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Abstract: One of the main challenges for autonomous learning in virtual environments is finding the1

right material that fits students’ needs and supports their learning process. Personalized recommender2

systems partially solve this problem by suggesting online educational resources to students based on3

their preferences. However, in educational environments (which need a proper characterization of4

both users and educational resources), most existing recommendation algorithms either fail to include5

all the available information or use hybrid processes that do not exploit possible relationships between6

users and item features. This article presents a personalized recommender system for educational7

resources aimed at combining user and item information into a single mathematical model based on8

matrix factorization. As a result, estimated latent factors can provide insight into possible interactions9

between users and item features, improving the quality of the information retrieval process. We10

validated the proposed model on a real dataset that contains the ratings assigned by students11

from Universidad Nacional de Colombia and Universidade Feevale to educational resources in the12

Colombian Federation of Learning Object Repositories (FROAC in Spanish). User characterization13

included learning style and educational level, whereas item characterization (obtained from the14

objects’ metadata), included interactivity level, aggregation level and type, and resource format.15

These results, compared to those obtained when not all the available information is included, show16

that our method can improve the recommendation process.17

Keywords: Hybrid educational recommender system, learning objects, matrix factorization,18

personalization19

1. Introduction20

Currently, due to the widespread availability of online learning resources and virtual learning21

environments, the systems and technologies in such field are becoming increasingly popular because22

they can improve educational access for anyone anywhere in the world [1]. An Open Educational23

Resource (OER) can be defined as a type of material with an educational purpose and aim, whose24

information is digitalized and available on the Internet [2–4]. An important feature of OERs is their25

descriptive metadata, which includes information characterizing the content of the resources, e.g.,26

title, keywords, and educational use [5]. Such metadata enable and facilitate the identification, search,27

retrieval, and reuse of said resources. OERs and their corresponding metadata are stored in repositories28

that can organize, centralize, and make them available and visible so that students discover adequate29

materials in their searches [6].30
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In spite of their availability, advanced searches are difficult, even for senior students, due to the31

definition of the criteria and selection of the search string [7]. For instance, a study concluded that32

students should spend more than one hour to find an adequate resource, which is frustrating for33

them [8]. To deal with this problem, repositories are implementing different measures to improve34

search processes; some of them use ranking metrics, quality control mechanisms, or Educational35

Recommender Systems (ERSs).36

ERSs are tools that offer personalized suggestions to users by predicting, for example, their level37

of satisfaction with a given resource [9–11]. Such systems are based on preferences, likes, moods,38

learning styles, and all the variables that enable the characterization of the user and the retrieval39

process [12]. Consequently, ERSs personalize recommendations so that they are adapted to each user’s40

characteristics [1]. Moreover, recommendations are often based on previous interactions between users41

and items because past interests and activities are generally good indicators of future options [13] [14].42

ERSs should allow feedback processes and implement mechanisms to obtain a substantial amount of43

information about users. As a result, the main objective of ERSs in virtual learning environments is to44

provide students with search results that support their autonomous learning process [4,7].45

Existing Recommendation Systems (RSs) can be roughly classified into content-based,46

demographic-based, and collaborative filtering-based. Content-based RSs make recommendations47

according to inferences about users’ needs and preferences depending on their browsing history48

[15].Demographic recommender systems use information about the demographic factors of the49

population under study to find similarities between users and thus provide recommendations [16]. In50

contrast, collaborative filtering aims to find characteristics users share (through previous ratings) to51

retrieve items similar users like[17].52

Collaborative filtering is commonly categorized into memory-based, model-based, and hybrid53

methods [18]. Memory-based methods use similarities between users or items based on previous54

ratings to generate recommendations. Although they are easy to implement, and the provided55

recommendation is usually easy to explain, memory-based methods do not work well with sparse56

rating matrices. To overcome such issue, model-based methods characterize both items and users57

employing latent factors that are inferred from rating patterns. Thus, said models aim at learning from58

the available data, generalizing behaviors and considering computational complexity [19]. Finally,59

hybrid methods combine several techniques of RSs to maximize results, making the most of the60

advantages of each technique and reducing their problems. The more available information sources,61

the more flexible the system is regarding the use of different types of RSs to find the same items[20].62

