compound in the dataset, or a coefficient of variation > 20% across QC samples  
519 were excluded from the dataset. This reduced the total number of metabolic features to 54.

520 Further analysis of compound signals extracted by Progenesis QI software was executed using  
521 EZinfo v3.0.2 software (Umetrics, Umeå, Sweden). For principal component analysis (PCA), data  
522 were subjected to logarithmic transformation and scaled to unit variance ("autoscaled"). For  
523 orthogonal partial least squares/projection to latent structures discriminant analysis (OPLS-DA), no  
524 data transformation was applied, and Pareto scaling was implemented. Generation of OPLS-DA  
525 models was carried out as follows: for each model, the relevant data files were divided into three  
526 subsets, each subset containing data files representing two of six biological replicates from each  
527 accession considered by the model. The first data subset contained data files representing the first  
528 pair of biological replicates from each relevant accession in the randomized injection list, while the  
529 second and third subsets contained the second and third pairs of biological replicates, respectively.  
530 The three data subsets, each representing one-third of the relevant data, were used as training sets to  
531 generate three independent OPLS-DA models. Each model was then used to classify the remaining  
532 two-thirds of the data not used in generation of the model, representing four of six biological  
533 replicates from each accession considered by the model. All OPLS-DA model statistics reported  
534 represent averages of the three independent models.

535 For all metabolic features extracted with Progenesis QI and used in downstream analyses with  
536 EZinfo, spectra were interpreted using MassLynx v4.2 software (Waters Corporation). Accurate  
537 masses of all features in all raw data files were obtained by applying the Continuous Lockmass  
538 Correction feature of the Accurate Mass Measure module. All precursor ions (annotated as either

539 [M+NH<sub>4</sub>]<sup>+</sup> or [M+H]<sup>+</sup> adducts) were selected from the low-energy function while all fragment ions  
540 were assigned based on the high-energy function. Observed *m/z* values for precursor and product  
541 ions as well as neutral loss masses were compared to theoretical values generated using ChemDraw  
542 v19.0 software (PerkinElmer, Inc., Waltham, MA). For acylsugars, molecular formulas were  
543 determined by comparing accurate *m/z* values of [M+NH<sub>4</sub>]<sup>+</sup> pseudomolecular ions to theoretical *m/z*  
544 values of hypothetical acylsugar [M+NH<sub>4</sub>]<sup>+</sup> adducts. The molecular formulas of all acyl chain  
545 components from individual acylsugars were inferred by a similar process using ketene and fatty  
546 acid neutral losses from pseudomolecular precursor ions observed in the high-energy function.  
547 While acylium product ions representing acyl chains appear in many spectra, their occurrence is  
548 inconsistent across compounds, especially in those of low abundance. Therefore, all acyl chain  
549 assignments were made using the neutral loss data, which could be unambiguously interpreted for  
550 all spectra. For flavonoids, molecular formulas were determined by comparing accurate *m/z* values  
551 of [M+H]<sup>+</sup> pseudomolecular ions to theoretical *m/z* values of hypothetical flavonoid [M+H]<sup>+</sup> adducts.

#### 552 4.5 Acylsugar quantification

553 Acylsugars were quantified from untargeted UHPLC-MS data by integration of extracted ion  
554 chromatogram peaks using the QuanLynx module of MassLynx software (Waters Corporation). All  
555 acylsucroses and acylglucoses detected in the metabolomics dataset were quantified using a  
556 standard curve of two each of purified acylsucroses and acylglucoses [S3:12(4,4,4), S3:18(4,4,10)-1,  
557 G3:12(4,4,4), and G3:18(4,4,10)-1] of authenticated concentrations at 0.3125, 0.625, 1.25, 2.5, and 5.0  
558  $\mu$ M. Acylsugars containing fewer than 18 carbons in all acyl chains were quantified using the  
559 G3:12(4,4,4) or S3:12(4,4,4) response factor while acylsugars containing 18 or more carbons were  
560 quantified using the response factor of G3:18(4,4,10)-1 or S3:18(4,4,10)-1. All quantifications were  
561 performed using extracted ion chromatograms of the *m/z* value for the relevant M+NH<sub>4</sub><sup>+</sup> adduct  
562 using a mass window of *m/z* 0.05. When multiple acylsugar isomers (including anomers) were  
563 present, all acylsugars of a given molecular formula were quantified using a single extracted ion  
564 chromatogram. The retention time window was adjusted for each compound based on the number  
565 of isomers and retention time differences between isomers. Telmisartan was used as an internal  
566 reference for all quantifications.

