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ABSTRACT 

The study of complex systems deals with emergent behaviour that arises as a result of 

nonlinear spatio-temporal interactions between a large number of components both within 

the system, as well as between the system and its environment. There is a strong case to be 

made that neural systems as well as their emergent behaviour and disorders, can be studied 

within the framework of complexity science.  In particular, the field of neuroimaging  has 

begun to apply both theoretical and experimental procedures originating in complexity 

science – usually in parallel with traditional methodologies. Here, we demonstrate that the 

use of such traditional models may distort the outcomes of neuroimaging experiments – 

hence affecting their interpretability and raising questions about their reliability. Therefore, 

we argue in favor of adopting a complex systems-based methodology in the study of 

neuroimaging, alongside appropriate experimental paradigms, and with minimal influences 

from non-complex systems approaches. Our exposition includes a review of the fundamental 

mathematical concepts, combined with practical examples and a compilation of results from 

the literature. 
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INTRODUCTION 

One of the central aims of contemporary neuroimaging is to unify the models of neural 

structure and function in order to shed light, not just on the evolutionary organization of the 

brain, but also on its output, emergent behaviour, as well as on its disorders. Intuitively, one 

would expect the aetiology of brain disorders to be mainly driven by few dominant 

anatomical regions. However, evidence accumulated in recent years has unravelled a 

different picture. In fact, most studies indicate that the functional and structural variance in 

the human brain—during normal functioning, development, ageing and disease—tends to be 

widely distributed and can hardly be attributed to a set of specific regions (1-3). These 

findings have impacted the paradigms used to interpret neuroimaging data, which are 

gradually evolving from phrenological perspectives—that aimed to find associations between 

the variance in the data and parsimonious sets of regions (see (4, 5) for two contrasting 

views on the subject)—to embrace distributed analyses (6) that map the data into regional 

regulatory networks. This latter approach has been borrowed from the rich literature of 

complexity science, whose main aim is to progress our understanding of the essential 

features of complex systems. These two perspectives currently co-exist in neuroimaging 

analyses, and their tools are used, sometimes interchangeably, on similar datasets or within 

the same study (7-9).  

 

In this work, we combine a number of mathematical concepts with practical examples and 

observations from the literature to build a case in favor of the use of complexity science 

analytics to study the brain through neuroimaging techniques.  We aim to demonstrate that 

if the brain is a complex system, and there is strong evidence that it is, then the use of 

traditional models and associated analytics may distort the outcomes of imaging 

experiments. This issue, we believe, is one of the key drivers behind the lack of robustness, 

replicability and, ultimately, poor interpretability of a significant portion of contemporary 

neuroimaging studies. As a solution, we suggest that when a model of complexity is adopted, 

the choice of concepts and tools should be embraced together with appropriate experimental 

designs. We illustrate our position via mathematical concepts combined with practical 

examples, and a compilation of results from the literature. 

 

THE BRAIN AS A COMPLEX SYSTEM 

While the exact definition of a complex system is still under debate (10), there is consensus 

on four properties that all systems characterised as “complex” necessarily share. These 

properties are as follows (11):  

1. Multiplicity. A complex system is made up of a large number of components, each of 

which interacts with its neighbouring components in relatively simple ways. 
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2. Non-linearity. The interactions between components are nonlinear, e.g. changes in the 

output are not always proportional to the corresponding changes of the input. 

3. Self-Organisation. The system self-organises spontaneously, in the absence of any form 

of centralised control. 

4. Emergence. The system exhibits emergent behaviour, i.e. the macroscopic behaviour 

cannot be understood purely in terms of the microscopic interactions (12). Rather, the 

emergent behaviour may result from: a) multi-scale1 organization; b) information 

processing capability; c) dynamical spatiotemporal patterns; d) evolution. 

Of these four properties, multiplicity and non-linearity can be seen as the fundamental 

enablers that – in the right circumstances – allow self-organisation and emergence to 

happen.  

The rest of this article analyses the idea of the brain as a complex system, exploring each of 

these four properties under the light of recent evidence provided by contemporary 

neuroscience. It is to be noted that each of these properties has been studied in the 

neuroscience literature (14-18), but – to the best of our knowledge – there have been no 

unified accounts which look at the four of them with their interrelationships and 

consequences.  