Among all the collaborative filtering techniques, matrix factorization is the most popular option63

due to its capability to deal with large datasets [21–23] and become hybrid by combining explicit and64

implicit attributes of users and items [24]. Matrix factorization methods for RSs characterize both65

resources and users using a set of characteristics defined in a vectorial manner [18,25,26]. In [19], the66

authors introduce the algorithms that won the Netflix Prize Competition. They maintain that matrix67

factorization models/algorithms outperform classical nearest-neighbor techniques in generating item68

recommendations. Moreover, in [18], the authors propose a nonnegative matrix factorization model69

with regularization and weighing employing graphs to perform collaborative filtering. They created70

two graphs: the first one contains users’ demographic information (occupation); and the second, movie71

genres and their relationships. They concluded that such type of method improves the accuracy of72

the recommendations. Likewise, in [23], the authors tried to improve collaborative filtering by using73

matrix factorization and exponential random graphs and incorporating social networks. By contrast,74

in [21], the authors proposed a collaborative filtering method using negative and positive factorization75

matrices and Pearson Correlation Coefficient (PCC) to improve the quality of user experience. Their76

process adds restrictions and adjusts the similarity values of users employing only user ratings for77

the elements to be recommended. Finally, in [26], the authors used matrix factorization algorithms to78

recommend people. They model attitudes and feelings between individuals in matrices to establish79

the degree of correlation among them and thus make recommendations.80
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Although the above-mentioned recommendation methods achieve good results, most of them81

complete retrieval tasks by combining several aspects of different types of techniques to obtain the82

best of both worlds, namely, content- and user-based RSs [27]. Consequently, a hybrid integrated83

model should include, in a single mathematical model, in addition to the ratings, the available user84

characteristics and item metadata in the personalized recommendation process. This is particularly85

true in educational environments, where the system has access to user information (e.g., learning style86

and educational level) and item information (e.g., interactivity level and semantic density).87

This work presents a hybrid personalized recommender system for educational materials that88

combines recommendation techniques based on collaborative filtering, content, and demographics89

into a latent factor model. Thus, the proposed system considers the available user information as well90

as item metadata and infers the existing relationship between those characteristics, improving the91

recommendations offered to each student.92

This article is organized as follows. Section 2 presents the matrix factorization methods for93

recommender systems and introduces the proposed hybrid and personalized model. Section 3 describes94

the real dataset along with user and item characteristics. Section 4 details the validation of the proposed95

system and compares it with state-of-the-art methods. Finally, Section 5 draws conclusions and96

proposes future work.97

2. Materials and Methods98

2.1. Matrix factorization methods for recommender systems99

Matrix factorization methods for recommender systems are based on latent factor models, where
items as well as users are characterized using vectors of factors inferred through ratings. Consider a set
of items, where `i ∈ RN×1 represents a set of N latent factors or characteristics that describe the i−th
item. Additionally, each user is associated with a vector xu ∈ RN×1. Thus, the elements of `i measure
how much each factor represents item i (positive or negative), while the elements of xu measure the
degree of interest the user u exhibits in each one of the factors that characterize the items (positive or
negative). Furthermore, the dot product of xu and `

ŷui = x>u `i, (1)

captures the interaction between user u and item i and can be seen as an approximation of the rating100

that such user assigns to said item ŷui ∈ R. Therefore, the challenge for matrix factorization methods101

is to calculate, from the set of given ratings, the vectors of factors xu and `i for all the users and all102

the items. As a result, after the recommender system completes the factorization, it can estimate the103

ratings users will assign to any item using eq. (1).104

The vectors of item factors can be grouped in matrix Θ ∈ RI×N , where the i−th row of the matrix105

represents the factors of the item, and I ∈ Z denotes the number of items. Likewise, user factors can be106

grouped in matrix X ∈ RU×Z, where the u−th row represents the factors of user, and U ∈ N denotes107

the number of users. Moreover, the ratings users have assigned to the items can be stored in matrix108

Y ∈ RU×I . Because not all users have evaluated all the items, a matrix R ∈ [0, 1]U×I is created, where109

rui = 1 (u-th row, i-th column of R) if user u has already rated item i, and rui = 0 in the oppossite case.110