567 For quantification of total acylsugar cores (*i.e.*, sucrose and glucose), acylsugar extracts or  
568 purified acylsugars were saponified and sugar core quantified using UHPLC-MS-MS. For each  
569 acylsugar analyte or standard, a 20- $\mu$ L aliquot was evaporated to dryness in a 1.7-mL microfuge  
570 tube using a vacuum centrifuge and dissolved in 200  $\mu$ L of a 1:1 methanol/3 M aqueous ammonia  
571 solution. The saponification reactions were incubated at room temperature for 48 hours at which  
572 point solvent was removed by vacuum centrifuge at room temperature. The dried residue was  
573 dissolved in 200  $\mu$ L of 10 mM ammonium bicarbonate (pH 8.0) in 90% acetonitrile containing 0.5  $\mu$ M  
574 <sup>13</sup>C<sub>12</sub>-sucrose and 0.5  $\mu$ M <sup>13</sup>C<sub>6</sub>-glucose as internal standards and transferred to a 2-mL glass vial.  
575 Samples were subjected to UHPLC-MS-MS analysis. Levels of sucrose and glucose were quantified  
576 using a standard curve of the corresponding sugar at final concentrations of 3.13, 6.25, 12.5, 25, and  
577 50  $\mu$ M. Details of the UHPLC-MS-MS method are in Table S3.

#### 578 4.6 RNA extraction, cDNA synthesis, and qPCR

579 Relative ASFF1 transcript levels were measured using a published method [22]. Briefly, single  
580 leaflets from the youngest fully-expanded leaf of three biological replicates each of 12-week-old *S.*  
581 *pennellii* LA0716 and LA2963 plants were harvested and powdered under liquid nitrogen prior to  
582 RNA extraction using the RNeasy Plant Mini Kit (Qiagen, Hilden, Germany), cDNA synthesis using  
583 SuperScript III reverse transcriptase (Invitrogen, Carlsbad, CA), and qRT-PCR analysis using SYBR  
584 Green PCR Master Mix on a QuantStudio 7 Flex Real-Time PCR System (Applied Biosystems,  
585 Warrington, UK). RT\_ASFF\_F and RT\_ASFF\_R primers were used to detect ASFF1 transcript;  
586 RT\_EF-1a\_F/R, RT\_actin\_F/R, and RT\_ubiquitin\_F/R primers were used to detect transcripts of the  
587 *EF-1 $\alpha$* , *actin*, and *ubiquitin* genes, respectively (Table S4). Relative levels of ASFF1 transcript were

588 determined using the  $\Delta\Delta Ct$  method [47] and normalized to the geometric mean of *EF-1 $\alpha$* , *actin*, and  
589 *ubiquitin* transcript levels.

590 *4.7 Acylsugar purification*

591 Purifications were performed using a Waters 2795 Separations Module (Waters Corporation)  
592 and an Acclaim 120 C18 HPLC column (4.6 x 150 mm, 5  $\mu$ m; ThermoFisher Scientific, Waltham, MA)  
593 with a column oven temperature of 30°C and flow rate of 2 mL/min. For acylsucrose purification, the  
594 mobile phase consisted of water (solvent A) and acetonitrile (solvent B). For acylglucoside purification,  
595 methanol was used as solvent B. Fractions were collected using a 2211 Superrac fraction collector  
596 (LKB Bromma, Stockholm, Sweden).

