Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 September 2020

10

11

12

13

14

15

16

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

Article
Multi-Winner Election Control via Social Influence:
hardness and algorithms for restricted cases

Mohammad Abouei Mehrizi '* and Gianlorenzo D’Angelo >*

1
2

mohammad.aboueimehrizi@gssi.it
gianlorenzo.dangelo@gssi.it
1t Gran Sasso Science Institute (GSSI), Viale Francesco Crispi 7, 67100, L'Aquila, Italy.

Abstract: Nowadays, many political campaigns are using social influence (SI) in order to convince
voters to support/oppose a specific candidate/party. In election control via SI problem, an attacker
tries to find a set of limited influencers to start disseminating a political message in a social network of
voters. A voter will change his opinion when he receives and accepts the message. In constructive case,
the goal is to maximize the number of votes/winners of a target candidate/party, while in destructive
case, the attacker tries to minimize them. Recent works considered the problem in different models
and presented some hardness and approximation results. In this work, we consider multi-winner
election control through SI on different graph structures and diffusion models, and our goal is to
maximize/minimize the number of winners in our target party. We show that the problem is hard to
approximate when voters’ connections form a graph, and the diffusion model is the linear threshold
model. We also prove the same result considering an arborescence under independent cascade model.
Moreover, we present a dynamic programming algorithm for the cases that the voting system is a
variation of straight-party voting, and voters form a tree.

Keywords: Computational Social Choice; Election Control; Multi-winner Election; Social Influence;
Influence Maximization

1. Introduction

Social media (SM) is an integral part of nowadays life. No one can ignore the effect of SM on
different aspects of our life. Many people from all around the world are using SM to provide/use various
services like teaching/learning, spreading information, events’ announcements, and advertising. It has
been shown that two-thirds of American adults get news on SM [1]. It is easy to find evidence that a
social influence (SI) started by few users has influenced many people. Then, SM is a kind of cheap means
to spread a message among many users. Note that the power of SM is not just like spreading a message
or advertising. Its power comes from the fact that a user will receive news from those who have enough
authority to change his opinion, like close friends, family members, and colleagues. Since using SI is
effective and cheap, it has been attracting the attention of many political campaigns and candidates to
target the user’s opinion through SI. They disseminate a piece of information to change voters’ opinion.
Many real case studies show that campaigns used SI to change the voters” opinion [2-5]. For example,
Allcott and Gentzkow showed that 92% of Americans remembered pro-Trump false news, and 23%
remembered pro-Clinton fake news [6].

There are two well-known diffusion models used in SI called linear threshold model (LTM) and
Independent Cascade Model (ICM) [7]. In LTM, a voter accepts a message if the sum over his incoming
neighbors’ influence, who already accepted the message, is high enough. On the other hand, in ICM, a
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;s voter will accept a message if at least one of his incoming neighbors, who already accepted the message,
sa  can convince him to accept it (please see Section 2 for a formal definition of LTM and ICM).

35 In this paper, we consider the multi-winner election control (MWEC) via SI problem. We are given a
ss  social network of voters, a limited budget, a set of candidates each belongs to a party, a dynamic diffusion
sz model to spread a message among the voters, and an attacker/manipulator who supports/opposes a
s party. When we use LT diffusion model, we assume that the attacker knows the probability that each
3o voter wants to vote for each candidate. To take into account the incoming influence of each node v, we
20 use an updating rule based on the incoming influence from the node’s incoming activated neighbors,
a1 akin to [8]. On the other hand, when we use ICM, we assume the attacker knows the exact preferences list
a2 of all voters. When a node/voter becomes active/influenced/infected, in constructive (resp. destructive)
a3 case, it will promote (resp. demote) the position of the target candidates in its/his preference list, akin
s to[9,10] (See Section 3 for formal definition).

as Regarding both LTM and ICM, there will be several winners, and they will be elected according to
s the overall candidates’ scores after the diffusion. In the constructive (resp. destructive) case, the attacker
«z  wants to find a set of nodes (voters), according to its budget, to start the diffusion and change the voters’
ss opinion to maximize (resp. minimize) the number of winners from his target party. In fact, in a given
s directed graph, we should find some diffusion starters to influence the voters such that the difference
so between the number of winners from our target party, w.r.t. the number of winners in the opponent party
s1  with the most winners, after and before the diffusion is maximized (resp. minimized). We present some
s2 results, including hardness of approximation, approximation, and polynomial-time exact algorithms
ss considering some well-known objective functions on different structures.

54 Related works. There are many articles regarding voting manipulation (see the survey in [11]). The
ss problem of finding a set of limited seed nodes from a given graph to maximize the expected number of
s influenced nodes is known as Influence Maximization (IM) problem. There exists an extensive literature
s7 about it, too [12]. Domingos and Richardson [13,14] introduced the IM problem, and Kempe et al.
se formalized it [7,15]. On the other hand, few works consider both of them together, i.e., the election
s control through SI problem.

60 Wilder and Vorobeychik introduced the election control through SI problem regarding single-winner
e1 elections [10]. They investigated maximizing margin of victory (MoV) and probability of victory (PoV),
e2 where MoV is the difference of the score between the target candidate and the most voted opponent
es after and before the diffusion. The problem is considered under ICM. They showed maximizing MoV
e¢ is NP-hard, and presented a 1 — %-approximation algorithm concerning the optimal solution. Also,
es for maximizing PoV, they showed that it is NP-hard to approximate the problem within any constant
es factor. Coro et al. [16,17] extended the work using any non-increasing scoring function under LTM.
ez They demonstrated the same approximation factor for it. Abouei Mehrizi et al. considered the problem
es When the attacker knows a probability distribution over the candidates instead of the exact preferences
es list, under LTM [8]. They showed that maximizing/minimizing the expected probability to vote for
70 a target candidate is hard to approximate within any constant factor under unique game with small set
= expansion conjecture. They also presented some constant factor approximation algorithms for a relaxed
72 version of the problem. Abouei Mehrizi and D’Angelo showed that in multi-winner elections, when the
»s» manipulator wants to maximize/minimize the number of winners in his target party, the problem is
z¢ inapproximable under ICM, except P = NP [9]. They also presented some constant factor approximation
75 algorithms when the voting system is similar to the straight-party voting.

76 Bredereck and Elkind considered some different models, like bribing nodes/voters, adding or
7z deleting edges under LTM. They showed that the problem is hard in those models. They also presented
7e some polynomial-time algorithms for specific cases of the problem [18]. Castiglioni et al. investigated
7o similar models under ICM. They showed that the problem is hard even in restricted structures. Regarding
s the bribing nodes to influence other voters, they proved that the election control is hard even if the given
e graphis aline. Also, considering the edge removal/addition case, they demonstrated that the problem is
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ez hard even if the attacker has an infinite budget [19]. Faliszewsk et al. considered the problem where each
es voter has a preference list. Each node of the graph is representative of all users with the same opinions.
e There is an edge between two nodes if their opinion differs by the place of an adjacent pair of candidates.
es They used LTM and proved that maximizing the number of votes for the target candidate is NP-hard
e and fixed parameter tractable with respect to the number of candidates [20].