Thus, to estimate factor matrices, the recommender system minimizes the regularized mean squared111

error using known ratings112

L(X, Θ) =
1
2
||(Y− XΘ>)� R||2F +

λ

2
(||X||2F + ||Θ||2F) (2a)

{X̂, Θ̂} = argmin
X,Θ

{L(X, Θ)}, (2b)
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where λ ∈ R+ is a regularization parameter; || · ||F the Frobenius norm; and �, the Hadamard product.113

Under this formulation, the system learns the model by adjusting the previously observed ratings.114

Additionally, since the objective is to generalize prior ratings so that they enable the prediction of yet115

unassigned ratings, a regularization term is used to avoid overtraining.116

Matrices X and Θ are estimated using Gradient Descent, in the form117

Xj = Xj−1 − γ
∂

∂X
L(X, Θ) (3a)

Θj = Θj−1 − γ
∂

∂Θ
L(X, Θ) (3b)

where γ ∈ R+ is the learning rate, matrices Xj, Θj denote the j−th iteration of the optimization
algorithm, and the derivatives are defined as

∂L(X, Θ)

∂X
= −(R� Y)Θ + R� (XΘ>)Θ + λX (4a)

∂L(X, Θ)

∂Θ
= −(R� Y)>X + (R� (XΘ>))>X + λΘ (4b)

2.2. Hybrid recommender system using matrix factorization along with user and item information118

In addition to ratings, recommender systems may include different sources of information119

about users and/or items in order to improve predictions. Hence, search history or learning style120

characterization can be used to describe user trends and create a matrix of factors X. Therefore, the121

unknowns in eq. (2) will only be the factors of users Θ, and they can be estimated using eqs. (3b)122

and (4b). Therefore, θi f (row i, column f of Θ) will indicate how much of characteristic f that describes123

all the users appears in item i. If a characterization of the items Θ is available (e.g., describing the level124

of interactivity or how much it contributes to each learning style), the unknowns in eq. (2) will be the125

factors of users X, and they can be estimated using eqs. (3a) and (4a). As a result, xu f (row u, column f126

of X) will indicate how important characteristic f that describes the items is to user u.127

However, when descriptions of the users as well as the items (i.e., matrices X and Θ) are128

available, the formulation of eq. (2) can only be applied i there is a direct correspondence between the129

characterization of items and that of users, which includes (i) an equal number of characteristics and (ii)130

the same characterization for users and items. Therefore, since in few real cases such characterization131

correspondence can be obtained, this work proposes a model that allows the utilization of user and item132

descriptions. For that purpose, users are assumed to be described with a number Nu of characteristics,133

which produces matrix X ∈ RU×Nu . In turn, items are described with a number Ni of characteristics,134

which produces matrix Θ ∈ RI×Ni . Thus, eq. (2) can be rewritten including a matrix of factors135

Σ ∈ RNu×Ni , as follows136

L(Σ) =
1
2
||(Y− XΣΘ>)� R||2F +

λ

2
||Σ||2F (5a)

Σ̂ = argmin
Σ

{L(Σ)}, (5b)

The derivative of this cost function with respect to parameters Σ is defined as

∂

∂Σ
L(Σ) = −1

2
X>(Y� R)Θ + X>((XΣΘ>)� R) + λΣ. (6)

Thus, we use gradient descent to optimize the model parameters, as follows

Σj = Σj−1 − γ
∂

∂Σ
L(Σ),
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where γ ∈ R+ is the learning rate.137

According to eq. (1), once matrix Σ has been obtained, the estimation of the rating that user u will
assign to item i is given by:

ŷui =
Ni

∑
ni=1

xuœniθni ,i, (7)

where xu ∈ R1×Nu are the characteristics of user u; œni ∈ R1×Nu , the relationships between the138

characteristics of user u and object i; and θni ,i the ni−th characteristic of item i.139