597 For purification of acylsucroses, acylsugars were extracted from mature plants of the *S. pennellii*  
598 LA0716 *asff1-1* mutant [22], which exclusively accumulates acylsucroses. Surface metabolites from  
599 ~75 g leaflets were extracted in 500 mL methanol containing 0.1% formic acid. This extract was dried  
600 under vacuum with a rotary evaporator and the resulting residue dissolved in ~3 mL acetonitrile  
601 containing 0.1% formic acid. Quantification of this solution by UPLC-MS-MS indicated a  
602 concentration of ~150 mM total acylsucroses. This extract was diluted 14-fold in 70% acetonitrile  
603 containing 0.1% formic acid. Acylsucroses were purified by pooling fractions from 10 injections of 50  
604  $\mu$ L each. A linear gradient of 45% B at 0 min, 60% B at 30 min, 100% B at 30.01 min held until 35 min,  
605 and 45% B at 35.01 min held until 40 min was used. Fractions were collected at 10-s intervals into  
606 tubes containing 300  $\mu$ L 0.1% formic acid in water. The S3:12(4,4,4) compound eluted between 1 and  
607 2 min; the S3:18(4,4,10)-1 compound eluted between 12 and 14 min; the S3:18(4,4,10)-2 compound  
608 eluted between 14 and 16 min; the S3:19(4,5,10)-1 compound eluted between 17 and 19 min; and the  
609 S3:19(4,5,10)-2 compound eluted between 19 and 21 min.

610 For purification of acylglucosides, acylsugars were extracted from mature plants of *S. pennellii*  
611 LA0716, which accumulates > 90% acylglucosides [26]. Surface metabolites were extracted from ~75 g  
612 leaflets as described for acylsucrose purification. UHPLC-MS-MS quantification of the resulting  
613 solution indicated ~500 mM acylglucoside concentration. This extract was diluted 20-fold in 1:1  
614 methanol/water containing 0.1% formic acid. Acylglucosides were purified by pooling fractions after  
615 20 injections of 50  $\mu$ L each. A linear gradient of 5% B at 0-1 min, 60% B at 2 min, 100% B at 32 min  
616 held until 35 min, and 5% B at 36 min held until 40 min was used. The G3:12(4,4,4) compound eluted  
617 between 6 and 7 min; the G3:18(4,4,10)-1 compound eluted between 17 and 18 min; the  
618 G3:18(4,4,10)-2 compound eluted between 18 and 19 min; the G3:19(4,5,10)-1 compound eluted  
619 between 20 and 21 min; and the G3:19(4,5,10)-2 compound eluted between 21 and 22 min.

620 Purity of acylsugar fractions was verified by UHPLC-MS using an LC-20AD HPLC (Shimadzu,  
621 Kyoto, Japan) coupled to a G2-XS QToF mass spectrometer (Waters Corporation). Separations were  
622 performed using an Ascentis Express C18 HPLC column (2.1 x 100 mm, 2.7  $\mu$ m; Supelco, Bellefonte,  
623 PA). The mobile phases consisted of 100 mM ammonium formate, pH 3.4 (solvent A) and 100 mM  
624 ammonium formate, pH 3.4, in 90% methanol (solvent B). Five-microliter aliquots were injected onto  
625 the column and eluted with a linear gradient of 5% B at 0-1 min, 60% B at 1.01 min, 100% B at 8 min,  
626 and 5% B at 8.01-10 min. The solvent flow rate was 0.4 mL/min and the column temperature was  
627 40°C. Analyses were performed using positive-ion mode electrospray ionization and sensitivity  
628 mode analyzer parameters. Source parameters were: capillary voltage at 3.00 kV, sampling cone  
629 voltage at 40 V, source offset at 80 V, source temperature at 100°C, desolvation temperature at 350°C,  
630 cone gas flow at 50.0 L/hour, and desolvation gas flow at 600.0 L/hour. Quasi-simultaneous mass  
631 spectrum acquisition at low and high collision energy conditions (MS<sup>E</sup>) was performed over an *m/z*  
632 range of 50 to 1500 with a scan time of 0.5 s. Adduct ions were obtained using a collision potential of  
633 6.0 V; fragment ions were obtained using a collision potential ramp of 15 to 40 V. Spectra were  
634 acquired in centroid format.

