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Abstract: Nowadays, many political campaigns are using social influence (SI) in order to convince1

voters to support/oppose a specific candidate/party. In election control via SI problem, an attacker2

tries to find a set of limited influencers to start disseminating a political message in a social network of3

voters. A voter will change his opinion when he receives and accepts the message. In constructive case,4

the goal is to maximize the number of votes/winners of a target candidate/party, while in destructive5

case, the attacker tries to minimize them. Recent works considered the problem in different models6

and presented some hardness and approximation results. In this work, we consider multi-winner7

election control through SI on different graph structures and diffusion models, and our goal is to8

maximize/minimize the number of winners in our target party. We show that the problem is hard to9

approximate when voters’ connections form a graph, and the diffusion model is the linear threshold10

model. We also prove the same result considering an arborescence under independent cascade model.11

Moreover, we present a dynamic programming algorithm for the cases that the voting system is a12

variation of straight-party voting, and voters form a tree.13

Keywords: Computational Social Choice; Election Control; Multi-winner Election; Social Influence;14

Influence Maximization15

1. Introduction16

Social media (SM) is an integral part of nowadays life. No one can ignore the effect of SM on17

different aspects of our life. Many people from all around the world are using SM to provide/use various18

services like teaching/learning, spreading information, events’ announcements, and advertising. It has19

been shown that two-thirds of American adults get news on SM [1]. It is easy to find evidence that a20

social influence (SI) started by few users has influenced many people. Then, SM is a kind of cheap means21

to spread a message among many users. Note that the power of SM is not just like spreading a message22

or advertising. Its power comes from the fact that a user will receive news from those who have enough23

authority to change his opinion, like close friends, family members, and colleagues. Since using SI is24

effective and cheap, it has been attracting the attention of many political campaigns and candidates to25

target the user’s opinion through SI. They disseminate a piece of information to change voters’ opinion.26

Many real case studies show that campaigns used SI to change the voters’ opinion [2–5]. For example,27

Allcott and Gentzkow showed that 92% of Americans remembered pro-Trump false news, and 23%28

remembered pro-Clinton fake news [6].29

There are two well-known diffusion models used in SI called linear threshold model (LTM) and30

Independent Cascade Model (ICM) [7]. In LTM, a voter accepts a message if the sum over his incoming31

neighbors’ influence, who already accepted the message, is high enough. On the other hand, in ICM, a32
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voter will accept a message if at least one of his incoming neighbors, who already accepted the message,33

can convince him to accept it (please see Section 2 for a formal definition of LTM and ICM).34

In this paper, we consider the multi-winner election control (MWEC) via SI problem. We are given a35

social network of voters, a limited budget, a set of candidates each belongs to a party, a dynamic diffusion36

model to spread a message among the voters, and an attacker/manipulator who supports/opposes a37

party. When we use LT diffusion model, we assume that the attacker knows the probability that each38

voter wants to vote for each candidate. To take into account the incoming influence of each node v, we39

use an updating rule based on the incoming influence from the node’s incoming activated neighbors,40

akin to [8]. On the other hand, when we use ICM, we assume the attacker knows the exact preferences list41

of all voters. When a node/voter becomes active/influenced/infected, in constructive (resp. destructive)42

case, it will promote (resp. demote) the position of the target candidates in its/his preference list, akin43

to [9,10] (See Section 3 for formal definition).44

Regarding both LTM and ICM, there will be several winners, and they will be elected according to45

the overall candidates’ scores after the diffusion. In the constructive (resp. destructive) case, the attacker46

wants to find a set of nodes (voters), according to its budget, to start the diffusion and change the voters’47

opinion to maximize (resp. minimize) the number of winners from his target party. In fact, in a given48

directed graph, we should find some diffusion starters to influence the voters such that the difference49

between the number of winners from our target party, w.r.t. the number of winners in the opponent party50

with the most winners, after and before the diffusion is maximized (resp. minimized). We present some51

results, including hardness of approximation, approximation, and polynomial-time exact algorithms52

considering some well-known objective functions on different structures.53

Related works. There are many articles regarding voting manipulation (see the survey in [11]). The54

problem of finding a set of limited seed nodes from a given graph to maximize the expected number of55

influenced nodes is known as Influence Maximization (IM) problem. There exists an extensive literature56

about it, too [12]. Domingos and Richardson [13,14] introduced the IM problem, and Kempe et al.57

formalized it [7,15]. On the other hand, few works consider both of them together, i.e., the election58

control through SI problem.59

Wilder and Vorobeychik introduced the election control through SI problem regarding single-winner60

elections [10]. They investigated maximizing margin of victory (MoV) and probability of victory (PoV),61

where MoV is the difference of the score between the target candidate and the most voted opponent62

after and before the diffusion. The problem is considered under ICM. They showed maximizing MoV63

is NP-hard, and presented a 1− 1
e -approximation algorithm concerning the optimal solution. Also,64

for maximizing PoV, they showed that it is NP-hard to approximate the problem within any constant65

factor. Corò et al. [16,17] extended the work using any non-increasing scoring function under LTM.66

They demonstrated the same approximation factor for it. Abouei Mehrizi et al. considered the problem67

when the attacker knows a probability distribution over the candidates instead of the exact preferences68

list, under LTM [8]. They showed that maximizing/minimizing the expected probability to vote for69

a target candidate is hard to approximate within any constant factor under unique game with small set70

expansion conjecture. They also presented some constant factor approximation algorithms for a relaxed71

version of the problem. Abouei Mehrizi and D’Angelo showed that in multi-winner elections, when the72

manipulator wants to maximize/minimize the number of winners in his target party, the problem is73

inapproximable under ICM, except P = NP [9]. They also presented some constant factor approximation74

algorithms when the voting system is similar to the straight-party voting.75

Bredereck and Elkind considered some different models, like bribing nodes/voters, adding or76

deleting edges under LTM. They showed that the problem is hard in those models. They also presented77

some polynomial-time algorithms for specific cases of the problem [18]. Castiglioni et al. investigated78

similar models under ICM. They showed that the problem is hard even in restricted structures. Regarding79

the bribing nodes to influence other voters, they proved that the election control is hard even if the given80

graph is a line. Also, considering the edge removal/addition case, they demonstrated that the problem is81
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hard even if the attacker has an infinite budget [19]. Faliszewsk et al. considered the problem where each82

voter has a preference list. Each node of the graph is representative of all users with the same opinions.83

There is an edge between two nodes if their opinion differs by the place of an adjacent pair of candidates.84

They used LTM and proved that maximizing the number of votes for the target candidate is NP-hard85

and fixed parameter tractable with respect to the number of candidates [20].86

Also, there is another model in which voters have a preference list over candidates, and voters will87

change their preference list according to the majority of their neighbors’ opinions [21–23].88

Outline and our results. In Section 2, we define the most prominent diffusion models in the literature89