2.3. The cold start problem of new users140

Oftentimes, recommender systems need to deal with the cold start problem when a new user has141

rated a few or none of the items, thus making the prediction task more difficult. One way to overcome142

this problem is to use the user factors X to find similarities between the new user and the existing ones143

in the database. As a result, the ratings of the new user can be obtained as the average of the ratings of144

the users that are most similar to said user. The Pearson Correlation Coefficient (PCC) is employed as145

a measure of similarity between user u and user u′, defined as146

Sim(u, u′) =
∑Nu

nu=1(xu,nu − x̄u)(xu′ ,nu − x̄u′)√
∑Nu

nu=1(xu,nu − x̄u)2
√

∑Nu
nu=1(xu′ ,nu − x̄u′)2

, (8)

where xu,nu ∈ R is the nu-th characteristic of user u; x̄u ∈ R denotes the average of the characteristics147

of user u; and Sim(u, u′) ∈ [−1, 1]. Hence, a subgroup of users whose similarity exceeds a threshold148

with respect to the new user is selected. The initial estimation of the ratings assigned by the new user149

are calculated as the average of the ratings that the most similar users have assigned.150

This approach seeks to use the greatest possible amount of item and user information to deliver151

relevant recommendations based on the idea that the more is known about the user and the item, the152

better the results. Likewise, the objective is to produce a model that works when characteristics are153

known or unknown, as in the case of a new user. If a new user in the recommender system has rated a154

few or none of the items, a similarity measure is then used through PCC to find users that have similar155

characterizations. Thus, the initial estimation of the ratings assigned by the new user are calculated as156

the average of the ratings that the most similar users have assigned.157

3. Validation158

The hybrid recommender system for educational resources proposed in this work comprises three159

steps: (i) characterizing users (students) and items (learning objects), (ii) estimating the unknowns160

in the model, and (iii) completing the score matrices to submit the recommendation. To evaluate the161

performance of the proposed model, the recommendations were assessed using a real educational162

dataset that contains user information, metadata of the OERs, and the ratings users assigned to such163

resources. This dataset stores a selection of educational resources from the Colombian Federation164

of Learning Object Repositories (FROAC in Spanish) available at http://froac.manizales.unal.edu.165

co/froacn/. Figure 1 illustrates, step by step, the proposed model (blue lines) compared to other166

alternatives. The lines indicate the information (user features, item features, and scores) that is fed into167

each model.168
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Figure 1. Illustration of the proposed recommender system of educational resources. The left side
shows all the available information sources (user features, item features, and scores). Lines of different
colors indicate the information that is fed into each model under testing. Finally, one recommendation
per model is obtained on the right.

Each step mentioned above and the database are detailed below.169

3.1. Data-set170

The educational data set is composed of user information, metadata of the OERs, and the ratings171

assigned by the users to the items. The selection of the characteristics was completed considering the172

previous experience of the group and highlighting learning style as the most relevant factor [12][28].173

User characterization:174

A total of U = 56 users participated in the study. Users’ information excludes personal data175

to respect students’ privacy. Users were identified and the distribution of learning styles was176

obtained from the answers to the proposed test, where students were classified adopting the VARK177

model [29] and Felder-Silverman Learning Style Model [30] regarding information processing, i.e.,178

global/sequential. The user information collected in this study is detailed below:179

• User ID: Unique user identification for each user.180

• visual: They prefer the use of symbolism and different formats, fonts, and colors to highlight181

important points.182

• auditory: They prefer spoken information that can be heard, and posing questions is an important183

part of their learning strategies.184

• reading/writing: They use print words as the most important way to transmit and receive185

information.186

• kinesthetic: They use their own experience and real things, even when presented in images or187

screens.188

• global:They have holistic systemic minds that learn quickly.189

• Sequential: They benefit from linear, organized processing and learn better taking small190

incremental steps.191
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According to the VARK model, the participants in this study were categorized into visual192

(12%), auditory (18%), reading/writing (20%), and kinesthetic (50%). Further, according to the193

Felder-Silverman learning style model, students were classified into global (30%) and sequential194

(70%).195

Item characterization:196

A total of educational resources were included in this study; their metadata describe their197

contribution to each learning style. The definition of each type of metadata was taken from the198

IEEE Standard for Learning Object Metadata (IEEE-LOM) [31]. Item information is explained below:199

• Item ID: Unique identification for each resource.200

• Aggregation Level: Aggregation level of the resource with respect to its granularity.201