635 Pure acylsugar fractions were pooled and solvent removed using a vacuum centrifuge.  
636 Residues were reconstituted in 1 mL 3:3:2 acetonitrile/isopropanol/water with 0.1% formic acid,  
637 transferred to 2-mL glass autosampler vials, sealed with PTFE-lined caps, and stored at -20°C.  
638 Aliquots of purified acylsugars were quantified using the saponification method described above.

## 639 4.8 NMR spectroscopy

640 NMR spectra ( $^1\text{H}$ , gCOSY, gHSQC, gHMBC, and  $^1\text{H}$ - $^1\text{H}$  *J*-resolved spectra were collected at the  
641 Max T. Rogers NMR Facility at Michigan State University using a DDR 500 MHz NMR spectrometer  
642 (Agilent, Santa Clara, CA) equipped with a 7600AS 96-sample autosampler running VnmrJ v3.2A  
643 software.  $^{13}\text{C}$  spectra were collected on the same instrument at 125 MHz. All spectra were referenced  
644 to non-deuterated chloroform solvent signals ( $\delta\text{H} = 7.26$  (s) and  $\delta\text{C} = 77.2$  (t) ppm). Additional details  
645 of the NMR data collection methods are in Table S5.

646 **Supplementary Materials:** The following are available online at [www.mdpi.com/xxx/s1](http://www.mdpi.com/xxx/s1): Supplementary file 1  
647 (supp1.docx) containing Tables S1-18 and Figures S1-62, and Supplementary file 2 (supp2.xlsx) containing the  
648 complete processed dataset for the findings presented.

649 **Author Contributions:** Conceptualization, D.B.L and R.L.L.; methodology, D.B.L. and A.D.J.; formal analysis,  
650 D.B.L., T.M.A., and A.D.J.; investigation, D.B.L and T.M.A.; writing—original draft preparation, D.B.L;  
651 writing—review and editing, D.B.L, T.M.A, A.D.J., and R.L.L; supervision, A.D.J. and R.L.L.; funding  
652 acquisition, A.D.J. and R.L.L. All authors have read and agreed to the published version of the manuscript.

653 **Funding:** This research was funded by the National Science Foundation, grant number IOS-1546617 to A.D.J.  
654 and R.L.L. D.B.L. was also supported by the National Institutes of Health predoctoral training grant  
655 T32-GM110523.

656 **Acknowledgments:** The authors thank Philip Engelgau, Hannah Parks, and Dr. Rachel E. Kerwin for helpful  
657 comments on the manuscript. The authors also thank Dr. Anthony L. Schilmiller at the Michigan State  
658 University Mass Spectrometry and Metabolomics Core (MSMC) facility for technical assistance with data  
659 collection. Mass spectra were collected in the laboratory of A.D.J. and at the MSMC facility. All NMR spectra  
660 were collected at the Max T. Rogers NMR facility at Michigan State University.

661 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the  
662 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to  
663 publish the results.