(called LTM and ICM) that we used in this paper. Section 3 defines our model and objective functions90

formally. We show that our problem is hard to approximate within any factor in a general graph when91

the diffusion model is LTM in Section 4. Section 5 contains the same result when the diffusion model is92

ICM, and the given graph is in the form of an arborescence, i.e., edges are from leaves to root of the tree.93

Moreover, in Section 6, we investigate the problem while the voting system is a variation of straight-party94

voting (SPV), where voters can vote for the parties. In other words, voters have a preference list (or95

probability distribution) over the candidates, but they can vote for the parties instead of candidates.96

We presented a polynomial-time algorithm based on the dynamic programming approach to find the97

maximum difference of votes for our target party before and after diffusion. It also gives a 1
3 and98

1
2 -approximation algorithms for maximizing MoV in constructive and destructive models, respectively.99

Finally, we will discuss the results and future works in Section 7.100

2. Background101

In this section, we introduce two diffusion models that we have used in this paper, called linear102

threshold model (LTM) and independent cascade model (ICM) presented by Kemp et al. [7,15]. They are the103

most prominent dynamic diffusion models used in literature (see a survey on the topic [24]).104

2.1. Linear Threshold Model105

We are given a directed graph G = (V, E). Each edge (u, v) ∈ E has a weight bu,v ∈ [0, 1]. The sum106

of the incoming weight to each node v ∈ V is at most one, i.e., ∑u∈Ni
v

bu,v 6 1, where Ni
v is the set of107

incoming neighbors of v. Also, each node v ∈ V has a threshold tv ∈ [0, 1] which is generated uniformly108

at random.109

In this model, the diffusion will start from a set of nodes S ⊆ V known as seed nodes. At the first110

step, just the seed nodes will become active/influenced/infected, and all other nodes are inactive. Let us111

show Ai as the set of nodes that are active at step i, i.e., A1 = S. The activation process, for each step112

i > 1, is as follows: All nodes in Ai−1 will remain active at step i, i.e., Ai−1 ⊆ Ai; moreover, each inactive113

node v ∈ V \ Ai−1 will become active if the sum of the weight from its incoming activated neighbors114

is not less than its threshold, i.e., for each node v ∈ V \ Ai−1, it will be in Ai if ∑u∈Ni
v

bu,v > tv. The115

diffusion process will proceed in utmost |V| discrete steps, and it will stop as soon as no extra node116

becomes active, i.e., it stops at step k > 1 if Ak = Ak−1. We use AS as the set of activated nodes after117

the diffusion process started from the set of seed nodes S. In what follows, to increase the readability of118

this article, when we say after S, it means after the diffusion process started from a set of seed nodes S. Note119

that the thresholds are not a part of the input, and they will be generated uniformly at random and120

independently when we run the process. Also, the process is random, and several executions on the121

same graph may get different results for AS.122

Kemp et al. [7] defined the IM problem as: Given a graph G = (V, E) and a budget B 6 |V|. Find123

a set of seed nodes S ⊆ V, (|S| 6 B) so that the expected |AS| is maximized. They proved that the124

problem is NP-hard under LTM. Moreover, they showed that a greedy algorithm can solve the problem125

approximately within a factor of 1− 1
e − ε, where ε is any small constant and fixed number.126
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2.2. Independent Cascade Model127

Consider a graph G = (V, E) with a weight bu,v ∈ [0, 1] on each edge (u, v) ∈ E. The same as LTM,128

all nodes are inactive, and at the first step the seed nodes S ⊆ V become active. Let us define Si as the129

nodes that were inactive at step i− 1 and became active at step i, then S1 = S. At each step i > 1, each130

node v ∈ Si−1 will try to activate its outgoing neighbors with the probability of the edge between them.131

In other words, consider No
v as the set of outgoing neighbors of node v; for each u ∈ No

v , node v tries to132

activate u with the probability bv,u. If v has multiple outgoing neighbors, it tries to activate them in an133

arbitrary order. Note that a node becomes active once, let us say at step k, and try to activate its outgoing134

neighbors exactly once, at step k + 1.135

Kemp et al. [7] considered the IM under ICM. They showed that the greedy algorithm works for136

this model, too. They also demonstrated that it is NP-hard to approximate the problem within any factor137

better than 1− 1
e .138

3. Multi-Winner Election Control: Models and Objective Functions139

In this section, we consider the Multi-Winner Election Control (MWEC), where some parties are140

running for an election so that more than one candidate will be elected as the winner, like a parliament141

election. We consider t different parties C1, . . . , Ct, each of them contains k different candidates, i.e.,142

Ci = {ci
1, . . . , ci

k}, 1 6 i 6 t. We use C for the set of all candidates, i.e., C = ∪t
i=1Ci. Also, without loss of143

generality, we assume C1 is our target party. Note that there will be exactly k winners for the election.144

3.1. MWEC under LTM145

In this model, we investigate the case that the adversary does not know the preferences list of the146

voters; instead of that, for each voter, the attacker has a probability distribution over all candidates. This147

model is similar to the model known as probabilistic linear threshold ranking (PLTR) defined in [8]. Since148

most voters do not reveal their preferences in SM, then it is a realistic assumption.149

The adversary tries to maximize/minimize the number of winners in his target party. For each node150

v ∈ V, we show πv as the probability distribution of the voter/node v over all candidates; we define151

πv(c) as the probability that the voter v votes for a specific candidate c ∈ C. Then for every node v ∈ V,152

and candidate c ∈ C we have πv(c) ∈ [0, 1], and ∑c∈C πv(c) = 1.153

In LTM, each node has an incoming influence, which shows the amount of pressure from incoming154

neighbors to support/oppose a target party. We use this incoming influence of node v ∈ V to change its155

probability distribution. Let us define π̃v as the probability distribution of node v after S. Respectively,156

π̃v(c) is the probability that node v will vote for candidate c ∈ C after S. We use AS to show the set of157

nodes that will become active after S.158

We consider a single message which spreads among the voters. The message contains some
constructive/destructive information targeting all candidates in the target party. When a node v becomes
active, its probability distribution will change according to the incoming influence from its activated
neighbors. We have to normalize the vector in order to make sure that the sum of the probabilities is
equal to one, after S. For constructive model the probability distribution of a node v ∈ AS changes as
follows.

∀c ∈ C1 : π̃v(c) =
πv(c) + 1

|C1| ∑u∈AS∩Ni
v

buv

1 + ∑u∈AS∩Ni
v

buv
,

∀c ∈ C \ C1 : π̃v(c) =
πv(c)

1 + ∑u∈AS∩Ni
v

buv
.
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Recall that Ni
v is the set of incoming neighbors of node v. Also, considering the destructive case, the

probability distribution of an active node v ∈ AS will change as follows.