 

1. FROM PHRENOLOGY TO AN EXTENDED VIEW OF NEUROIMAGING MODELS 

Let us start considering the nature of the various parts that make the brain, which is related 

to the first property of complex systems. One of the longest-standing challenges in 

neuroscience is to decipher how variation in neural systems – both structural and functional 

– maps onto variation in behavioural phenotypes. The initial approach used in the analysis 

of imaging data was heavily influenced by a highly localized perspective relating neural and 

phenotypic variability (4). Its use stemmed from the success of neurology/neuropsychology 

at making differential diagnoses, relating dissociable cognitive/perceptual disorders to 

apparent localized damage. Even though the localized damage was just a partial view of the 

underlying pathology, it facilitated the easy intuition that there is a clear mapping between 

form and function. As a consequence, it focused on the use of mass univariate testing to map 

brain correlates of such phenotypic variation (19, 20). This paradigm triggered a long and 

enduring controversy, facing those with the view that it is paramount to protect results from 

false positives by using stringent significance thresholds (21), against those concerned about 

the loss of information due to high rates of false negatives (22). To a large extent, this 

discussion stems from conceptual differences in the a-priori expectation of the distribution 

of the brain’s signals associated with a certain phenotype. Whereas the former position 

 

1 Also sometimes referred to as hierarchical organisation, see discussion in 13. Simon HA. The 
architecture of complexity. Proc Am Phil Soc. 1962;106:467-82.. 
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assumes that variability is highly concentrated in very few brain loci, the latter expects wider 

associations across brain networks.   

Interestingly, this debate is reminiscent of a similar discussion that took place in the early 

1900’s amongst geneticists, who were divided between the Mendelians – those inspired by 

Mendel’s work on pea genetics and saw phenotypes as the result of discrete, monogenic 

variants – and the biometricians, who did not accept that the inheritance of a continuous 

distribution of traits  (e.g. height, intelligence, etc.) could be related to individual genes. At 

the time, R.A. Fisher resolved the issue by presenting his seminal work on the infinitesimal 

model (23), in which the inheritance of continuous traits could be explained by large 

numbers of variants, each of infinitesimal individual effect. In this theoretical work, Fisher 

conjectured that a large number of loci should be associated with what, at the time, were 

termed ‘complex traits’. Only about 50 years have passed since the first genetic markers 

allowed for the detection of variants that have major effects, and only 20 years since single-

nucleotide polymorphism technology provided dense markers throughout the genome. The 

combination of technological advancements, cost reductions, and increased sample sizes has 

allowed for the gradual expansion of models describing the genetic foundations of complex 

traits. It is now generally accepted that common single-nucleotide polymorphisms with 

small individual effect sizes – generally below the statistical significance levels of 

experimental designs – account for most of the variability of common genetic traits (24-26). 

Equally, complex disorders that are defined over a clinical spectrum demonstrate similarly 

broad genomic patterns (27). For example, recent work on the genetic architectures of 

schizophrenia has revealed that more than 70% of 1-Mb genomic regions contain variants 

influencing the risk of the disorder (28). In fact, a more general ‘omnigenic’ view of complex 

traits and their heritability and evolution is now driving most of the genetic contemporary 

discourse (29, 30).  

 

Moving from the genotype to the intermediate phenotype, there is increasing evidence that 

some of the remarkable computational capabilities of the brain, such as object recognition – 

(still unmatched by machines) (31) – depend on the ability of neural systems to encode 

simple inputs into redundant widespread representations (31) and that this distributed 

architecture supports executive function (32). The conceptual models used in neuroimaging 

studies have evolved in the same direction. The field has been gradually shifting its focus 

from the analysis of to the analysis of covariance, e.g. moving from localized effects to 

distributed networks (33-37) However, a conscious, argumentative debate between these 

approaches has been lacking, and the two methods still co-exist. In particular, there remains 

the unanswered question of whether complex behaviour is supported by activity 

concentrated in few loci or by widely distributed networks. The latter view is supported by 
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substantial evidence: Gonzalez-Castillo and colleagues used very large sample sizes or very 

extended single subject designs to reveal brain-wide functional support for simple tasks in 

fMRI studies (38, 39). Similarly, Haxby and colleagues (40) demonstrated that the 

representations of faces and objects in ventral temporal cortex are widely distributed and 

overlapping and second, using structural data, Chu et al (41) demonstrated that feature 

selection (e.g. regional variation) was as effective as total brain volume at predicting the 

progression from minimally cognitively impaired cohorts to Alzheimer’s disease. 