• Structure: Underlying organizational structure of the educational resource.202

• Interactivity Type: Predominant learning style supported by the resource, i.e., active, expository203

or mixed learning.204

• Interactivity Level: Degree of interactivity that characterizes the educational resource. In this205

context, interactivity refers to the degree to which the student can influence the appearance or206

behavior of the resource.207

• Semantic Density: Degree of conciseness of the OER. The semantic density of an object can be208

estimated in terms of its size, field or-in the case of self-timed resources such as audio and209

video-duration. The semantic density of an educational resource is independent of its difficulty.210

• Visual: Contribution of the resource for a student with a visual learning style.211

• Auditory: Contribution of the resource for a student with an auditory learning style.212

• Reading: Contribution of the resource for a student with a reading learning style.213

• Kinesthetic: Contribution of the resource for a student with a kinesthetic learning style.214

Scores:215

This file stores all the ratings assigned by the users to the items in five categories, as well as user216

and item identifications.217

• User ID: Identification of the user who completed the evaluation.218

• Item ID: Identification of the resource that was rated.219

• R1: Overall rating.220

• R2: Contribution to learning.221

• R3: Design.222

• R4: Content quality.223

• R5: Likelihood of recommending this resource.224

The information was collected by randomly assigning OERs to students and asking them to225

evaluate each of them. Figure 2 presents the interface that was used to collect such evaluations.226
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Figure 2. Information collection interface for the data set.

At the end, the data-set included 400 evaluations of 152 OERs by 56 users (students from Feevale227

University in Brazil and the National University of Colombia). The proposed recommender system was228

applied using those data. Hence, the users file was matrix X ∈ R56×6, and resources were Θ ∈ R152×9.229

Moreover, five evaluation matrices Yr ∈ R56×152, r = 1, . . . , 5, which correspond to each rating, were230

individually tested.231

3.2. Proposed model and models for comparison232

When all the information is available (users, items, and evaluations) different matrix factorization233

algorithms can be applied to estimate the missing ratings. Thus, according to the available information,234

parameters of the recommendation model based on matrix factorization vary as detailed below:235

• M1 The proposed model uses the information of items Θ as well as users X, and matrix Σ ∈ R6×9
236

is inferred, for a total of 54 parameters to be estimated. Σ represents the relationship between237

item and user characteristics.238

• M2 The second model uses the characteristics of users X. Therefore, matrix Θ ∈ R152×9 is239

inferred, for a total of 1368 parameters to be estimated.240

• M3 The third model considers only item characteristics, i.e., matrix Θ. Subsequently, X ∈ R56×6
241

is estimated, with 336 parameters.242

• M4 The fourth model does not take into account resource or user characteristics. Consequently,243

Θ ∈ R152×9 and X ∈ R56×6 must be estimated, for a total of 1704 parameters.244

For models M1 and M2, which take into account user characteristics, each feature (learning style)245

was scaled from 0 to 10.246

For models M1 and M3, the object metadata of each item, discarding the itemID, were scaled from247

0 to 10.248

Finally, for all models, scores R1 to R5 where scaled from 0 to 5.249

Table 1 presents a summary comparing the models along with their cost functions, the matrices to250

be estimated, and the number of parameters.251
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Table 1. Compared recommendation systems along with their unknows and number of parameters.

Model Cost function Unknowns Parameters
M1

1
2 ||(Y− XΣΘ>)� R||2F + λ

2 ||Σ||2F Σ 54
M2

1
2 ||(Y− XΘ>)� R||2F + λ

2 ||Θ||2F Θ 1368
M3

1
2 ||(Y− XΘ>)� R||2F + λ

2 ||X||2F X 336
M4

1
2 ||(Y− XΘ>)� R||2F + λ

2 (||X||2F + ||Θ||2F) Σ, Θ 1704

3.3. Evaluation of the compared models252

Several measurements have been employed to evaluate the quality of predictions (also called253

performance) of recommender systems [32]. The most commonly used measure is the Mean Squared254

Error (MSE), which can be used to quantify the deviation of forecasted recommendations from real255

values. The lower the MSE, the better the prediction made by the system. The MSE is defined as256

MSE =
1
N

N

∑
i=1

(xi − x̂i)
2. (9)