∀c ∈ C1 : π̃v(c) =
πv(c)

1 + ∑u∈AS∩Ni
v

buv

∀c ∈ C \ C1 : π̃v(c) =
πv(c) + 1

|C\C1| ∑u∈AS∩Ni
v

buv

1 + ∑u∈AS∩Ni
v

buv

By these changes (and normalization), we guarantee that the sum of the probability for each node159

is equal to 1. In both constructive and destructive cases, the probability distribution of inactive nodes160

v ∈ V \ AS will not change after S, i.e., π̃v = πv.161

Let us define the expected number of votes for candidate c ∈ C after S, as F (c, S) =162

EAS [∑v∈V π̃v(c)]; similarly, F (c, ∅) = E[∑v∈V πv(c)] is the expected number of votes for candidate163

c ∈ C before any diffusion.164

3.2. MWEC under ICM165

Our model is similar to the work presented in [9]. We briefly mention the model bellow. In this166

model, despite LTM, we assume that the attacker knows the voters’ preference list. Each voter v ∈ V167

has a preferences list πv. Abusing the notations, 1 6 πv(c) 6 tk is the rank of candidate c in the168

preference list of the voter v. After the diffusion, inactive voters will keep their original opinions, i.e.,169

∀v ∈ V \ AS : π̃v = πv; but the activated voters will change their preferences list as follows. Remind170

that AS is the set of activated nodes after S.171

• Constructive: For each node v ∈ AS and for each target candidate c ∈ C1, the new position of c in
π̃v is

π̃v(c)=

{
πv(c)− 1 if ∃ c′ ∈ C \ C1 s.t. πv(c′) < πv(c)
πv(c) otherwise,

also, for other candidates c ∈ C \ C1, if there is a candidate c′ ∈ C \ C1 s.t. πv(c′) = πv(c) + 1, then
we set π̃v(c) = πv(c); otherwise the new rank of the candidate c will be calculated as follows.

π̃v(c) = πv(c) + |{c′′ ∈ C1 | πv(c′′) > πv(c) ∧ (@ c̄ ∈ C \ C1 : πv(c) < πv(c̄) < πv(c′′))}| .

• Destructive: For each node v ∈ AS and for each target candidate c ∈ C1, we have

π̃v(c)=

{
πv(c) + 1 if ∃ c′ ∈ C \ C1 s.t. πv(c′) > πv(c)
πv(c) otherwise,

while for c ∈ C \ C1, if there exists a candidate c′ ∈ C \ C1 s.t. πv(c′) = πv(c) − 1 we set
π̃v(c) = πv(c), otherwise we have

π̃v(c) = πv(c)− |{c′′ ∈ C1 | πv(c′′) < πv(c) ∧ (@ c̄ ∈ C \ C1 : πv(c′′) < πv(c̄) < πv(c))}| .

In this article, we consider the plurality scoring rule for simplicity, where just the most preferred172

candidate of each voter gets one score. However, the results can be extended for any non-increasing173

scoring function, e.g., k-approval, anti-plurality, and Borda’s rule [25]. Let us denote by F (c, ∅),F (c, S),174

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 September 2020                   

http://www.mdpi.com/journal/notspecified


the expected score of candidate c before and after S, respectively; formally, ∀c ∈ C : F (c, ∅) =175

∑v∈V 1πv(c)=1,F (c, S) = EAS

[
∑v∈V 1π̃v(c)=1

]
.1176

3.3. Objective Functions177

In this paper, our goal is to maximize/minimize the number of winners from our target party. Then
the objective functions are the same as [9]. Considering both IC and LT models, we define F (C1, S) as
the number of candidates in C1 that are among the winners. Formally, consider a set of given activated
nodes AS, which became active after S. Let us define FAS(c) as the expected number of votes that
candidate c will receive while AS is the set of activated nodes. We set YAS(c) as the number of candidates
c′ ∈ C \ {c} where the expected number of their votes is less than c. In order to consider the tie-breaking

rule, if FAS(c
j
i) = FAS(c

j′

i′ ), then cj
i has more priority than cj′

i′ if j < j′, or j = j′ ∧ i < i′. Then YAS(c) is
defined as

YAS(c
j
i) =

∣∣∣{cj′

i′ ∈ C | FAS(c
j
i) > FAS(c

j′

i′ ) ∨ (FAS(c
j
i) = FAS(c

j′

i′ ) ∧ (j < j′ ∨ (j = j′ ∧ i < i′))}
∣∣∣.

By this definition, we define F (C1, S) as the expected number of winners from party C1, i.e., F (C1, S) =178

EAS

[
∑c∈C1

1YAS
(c)>(t−1)k

]
.179

Now, let us define the first objective function as Difference of Winners (DoW), where is the difference
between the number of winners in our target party before and after S. Formally, in constructive (resp.,
destructive) model we define DoWc (resp., DoWd) as

DoWc(C1, S) = F (C1, S)−F (C1, ∅),

DoWd(C1, S) = F (C1, ∅)−F (C1, S).

The problem of constructive difference of winners (CDW) asks for finding a set of seed nodes S (|S| 6 B)180

to maximize DoWc(C1, S). Similarly, destructive difference of winners (DDW) refers to the problem of181

finding a set of seed node S (|S| 6 B) to maximize DoWd(C1, S).182

As the second objective function, we define a more compelling one called Margin of Victory (MoV).
For constructive case, we define it as DoW plus the difference between the number of winners in the
opponent parties with the most winners after and before S. Formally, for constructive (resp., destructive)
case, we define MoVc (resp., MoVd) as

MoVc(C1, S) = F (C1, S)−F (CS
A , S)−

(
F (C1, ∅)−F (CB, ∅)

)
,

MoVd(C1, S) = F (C1, ∅)−F (CB, ∅)−
(
F (C1, S)−F (CS

A , S)
)
,

where CB, CS
A , respectively, are the opponent parties with the most winner before and after S.183

The constructive margin of victory (CMV) problem is looking for a set of seed nodes S (|S| 6 B) in184

order to maximize MoVc(C1, S). Similarly, destructive margin of victory (DMV) refers to the problem of185

finding a set of seed nodes S (|S| 6 B) to maximize MoVd(C1, S).186

4. MWEC on Graph under LTM187

It is proven that the problem is NP-hard to approximate within any factor of approximation using188

ICM [9]. In this part, we prove the same statement considering LTM.189

1 If we want to generalize the problem and consider any non-increasing scoring function g(·), the functions would be defined as

F (c, ∅) = ∑v∈V g(πv(c)),F (c, S) = EAS

[
∑v∈V g(π̃v(c))].
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Theorem 1. It is NP-hard to approximate CMV and CDW within any factor on a given graph under LTM.190

Proof. Let us reduce the vertex cover (VC) problem to any approximation algorithm for CDW (reps.,191

CMV). In VC, we are given an undirected graph G = (V, E) and an integer k; the decision question is: Is192

there a set of nodes V′ ⊆ V (|V′| 6 k) so that for each edge (u, v) ∈ E, at least one of its vertices are in193