 

A complex system perspective on neural function results in predictions for the distribution of 

measured neural activity across the brain, which differs from predictions due to the localized 

perspective. For discussing some of these predictions, here we consider fMRI data from the 

Individual Brain Charting (IBC) project (42), which consists of a fMRI-curated dataset, 

acquired in a fixed environment from a permanent cohort of the same 12 participants during 

the performance of a dozen tasks, encompassing a wide range of motor and psychological 

domains. The results are presented in Figure 1, following the format in (29) where the z-

scores obtained from the testing of  each task-vs-control contrast (only positive z-scores 

considered) were sorted in descending order and plotted versus the log of their rank. Figure 

1A and 1B depict simpler (mostly motor) and higher mental processing tasks, respectively.  

 

Figure 1: The panels illustrate the vectors 

of z-scores extracted from task-vs-baseline 

contrast (positive values only) maps 

obtained from fMRI studies of 

simple/motor tasks (1A) or more complex 

activities (1B). The x-axis represents the 

logarithm of the z-score ranks. The red lines 

represent the same z-scores for the normal 

null distribution. The blue lines represent 

the James-Stein boundaries, i.e. the 

minimal decay of a z-score distribution that 

would justify the use of statistical thresholds 

for the estimation of the z-scored vector for 

each contrast (see Eq. [1]). The boundary 

curve has been arbitrarily scaled to the 

maximum z-score value for the group of 

tasks for which the theory suggests the use 

of shrinkage estimators for all vectors with smoother decays. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 September 2020                   



Page 7 of 27 

 

 

These plots are to be contrasted with the expected null distribution (red) and the decay 

(blue): 

 𝑧𝑘 = 𝐶𝑘−1
2⁄  , [1] 

 

where 𝑧𝑘  represents the z-score of rank 𝑘 ; 𝐶 is an arbitrary constant (which in the two plots 

in Figure 1 was fitted to the max z-score in each panel); and the exponent -1/2 is a minimum 

bound on the rate of decay of the z-scored vector – the estimation of which warrants the use 

of a statistical threshold, whereas vectors with a slower rate of decay require approaches 

based on weighted averages of the whole distribution (43, 44).  

 

It may be seen that the curves in Figure 1 decay in a smooth manner – even in the simpler 

tasks, in which one would expect the signals to be described by a small number of 

coefficients with steeper decay rates  - and do not satisfy the minimum requirement for the 

use of thresholding. In other words, the boundary in [3] is a way of formally stating that the 

use of thresholds to separate signal from noise in a multivariate vector is unwarranted when 

no such clear separation exists. In fact, any small change in experimental setting, imaging 

technology, pre-processing, as well as inter-individual variability (both neural activation, 

morphological or non-neural) could easily swap the ranks of the z-scores, thus limiting the 

reproducibility of the results (43). Furthermore, these plots confirm that the activity 

supporting the execution of a very large variety of tasks is distributed across much if not the 

entire neural system and that the brain therefore satisfies the first requirement in being 

classified as a complex system.  

 

2. INTERACTION AND NONLINEARITY 

Let us consider now non-linearity, the second key aspect of complexity. Nonlinearities within 

a complex system arise as a result of interactions between its elements. The brain offers 

several examples of nonlinear relationships between its physiological parameters. For 

example, there is the way in which V1 neurons respond to inputs (45) – where object 

recognition is performed by nonlinear operations on distributed, largely redundant 

representations (45) – or the response of evoked deep tissue pain (46) – where the response 

is linearly related to pain intensity in certain regions, but is nonlinear in others.  

 

However, the point we want to make in this section is that nonlinearities in complex systems 

are generated by the interactions amongst elements when changes are applied to the organic 

whole. To illustrate this perspective, let’s start with a simple theoretical illustration, which 

will then showcase how these inferences might apply to a real scenario. As a simple example, 
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let us consider a population of rabbits that reproduce regularly with a certain birth-rate R. 

The relationship between the number of rabbits at time t, denoted by Nt, and the 

corresponding quantity at time t+1 can be expressed as 

 𝑁𝑡+1 = 𝑅𝑁𝑡 . [2] 
 

In particular, if one considers the case R = 2 and runs three iterations of the model, starting 

from one rabbit at t=0 we obtain eight rabbits at t=3, while if we start with 2 rabbits the final 

total is sixteen. This confirms that this system is linear and that the totality of the system is 

equal to the sum of the parts, as two rabbits produce twice the offspring of a single one.  