87 Also, there is another model in which voters have a preference list over candidates, and voters will
ss change their preference list according to the majority of their neighbors’ opinions [21-23].
80 Outline and our results. In Section 2, we define the most prominent diffusion models in the literature

so (called LTM and ICM) that we used in this paper. Section 3 defines our model and objective functions
o1 formally. We show that our problem is hard to approximate within any factor in a general graph when
o2 the diffusion model is LTM in Section 4. Section 5 contains the same result when the diffusion model is
o3 ICM, and the given graph is in the form of an arborescence, i.e., edges are from leaves to root of the tree.
sa Moreover, in Section 6, we investigate the problem while the voting system is a variation of straight-party
os voting (SPV), where voters can vote for the parties. In other words, voters have a preference list (or
9s probability distribution) over the candidates, but they can vote for the parties instead of candidates.
sz We presented a polynomial-time algorithm based on the dynamic programming approach to find the
es maximum difference of votes for our target party before and after diffusion. It also gives a % and
99 %-approximation algorithms for maximizing MoV in constructive and destructive models, respectively.
10 Finally, we will discuss the results and future works in Section 7.

11 2. Background

102 In this section, we introduce two diffusion models that we have used in this paper, called linear
103 threshold model (LTM) and independent cascade model (ICM) presented by Kemp et al. [7,15]. They are the
10a  most prominent dynamic diffusion models used in literature (see a survey on the topic [24]).

10s  2.1. Linear Threshold Model

106 We are given a directed graph G = (V, E). Each edge (1,v) € E has a weight b, », € [0,1]. The sum
107 of the incoming weight to each node v € V is at most one, ie., ), Ni buo < 1, where NZiJ is the set of
10 incoming neighbors of v. Also, each node v € V has a threshold t, € [0, 1] which is generated uniformly
100 at random.

110 In this model, the diffusion will start from a set of nodes S C V known as seed nodes. At the first
w1 step, just the seed nodes will become active/influenced/infected, and all other nodes are inactive. Let us
12 show A; as the set of nodes that are active at step i, i.e.,, A} = S. The activation process, for each step
us 1> 1,is as follows: All nodes in A;_1 will remain active at step 7,i.e., A;_1 C A;; moreover, each inactive
s nodev € V \ A;_; will become active if the sum of the weight from its incoming activated neighbors
us  is not less than its threshold, i.e., for each node v € V' \ A;_4, it will be in A; if Yue NI buy > ty. The
ue diffusion process will proceed in utmost |V| discrete steps, and it will stop as soon as no extra node
ur becomes active, i.e., it stops at step k > 1if Ay = Ar_1. We use Ag as the set of activated nodes after
ue the diffusion process started from the set of seed nodes S. In what follows, to increase the readability of
1o this article, when we say after S, it means after the diffusion process started from a set of seed nodes S. Note
120 that the thresholds are not a part of the input, and they will be generated uniformly at random and
121 independently when we run the process. Also, the process is random, and several executions on the
122 same graph may get different results for Ag.

123 Kemp et al. [7] defined the IM problem as: Given a graph G = (V, E) and a budget B < |V|. Find
12« a set of seed nodes S C V, (|S| < B) so that the expected |Ag| is maximized. They proved that the
12 problem is NP-hard under LTM. Moreover, they showed that a greedy algorithm can solve the problem
126 approximately within a factor of 1 — % — €, where € is any small constant and fixed number.
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127 2.2. Independent Cascade Model

128 Consider a graph G = (V, E) with a weight b, , € [0,1] on each edge (u,v) € E. The same as LTM,
120 all nodes are inactive, and at the first step the seed nodes S C V become active. Let us define S; as the
130 nodes that were inactive at step i — 1 and became active at step i, then S; = S. At each stepi > 1, each
11 node v € §;_; will try to activate its outgoing neighbors with the probability of the edge between them.
132 In other words, consider Nj as the set of outgoing neighbors of node v; for each u € Ny, node v tries to
133 activate u with the probability b, ;. If v has multiple outgoing neighbors, it tries to activate them in an
13¢  arbitrary order. Note that a node becomes active once, let us say at step k, and try to activate its outgoing
135 neighbors exactly once, at step k + 1.

136 Kemp et al. [7] considered the IM under ICM. They showed that the greedy algorithm works for
137 this model, too. They also demonstrated that it is NP-hard to approximate the problem within any factor
13s  better than 1 — %

130 3. Multi-Winner Election Control: Models and Objective Functions

140 In this section, we consider the Multi-Winner Election Control (MWEC), where some parties are
11 running for an election so that more than one candidate will be elected as the winner, like a parliament
12 election. We consider ¢ different parties Cy, ..., C;, each of them contains k different candidates, i.e.,
ws G = {ci, eery c;(}, 1 <i < t. We use C for the set of all candidates, i.e., C = UleCi. Also, without loss of
1as  generality, we assume C; is our target party. Note that there will be exactly k winners for the election.

s 3.1. MWEC under LTM

146 In this model, we investigate the case that the adversary does not know the preferences list of the
17 voters; instead of that, for each voter, the attacker has a probability distribution over all candidates. This
s model is similar to the model known as probabilistic linear threshold ranking (PLTR) defined in [8]. Since
140 most voters do not reveal their preferences in SM, then it is a realistic assumption.

150 The adversary tries to maximize/minimize the number of winners in his target party. For each node
11 v € V, we show 71, as the probability distribution of the voter/node v over all candidates; we define
12 7Ty(c) as the probability that the voter v votes for a specific candidate ¢ € C. Then for every node v € V,
1z and candidate ¢ € C we have 71,(c) € [0,1], and Y_.cc 7o(c) = 1.

154 In LTM, each node has an incoming influence, which shows the amount of pressure from incoming
155 neighbors to support/oppose a target party. We use this incoming influence of node v € V to change its
156 probability distribution. Let us define 7, as the probability distribution of node v after S. Respectively,
17 7Ty(c) is the probability that node v will vote for candidate ¢ € C after S. We use Ag to show the set of
1ss nodes that will become active after S.

We consider a single message which spreads among the voters. The message contains some
constructive/destructive information targeting all candidates in the target party. When a node v becomes
active, its probability distribution will change according to the incoming influence from its activated
neighbors. We have to normalize the vector in order to make sure that the sum of the probabilities is
equal to one, after S. For constructive model the probability distribution of a node v € Ag changes as
follows.

ﬂv(c) + ‘(}T‘ ZueAsﬂN{, buy
T+ ZueAsﬁN{, buo

_ To(c)

I+ e agnng b

7

Ve e Cy: fty(c) =

VYee C\Cy: 7ty(c)
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Recall that N7 is the set of incoming neighbors of node v. Also, considering the destructive case, the
probability distribution of an active node v € Ag will change as follows.