V′? Assume I(G, B) is a given instance for VC problem, where G = (V, E) is the given graph, and B is194

an integer value. We create an instance I ′(G′, B) for CDW (reps., CMV) so that G′ = (V ∪V′ ∪V′′, E′)195

is the graph build from G, and B is also the budget for our problem. Let us consider a case where there196

are two parties and four candidates, i.e., t = k = 2, C = C1 ∪ C2, C1 = {c1
1, c1

2}, C2 = {c2
1, c2

2}. We fix the197

order of candidates in the probability distribution of the voter v as πv = (πv(c1
1), πv(c1

2), πv(c2
1), πv(c2

2)),198

and build G′ as follows.199

• For each undirected edge (u, v) ∈ E add two directed edges (u, v), (v, u) to E′. Set the weight of200

each incoming edge to a node v ∈ V as 1
|Ni

v |
. By this the sum over weight of all incoming edges is201

equal to one, i.e., ∀v ∈ V : ∑u∈Ni
v

bu,v = 1.202

• For each node v ∈ V, add two more nodes v′, v′′ to V′, V′′, respectively. Also, add an edge (v, v′) to203

E′ with bv,v′ = 1. Formally, ∀v ∈ V : v′ ∈ V′, v′′ ∈ V′′, (v, v′) ∈ E′ s.t. bv,v′ = 1. Note that nodes in204

V′′ are isolated.205

• Set the preferences list of the nodes as follows.

∀v ∈ V, πv = (
1
2

,
1
2

, 0, 0),

∀v′ ∈ V′, πv′ = (
1
2

, 0,
1
2

, 0),

∀v′′ ∈ V′′, πv′′ = (0, 0,
1
2

,
1
2
).

By this reduction, the score of candidates before any diffusion is F (c1
1, ∅) = F (c2

1, ∅) = |V|,F (c1
2, ∅) =206

F (c2
2, ∅) = 1

2 |V|. Then F(C1, ∅) = F (C2, ∅) = 1.207

Note that in this reduction a node v will become active deterministically, if either it is selected as a208

seed node, or all of its incoming neighbors are selected as the seed nodes. Then if we can find a set of209

seed nodes S ⊆ V so that it activates all nodes in V deterministically, the seed set S is also an answer for210

the corresponding VC problem.211

In any approximation algorithm, we know that S ⊆ V after the diffusion; otherwise, if there is a212

node v′ ∈ V′ ∩ S we can replace it with its incoming neighbor v ∈ V such that (v, v′) ∈ E′ and we get213

at least the same value for MoVc, DoWc. Also, if there exists a node v′′ ∈ V′′ ∩ S one of the following214

situations holds:215

• There exists an inactive node v ∈ V \ AS after the diffusion S. In this case, we can substitute v for216

v′′ and then we get at least the same DoWc, MoVc.217

• There is no inactive node v ∈ V \ AS. In this case, according to the nodes’ probability distribution,218

when all nodes in V become active, the value of MoVc and DoWc is maximum. Then even if we219

remove v′′ from S it does not change the value of MoVc or DoWc. By the way, in this situation,220

if there exist any node v ∈ V \ AS we replace v′′ with it, otherwise we replace it with a node221

v ∈ V \ S.222

Then from now on, we assume S ⊆ V.223

If all nodes in V become active, since they have an outgoing edge to all nodes v′ ∈ V′ with
probability one, then all nodes in V ∪V′ will become active, and the score of the candidates will be as
follows.

F (c1
1, S) = |V|,
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F (c1
2, S) = F (c2

1, S) =
3
4
|V|,

F (c2
2, S) =

1
2
|V|.

Then F(C1, S) = 2,F (C2, S) = 0, DoWc(C1, S) > 0, MoVc(C1, S) > 0, and any approximation algorithm224

will return a positive value, then the answer of I will be YES.225

On the other hand, if there is a node v ∈ V, which is inactive after the diffusion, i.e., ∃v ∈ V \ AS,226

the score of candidates will be as follows.227

F (c1
1, S) = |V|,

F (c1
2, S) <

3
4
|V|,

F (c2
1, S) >

3
4
|V|,

F (c2
2, S) =

1
2
|V|.

Then F(C1, S) = F (C2, S) = 1, DoWc(C1, S) = MoVc(C1, S) = 0, and any approximation algorithm228

will return zero, then the answer of I will be NO.229

For the other direction, note that if we can find a set of nodes S ⊆ V, which is an answer for I , using230

the same set of nodes, we can activate all nodes in V ∪V′ and DoWc(C1, S) > 0, MoVc(C1, S) > 0.231

To extend the proof for any number of parties (t) and candidates (k), we need to assign the
probability distribution as follows, and the same approach concludes the proof for any t, k > 2.
The same as before, the order of the candidates in probability distribution of a voter v is πv =

(πv(c1
1), . . . , πv(c1

k), πv(c2
1), . . . , πv(c2

k), . . . , πv(ct
1), . . . , πv(ct

k)).

∀v ∈ V, πv = (

k︷ ︸︸ ︷
1
k

,
1
k

, . . . ,
1
k

,

k(t−1)︷ ︸︸ ︷
0, . . . , 0),

∀v′ ∈ V′, πv′ = (

k−1︷ ︸︸ ︷
1
k

,
1
k

, . . . ,
1
k

, 0,
1
k

,

k(t−1)−1︷ ︸︸ ︷
0, . . . , 0),

∀v′′ ∈ V′′, πv′′ = (

k︷ ︸︸ ︷
0, . . . , 0,

k︷ ︸︸ ︷
1
k

, . . . ,
1
k

,

k(t−2)︷ ︸︸ ︷
0, . . . , 0).

232

The following theorem proves the same statement for the destructive case of the problem.233

Theorem 2. It is NP-hard to approximate DMV and DDW within any factor on a given graph under LTM.234

Proof. The reduction is similar to the constructive case. Consider the case where t = k = 2. We should235

set the voters’ probability distributions such that one of our target candidates be among the losers before236

and after any diffusion. Also, another target candidate is among the winners before any dissemination;237

but, he will lose the election if and only if all nodes in the connected part of the graph become active.238

Please note that, since our target candidates have more priority than the others, we need one more node239

to be able to do that.240
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5. MWEC on Arborescence under ICM241

In this section, instead of a general graph, we consider an arborescence structure. We are given a242

tree G = (V, E) and a budget B where the directed edges are from leaves towards the root under ICM.243

We are asked to find at most B seed nodes to maximize MoVc and DoWc.244

It has been shown that the problem in inapproximable on a general graph, except P = NP [9].245

Bharathi et al. conjectured that the IM problem considering ICM on arborescence is NP-hard [26]. Lu246

et al. proved that the conjecture is true [27], while Wang et al. showed that the IM problem accepts a247

polynomial-time algorithm on arborescence under LTM [28]. In the following, we show that our problem248

is hard to approximate within any factor of approximation on arborescence under ICM.249

Theorem 3. It is NP-hard to find an approximation algorithm for CMV and CDW on arborescence under ICM.250

Proof. We show the hardness by reducing the IM problem to our problem. Given an instance I(T, B) of251