 

The linear model above can be readily turned into a nonlinear complex system with 

interacting elements if we introduce a constraint wherein offspring need to compete for 

resource. Then, the model in (2) turns into the simple, but effective Verhulst model (47): 

 

 𝑁𝑡+1 = 𝑅 (𝑁𝑡 −
𝑁𝑡

2

𝑃𝑚𝑎𝑥
) , [3] 

 

where 𝑃𝑚𝑎𝑥 represents the maximum capacity of the environment to keep the offspring alive. 

Setting 𝑃𝑚𝑎𝑥 = 10, we run 3 iterations of this algorithm with an initial state of one rabbit to 

obtain four offspring. Running the same model with three iterations and starting with two 

rabbits we obtain five offspring. In this case, the offspring of two rabbits is not five-times the 

off-spring of one rabbit (see 

example illustrated in Figure 2). 

 

Figure 2: The panel above 

illustrates a simple linear growth 

model whereas the offspring of 

two rabbits is always twice the 

number of offspring of a single 

rabbit, whatever the number of 

iterations. 

In the logistic model below, a 

resource constraint makes the 

rabbits compete for resources and, 

this time, the offspring of two 

rabbits is not twice the offspring of 

one 
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The above example demonstrates three important phenomena. Firstly, a simple resource 

constraint on the system introduces a highly non-trivial interaction between elements, so 

that the totality is not anymore equal to the sum of the parts. Secondly, this interaction 

translates into a non-linear behaviour observed within the system. Thirdly, the reproduction 

rate in (3) depends on the initial number of rabbits Nt.  

 

The insights developed over the simple example can be used to understand more 

complicated issues related to brain development, brain ageing, and their disorders. For 

example, it has proven difficult for neuroimaging studies in autism to replicate both 

structural and functional results (48, 49), whereas the most consistent finding is the 

heterogeneity of imaging measures (50). One particularly puzzling finding is related to brain 

development of subjects within the autistic spectrum: these populations exhibit increased 

brain volumes in young children, whereas the rate of growth decreases subsequently during 

adolescence to meet the normal developmental curve between 10 and 15 years of age, with 

the volume of many structures finally declining atypically into adulthood (51-53). These 

findings are paradoxical from the perspective of a linear system; however, it is likely that a 

suitable nonlinear model of growth could explain why a more numerous initial state would 

experience a strong bias downwards in its developmental rate, especially when the whole 

system is placed under exogeneous pressure.  

More generally, it is often noticeable in neuroimaging that individual developmental 

trajectories seem to provide much better resolution to categorize psychiatric disorders than 

cross-sectional data (54). This phenomenon is known in the literature of complexity science 

and dynamical systems as non-ergodicity, which characterises dynamical systems in which 

the statistics computed over single trajectories are not necessarily equal to the statistics 

across the population (55). This is equivalent to say that trajectories that start from different 

initial conditions may exhibit radically different dynamics. Non-ergodicity has dramatic 

consequences in the context of ageing and age-related disorders, where imaging studies have 

shown that cross-sectional analyses produce findings that are often in discrepancy with 

longitudinal analyses on the same subjects (56). In particular, longitudinal analyses unveil 

complex nonlinear trajectories of structural and functional data of anatomically parcellated 

regions, which can have radically different dynamics challenging most available explanatory 

models (57-60). Notably, during normal ageing, some brain areas may exhibit little to know 

age effect on regional cerebral volume, while others show a complex, non-linear relationship 

with age.  This is mirrored by the significant intra-subject variability of cognitive decline – 
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see, for example, the findings of the Nun Study (61), in which cognitive domains within the 

same individual deteriorate at very different rates (62).  

When it comes to connecting the intermediate phenotype (i.e., the brain) with environmental 

modifiers on the one hand and genetic factors on the other, recent analysis of very large 

datasets have demonstrated that individual variability of MRI measures across ageing is 

spread across a large number of regional networks, or modes – each associated with 

overlapping environmental factors and genes (63). Interestingly, the biological and genetic 

factors involved in ageing accrue over three fundamental processes: metabolism, stress 

(particularly its effects on cellular senescence), and immunity. However, each of these 

processes is in itself a complex outcome of interactions amongst multiple genes and 

environmental factors, such as nutrition, environmental/psychosocial stress, and infections 

(64, 65).  