_ To(c)
T+ Yyeasnni buo

Ve e Cq: tp(c)

1
7(€) + eney] Lueasnng buo
L4+ Y agnng buo

Vee C\Cy: fu(c) =

By these changes (and normalization), we guarantee that the sum of the probability for each node
is equal to 1. In both constructive and destructive cases, the probability distribution of inactive nodes
v € V' \ Ag will not change after S, i.e., T, = 7.

Let us define the expected number of votes for candidate ¢ € C after S, as F(c,S) =
Ea[Yoey o(c)]; similarly, F(c,@) = E[L,ey o(c)] is the expected number of votes for candidate
¢ € C before any diffusion.

3.2. MWEC under ICM

Our model is similar to the work presented in [9]. We briefly mention the model bellow. In this
model, despite LTM, we assume that the attacker knows the voters’ preference list. Each voter v € V
has a preferences list 7r,. Abusing the notations, 1 < 7,(c) < tk is the rank of candidate c in the
preference list of the voter v. After the diffusion, inactive voters will keep their original opinions, i.e.,
Vv € V' \ Ag : 7T, = 7y; but the activated voters will change their preferences list as follows. Remind
that Ag is the set of activated nodes after S.

e Constructive: For each node v € Ag and for each target candidate ¢ € C;, the new position of c in
iy iS
. (c):{ my(c) —1 if 3 € C\Cyst my(c)) < my(c)
Ty (c) otherwise,

also, for other candidates ¢ € C\ Cy, if there is a candidate ¢’ € C \ C; s.t. 71,(¢’) = 7,(c) + 1, then
we set 7, (¢) = 7y(c); otherwise the new rank of the candidate ¢ will be calculated as follows.

fto(c) = mo(c) + [{c" € C1 | mo(c") > mp(c) A(Bc € C\Cy : mo(c) < mu(€) < mo(c”))} .

e Destructive: For each node v € Ag and for each target candidate ¢ € C;, we have

7o(c) = mp(c)+1 if 3 € C\Cyst my(c)) > my(c)
) my(c) otherwise,

while for ¢ € C\ Cy, if there exists a candidate ¢’ € C\ Cy s.t. 7y(c’) = mp(c) — 1 we set
7ty (c) = 1y(c), otherwise we have

fto(c) = mp(c) — [{c"” € C1 | mo(c") < mp(c) A (Fe € C\Cy = (") < 710(€) < 70(c))}] -
In this article, we consider the plurality scoring rule for simplicity, where just the most preferred

candidate of each voter gets one score. However, the results can be extended for any non-increasing
scoring function, e.g., k-approval, anti-plurality, and Borda’s rule [25]. Let us denote by F(c,®), F(c,S),
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the expected score of candidate ¢ before and after S, respectively; formally, Vc € C : F(c,@) =
Yoev Ly ()=1, F(c,S) = Eag {Zvev ]lf[v(c):l] .

3.3. Objective Functions

In this paper, our goal is to maximize/minimize the number of winners from our target party. Then
the objective functions are the same as [9]. Considering both IC and LT models, we define F(Cy, S) as
the number of candidates in C; that are among the winners. Formally, consider a set of given activated
nodes Ag, which became active after S. Let us define F,,(c) as the expected number of votes that
candidate c will receive while Ag is the set of activated nodes. We set V4, (c) as the number of candidates
¢ € C\ {c} where the expected number of their votes is less than c. In order to consider the tie-breaking
rule, if Fa, (c 1) Fas(ch ) then c] has more priority thanc ifj <j,orj=j Ni<i. Then Y4, (c)is
defined as

Vas(e)) = [{c) € C| Fagle]) > Fag(e)) v (Fag(d) = Fagd) A (i< v (G = ni< i},

By this definition, we define F(Cy, S) as the expected number of winners from party Cy, i.e., F(Cy,S) =
Eag [ Yeec, Ly, ()= (t=1)k] -

Now, let us define the first objective function as Difference of Winners (DoW), where is the difference
between the number of winners in our target party before and after S. Formally, in constructive (resp.,
destructive) model we define DoW, (resp., DoW,) as

DoW.(Cy,S) = F(Cy,S) — F(C1,D),
DoW,4(C1,S) = F(C1,@) — F(Cy, S).

The problem of constructive difference of winners (CDW) asks for finding a set of seed nodes S (|S| < B
to maximize DoW,(Cy, S). Similarly, destructive difference of winners (DDW) refers to the problem of
finding a set of seed node S (|S| < B) to maximize DoW;(Cy, S).

As the second objective function, we define a more compelling one called Margin of Victory (MoV).
For constructive case, we define it as DoW plus the difference between the number of winners in the
opponent parties with the most winners after and before S. Formally, for constructive (resp., destructive)
case, we define MoV, (resp., MoV, as

MoV, (Cy,S) = F(Cy,S) — F(CS,S) — (F(C1,0) — F(Cy, D)),
MoV,4(Cy,S) = F(C1,@) — F(Cy, @) — (F(Cy,S) — ]-'(CE,S)),

where C;, Cf , respectively, are the opponent parties with the most winner before and after S.

The constructive margin of victory (CMV) problem is looking for a set of seed nodes S (|S| < B) in
order to maximize MoV(Cy, S). Similarly, destructive margin of victory (DMV) refers to the problem of
finding a set of seed nodes S (|S| < B) to maximize MoV;(Cy, S).

4. MWEC on Graph under LTM

It is proven that the problem is NP-hard to approximate within any factor of approximation using
ICM [9]. In this part, we prove the same statement considering LTM.

1 If we want to generalize the problem and consider any non-increasing scoring function g(-), the functions would be defined as

F(e,0) = Loev 8(mo(c)), F(¢,S) = Bag | Euev (o (c))]
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Theorem 1. It is NP-hard to approximate CMV and CDW within any factor on a given graph under LTM.

Proof. Let us reduce the vertex cover (VC) problem to any approximation algorithm for CDW (reps.,
CMV). In VC, we are given an undirected graph G = (V, E) and an integer k; the decision question is: Is
there a set of nodes V' C V (|V’| < k) so that for each edge (u,v) € E, at least one of its vertices are in
V'? Assume Z(G, B) is a given instance for VC problem, where G = (V, E) is the given graph, and B is
an integer value. We create an instance Z'(G’, B) for CDW (reps., CMV) so that G’ = (VU V' U V", E')
is the graph build from G, and B is also the budget for our problem. Let us consider a case where there
are two parties and four candidates, i.e, t =k=2,C=C;UC,, C; = {C%, C%}, Cy = {C%, C%} We fix the
order of candidates in the probability distribution of the voter v as 71, = (71, (c1), 710 (c3), 7o (c3), 7o(c3)),
and build G’ as follows.

e For each undirected edge (u,v) € E add two directed edges (u,v), (v, u) to E'. Set the weight of
1
N5 |
equal toone, ie., Vo € V: EueN{, by, =1
e For eachnode v € V, add two more nodes v/, v to V', V", respectively. Also, add an edge (v,?’) to

E' with b,y = 1. Formally, Vo € V : v/ € V', 0" € V", (v,v') € E' s.t. b, ,y = 1. Note that nodes in
V" are isolated.
e Set the preferences list of the nodes as follows.

each incoming edge to anode v € V as

. By this the sum over weight of all incoming edges is

V - 7/7/0/0/
Yo eV, (22 )
1 1
eV o, =(Z0 =
Vo' e V', m, (2,0,2,0),
11
" " L i
Yo EV,nvu_(O,O,Z,Z).