664 **References**

1. Pichersky, E.; Lewinsohn, E. Convergent Evolution in Plant Specialized Metabolism. *Annu. Rev. Plant Biol.* **2011**, *62*, 549–566, doi:10.1146/annurev-arplant-042110-103814.
2. Pichersky, E.; Raguso, R.A. Why do plants produce so many terpenoid compounds? *New Phytol.* **2018**, *220*, 692–702, doi:10.1111/nph.14178.
3. Tahara, S. A Journey of Twenty-Five Years through the Ecological Biochemistry of Flavonoids. *Biosci. Biotechnol. Biochem.* **2007**, *71*, 1387–1404, doi:10.1271/bbb.70028.
4. Milo, R.; Last, R.L. Achieving Diversity in the Face of Constraints: Lessons from Metabolism. *Science* **2012**, *336*, 1663–1667, doi:10.1126/science.1217665.
5. Liu, Y.; Jing, S.-X.; Luo, S.-H.; Li, S.-H. Non-volatile natural products in plant glandular trichomes: chemistry, biological activities and biosynthesis. *Nat. Prod. Rep.* **2019**, *36*, 626–665, doi:10.1039/c8np00077h.
6. Kang, J.-H.; Liu, G.; Shi, F.; Jones, A.D.; Beaudry, R.M.; Howe, G.A. The Tomato *odorless-2* Mutant Is Defective in Trichome-Based Production of Diverse Specialized Metabolites and Broad-Spectrum Resistance to Insect Herbivores. *Plant Physiol.* **2010**, *154*, 262–272, doi:10.1104/pp.110.160192.
7. Luu, V.T.; Weinhold, A.; Ullah, C.; Dressel, S.; Schoettner, M.; Gase, K.; Gaquerel, E.; Xu, S.; Baldwin, I.T. O-Acyl Sugars Protect a Wild Tobacco from Both Native Fungal Pathogens and a Specialist Herbivore. *Plant Physiol.* **2017**, *174*, 370–386, doi:10.1104/pp.16.01904.
8. Weinhold, A.; Baldwin, I.T. Trichome-derived O-acyl sugars are a first meal for caterpillars that tags them for predation. *Proc. Natl. Acad. Sci.* **2011**, *108*, 7855–7859, doi:10.1073/pnas.1101306108.

684 9. Yang, T.; Stoopen, G.; Wiegers, G.; Mao, J.; Wang, C.; Dicke, M.; Jongsma, M.A. Pyrethrins Protect  
685 Pyrethrum Leaves Against Attack by Western Flower Thrips, *Frankliniella occidentalis*. *J. Chem. Ecol.* **2012**,  
686 *38*, 370–377, doi:10.1007/s10886-012-0097-7.

687 10. McDowell, E.T.; Kapteyn, J.; Schmidt, A.; Li, C.; Kang, J.-H.; Descour, A.; Shi, F.; Larson, M.; Schilmiller,  
688 A.; An, L.; et al. Comparative Functional Genomic Analysis of *Solanum* Glandular Trichome Types. *Plant*  
689 *Physiol.* **2011**, *155*, 524–539, doi:10.1104/pp.110.167114.

690 11. Nakashima, T.; Wada, H.; Morita, S.; Erra-Balsells, R.; Hiraoka, K.; Nonami, H. Single-Cell Metabolite  
691 Profiling of Stalk and Glandular Cells of Intact Trichomes with Internal Electrode Capillary Pressure  
692 Probe Electrospray Ionization Mass Spectrometry. *Anal. Chem.* **2016**, *88*, 3049–3057,  
693 doi:10.1021/acs.analchem.5b03366.

694 12. Fobes, J.F.; Mudd, J.B.; Marsden, M.P.F. Epicuticular Lipid Accumulation on the Leaves of *Lycopersicon*  
695 *pennellii* (Corr.) D'Arcy and *Lycopersicon esculentum* Mill. *Plant Physiol.* **1985**, *77*, 567–570,  
696 doi:10.1104/pp.77.3.567.

697 13. Leckie, B.M.; D'Ambrosio, D.A.; Chappell, T.M.; Halitschke, R.; De Jong, D.M.; Kessler, A.; Kennedy,  
698 G.G.; Mutschler, M.A. Differential and Synergistic Functionality of Acylsugars in Suppressing  
699 Oviposition by Insect Herbivores. *PLOS ONE* **2016**, *11*, e0153345, doi:10.1371/journal.pone.0153345.

700 14. Mirnezhad, M.; Romero-González, R.R.; Leiss, K.A.; Choi, Y.H.; Verpoorte, R.; Klinkhamer, P.G.L.  
701 Metabolomic analysis of host plant resistance to thrips in wild and cultivated tomatoes. *Phytochem. Anal.*  
702 **2010**, *21*, 110–117, doi:10.1002/pca.1182.