Motivated by the above evidence, we propose here that the complex developmental and 

neurodegenerative patterns observed in structural and functional data are the result of non-

linear interactions generated by systemic pressures, which stem from metabolic and immune 

challenges punctuated across times (66-68). For example, metabolism is a fundamental 

determinant of neural function, as the brain accounts for ~2% of total body mass, yet burns 

~20% of its energy, which is obtained through oxidative glucose metabolism, thus rendering 

the brain in constant demand of oxygen supply from cerebral blood flow (69). In fact, the 

human brain is, from a metabolic perspective, a scalable version of a primate brain, as the 

energy budget of the whole brain per neuron is approximately fixed across species and brain 

sizes (70) and hence its development has been strictly controlled by metabolic constraints 

(71). Brain metabolism is mostly devoted to sustaining synaptic activity (72) and metabolic 

rates influence neural circuitry and activity patterns by exerting selective pressure toward 

metabolically efficient wiring patterns (73), grey/white matter segregation (74), neuronal 

morphology (75), and neural codes (76, 77).  The metabolic demands of neural circuitry 

render the system highly susceptible to mitochondrial impairments, oxidative stress and 

deficits in glucose metabolism and perfusion. Therefore, the resulting global metabolic 

pressure stemming from noxious metabolic events translates into complex, non-linear 

interactions amongst the system’s constituents. Furthermore, imaging, as well as cognitive 

and behavioural outcomes are strongly dependent on the timing of events across the age-

span (78).   

 

Following the same principles, we propose that immunity-based second processes, that are 

recurrently associated to either developmental or neurodegenerative disorders, may generate 

system-wide pressures that then translate into complex outcomes. In fact, either maternal 

infections during gestation, or activation of the innate or adaptive immune system caused by 
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stressful events, trauma or infections across a lifespan, have demonstrated to be the cause of 

psychiatric or degenerative conditions (79-84). The exact mechanism by which the immune 

system mechanistically affects brain function is still undetermined. One model proposes that 

peripheral cytokine concentrations may cause leakages in the blood-brain barrier, with 

activation of the immune system and consequential interference in transmission and 

plasticity (81, 85, 86). Alternatively, we have recently proposed an indirect model of 

peripheral versus central immunity activation, where the mild peripheral inflammation 

observed in subjects with psychiatric conditions causes stiffening of the endothelial layers. 

This in turn causes a reduced permeability of the blood brain barrier to the transmission of 

small molecules, which (in chronic cases) leads to disturbed homeostasis and reduced 

functional activity (87). 

 

3. SELF-ORGANIZATION AND CRITICALITY 

The third key property of complex systems is self-organization. Self-organization takes place 

whereas some form of global order arises as a consequence of the local non-linear 

interactions between parts of an initially disordered system (88). Importantly, the 

organization should emerge in a spontaneous manner, provided energy is available, and not 

as a result of the actions of a centralized controller or an external guidance. Therefore, the 

self-structuring events are often triggered by seemingly random fluctuations, which are 

dynamically amplified by some form of feedback enabled by the underlying non-linearities. 

The resulting organization is wholly decentralized, being distributed over all the components 

of the system, making it robust and able to endure (i.e. self-repair) or recover from 

substantial perturbations (89). The process of self-organization of a dynamical system can be 

visualized as a trajectory in n-dimensional phase space (where n is the number of its 

elements) that evolves towards equilibria that can be described in terms of limit cycles. The 

evolution of the system is constrained to remain on the limit cycles and this constraint 

implies some form of coordination between its constituent elements (90, 91) . A substantial 

amount of evidence, based on both human and animal experiments, indicates the important 

role of neural plasticity in the maturation of perceptual and cognitive processes. In other 

words, neural structures underlying these functions require sensory input for their 

maturation and genetic instructions are not sufficient to specify neuronal connections with 

significant precision (92, 93). 