By this reduction, the score of candidates before any diffusion is F(ci, @) = F(c3,@) = |V|, F(c, @) =
F(c3,@) = 1|V|. Then F(Cy, @) = F(Cp, @) = 1.

Note that in this reduction a node v will become active deterministically, if either it is selected as a
seed node, or all of its incoming neighbors are selected as the seed nodes. Then if we can find a set of
seed nodes S C V so that it activates all nodes in V deterministically, the seed set S is also an answer for
the corresponding VC problem.

In any approximation algorithm, we know that S C V after the diffusion; otherwise, if there is a
node v € V' NS we can replace it with its incoming neighbor v € V such that (v,v’) € E’ and we get
at least the same value for MoV, DoW,. Also, if there exists a node v” € V" N S one of the following
situations holds:

e There exists an inactive node v € V' \ Ag after the diffusion S. In this case, we can substitute v for
v" and then we get at least the same DoW,, MoV..

e There is no inactive node v € V' \ Ag. In this case, according to the nodes’ probability distribution,
when all nodes in V become active, the value of MoV, and DoW, is maximum. Then even if we
remove v from S it does not change the value of MoV, or DoW,. By the way, in this situation,
if there exist any node v € V' \ Ag we replace v with it, otherwise we replace it with a node
veV\S.

Then from now on, we assume S C V.

If all nodes in V become active, since they have an outgoing edge to all nodes v’ € V' with
probability one, then all nodes in V U V' will become active, and the score of the candidates will be as
follows.

Fe1,8) =V,
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*|V|/

F(ch8) = F(&5) =5

1
]:(C%/S) = §|V|-

222 Then F(Cy,S) =2, F(Cp,S) =0, DoW,(C1,S) > 0, MoV,(Cy,S) > 0, and any approximation algorithm
225 will return a positive value, then the answer of Z will be YES.

226 On the other hand, if there is a node v € V, which is inactive after the diffusion, i.e.,, Jv € V '\ Ag,
227 the score of candidates will be as follows.

F(el,s) = V],

(e 5) < 51Vl
F(&5) > 3Vl
F(&,S) = %IV\-

228 Then F(Cy,S) = F(Cy,S) = 1,DoW,(C1,S) = MoV,(Cy,S) = 0, and any approximation algorithm
220 Will return zero, then the answer of Z will be NO.
230 For the other direction, note that if we can find a set of nodes S C V, which is an answer for Z, using
251 the same set of nodes, we can activate all nodes in V U V' and DoW,(Cy, S) > 0,MoV,.(Cy,S) > 0.
To extend the proof for any number of parties (t) and candidates (k), we need to assign the
probability distribution as follows, and the same approach concludes the proof for any t,k > 2.
The same as before, the order of the candidates in probability distribution of a voter v is 7, =

(nv(c%),...,nv(c}(),rcv(c%),...,m,(c%),...,nv(ci),...,nv(c}i)).

YoeV,m=(

11 1 1
/ / (> -
VO G[/,ﬂv/—(k,k,...,k,o,k, ,...,0),

k
— k(t—

k 2)
—— 1 N—
Vo' e V't = (0,...,0,~,...,+,0,...,0).
k k
232 D
233 The following theorem proves the same statement for the destructive case of the problem.

23¢  Theorem 2. It is NP-hard to approximate DMV and DDW within any factor on a given graph under LTM.

235 Proof. The reduction is similar to the constructive case. Consider the case where t = k = 2. We should
236 set the voters’ probability distributions such that one of our target candidates be among the losers before
=3z and after any diffusion. Also, another target candidate is among the winners before any dissemination;
23e  but, he will lose the election if and only if all nodes in the connected part of the graph become active.
230 Please note that, since our target candidates have more priority than the others, we need one more node
2a0 to be able to do that. [
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5. MWEC on Arborescence under ICM

In this section, instead of a general graph, we consider an arborescence structure. We are given a
tree G = (V, E) and a budget B where the directed edges are from leaves towards the root under ICM.
We are asked to find at most B seed nodes to maximize MoV, and DoW,.

It has been shown that the problem in inapproximable on a general graph, except P = NP [9].
Bharathi et al. conjectured that the IM problem considering ICM on arborescence is NP-hard [26]. Lu
et al. proved that the conjecture is true [27], while Wang et al. showed that the IM problem accepts a
polynomial-time algorithm on arborescence under LTM [28]. In the following, we show that our problem
is hard to approximate within any factor of approximation on arborescence under ICM.

Theorem 3. It is NP-hard to find an approximation algorithm for CMV and CDW on arborescence under ICM.

Proof. We show the hardness by reducing the IM problem to our problem. Given an instance Z(T, B) of
IM problem where T = (V, E) is the tree (arborescence), and B is the budget. Let us define the decision
version of the problem as follows: Is there at most B seed nodes so that it activates all nodes of the tree in
expected?

We consider the case where there are two parties and each of them have just two candidates, i.e.,
C=CUGC,C = {C%, C%}, Cy, = {C%, C%} Also, for simplicity, we consider the plurality scoring rule.
The proof can be extended for any number of parties and candidates using any non-increasing scoring
function, akin to [29].

Let us create an instance of our problem Z'(T’, B) as follows, where T = (VU V' U V", E) is a tree,
and B is the same budget for both problems.

e For each node v € V we add two more nodes v/, v” to V/, V", respectively, i.e., Vo € V : v/ €
V', o' ev”.

e For each node v € V we add an edge (v,v”) to E where b, ,» = 1.

o Set the preference list of all nodes as follows.

YoeV:ci=c3-cl-c}
Vo' € V' i3 =t - ) - o,
Vo' € V"¢t - ol - cd - ]

Clearly, seed nodes will be selected from V, i.e.,, S C V; otherwise, if there is a node v’ € SN V’, then the
node is useless and does not affect DoW, or MoV.. If there is a node v € SN V", we can replace it with
its incoming neighbor and get at least the same value for DoW, and MoV..