IM problem where T = (V, E) is the tree (arborescence), and B is the budget. Let us define the decision252

version of the problem as follows: Is there at most B seed nodes so that it activates all nodes of the tree in253

expected?254

We consider the case where there are two parties and each of them have just two candidates, i.e.,255

C = C1 ∪ C2, C1 = {c1
1, c1

2}, C2 = {c2
1, c2

2}. Also, for simplicity, we consider the plurality scoring rule.256

The proof can be extended for any number of parties and candidates using any non-increasing scoring257

function, akin to [29].258

Let us create an instance of our problem I ′(T′, B) as follows, where T′ = (V ∪V′ ∪V′′, E) is a tree,259

and B is the same budget for both problems.260

• For each node v ∈ V we add two more nodes v′, v′′ to V′, V′′, respectively, i.e., ∀v ∈ V : v′ ∈261

V′, v′′ ∈ V′′.262

• For each node v ∈ V we add an edge (v, v′′) to E where bv,v′′ = 1.263

• Set the preference list of all nodes as follows.

∀v ∈ V : c2
1 � c2

2 � c1
1 � c1

2,

∀v′ ∈ V′ : c2
2 � c2

1 � c1
2 � c1

1,

∀v′′ ∈ V′′ : c2
1 � c1

1 � c1
2 � c2

2

Clearly, seed nodes will be selected from V, i.e., S ⊆ V; otherwise, if there is a node v′ ∈ S ∩V′, then the264

node is useless and does not affect DoWc or MoVc. If there is a node v′′ ∈ S ∩V′′, we can replace it with265

its incoming neighbor and get at least the same value for DoWc and MoVc.266

Using aforementioned polynomial-time reduction, if there exists a set of nodes S ⊆ V (|S| 6 B) so
that MoVc > 0 (resp. DoVc > 0), then the node will activate all nodes in V ∪V′′. Hence, we can select
the same set and they will activate all nodes in T; then the answer of I will be YES. On the other hand,
if MoVc = 0 (resp. DoWc = 0), it means there is no seed set can activate all nodes in V ∪V′′; then the
answer of I is NO. More formally, before any diffusion the score of candidates is

F (c1
1, ∅) = F (c1

2, ∅) = 0,

F (c2
1, ∅) = 2|V|,

F (c2
2, ∅) = |V|.

Then, none of the candidates in our target party will be elected as winner. After S, if there exists an
inactive node in V ∪V′′, then the the score of candidates will be as follows:

F (c1
1, S) < |V|,
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F (c1
2, S) = 0,

F (c2
1, S) > |V|,

F (c2
2, S) = |V|.

In this case also, none of our target candidates will be among the winners, and MoVc = DoWc = 0. But,
if all nodes in V ∪V′′ become active after S, the score of the candidates will be as follows and one of our
target candidates (c1

1) will be elected as winner and any approximation algorithm will return MoVc > 0
(resp. DoWc > 0). It concludes the prove.

F (c1
1, S) = |V|,

F (c1
2, S) = 0,

F (c2
1, S) = |V|,

F (c2
2, S) = |V|.

267

The following theorem demonstrates the same hardness of approximation for the destructive case268

of our problem.269

Theorem 4. It is NP-hard to find an approximation algorithm for DMV and DDW on arborescence under ICM.270

Proof. The prove for the destructive case is similar to the constructive one. Consider I ′ in Theorem 3,271

we need to set the preferences list of the nodes so that all of our target candidates win the election before272

any diffusion; but after the diffusion, one of them (let us say c ∈ C1) will lose if and only if all nodes in273

V ∪V′′ become active. Note that since our target candidates have more priority than the others, we need274

one more isolated node to ensure that c will lose the election after the diffusion. Following the same275

approach concludes the statement.276

6. MWEC on Tree Using Straight-Party Voting277

In this part, we consider the problem on a variation of the straight-party voting (SPV) system (also278

called Straight-ticket voting) in which the voters can vote for a party instead of candidates [30,31]. This279

model is used in many real elections [32,33]. The multi-winner election control problem via social280

influence under ICM and a general graph is considered in [9]. They showed that the problem is hard,281

and presented some constant factor approximation using SPV system. In this section, we consider the282

problem on a tree where the edges are directed from root to the leaves.283

In the rest of this section, we assume the given tree is a binary tree as we can convert any tree T to a284

binary tree T′ by adding O(n) fake nodes. However, our algorithm can use the fake nodes to navigate285

the tree, but they neither have a probability distribution (preference list) nor can be selected as a seed286

node. To ensure that the fake nodes will not change the diffusion process on the tree, the weight of each287

incoming edge to each fake node should be equal to one. Moreover, the weight of an edge from a fake288

node to an original node is equal to the weight of the original node’s incoming edge in T.289

In the following, we present some dynamic programming (DP) algorithm to maximize DoVspv
c (and290

DoVspv
d ). Given a tree T = (V, E), and budge B, the idea is that for a fixed node v ∈ V and budget k291

(0 6 k 6 B), we calculate the maximum outcome from the sub-tree rooted at v, among the following292

cases: First, select the node v and try to find the other k− 1 seed nodes in its children. Second, do not293

select v and look for k seed nodes in its children.294

We define r(v), l(v), f (v), respectively, as the right child, left child, and the parent (father) of the295

node v. In Section 6.1 we consider the problem under LTM, and in Section 6.2 the problem is investigated296

under ICM.297
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6.1. MWEC Using SPV under LTM298

In this section, the voters have preferences list over the candidates. However, they vote for
a party proportional to the probability of voting for all candidates in each party. Let us define
Fspv(C1, ∅),Fspv(C1, S), as the sum of the scores for our target party C1 before and after S, respectively.
Formally they are defined as follows.

Fspv(C1, ∅) = E
[

∑
v∈V

∑
c∈C1

πv(c)
]
,

Fspv(C1, S) = EAS

[
∑

v∈V
∑

c∈C1

π̃v(c)
]
.

The same as before we define the objective function MoV and difference of votes (DoV), for constructive
case, as follows.