  

Importantly, the brain (as many natural complex systems) displays macroscopic patterns of 

activity with spatial and/or temporal scale invariance. The latter is a property which results 

in dynamical systems, e.g. those exhibiting turbulent flow (94), evolving in such a way that 

(except at the spatial or temporal extremes) it is not possible to distinguish the scale at which 
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the system is being observed. This self-similar (or “fractal”) character suggests that the self-

organizing process that is ongoing during the development of the central nervous system 

(CNS) drives the system towards the inflection point of a second-order phase transition (11, 

88). Pier Bak used the sand pile model as an exploration of self-organized criticality (SOC) 

(95). A sand pile can be organized by a simple rule that sees the grains falling randomly on a 

grid and accumulating until they topple sideways once they have reached a certain height 

(96). Once the grid starts filling up, avalanches of all sizes start cascading with an overall 

size-probability distribution which demonstrates the characteristic power law behaviour 

observed in self-similar dynamical systems (Figure 3).  

 

Figure 3: A simple sand-pile experiment simulated on a 20x20 grid (left) whereas sand is 

dropped randomly on the square, and it topples sideways, as well off the grid, when a set 

limit for the height of a sand column is reached (4 grains in this case). The right panel 

shows the total sand in the grid through time,  as well as the size of the avalanches falling 

off it. 

 

Many natural systems tend towards such power law distributions, as these distributions 

allow for maximal adaptivity and other functional benefits (97). As in the case of the sand 

pile model, any perturbation to the system can be passed across scales and dissipated quickly 

– this endows the system with stability (98). Another example of this phenomenon is the 

energy cascade in turbulent hydrodynamic systems, in which kinetic energy is passed 

between eddies of decreasing size until it is distributed, at the smallest scales, to the viscosity 

of the liquid (99).  

Other important requirement for self-organization is the abundance of available energy, in 

the same way that the sand pile needs a constant supply of grain to sustain itself in a critical 

state. Equally, the brain devotes up to 80% of its energy budget to maintaining its intrinsic 

activity  (i.e. brain’s activity in the absence of an overt motor, perceptual or cognitive task), 

whereas evoked activity in the brain does not use more than 1% of its metabolic reservoir 

(100, 101). This feature has been dubbed the Brain’s Dark Energy (102). 
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Self-organization rests upon four basic requirements (103): interactions between multiple 

constituent elements, strong non-linearity, possibly involving positive and negative 

feedback, a dynamic behavior striking a balance between exploitation and exploration, and 

availability of energy, which allows to overcome the natural tendency to increase entropy 

(e.g. disorder). 

 

The above requirements can be readily observed in the organization of cortical structures. As 

summarized in (104), the brain (primarily the cortex) is made up of a multitude of 

elementary units, each of which consists of two neurons – a pyramidal excitatory unit 

coupled with a gamma aminobutyric acid (GABA) interneuron that, via a delayed negative 

feedback, transforms the firing of the unit into an oscillation in the gamma frequency (105), 

the so-called pyramidal interneuronal network gamma (PING) network. These elementary 

units are weakly connected via further GABA interneuron projections into and across the 

individual neural columns (106). Therefore, local oscillations in the gamma frequency are 

the binding force that generates rapid metastable dynamics, moving between 

synchronization and de-synchronization, which spread across the cortex. These elementary 

computational motifs have been observed across various brain regions, as well as across 

scales (104), reaching the long-range synchrony of neural activity. This supports the view of 

the brain as SOC system (107-110), with a distinctive fractal signature both in its structure 

and function (104, 111, 112). The fractal distribution of neural output, also known as the 1/f 

noise, can be observed in the behavioural repertoire, from the motor regions to the higher 

cognitive areas, capturing the range between basic physiological responses and creative 

abilities in the human brain (113, 114). Conversely, evidence suggests that this scale-

invariance in brain output may be lost during anaesthesia-induced loss of consciousness 

(115).  

 

4. EMERGENCE 

The fourth property of complex systems is that they are characterized by emergent 

behaviours. Complex systems, i.e. organisms or environments made up of very large 

numbers of elementary agents (e.g., ants in colonies, birds in a flock, or arrays of molecules 

or weather elements), can produce an impressive array of sophisticated behavior that cannot 

readily be explained solely by the physical properties of their constituent components. As a 

matter of fact, emergence – although still lacking a precise definition – has come to be 

recognized as a key ingredient of any system studied under the umbrella of complexity 

science (12). 
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The concept of emergence is credited to the physiologist and philosopher George H. Lewes in 

his book Problems of Life and Mind (116). At the time, Lewes was concerned with 

reductionism, i.e. why all science doesn’t ultimately reduce to physics. Victorian England in 

times of Lewes saw important advances in mechanics; however, chemical reactions (e.g. the 

production of water from oxygen and hydrogen) seemed to require explanations that were 

qualitative different from those that contemporary physics could provide. Building on this 

idea, Lewes drew a difference between mechanical effects and chemical effects–which he 

called “emergents”. In his words: 

 

“… The emergent is unlike its components in so far as these are incommensurable, and it 

cannot be reduced to their sum or their difference…” ((116), pp.413).  