Using aforementioned polynomial-time reduction, if there exists a set of nodes S C V (|S| < B) so
that MoV, > 0 (resp. DoV, > 0), then the node will activate all nodes in V U V”. Hence, we can select
the same set and they will activate all nodes in T; then the answer of Z will be YES. On the other hand,
if MoV, = 0 (resp. DoW, = 0), it means there is no seed set can activate all nodes in V' U V”; then the
answer of 7 is NO. More formally, before any diffusion the score of candidates is

Flcl, @) = F(cd,0) =0,

Then, none of the candidates in our target party will be elected as winner. After S, if there exists an
inactive node in V U V", then the the score of candidates will be as follows:

F(c1,8) < V|,
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]-'(c%,S) =0,
F(ci,S) > |V,
F(c35,8) = V.

In this case also, none of our target candidates will be among the winners, and MoV, = DoW, = 0. But,
if all nodes in V U V" become active after S, the score of the candidates will be as follows and one of our
target candidates (c}) will be elected as winner and any approximation algorithm will return MoV, > 0
(resp. DoW, > 0). It concludes the prove.

F(e1.5) =1V,
F(cz,5) =0,
F(c,5) =],
F(c3,9) =V
267 D
268 The following theorem demonstrates the same hardness of approximation for the destructive case

260 Of our problem.
20 Theorem 4. It is NP-hard to find an approximation algorithm for DMV and DDW on arborescence under ICM.

211 Proof. The prove for the destructive case is similar to the constructive one. Consider Z’ in Theorem 3,
22 we need to set the preferences list of the nodes so that all of our target candidates win the election before
23 any diffusion; but after the diffusion, one of them (let us say ¢ € C;) will lose if and only if all nodes in
27a VU V" become active. Note that since our target candidates have more priority than the others, we need
2z one more isolated node to ensure that c will lose the election after the diffusion. Following the same
276 approach concludes the statement. [

2z 6. MWEC on Tree Using Straight-Party Voting

278 In this part, we consider the problem on a variation of the straight-party voting (SPV) system (also
20 called Straight-ticket voting) in which the voters can vote for a party instead of candidates [30,31]. This
20 model is used in many real elections [32,33]. The multi-winner election control problem via social
2e1  influence under ICM and a general graph is considered in [9]. They showed that the problem is hard,
202 and presented some constant factor approximation using SPV system. In this section, we consider the
2e3  problem on a tree where the edges are directed from root to the leaves.

284 In the rest of this section, we assume the given tree is a binary tree as we can convert any tree T to a
2ss  binary tree T’ by adding O(n) fake nodes. However, our algorithm can use the fake nodes to navigate
206 the tree, but they neither have a probability distribution (preference list) nor can be selected as a seed
2z node. To ensure that the fake nodes will not change the diffusion process on the tree, the weight of each
2es incoming edge to each fake node should be equal to one. Moreover, the weight of an edge from a fake
28 node to an original node is equal to the weight of the original node’s incoming edge in T.

200 In the following, we present some dynamic programming (DP) algorithm to maximize DoV * (and
201 DOVZPU). Given a tree T = (V, E), and budge B, the idea is that for a fixed node v € V and budget k
202 (0 < k < B), we calculate the maximum outcome from the sub-tree rooted at v, among the following
203 cases: First, select the node v and try to find the other k — 1 seed nodes in its children. Second, do not
20s  select v and look for k seed nodes in its children.

205 We define r(v),1(v), f(v), respectively, as the right child, left child, and the parent (father) of the
206 Node v. In Section 6.1 we consider the problem under LTM, and in Section 6.2 the problem is investigated
207 under ICM.
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6.1. MWEC Using SPV under LTM

In this section, the voters have preferences list over the candidates. However, they vote for
a party proportional to the probability of voting for all candidates in each party. Let us define
Fspo(C1,D), Fspo(C1, S), as the sum of the scores for our target party C; before and after S, respectively.
Formally they are defined as follows.

Fopo(CL@) =E[ Y Y m(c)],

veV ceCy

]:Spv(clzs) = EAS[ Z Z ﬁv(c)].

veV ceCy

The same as before we define the objective function MoV and difference of votes (DoV), for constructive
case, as follows.

DoV (C1,S) = Fopo(C1,S) — Fepu(C1, D),
Movipv(cll S) - ]:spv(clz S) - ]:SpU(Cf/ S) - (Fspv(CL@) - ]:spU(CB/ ®))/ (1)

while C, and C§ are the most voted opponent party before and after S, respectively. For destructive
model the objective functions are defined as

Dovilpv(clls) = fSP’U(Clr ®) - ]:spv(C],S),
MoV /*(C1,S) = Fupo(C1, @) — Fepo(Co, @) — (Fepo(C1, S) — Fepu(C3,S)). @)

6.1.1. Maximizing DoV in SPV under LTM

We define F, as the set of possible probabilities that the node f(v) may become active. More
precisely, consider all nodes in the path from root to the v as F, = {vp,v1,...,v: = f(v)} (recall that f(v)
is the parent of v). If none of the nodes in F), are selected as a seed node, then the probability that f(v)
becomes active by his incoming influence is zero. If just the root (vy) is selected as the seed node, then
the probability that f(v) becomes active is [T.=) bo, ;,,
the nodes v;,2 < i < t, are selected as a seed node, the probability that f(v) becomes active by its parent
is H;ii by, v, .1, and so on; all these probabilities belong to F,.

Let us define DoV, (v, k, S, p) as the maximum value of the sum over the difference of probability
to vote for our target party after and before S in the sub-tree rooted at v while p € F, is the probability
that its parent is active, and the budget is k. Also, all selected seed nodes will be in S. In other words,
DoV,(v,k,S,p) = max{DoV¢"(Cy,S)} in the sub-tree rooted at v while it will become active with
probability p - b¢(,) , and [S| < k. The formal definition of DoV¢(v, k, S, p) is as follows:

; also, if v1 is selected as a seed node but none of

DoV.(v,k,S,p) = max{
maxlli/zo{DOVc (7’(’0),]{/, S, p- bf(v),v) + DOVC (l(v),k —_ k// S, p- bf(v),v) } =+ p- bf(v),?} . Dy,

max’,g;lo{Dovc (r(0),K,SU {v},1) + DoV, (I(v),k — K —1,S U {0},1) } +D, } 3)

where D, is the increased score of our target party made by the node v if it becomes active, which is

mo(c)+ A -p-b )
ICi] f(v)o
D, = —1p(c) | . 4)
’ CGEC] ( 1+ p- bf(v),v ’
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sz We can calculate and store the values in a two-dimensional array A[B + 1, |V|] where the rows are the
s0s budgets (starting from zero to B), and the columns are the nodes of the tree presented as the BFS reverse
s order, and each cell (i, j) (0 < i < B,0 < j < [V]) of the array refers to another array A’[|F, |]. Then in the
a0 worst case, since the budget B, and |F,| (for any v; € V) are at most equal to |V|, then we can solve the
su  problem in polynomial time using O(|V|?) memory. Note that we have to fill the matrix A left-to-right
sz and top-down, while for each cell of it we can fill the corresponding array A’ in any order.