703 15. Smeda, J.R.; Schilmiller, A.L.; Anderson, T.; Ben-Mahmoud, S.; Ullman, D.E.; Chappell, T.M.; Kessler, A.;  
704 Mutschler, M.A. Combination of Acylglucose QTL reveals additive and epistatic genetic interactions and  
705 impacts insect oviposition and virus infection. *Mol. Breed.* **2018**, *38*, 3, doi:10.1007/s11032-017-0756-z.

706 16. Leckie, B.M.; De Jong, D.M.; Mutschler, M.A. Quantitative trait loci increasing acylsugars in tomato  
707 breeding lines and their impacts on silverleaf whiteflies. *Mol. Breed.* **2012**, *30*, 1621–1634,  
708 doi:10.1007/s11032-012-9746-3.

709 17. Leckie, B.M.; De Jong, D.M.; Mutschler, M.A. Quantitative trait loci regulating sugar moiety of acylsugars  
710 in tomato. *Mol. Breed.* **2013**, *31*, 957–970, doi:10.1007/s11032-013-9849-5.

711 18. Leckie, B.M.; Halitschke, R.; De Jong, D.M.; Smeda, J.R.; Kessler, A.; Mutschler, M.A. Quantitative trait  
712 loci regulating the fatty acid profile of acylsugars in tomato. *Mol. Breed.* **2014**, *34*, 1201–1213,  
713 doi:10.1007/s11032-014-0110-7.

714 19. Fan, P.; Miller, A.M.; Liu, X.; Jones, A.D.; Last, R.L. Evolution of a flipped pathway creates metabolic  
715 innovation in tomato trichomes through BAHD enzyme promiscuity. *Nat. Commun.* **2017**, *8*, 2080,  
716 doi:10.1038/s41467-017-02045-7.

717 20. Fan, P.; Wang, P.; Lou, Y.-R.; Leong, B.J.; Moore, B.M.; Schenck, C.A.; Combs, R.; Cao, P.; Brandizzi, F.;  
718 Shiu, S.-H.; et al. Evolution of a plant gene cluster in Solanaceae and emergence of metabolic diversity.  
719 *eLife* **2020**, *9*, e56717, doi:10.7554/eLife.56717.

720 21. Ning, J.; Moghe, G.; Leong, B.; Kim, J.; Ofner, I.; Wang, Z.; Adams, C.; Jones, A.; Daniel; Zamir, D.; Last,  
721 R., L. A feedback insensitive isopropylmalate synthase affects acylsugar composition in cultivated and  
722 wild tomato. *Plant Physiol.* **2015**, *169*, 1821–1835, doi:10.1104/pp.15.00474.

723 22. Leong, B.J.; Lybrand, D.B.; Lou, Y.-R.; Fan, P.; Schilmiller, A.L.; Last, R.L. Evolution of metabolic novelty:  
724 A trichome-expressed invertase creates specialized metabolic diversity in wild tomato. *Sci. Adv.* **2019**, *5*,  
725 eaaw3754, doi:10.1126/sciadv.aaw3754.

726 23. Schilmiller, A.L.; Gilgallon, K.; Ghosh, B.; Jones, A.D.; Last, R.L. Acylsugar Acylhydrolases:  
727 Carboxylesterase-Catalyzed Hydrolysis of Acylsugars in Tomato Trichomes. *Plant Physiol.* **2016**, *170*,  
728 1331–1344, doi:10.1104/pp.15.01348.

729 24. Wang, Z.; Jones, A.D. Profiling of Stable Isotope Enrichment in Specialized Metabolites Using Liquid  
730 Chromatography and Multiplexed Nonselective Collision-Induced Dissociation. *Anal. Chem.* **2014**, *86*,  
731 10600–10607, doi:10.1021/ac502205y.

732 25. Wang, Z. Dynamics, distribution and development of specialized metabolism in glandular trichome of  
733 tomato and its wild relatives. Ph.D., Michigan State University: United States -- Michigan, 2015.