 

The notion of emergence was first brought into the neurosciences by Roger W Perry, the 

1981 Nobel laureate for physiology and medicine, in the context of the mind-body problem. 

According to Perry, emergence “… is the idea, in brief, that conscious phenomena as 

emergent functional properties of brain processing exert an active control role as causal 

detents in shaping the flow patterns of cerebral excitation. Once generated from neural 

events, the higher order mental patterns and programs have their own subjective qualities 

and progress, operate and interact by their own causal laws and principles which are 

different from and cannot be reduced to those of  neurophysiology.” (117). In other words, 

the behaviour of the whole cannot be explained purely by focusing only on local 

spatiotemporal interactions between its elements in isolation– new theories are needed to 

explain these phenomena. Similarly, higher order cognitive function operates via laws that 

cannot be reduced to those of neurophysiology – instead they operate in the domain of 

psychology.  

Despite their popularity, strong emergent approaches have been the source of numerous 

controversies. From a philosophical perspective, strong emergence has been accused of 

being logically inconsistent (118) and sustained on illegitimate metaphysics (119). 

Additionally, diverse concerns with respect to strongly emergent approaches in neuroscience 

have been raised, including arguments related to their plausibility in regard to empirical 

evidence (120), or to potential limits of their falsifiability (121). Finally, the fact that 

consciousness is usually the only proposed example of strong emergence in the natural world 

(see e.g. (122)) presumes an exceptionalism of consciousness that could be hard to justify. 

These difficulties are avoided by “weak emergent” approaches, which rely on computational 

models that start from biologically plausible elementary units and build higher order 

outputs, using tools and concepts borrowed by complexity science (12). These models are 

defined as  “weakly” emergent, are not limited by ontological faults and have been proven to 
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be scalable and able to realistically simulate the hierarchies of brain output and have now 

reached a level of maturity that enables predictions in the clinical realm (104, 120, 123-127). 

More technically, weak emergence can be broadly categorised into computational 

irreducible and causal emergence approaches. The former, introduced by Bedau in (119) 

based on ideas from Wolfram (128), posits that emergence relates to limitations that hold in 

practice but not in principle; specifically, emergent properties would be generated by 

elements at microscopic levels in such complicated ways that they cannot be derived via 

explanatory shortcuts, but only by exhaustive simulation. While theoretically attractive, 

these approaches currently lack of ways of operationalizing their definitions, and hence their 

practical value is limited. In contrast, causal emergent approaches identify formal methods 

to assess the causal power exerted by macroscopic properties of a system. Causal emergence 

has been operationalized using Granger Causality (160), Pearl’s do() calculus and effective 

information (158,159), and most recently by Integrated Information Decomposition (162).  

 

5. THE TOOLS 

Having examined neural function in terms of the four main properties associated with 

complex systems, we now address the question of how the obtained insights can be 

operationalised.  

Realising the large number of degrees of freedom that characterise the brain, one suggested 

approach is to shift the focus from the analysis of variance to the analysis of covariance. In 

other words, inference should be driven by the way the elements of the systems interact, and 

less so on how much they vary individually. The statistical literature provides numerous 

multivariate methods to study data covariance, which have been already been adapted to use 

in neuroimaging.  A first approach involves using methods such as principal component 

analysis (PCA) (34), independent component analysis (ICA) (37), and partial least squares 

(33). Although not aimed at complexity analysis per se, these tools can be used to explore 

patterns in the data, as well as to derive measures of complexity. For example, Morgera 