313 As the base cases, for each leaf v € V, and p € F,, if k > 0 we set DoV, (v, k, S, p) = D,, otherwise,
s if k = 0 we have DoV¢(v,k, S, p) = p - bg(y) » - Do which is the difference of the probability to vote for
a5 our party after and before diffusion S, made by the node v. In fact, if the budget is greater than zero, the
s1.s  node will become active for sure, and we need to consider the difference of scores, but if the budget is
a1z Zero we cannot select it as a seed node and the value should be multiplied by the probability that the
a1e node will become active, ie., p-b F(0)0° We also define DoV, (null, k,S, p) = 0, that is, the value of DoV,
a0 for a null reference is zero. It is useful when a node has just left (resp. right) child, then the value of the
;20 function for its right (resp. left) child, regardless of the other parameters, is zero. The pseudo-code of the
sz DP is presented in Algorithm 1, which calculates the maximum DoVipv ; by small changes, it can find the
22 seed nodes too. Note that the final answer will be calculated by DoV (vre0t, B, @,0) where vyt is the
s23  root node of the tree, B is the budget, @ represents that we have no seed node so far, and 0 means the
;24 parent of the root node will be activated with zero probability. The following theorem shows that the DP
a2s - works well.

s2e  Theorem 5. Given a tree T = (V, E) and budget B, the DP (3) finds a set of seed nodes S (|S| < B) to maximize
327 DOV(S;pv.

22s  Proof. Consider the matrix A[B + 1, |V|] where each cell Ak, v] point to another array A’ where the
;20 columns are all possible probabilities that f(v) will become active. Calculating all possible probabilities
s30  for the array A’, we have at most |F,| columns for each node v € V and budget 0 < k < B, and for each
sa1 of them, we need to calculate and store the maximum DoV..

332 Please note that if f(v) becomes active, it can activate v with a probability equal to the weight of the
a3 edge between them (by(,) ,). It holds because each node has just one incoming edge (its parent), and the
a3a  threshold of the node will be generated uniformly at random. Then the probability that the threshold of
a3 the node v be less than (or equal) to the weight of the incoming edge is by(y) -

336 Let us show that all values in the arrays will be calculated correctly, by induction. To see that,
sz consider the base cases. For each leaf v € V, the node cannot activate any other node as it has no
s outgoing edge. Then, these nodes cannot change the probability distribution of other nodes. In other
339 words, each leaf will change just its own probability distribution. If k = 0, it means that we cannot select
20 the node as a seed node, and we need to consider the probability of activating the node, because just
s activated nodes can update their probability distribution after the diffusion. Then if k = 0, we have
sz DoVe(v,k,S,p)=p- bf(v%v - Dy, where Dy, is the difference of the party’s score if the node v becomes
a3 active (defined in (4)), and p - bg(,) ,, is the probability that the node will be activated by its parent. On
sas  the other hand, if k > 0, we can select v as a seed node, and it will be activated with the probability
s Of one, then we have DoV, (v,k, S, p) = D,. Using the updating rule (defined in Section 3.1), and the
sas  definition of DoV’ (defined in (1)), the base cases are true.

Let us define (i’,j') < (i,j) if j < j, or j’ = j Ai’ < i. We have shown that all arrays A’ related to
the base cases filled out correctly. Now by induction step, assume all related arrays related to pair (i’, ')
smaller than (i, j) are correctly calculated. In order to calculate the A’ related to Ali, j], for each column
p € Fy, we use following formula

DoVC(vj, i,S,p)= max{
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Procedure DoV(Tree T = (V,E), Budget B)
A+ [B+1,|V]] > It is a two-dimensional array A[0..B,0..|V|—1]
Name all nodes in V from 0 to |V| — 1 in BFS reverse order
for (j« 0;j < |V|;j+ j+1)do
Fy; <= Set of all possible probabilities that f (vj) may become active
for (i< 0;i<=B;i<i+1)do

> the variables i,j are a counter for rows and columns, respectively.
Ali, f] <—Array[|FZ,].|] > Each cell (i,j) is an array
if (v; is a leaf) then
for (p € F,;) do

. oy () 27 Py
Ali, j; p] + Leec, ( : 1+,|,,;§J((v/_>’vj L — 7y, (c))
if (i = 0) then
| Al jipl < P bpo),0 - All i p)

end

end

continue
end

for (p € ;) do
> If r(v]-) or l(v]-) does not exist, A[...,r(vj) or l(v]-);...] is zero.

1 .
)

DZ} — ZceCl ( 1+p‘bf(77]‘),v]-
max; « maxi_o(A[k,r(v;); p - bf(”j),vj] +Ali =k, 1(v)); p- bf(v/'),vj])
max’ < maxi_h(Alk, r(07);1] + Ali — k —1,1(2);1])
Ali, j; p] <= max(maxj +p - bs(y ) o, - Do, maxj+ Dy)

end

end

end

return A[B, |V| —1,0] > The final result for the root node using all budget
end

Algorithm 1: Calculating maximum DoV, for e given tree T and budget B when the diffusion model

is LTM and voting system is SPV.

maxf(:o{DoVC (T’(Uj),k, S,p- bf(vj),vj) + DoV, (l(vj),i —kS,p- bf(vj),v]-) } +p- bf(vj),vj Dy,

max,l;lo{Dch (r(vj),k, SU{v;},1) + DoV, (I(v;),i —k —1,5U{v;},1) } + Dy, },

sz in which the first maximization considers the maximum value among all possible cases that we do not
s select the node v; as a seed node, and the second one considers the maximum value among all possible
s40  cases that we choose v; as a seed node. The last term in each maximization is the increased amount of
350 DoV, in the node vj, which is according to the probability that v; will become active. Note that in the
51 above formula, we are using the value of DoV, for the children of vj, and the nodes are sorted as the BFS
2 reverse order, then all required values are correctly calculated before, and we are selecting the maximum
sss  value among all possible cases. Then DoV(v;,1, S, p) will find the maximum possible value of DoVy'”
ssa  correctly and concludes the proof.

355 O
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For the destructive model, we define DoV;(v,k, S, p) as the maximum difference of probability to
vote for our target party before and after S in the sub-tree rooted at v, while the budgetiskand p € F; is
the probability that f(v) will become active. Formally, we define DoV(v, k, S, p) as follows.