DoVspv
c (C1, S) = Fspv(C1, S)−Fspv(C1, ∅),

MoVspv
c (C1, S) = Fspv(C1, S)−Fspv(CS

A , S)−
(
Fspv(C1, ∅)−Fspv(CB, ∅)

)
, (1)

while CB and CS
A are the most voted opponent party before and after S, respectively. For destructive

model the objective functions are defined as

DoVspv
d (C1, S) = Fspv(C1, ∅)−Fspv(C1, S),

MoVspv
d (C1, S) = Fspv(C1, ∅)−Fspv(CB, ∅)−

(
Fspv(C1, S)−Fspv(CS

A , S)
)
. (2)

6.1.1. Maximizing DoV in SPV under LTM299

We define Fv as the set of possible probabilities that the node f (v) may become active. More300

precisely, consider all nodes in the path from root to the v as F′v = {v0, v1, . . . , vt = f (v)} (recall that f (v)301

is the parent of v). If none of the nodes in F′v are selected as a seed node, then the probability that f (v)302

becomes active by his incoming influence is zero. If just the root (v0) is selected as the seed node, then303

the probability that f (v) becomes active is ∏i<t
i=0 bvi ,vi+1 ; also, if v1 is selected as a seed node but none of304

the nodes vi, 2 6 i 6 t, are selected as a seed node, the probability that f (v) becomes active by its parent305

is ∏i<t
i=1 bvi ,vi+1 , and so on; all these probabilities belong to Fv.306

Let us define DoVc(v, k, S, p) as the maximum value of the sum over the difference of probability
to vote for our target party after and before S in the sub-tree rooted at v while p ∈ Fv is the probability
that its parent is active, and the budget is k. Also, all selected seed nodes will be in S. In other words,
DoVc(v, k, S, p) = max{DoVspv

c (C1, S)} in the sub-tree rooted at v while it will become active with
probability p · b f (v),v and |S| 6 k. The formal definition of DoVc(v, k, S, p) is as follows:

DoVc(v, k, S, p) = max

{
maxk

k′=0

{
DoVc

(
r(v), k′, S, p · b f (v),v

)
+ DoVc

(
l(v), k− k′, S, p · b f (v),v

) }
+ p · b f (v),v · Dv,

maxk−1
k′=0

{
DoVc

(
r(v), k′, S ∪ {v}, 1

)
+ DoVc

(
l(v), k− k′ − 1, S ∪ {v}, 1

) }
+Dv

}
, (3)

where Dv is the increased score of our target party made by the node v if it becomes active, which is

Dv = ∑
c∈C1

(
πv(c) + 1

|C1|
· p · b f (v),v

1 + p · b f (v),v
− πv(c)

)
. (4)
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We can calculate and store the values in a two-dimensional array A[B + 1, |V|] where the rows are the307

budgets (starting from zero to B), and the columns are the nodes of the tree presented as the BFS reverse308

order, and each cell (i, j) (0 6 i 6 B, 0 6 j < |V|) of the array refers to another array A′[|Fvj |]. Then in the309

worst case, since the budget B, and |Fvj | (for any vj ∈ V) are at most equal to |V|, then we can solve the310

problem in polynomial time using O(|V|3) memory. Note that we have to fill the matrix A left-to-right311

and top-down, while for each cell of it we can fill the corresponding array A′ in any order.312

As the base cases, for each leaf v ∈ V, and p ∈ Fv, if k > 0 we set DoVc(v, k, S, p) = Dv, otherwise,313

if k = 0 we have DoVc(v, k, S, p) = p · b f (v),v · Dv which is the difference of the probability to vote for314

our party after and before diffusion S, made by the node v. In fact, if the budget is greater than zero, the315

node will become active for sure, and we need to consider the difference of scores, but if the budget is316

zero we cannot select it as a seed node and the value should be multiplied by the probability that the317

node will become active, i.e., p · b f (v),v. We also define DoVc(null, k, S, p) = 0, that is, the value of DoVc318

for a null reference is zero. It is useful when a node has just left (resp. right) child, then the value of the319

function for its right (resp. left) child, regardless of the other parameters, is zero. The pseudo-code of the320

DP is presented in Algorithm 1, which calculates the maximum DoVspv
c ; by small changes, it can find the321

seed nodes too. Note that the final answer will be calculated by DoVc(vroot, B, ∅, 0) where vroot is the322

root node of the tree, B is the budget, ∅ represents that we have no seed node so far, and 0 means the323

parent of the root node will be activated with zero probability. The following theorem shows that the DP324

works well.325

Theorem 5. Given a tree T = (V, E) and budget B, the DP (3) finds a set of seed nodes S (|S| 6 B) to maximize326

DoVspv
c .327

Proof. Consider the matrix A[B + 1, |V|] where each cell A[k, v] point to another array A′ where the328

columns are all possible probabilities that f (v) will become active. Calculating all possible probabilities329

for the array A′, we have at most |Fv| columns for each node v ∈ V and budget 0 6 k 6 B, and for each330

of them, we need to calculate and store the maximum DoVc.331

Please note that if f (v) becomes active, it can activate v with a probability equal to the weight of the332

edge between them (b f (v),v). It holds because each node has just one incoming edge (its parent), and the333

threshold of the node will be generated uniformly at random. Then the probability that the threshold of334

the node v be less than (or equal) to the weight of the incoming edge is b f (v),v.335

Let us show that all values in the arrays will be calculated correctly, by induction. To see that,336

consider the base cases. For each leaf v ∈ V, the node cannot activate any other node as it has no337

outgoing edge. Then, these nodes cannot change the probability distribution of other nodes. In other338

words, each leaf will change just its own probability distribution. If k = 0, it means that we cannot select339

the node as a seed node, and we need to consider the probability of activating the node, because just340

activated nodes can update their probability distribution after the diffusion. Then if k = 0, we have341

DoVc(v, k, S, p) = p · b f (v),v · Dv, where Dv is the difference of the party’s score if the node v becomes342

active (defined in (4)), and p · b f (v),v is the probability that the node will be activated by its parent. On343

the other hand, if k > 0, we can select v as a seed node, and it will be activated with the probability344

of one, then we have DoVc(v, k, S, p) = Dv. Using the updating rule (defined in Section 3.1), and the345

definition of DoVspv
c (defined in (1)), the base cases are true.346

Let us define (i′, j′) < (i, j) if j′ < j, or j′ = j ∧ i′ < i. We have shown that all arrays A′ related to
the base cases filled out correctly. Now by induction step, assume all related arrays related to pair (i′, j′)
smaller than (i, j) are correctly calculated. In order to calculate the A′ related to A[i, j], for each column
p ∈ Fvj we use following formula

DoVc(vj, i, S, p) = max

{
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Procedure DoV(Tree T = (V, E), Budget B)
A← [B + 1, |V|] . It is a two-dimensional array A[0..B, 0..|V| − 1]
Name all nodes in V from 0 to |V| − 1 in BFS reverse order
for (j← 0; j < |V|; j← j + 1) do

Fvj ← Set of all possible probabilities that f (vj) may become active
for (i← 0; i <= B; i← i + 1) do

. the variables i, j are a counter for rows and columns, respectively.
A[i, j]← Array[|Fvj |] . Each cell (i, j) is an array
if (vj is a leaf) then

for (p ∈ Fvj ) do

A[i, j; p]← ∑c∈C1

(πvj (c)+
1
|C1 |
·p·b f (vj),vj

1+p·b f (vj),vj
− πvj(c)

)
if (i = 0) then

A[i, j; p]← p · b f (vj),vj
· A[i, j; p]

end
end
continue

end
for (p ∈ Fvj ) do

. If r(vj) or l(vj) does not exist, A[. . . , r(vj) or l(vj); . . . ] is zero.