Information Complexity is a measure of the extent to which covariance is distributed across 

principal components (129). A second approach is to represent covariance as networks, 

which are a popular tool to capture and explore covariance structures (6). Networks can be 

built on multiple metrics, ranging from standard correlation coefficients to mutual 

information or model-based indices that are generally better suited to capture non-linear 

interactions (130). Non-linear metrics are often preferred, as they avoid spurious patterns 

that can be caused by unjustified linear assumptions (131).  Once the web of interactions has 

been modelled as vertices and edges, the topology of the structure can be further explored, 

both at the macro-scale level – using graph theoretical measures that summarize the 

network properties (35) – and at the meso-scale level where the topological stability of the 
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structure can be further quantified (132, 133). A third approach to analyse covariant 

structures is to explore multivariate correlations, which capture high-order statistical 

properties that go beyond pairwise phenomena (134-137). High-order interactions can be 

used to build hypergraphs, which are networks were links can connect more than two nodes 

(138). Hypegraph analysis is an active area of ongoing research, which is opening novel 

avenues for neuroimaging research (see e.g. (139)). 

Importantly, the brain is a non-linear system and, as such, its behaviour is dynamic.  The 

discussions above have clarified the importance of experimental designs that move beyond 

stationary cross-sectional data paradigms and instead attempt, whenever practical, the 

acquisition of individual trajectories. This also enables the analysis of initial conditions, 

which are often relevant for complex systems; we have already shown how the artificial 

splitting of life-trajectories in development-adulthood-ageing may result in faulted 

inferences. The consideration of trajectories is also relevant at smaller timescales, including 

the duration of a BOLD MRI study where higher resting-state functional activity before a 

stimulus can result in less activation or more deactivation (140). It is often useful to 

characterise dynamics in terms of “states” or attractors, that is, regional patterns of activity 

between which the system oscillates (89). The number of these states and their stability fully 

define such dynamics and can be quantified using standard analytics (141-145) (see Figure 4) 

and have been used successfully in recent work on a broad spectrum of psychiatric disorders 

(146-152). 
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Figure 4: Brain states are more or less likely to be visited by the dynamics (red trace) over 

time by their relative energy/stability. Brain states are defined as intervals of temporal 

coherence (adapted from (153)). 

 

Furthermore, if one accepts SOC as a model for brain, then the use of fractal geometry can be 

justified in studying brain structural data (111, 112) and its deviations from the SOC model. 

Fractal principles enable parsimonious methods to explain rich structures, holding great 

potential to explain brain structure and function. SOC approaches, however, face a number 

of important challenges (154), including the analysis of applicability of principles developed 

to study homogeneous systems (made e.g. by equivalent spins) over heterogeneous systems 

such as the brain. Also, there is a need to operationalize the beneficial properties of 

criticality, such as efficiency and robustness, so that they can render verifiable predictions. It 

must be clarified that these challenges do not put in question the core contribution of SOC 

into neuroscience, namely, that by neglecting the right details neuroscience might be capable 

of finding general underlying principles (155, 156). 

Finally, the study of complex systems requires the quantification of two key properties; 

diversity and emergence. The first one can be described by a measure of entropy, for example 

Shannon’s entropy (e.g.  -∑ 𝑝𝑖 log 𝑝𝑖𝑖  where 𝑝𝑖  is the probability of state i), or variations of it 

including the Excess entropy (157, 158) and the entropy rate – this being closely related to 

the Lempel-Ziv complexity (159) and the statistical complexity of epsilon machines (160, 

161). The second one, emergence, is a unique attribution of complex systems; the availability 

of one such measure would be a key tool in understanding the information flows between the 

various hierarchies/layers of models. So far, attempts to operationalize the various models of 

emergence have had limited applicability (162-165). This work is, however, fundamental to 

the progress of complexity science in general and it application to the neurosciences in 

particular, and novel modelling approaches and effective measures are appearing in the 

recent literature (166). These quantitative approaches allow researchers to frame hypotheses 

about emergence in a formal, rigorous manner, and test these hypotheses on fine-grained 

data-driven alternatives to traditional all-or-none classifications, opening a broad range of 

possibilities for applications.  

 

6. CONCLUSIONS 

We reviewed neural systems from the perspective of complexity science and matched the 

required properties of complex systems with evidence from contemporary neuroscience. The 

use of complexity science is not new to studies of the brain. However, its use has often been 

intertwined with standard analytical approaches that stem from older conceptual 
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frameworks. What is now required is the acceptance of these new frameworks both in terms 

of experimentation and analysis. Complexity science is itself experiencing ongoing progress, 

and some of the required tools are perhaps yet to be discovered. Nonetheless, the potential 

insights to be gained by this paradigm are sufficiently promising to render this a very 

worthwhile endeavour.   
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