DoV,(v,k,S,p) = max{

maxk,_o{DoVy (#(0),K, S, p - bre)0) +DoVa (o), k=K, S,pbryo) b+ P bro)- Dl

maxllz,;lo{Don (r(v),k',SU{v},1) + DoVy (I(v),k — k' —1,SU {v},1) } + Dé}, (5)

where D), = Yeeq, (ﬂv(c) — %) is the difference that the node v can apply. Moreover, for
the base cases of the problem, for each leaf v € V, and each probability p € F,, if k = 0 we need
to consider the probability that the node will become active, then DoV,(v,k,S,p) = p-b (o) Dl;
otherwise, if k > 0, we have DoVy(v,k, S, p) = D). Also, we set DoV, (null, k,S, p) = 0. The same as
constructive case, for implementation we need a tow-dimensional array A[B + 1, |V|]. Moreover, for
each cell (7,7),0 <i < B,0 < j < |V|, we keep another array A’[|F,[], where F,, is the set of possible
probabilities that the node f(v;) can become active. The following theorem shows that by filling the

matrix A left-to-right and up-down direction, we can find the optimal answer for DOVZP .

Theorem 6. Given a tree T = (V,E) and a budget B, using the DP (5), we can find a set of seed nodes S
(IS| < B) to maximize DOVZPU.

Proof. The proof is similar to Theorem 5, except for the base cases and the way of updating each activated
node’s probability distribution after the diffusion. Since a leaf cannot activate any other node, the only
change that it can make is updating its own probability distribution. According to the updating rule (in
Section 3.1), and the definition of DOVZP Y (defined in (2)), the base cases hold. Also, by induction, we can
see that the DP (5) will find the maximum value of DoVsdpv correctly. O

6.1.2. Maximizing MoV in SPV under LTM

In order to maximize MoV’ we have to know C3, i.e., the most voted opponent party after S. We
have no problem to find the most voted opponent party before any diffusion (C;); but to find the most
voted opponent party after S we need to have the optimal set of seed nodes that maximizes MoV¢'",
and to find the optimal set of seed nodes we need the most voted opponent party (parties), which is a
defective cycle.

To deal with this problem, someone may say that we consider C;,2 < i < t as the most voted
opponent party after S, and solve the related DP; after finding the outcome for all f — 1 parties, we select
the maximum result as the output. Nevertheless, this is not true in all cases. Consider a case that there
are two opponent parties, and each of them has half of the votes before any diffusion. If we consider
each of them as the most voted opponent after the diffusion, we will get a wrong outcome as they both
can be the most voted opponent after different diffusion processes. In fact, we need to consider multiple
parties as the most voted opponent party.

By the way, it has been shown that by maximizing DoV’’ we get a %—approximation factor for
maximizing MoVy. Moreover, by maximizing DOVZPU we geta %—approximation answer for maximizing
MoV [8].
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6.2. MWEC Using SPV under ICM

As we saw in previous section (in LTM), each node v becomes active either by being among the seed
nodes or by the incoming influence from its parent f(v). Since there is just one incoming edge for each
node v € V, and the threshold of the nodes t, is generated uniformly at random, then the probability
that its threshold be less than or equal to the incoming weight (b¢(,) ) is equal to bg(y) . In other words,
the node will become active from its parent with the probability that its parent f(v) is active, times
the weight of the edge between them. On the other side, in ICM, a node v becomes active if it is either
selected as a seed node or its parent f(v) is activated and tries to influence v with the probability by, .
Then in a tree, the activation processes in both LM and ICM are the same.

However, the updating rule is entirely different in them. In other words, in LTM, voters have a
probability distribution over the candidates, and the activated nodes will update the probability of
voting for candidates regarding the influence from activated incoming neighbors, while in ICM, voters
have an exact preferences list over candidates, and the activated nodes promote/demote the position of
some candidates in their preference list, regardless of neighbors (see Section 2 for a formal definition).

Since the diffusion process in ICM is the same as LTM, we focus more on updating part of the
problem to maximize DoV’ . Recall that we consider the plurality scoring rule for simplicity; but, it is
possible to extend the results to any non-increasing scoring function. Then the scoring function Fs, for
our target party is defined as follows.?

]:spv(cl/®) = Z Z ]lrrv(c):l/

veV ceCy

fSPU(CLS) = EAS[ Z Z ]lﬁv(c):1:|’

veV ceCy

and the objective functions for the constructive and destructive cases of our problem are the same
as (1) and (2), respectively.

6.2.1. Maximizing DoV in SPV under ICM

In this case, node v can increase our target party’s score by one, if none of our target candidates
are in the first position before any diffusion, and one of them is in the second position of the voter’s
preference list. In other words, the voter v may increase the score of our target party if 3c € C1,3c’ €
C\ Cy: mp(c") = 1A my(c) = 2; otherwise, the node v can influence its children and change their opinion,
but it cannot affect the target party’s score. We call this condition as pre-condition and show it by {,. We
define F, as the set of all possible probabilities that the node v may become active.3 Consider a sub-tree
rooted at v € V, budget k, seed set S, and p € F,, we define DoVL.(v,k, S, p) as follows.

DoV.(v,k,S,p) = max{
max’li’:O{DOV/c(”(v)rk// Sp- bv,r(v)) + DoV (I(v),k—K,S,p- bv,l(v))} +p-1q,,
maxf, L {DoV.(r(v),K,S U {v}, by()) + DoVe(l(v), k=K —1,SU{v}, by ()} + 19, } (6)

As the base cases of the problem, for each leaf v € V, budget zero, and p € F, as the probability
that v will become active, we set DoV, (v,k, S, p) = p - 1q,, and for the same parameters except a budget

2 To extend the result using any non-increasing scoring function g(-), we should define the functions as ]-'sz,(Cl,@) =

ZvEV ZceCl g(ﬂv (C))r ]:spv(clr S) = EAS ZUEV ZceCl g(ﬁv(c))] .
3 Please note that the definition of F, in ICM is different from LTM.
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ws k> 0weset DoV.(v,k,S,p) = ]l‘]Iv-4 The same as before, for each reference to a node which does not
a7 exists (null), we define DoV, (null,k, S, p) = 0. In order to implement the DP (6), the idea is the same as
a8 Algorithm 1. The following theorem shows that it calculates the maximum DoV in polynomial-time.

s Theorem 7. Given a tree T = (V,E), and budget B, the DP (6) gives a set of seed nodes S (|S| < B) which
a0 maximizes DoVi'®.

a1 Proof. In DP (6), there is a maximization over two other maximization formulae. The first one considers
a1z the case that we do not select v as a seed node; in this case, we consider the probability that node v will
a3 become active, i.e., p € F,. The second maximization considers selecting v as a seed node; in this state, v
«1a will be activated with probability equal to one. In both cases, the node may increase the function’s value
a5 if the pre-condition holds; otherwise, it can influence its children. The same as previous proves, we show
a1 that it works by induction.
a1z Consider a two-dimensional array A[B + 1, |V|] where rows are the budgets from zero to B, and
as columns are the nodes in BFS reveres order. Each cell Af7,j] (0 <i < B,0 < j < |V|) refers to another
ao array A’ with the size of |ij |. We calculate each array related to each cell (i, j) left-to-right and up-down
420 direction.
az To show that the base cases are correct, note that the leaves cannot activate any other node. Their
a2 only effect is by becoming active and changing their own opinion. Then there are two cases if the
a3 pre-condition holds for a leaf v: First, the budget is more than zero, then v can be a seed node and
s2a increase the amount of DoV, by one. Second, if the budget is zero, v can increment DoV.. with the
a2s  probability of becoming active through its parent, i.e., in expected, it will be p - 1q, where p € F; is the
a26 probability that v will be activated through its parent. Note that if the pre-condition does not hold, the
a2z leaf cannot make any effect, and in both cases, its effect is equal to zero.
Letussay (7,j') < (i,j) if j/ < j,orj = jAi <i. As the step of induction, assume that all cells
(i',j) smaller that (i, j) are filled correctly for 0 < i < B,0 < j < |V/|. In order to calculate the array A’
related to the cell (i, ), for each p € Fy; we have to calculate the result of the following function.