734 26. Shapiro, J.A.; Steffens, J.C.; Mutschler, M.A. Acylsugars of the wild tomato *Lycopersicon pennellii* in  
735 relation to geographic distribution of the species. *Biochem. Syst. Ecol.* **1994**, *22*, 545–561,  
736 doi:10.1016/0305-1978(94)90067-1.

737 27. Slocombe, S.P.; Schauvinhold, I.; McQuinn, R.P.; Besser, K.; Welsby, N.A.; Harper, A.; Aziz, N.; Li, Y.;  
738 Larson, T.R.; Giovannoni, J.; et al. Transcriptomic and Reverse Genetic Analyses of Branched-Chain Fatty  
739 Acid and Acyl Sugar Production in *Solanum pennellii* and *Nicotiana benthamiana*. *Plant Physiol.* **2008**, *148*,  
740 1830–1846, doi:10.1104/pp.108.129510.

741 28. Burke, B.A.; Goldsby, G.; Mudd, B.J. Polar epicuticular lipids of *Lycopersicon pennellii*. *Phytochemistry* **1987**,  
742 26, 2567–2571, doi:10.1016/S0031-9422(00)83879-0.

743 29. Correll, D.S. *The potato and its wild relatives.*; Contributions from Texas Research Foundation; Texas  
744 Research Foundation: Renner, Texas, 1962;

745 30. Ghangas, G.S.; Steffens, J.C. UDPglucose: fatty acid transglucosylation and transacylation in  
746 triacylglycerol biosynthesis. *Proc. Natl. Acad. Sci.* **1993**, *90*, 9911–9915, doi:10.1073/pnas.90.21.9911.

747 31. Kuai, J.P.; Ghangas, G.S.; Steffens, J.C. Regulation of Triacylglycerol Fatty Acid Composition (Uridine  
748 Diphosphate Glucose:Fatty Acid Glucosyltransferases with Overlapping Chain-Length Specificity). *Plant  
749 Physiol.* **1997**, *115*, 1581–1587, doi:10.1104/pp.115.4.1581.

750 32. Li, Alice.X.; Steffens, J.C. An acyltransferase catalyzing the formation of diacylglycerol is a serine  
751 carboxypeptidase-like protein. *Proc. Natl. Acad. Sci.* **2000**, *97*, 6902–6907, doi:10.1073/pnas.110154197.

752 33. Li, A.X.; Eannetta, N.; Ghangas, G.S.; Steffens, J.C. Glucose Polyester Biosynthesis. Purification and  
753 Characterization of a Glucose Acyltransferase. *Plant Physiol.* **1999**, *121*, 453–460, doi:10.1104/pp.121.2.453.

754 34. Fan, P.; Miller, A.M.; Schilmiller, A.L.; Liu, X.; Ofner, I.; Jones, A.D.; Zamir, D.; Last, R.L. In vitro  
755 reconstruction and analysis of evolutionary variation of the tomato acylsucrose metabolic network. *Proc.  
756 Natl. Acad. Sci.* **2016**, *113*, E239–E248, doi:10.1073/pnas.1517930113.

757 35. Ghosh, B.; Westbrook, T.C.; Jones, A.D. Comparative structural profiling of trichome specialized  
758 metabolites in tomato (*Solanum lycopersicum*) and *S. habrochaites*: acylsugar profiles revealed by  
759 UHPLC/MS and NMR. *Metabolomics* **2014**, *10*, 496–507, doi:10.1007/s11306-013-0585-y.

760 36. Liu, X.; Enright, M.; Barry, C.S.; Jones, A.D. Profiling, isolation and structure elucidation of specialized  
761 acylsucrose metabolites accumulating in trichomes of *Petunia* species. *Metabolomics* **2017**, *13*, 85,  
762 doi:10.1007/s11306-017-1224-9.