User ratings of items are commonly divided into a training set, used to learn, and a test set, used257

to evaluate the quality of the predictions by measuring the MSE between the actual rating and the258

prediction [33].259

Tests were also conducted considering a lack of user ratings (the cold start problem) and260

employing similarity in user characteristics to find the resources that a user may like without having261

assigned previous ratings. It should be mentioned that all the values underwent a normalization262

process so that their range was between 0 and 5.263

3.4. Experimentation and validations264

Different experiments were conducted using the MSE to compare the proposed model with the265

three other models considered in this work; in this case, the lower the MSE, the better the resulting266

recommendation.267

The first experiment implemented a cross-validation methodology with 10 partitions using all268

the available ratings. For that purpose, the 400 ratings were randomly divided into 10 groups with269

approximately 40 ratings each. Subsequently, 9 out of the 10 groups were used to train the algorithm270

and estimate the unknowns, while the remaining group was used for the validation. This experiment271

was repeated until each group was employed for the validation.272

The second experiment considered the cold start problem of new users. For that purpose, the273

ratings of 55 out of the 56 users were the training data, while the ratings of the remaining user were274

employed for the validation. In order to calculate the initial value of the ratings of the validation275

user, the PCC between the characteristics of said user and those of all the users in the training set was276

obtained. Afterward, user ratings with a PCC over 0.7 were averaged. This process was repeated until277

each user was employed for the validation.278

In addition to the 5 types of ratings initially considered in this work (i.e., overall rating, R1;279

contribution to learning, R2; design, R3; content quality, R4; and likelihood of recommending the280

resource, R5), three other ratings were created. Such ratings were weighted in order to include even281

more information about users in the model and make it more general. First, the ratings were weighted282

as if all of them were equally important in the system; this adapted rating was named R6. Afterward,283

an analysis by the research team concluded that the most important ratings should be those regarding284

the contribution to the learning process and the quality of the content in the resource. As a result, a285

more significant weight was assigned to those two aspects, which produced R7. At the end, it was286

decided that the first rating (i.e., the overall rating of the resource) is also an important value to be287
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considered in the model; thus, R8 was created. Equation 10 presents the weights assigned to the 5288

ratings included in the model.289

R6 = 0.2R1 + 0.2R2 + 0.2R3 + 0.2R4 + 0.2R5 (10a)

R7 = 0.1R1 + 0.35R2 + 0.1R3 + 0.35R4 + 0.1R5 (10b)

R8 = 0.2R1 + 0.3R2 + 0.1R3 + 0.3R4 + 0.1R5 (10c)

290

Figures 3(a) and 3(b) are box-and-whisker plots of the MSE obtained in Experiments 1291

and 2, respectively. Different values of the regularization parameter were used, namely, λ =292

{0.01, 0.1, 1, 10, 100}, and the best results are reported. In both cases, the simplest model (M4), which293

does not include the characteristics of users or items, produced the worst results. Additionally, it can294

be seen that results improve as more information about users and/or items is included. Moreover,295

user information exerts a greater influence on the recommendation than item information. Because296

of that, M2 (with user information) outperforms M3 (with item information). This difference is more297

clearly noticeable in Experiment 2, where including item information does not improve the results of298

the model compared to only considering the ratings available in the training set (M4). This behavior299

can be explained by the fact that, in the cold start experiment, user information is also employed to300

provide an initial estimation of the ratings assigned by the validation user. Finally, the proposed model301

(M1), including user as well as item information, obtained the best results overall, which implies better302

recommendations.303
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Figure 3. Achieved MSE with all the ratings and models for both considered experiments
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In order to demonstrate that the proposed model achieves better results than the models for304

comparison, their statistical difference was quantified. For that purpose, a paired Student’s t-test was305

employed with a null hypothesis: there are no significant differences between the reference model306

(M1) and each model for comparison. In turn, an alternative hypothesis was also tested : the average307

MSE value of the proposed model is different to that of the models for comparison. Additionally,308

t-statistic values below 0 indicated that the MSE of M1 was lower than that of the model to which309

it was compared. P-values measured the significance of the difference. P-values under 0.05 (5% of310

significance) indicated a rejection of the null hypothesis (the alternative hypothesis was accepted). The311

results of Student’s t-test are presented in table 2.312

Table 2. Paired Student’s t-test comparing the recommendation models. ∗ denotes a significance level
p=0.05; and ∗∗, a significance level p = 0.01.