DoV (vj,1,8,p) = max{
maxiZO{DOVé(r(vj),k, S,p- bv].,r(vj)) + DoV, (I(vj),i —k,S,p- bv/-,l(v]-))} +p-1q,,

max;;%{DoV’C(r(vj),k, SuU {v]-},bvl.,,(vj)) + DoVé(l(vj),i —k—-1,5U{v}, bv/-,l(v/-))} + ]l‘]Iv}-

428 There is a maximization over two cases. Let us check each case separately. The first case: It considers
a2 all possible cases to split the budget into two parts for its children r(v;) and I(v;) (the first and second
a0 terms) when v; is not selected as a seed node. It finds the split with the maximum outcome using the
a1 DoV. of its children, which are calculated correctly. In this case, since the node vjisnota seed node,
a2 then the probability that its right (resp. left) child will become active is p - bvj,,(v],) (resp. p - bvj,l(vj))' The
a3 fixed-term is the amount of change that the node v; can afford to maximize our target party’s score. If
a3s  the pre-condition holds, then with the probability of p it will increase the score by one, thatis p - 1q,.

435 The second maximization: It investigates the same situation except that it selects v; as a seed node
s (if i > 0) and uses the value DoV, of its children to find the best split for the i — 1 remaining budgets. In
s37  this case, the node v; can increase our party’s score by one (if the pre-condition holds) as it is selected

4 To extend the algorithm for any non-increasing scoring function g(-), we need to define the base cases,

respeCtivel}’/ as DOVé(U,k, S,p) = p- (ZceCl,Hc’eC\Cl:nv(c’)<7rv(c) g(rtv(c) - l) - g(n‘li(c))) and DOVZ(U,k,S, P) =
ZCECl,HC’GC\Clan(c’)<7IU(c) g(ﬂ'v(C) - 1) - g(ﬂv(c))'
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s as a seed node and will be activated for sure.> Note that all corresponding values for the children of v;
a3 are correctly calculated before because the nodes are sorted as BFS reverse order. Finally, it finds the
40 Mmaximum value among the two cases. [J

For the destructive case of the problem, we define pre-condition |, as 3¢ € C; : 71,(c) = 1. Then for
anode v, if it becomes active and {, holds, the node will decrease the party’s score by one; otherwise,
v cannot change it. For each sub-tree rooted at v, budget k, and p € F,, let us define DoV/(v,k, S, p) as
follows.

DoV (v,k, S, p) = max{
max’li’zO{DOV:i(r(v)l k,’ S, p- bv,r(v)) + DOV&(Z(U),I{ - k/r S, p- bv,l(v))} +p- ]l‘][’vr
maxy,  {DoV/y(r(v), K, SU{v}, by () + DoVi(l(v),k =K —1,SU{v}, by )} + 1 } 7)

a1 Note that the definition is exactly the same as constructive case except for the pre-condition. Also the
a2 base cases are the same as before if we substitute , for q,. The prove of the following theorem is similar
43 to the Theorem 7; then we omit it to avoid repetition.

sss Theorem 8. Given a tree T = (V,E), and budget B, the DP (7) gives a set of seed nodes S (|S| < B) which
a5 MAXimizes DOVZPU.

as  6.2.2. Maximizing MoV in SPV under ICM

247 Similar to Section 6.1.2, we do not know the most scored parties after the diffusion started from a
ws  set of optimal seed nodes. However, it has been shown that by maximizing DoV¢/" (resp. DoV;pv) we
we geta % (resp. ) approximation algorithm for maximizing MoV;"" (resp. MoVle ) [9].

0 7. Discussion

451 Controlling election via SI is one of the most crucial parts of each democratic election. It has been
sz shown that many campaigns are using this powerful tool to influence the voters and change their opinion
a3 during elections. In this work, we considered the multi-winner election control utilizing SI so that the
454 attacker tries to maximize/minimize the number of winners from his target party, concerning the party
455 with the most winners.

as6 We exhibited different results, including hardness of approximation, approximation guarantee, and
4«57 optimal solutions for our problem considering different structures, diffusion models, and voting systems.
«ss  In ICM, each voter has a preference list over the candidates and will vote for one or more candidate
a0 according to the voting rule, e.g., plurality, Borda’s rule, k-approval, and anti-plurality. In this case,
a0 the influenced voters change their opinion by promoting/demoting the candidates” position in their
w61 preference list. On the other hand, in LTM, we consider that the voters have a probability distribution
sz over all candidates. Each voter votes for one or more candidates proportional to the probability of voting
a3 for them. In this model, the activated voters change their opinion based on the incoming activated
s neighbors’ influence.

465 We proved the problem is hard to approximate within any factor when the structure is a general
s graph, and the diffusion model is LTM. We also considered the problem when the structure is an
sz arborescence, and the diffusion process follows the ICM rules. We showed that the problem is
ss inapproximable within any factor, except P = NP. Another structure that we investigated is a tree

5 To generalize the proof using any non-increasing scoring function g(-), we should change the updating part of each

maximization (the fixed part) similar to the formula in the footnote 4.
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40 Where the voting system is a variation of Straight-party voting. We presented a polynomial-time algorithm
aro  to maximize the expected score of our target party regarding both LT and IC diffusion models. It yields
ann that we can geta %—approximation factor for maximizing MoV in constructive case, and %—approximation
a2 factor concerning MoV in the destructive model.

a73 The results of this paper open several research directions. Considering the MWEC through SI on
a7a  arborescence, when the diffusion model is LM can be an exciting research problem. We conjecture that
a7zs  Mmaximizing both objective functions (MoV and DoW) is hard; even though, there exists a polynomial-time
a7 algorithm for the IM problem on arborescence under LTM. We plan to consider maximizing MoV in
a7 SPV to either present an optimal solution or provide a hardness result regarding both constructive and
a7s  destructive cases. Also, maximizing DoV on the bidirected trees, where a child can activate its parent
a7 t00, can be impressive. We conjecture that the problem accepts a polynomial-time algorithm following a
s similar dynamic programming approach.
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