Dv ← ∑c∈C1

(πvj (c)+
1
|C1 |
·p·b f (vj),vj

1+p·b f (vj),vj
− πvj(c)

)
maxj ← maxi

k=0(A[k, r(vj); p · b f (vj),vj
] + A[i− k, l(vj); p · b f (vj),vj

])

max′j ← maxi−1
k=0(A[k, r(vj); 1] + A[i− k− 1, l(vj); 1])

A[i, j; p]← max(maxj + p · b f (vj),vj
· Dv, max′j +Dv)

end
end

end
return A[B, |V| − 1; 0] . The final result for the root node using all budget

end
Algorithm 1: Calculating maximum DoVc for e given tree T and budget B when the diffusion model
is LTM and voting system is SPV.

maxi
k=0

{
DoVc

(
r(vj), k, S, p · b f (vj),vj

)
+ DoVc

(
l(vj), i− k, S, p · b f (vj),vj

) }
+ p · b f (vj),vj

· Dvj ,

maxi−1
k=0

{
DoVc

(
r(vj), k, S ∪ {vj}, 1

)
+ DoVc

(
l(vj), i− k− 1, S ∪ {vj}, 1

) }
+Dvj

}
,

in which the first maximization considers the maximum value among all possible cases that we do not347

select the node vj as a seed node, and the second one considers the maximum value among all possible348

cases that we choose vj as a seed node. The last term in each maximization is the increased amount of349

DoVc in the node vj, which is according to the probability that vj will become active. Note that in the350

above formula, we are using the value of DoVc for the children of vj, and the nodes are sorted as the BFS351

reverse order, then all required values are correctly calculated before, and we are selecting the maximum352

value among all possible cases. Then DoVc(vj, i, S, p) will find the maximum possible value of DoVspv
c353

correctly and concludes the proof.354

355

Submitted to Graph Algorithms and Applications, pages 13 – 19 www.mdpi.com/journal/notspecified

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 September 2020                   

http://www.mdpi.com/journal/notspecified


For the destructive model, we define DoVd(v, k, S, p) as the maximum difference of probability to
vote for our target party before and after S in the sub-tree rooted at v, while the budget is k and p ∈ Fv is
the probability that f (v) will become active. Formally, we define DoVd(v, k, S, p) as follows.

DoVd(v, k, S, p) = max

{
maxk

k′=0

{
DoVd

(
r(v), k′, S, p · b f (v),v

)
+ DoVd

(
l(v), k− k′, S, p · b f (v),v

) }
+ p · b f (v),v · D′v,

maxk−1
k′=0

{
DoVd

(
r(v), k′, S ∪ {v}, 1

)
+ DoVd

(
l(v), k− k′ − 1, S ∪ {v}, 1

) }
+D′v

}
, (5)

where D′v = ∑c∈C1

(
πv(c) − πv(c)

1+p·b f (v),v

)
is the difference that the node v can apply. Moreover, for356

the base cases of the problem, for each leaf v ∈ V, and each probability p ∈ Fv, if k = 0 we need357

to consider the probability that the node will become active, then DoVd(v, k, S, p) = p · b f (v),v · D′v;358

otherwise, if k > 0, we have DoVd(v, k, S, p) = D′v. Also, we set DoVc(null, k, S, p) = 0. The same as359

constructive case, for implementation we need a tow-dimensional array A[B + 1, |V|]. Moreover, for360

each cell (i, j), 0 6 i 6 B, 0 6 j < |V|, we keep another array A′[|Fvj |], where Fvj is the set of possible361

probabilities that the node f (vj) can become active. The following theorem shows that by filling the362

matrix A left-to-right and up-down direction, we can find the optimal answer for DoVspv
d .363

Theorem 6. Given a tree T = (V, E) and a budget B, using the DP (5), we can find a set of seed nodes S364

(|S| 6 B) to maximize DoVspv
d .365

Proof. The proof is similar to Theorem 5, except for the base cases and the way of updating each activated366

node’s probability distribution after the diffusion. Since a leaf cannot activate any other node, the only367

change that it can make is updating its own probability distribution. According to the updating rule (in368

Section 3.1), and the definition of DoVspv
d (defined in (2)), the base cases hold. Also, by induction, we can369

see that the DP (5) will find the maximum value of DoVspv
d correctly.370

6.1.2. Maximizing MoV in SPV under LTM371

In order to maximize MoVspv
c we have to know CS

A , i.e., the most voted opponent party after S. We372

have no problem to find the most voted opponent party before any diffusion (CB); but to find the most373

voted opponent party after S we need to have the optimal set of seed nodes that maximizes MoVspv
c ,374

and to find the optimal set of seed nodes we need the most voted opponent party (parties), which is a375

defective cycle.376

To deal with this problem, someone may say that we consider Ci, 2 6 i 6 t as the most voted377

opponent party after S, and solve the related DP; after finding the outcome for all t− 1 parties, we select378

the maximum result as the output. Nevertheless, this is not true in all cases. Consider a case that there379

are two opponent parties, and each of them has half of the votes before any diffusion. If we consider380

each of them as the most voted opponent after the diffusion, we will get a wrong outcome as they both381

can be the most voted opponent after different diffusion processes. In fact, we need to consider multiple382

parties as the most voted opponent party.383

By the way, it has been shown that by maximizing DoVspv
c we get a 1

3 -approximation factor for384

maximizing MoVspv
c . Moreover, by maximizing DoVspv

d we get a 1
2 -approximation answer for maximizing385

MoVspv
d [8].386
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6.2. MWEC Using SPV under ICM387

As we saw in previous section (in LTM), each node v becomes active either by being among the seed388

nodes or by the incoming influence from its parent f (v). Since there is just one incoming edge for each389

node v ∈ V, and the threshold of the nodes tv is generated uniformly at random, then the probability390

that its threshold be less than or equal to the incoming weight (b f (v),v) is equal to b f (v),v. In other words,391

the node will become active from its parent with the probability that its parent f (v) is active, times392

the weight of the edge between them. On the other side, in ICM, a node v becomes active if it is either393

selected as a seed node or its parent f (v) is activated and tries to influence v with the probability b f (v),v.394

Then in a tree, the activation processes in both LTM and ICM are the same.395

However, the updating rule is entirely different in them. In other words, in LTM, voters have a396

probability distribution over the candidates, and the activated nodes will update the probability of397

voting for candidates regarding the influence from activated incoming neighbors, while in ICM, voters398

have an exact preferences list over candidates, and the activated nodes promote/demote the position of399

some candidates in their preference list, regardless of neighbors (see Section 2 for a formal definition).400

Since the diffusion process in ICM is the same as LTM, we focus more on updating part of the
problem to maximize DoVspv

c . Recall that we consider the plurality scoring rule for simplicity; but, it is
possible to extend the results to any non-increasing scoring function. Then the scoring function Fspv for
our target party is defined as follows.2

Fspv(C1, ∅) = ∑
v∈V

∑
c∈C1

1πv(c)=1,

Fspv(C1, S) = EAS

[
∑

v∈V
∑

c∈C1

1π̃v(c)=1

]
,

and the objective functions for the constructive and destructive cases of our problem are the same401

as (1) and (2), respectively.402

6.2.1. Maximizing DoV in SPV under ICM403

In this case, node v can increase our target party’s score by one, if none of our target candidates
are in the first position before any diffusion, and one of them is in the second position of the voter’s
preference list. In other words, the voter v may increase the score of our target party if ∃c ∈ C1, ∃c′ ∈
C \C1 : πv(c′) = 1∧πv(c) = 2; otherwise, the node v can influence its children and change their opinion,
but it cannot affect the target party’s score. We call this condition as pre-condition and show it by ¶v. We
define Fv as the set of all possible probabilities that the node v may become active.3 Consider a sub-tree
rooted at v ∈ V, budget k, seed set S, and p ∈ Fv, we define DoV′c(v, k, S, p) as follows.