763 37. Nadakuduti, S.S.; Uebler, J.B.; Liu, X.; Jones, A.D.; Barry, C.S. Characterization of Trichome-Expressed  
764 BAHD Acyltransferases in *Petunia axillaris* Reveals Distinct Acylsugar Assembly Mechanisms within the  
765 Solanaceae. *Plant Physiol.* **2017**, *175*, 36–50, doi:10.1104/pp.17.00538.

766 38. Kim, J.; Kang, K.; Gonzales-Vigil, E.; Shi, F.; Jones, A.D.; Barry, C.S.; Last, R.L. Striking Natural Diversity  
767 in Glandular Trichome Acylsugar Composition Is Shaped by Variation at the Acyltransferase2 Locus in  
768 the Wild Tomato *Solanum habrochaites*. *Plant Physiol.* **2012**, *160*, 1854–1870, doi:10.1104/pp.112.204735.

769 39. Mandal, S.; Ji, W.; McKnight, T.D. Candidate Gene Networks for Acylsugar Metabolism and Plant  
770 Defense in Wild Tomato *Solanum pennellii*. *Plant Cell* **2020**, *32*, 81–99, doi:10.1105/tpc.19.00552.

771 40. Schmidt, A.; Li, C.; Shi, F.; Jones, A.D.; Pichersky, E. Polymethylated Myricetin in Trichomes of the Wild  
772 Tomato Species *Solanum habrochaites* and Characterization of Trichome-Specific 3'/5'- and 7/4'-Myricetin  
773 O-Methyltransferases. *Plant Physiol.* **2011**, *155*, 1999–2009, doi:10.1104/pp.110.169961.

774 41. Schmidt, A.; Li, C.; Jones, A.D.; Pichersky, E. Characterization of a flavonol 3-O-methyltransferase in the  
775 trichomes of the wild tomato species *Solanum habrochaites*. *Planta* **2012**, *236*, 839–849,  
776 doi:10.1007/s00425-012-1676-0.

777 42. Kim, J.; Matsuba, Y.; Ning, J.; Schilmiller, A.L.; Hammar, D.; Jones, A.D.; Pichersky, E.; Last, R.L. Analysis  
778 of Natural and Induced Variation in Tomato Glandular Trichome Flavonoids Identifies a Gene Not  
779 Present in the Reference Genome. *Plant Cell* **2014**, *26*, 3272–3285, doi:10.1105/tpc.114.129460.

780 43. Li, C.; Schmidt, A.; Pichersky, E.; Shi, F.; Jones, A.D. Identification of methylated flavonoid regiosomeric  
781 metabolites using enzymatic semisynthesis and liquid chromatography-tandem mass spectrometry.  
782 *Metabolomics* **2013**, *9*, 92–101, doi:10.1007/s11306-012-0451-3.

783 44. Maluf, W.R.; Maciel, G.M.; Gomes, L.A.A.; Cardoso, M. das G.; Gonçalves, L.D.; Silva, E.C. da; Knapp, M.  
784 Broad-Spectrum Arthropod Resistance in Hybrids between High- and Low-Acylsugar Tomato Lines.  
785 *Crop Sci.* **2010**, *50*, 439–450, doi:10.2135/cropsci2009.01.0045.

786 45. Alba, J.M.; Montserrat, M.; Fernández-Muñoz, R. Resistance to the two-spotted spider mite (*Tetranychus*  
787 *urticae*) by acylsucroses of wild tomato (*Solanum pimpinellifolium*) trichomes studied in a recombinant  
788 inbred line population. *Exp. Appl. Acarol.* **2009**, *47*, 35–47, doi:10.1007/s10493-008-9192-4.

789 46. Schilmiller, A.L.; Charbonneau, A.L.; Last, R.L. Identification of a BAHD acetyltransferase that produces  
790 protective acyl sugars in tomato trichomes. *Proc. Natl. Acad. Sci.* **2012**, *109*, 16377–16382,  
791 doi:10.1073/pnas.1207906109.

792 47. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic Acids Res.*  
793 **2001**, *29*, 45e–445, doi:10.1093/nar/29.9.e45.

794

795