Rating Compared model Cross-validation Cold start
h t p h t p

R1

M2 0 −1.3 0.22589∗ 1 −42.628 8.15e−1∗∗

M3 1 −31.029 0.012664∗∗ 1 −67.926 8.95e−5∗∗

M4 1 −18.913 1.49e−4∗∗ 1 −66.956 1.29e−4∗∗

R2

M2 0 −2.72e−4 0.99979∗ 1 −39.325 2.41e−4∗∗

M3 1 −28.297 0.019731∗ 1 −63.357 4.92e−4∗∗

M4 1 −17.737 2.61e−4∗∗ 1 −63.211 5.19e−4∗∗

R3

M2 0 10.206 0.33408 1 −42.289 9.13e−1∗∗

M3 1 −3.61 0.005659∗ 1 −68.317 7.73e−5∗∗

M4 1 −14.631 1.4e−7∗∗ 1 −68.375 7.56e−5∗∗

R4

M2 0 0.41004 0.69137 1 −40.533 1.62e−4∗∗

M3 1 −31.229 0.01226∗∗ 1 −66.433 1.56e−4∗∗

M4 1 −243811 1.57e−5∗∗ 1 −66.239 1.68e−4∗∗

R5

M2 1 25.228 0.03262 1 −4.021 1.81e−4∗∗

M3 1 −2.938 0.01654∗∗ 1 −66.719 1.40e−4∗∗

M4 1 −16.215 5.72e−4∗∗ 1 −65.752 2.01e−4∗∗

R6 M2 0 0.52056 0.61524 1 −40.727 1.53e−4∗∗

M3 1 −33.316 8.77e−3∗∗ 1 −65.752 2.09e−5∗∗

M4 1 −27.771 4.94e−6∗∗ 1 −66.234 1.68e−4∗∗

R7

M2 0 0.71407 0.49328 1 −39.646 2.17e−4∗∗

M3 1 −56.399 3.17e−4∗∗ 1 −65.345 2.35e−5∗∗

M4 1 −14.83 1.25e−3∗∗ 1 −65.242 2.44e−4∗∗

R8

M2 0 17.804 0.1087 1 −40.144 1.85e−4∗∗

M3 0 −16.176 0.1402∗ 1 −64.831 2.84e−4∗∗

M4 1 −20.013 9.03e−6∗∗ 1 −65.739 2.02e−5∗∗

In most cases, the value of the MSE obtained by the proposed method is lower than that of the313

methods for comparison (negative t-statistic values), with significance values much lower than 0.01. It314

is thus demonstrated that, overall, the proposed method significantly outperforms the other methods315

proposed in the state-of-the-art literature.316
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4. Discussion and conclusions317

This article presented a hybrid recommender system that uses matrix factorization techniques.318

Such system integrates ratings, as well as user and item characteristics, in order to estimate the319

relationships that exist between such characteristics and offer educational resources that help students320

in their learning process in a virtual environment.321

In order to conduct validations and make comparisons with other models proposed in the322

literature, a data set was created with a total of 400 registers (students = 56, OERs = 152, and ratings =323

400). In it, the learning style of each student was defined as a representative characteristic. Several324

metadata of the OERs were utilized, especially those related to the educational category. Therefore, the325

educational description by the author of the resource or the user who tagged it could be used to define326

the extent to which such resource could contribute to each learning style. Additionally, the ratings327

were classified into 5 different categories: overall rating, contribution to the learning process, design,328

content quality, and likelihood of recommending the resource to other users.329

The proposed model (M1), using known information about items and users, was compared with330

three other models proposed in the literature: M2, where user information is known; M3, where item331

data is available; and M4, where user and item information are unknown. The MSE was used to make332

the comparison; the lower the MSE, the better the recommendation model. Two experiments were333

conducted. In the first one, the data set was divided into 10 partitions by means of cross validation; in334

the second, the cold start problem of a new user was implemented to perform the validation.335

The validation in this study enables the authors to conclude that the proposed recommendation336

system produces better results because it is not only based on users’ ratings, it also considers other337

types of information, which can be implicit or explicit. The hypothesis that the more information the338

better the results is therefore confirmed.339

In future studies, other demographic characteristics of user profiles could be taken into account,340

and the cost function could be changed to consider nonlinear structures hidden in the ratings.341
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