DoV′c(v, k, S, p) = max
{

maxk
k′=0{DoV′c(r(v), k′, S, p · bv,r(v)) + DoV′c(l(v), k− k′, S, p · bv,l(v))}+ p · 1¶v ,

maxk−1
k′=0{DoV′c(r(v), k′, S ∪ {v}, bv,r(v)) + DoV′c(l(v), k− k′ − 1, S ∪ {v}, bv,l(v))}+ 1¶v

}
. (6)

As the base cases of the problem, for each leaf v ∈ V, budget zero, and p ∈ Fv as the probability404

that v will become active, we set DoV′c(v, k, S, p) = p · 1¶v , and for the same parameters except a budget405

2 To extend the result using any non-increasing scoring function g(·), we should define the functions as Fspv(C1, ∅) =

∑v∈V ∑c∈C1
g(πv(c)),Fspv(C1, S) = EAS

[
∑v∈V ∑c∈C1

g(π̃v(c))
]
.

3 Please note that the definition of Fv in ICM is different from LTM.
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k > 0 we set DoV′c(v, k, S, p) = 1¶v .4 The same as before, for each reference to a node which does not406

exists (null), we define DoV′c(null, k, S, p) = 0. In order to implement the DP (6), the idea is the same as407

Algorithm 1. The following theorem shows that it calculates the maximum DoVspv
c in polynomial-time.408

Theorem 7. Given a tree T = (V, E), and budget B, the DP (6) gives a set of seed nodes S (|S| 6 B) which409

maximizes DoVspv
c .410

Proof. In DP (6), there is a maximization over two other maximization formulae. The first one considers411

the case that we do not select v as a seed node; in this case, we consider the probability that node v will412

become active, i.e., p ∈ Fv. The second maximization considers selecting v as a seed node; in this state, v413

will be activated with probability equal to one. In both cases, the node may increase the function’s value414

if the pre-condition holds; otherwise, it can influence its children. The same as previous proves, we show415

that it works by induction.416

Consider a two-dimensional array A[B + 1, |V|] where rows are the budgets from zero to B, and417

columns are the nodes in BFS reveres order. Each cell A[i, j] (0 6 i 6 B, 0 6 j < |V|) refers to another418

array A′ with the size of |Fvj |. We calculate each array related to each cell (i, j) left-to-right and up-down419

direction.420

To show that the base cases are correct, note that the leaves cannot activate any other node. Their421

only effect is by becoming active and changing their own opinion. Then there are two cases if the422

pre-condition holds for a leaf v: First, the budget is more than zero, then v can be a seed node and423

increase the amount of DoV′c by one. Second, if the budget is zero, v can increment DoV′c with the424

probability of becoming active through its parent, i.e., in expected, it will be p · 1¶v where p ∈ Fv is the425

probability that v will be activated through its parent. Note that if the pre-condition does not hold, the426

leaf cannot make any effect, and in both cases, its effect is equal to zero.427

Let us say (i′, j′) < (i, j) if j′ < j, or j′ = j ∧ i′ < i. As the step of induction, assume that all cells
(i′, j′) smaller that (i, j) are filled correctly for 0 6 i 6 B, 0 6 j < |V|. In order to calculate the array A′

related to the cell (i, j), for each p ∈ Fvj we have to calculate the result of the following function.

DoV′c(vj, i, S, p) = max
{

maxi
k=0{DoV′c(r(vj), k, S, p · bvj ,r(vj)

) + DoV′c(l(vj), i− k, S, p · bvj ,l(vj)
)}+ p · 1¶v ,

maxi−1
k=0{DoV′c(r(vj), k, S ∪ {vj}, bvj ,r(vj)

) + DoV′c(l(vj), i− k− 1, S ∪ {vj}, bvj ,l(vj)
)}+ 1¶v

}
.

There is a maximization over two cases. Let us check each case separately. The first case: It considers428

all possible cases to split the budget into two parts for its children r(vj) and l(vj) (the first and second429

terms) when vj is not selected as a seed node. It finds the split with the maximum outcome using the430

DoV′c of its children, which are calculated correctly. In this case, since the node vj is not a seed node,431

then the probability that its right (resp. left) child will become active is p · bvj ,r(vj)
(resp. p · bvj ,l(vj)

). The432

fixed-term is the amount of change that the node vj can afford to maximize our target party’s score. If433

the pre-condition holds, then with the probability of p it will increase the score by one, that is p · 1¶v .434

The second maximization: It investigates the same situation except that it selects vj as a seed node435

(if i > 0) and uses the value DoV′c of its children to find the best split for the i− 1 remaining budgets. In436

this case, the node vj can increase our party’s score by one (if the pre-condition holds) as it is selected437

4 To extend the algorithm for any non-increasing scoring function g(·), we need to define the base cases,
respectively, as DoV′c(v, k, S, p) = p · (∑c∈C1 ,∃c′∈C\C1 :πv(c′)<πv(c) g(πv(c) − 1) − g(πv(c))) and DoV′c(v, k, S, p) =

∑c∈C1 ,∃c′∈C\C1 :πv(c′)<πv(c) g(πv(c)− 1)− g(πv(c)).
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as a seed node and will be activated for sure.5 Note that all corresponding values for the children of vj438

are correctly calculated before because the nodes are sorted as BFS reverse order. Finally, it finds the439

maximum value among the two cases.440

For the destructive case of the problem, we define pre-condition ¶′v as ∃c ∈ C1 : πv(c) = 1. Then for
a node v, if it becomes active and ¶′v holds, the node will decrease the party’s score by one; otherwise,
v cannot change it. For each sub-tree rooted at v, budget k, and p ∈ Fv, let us define DoV′d(v, k, S, p) as
follows.

DoV′d(v, k, S, p) = max
{

maxk
k′=0{DoV′d(r(v), k′, S, p · bv,r(v)) + DoV′d(l(v), k− k′, S, p · bv,l(v))}+ p · 1¶′v ,

maxk−1
k′=0{DoV′d(r(v), k′, S ∪ {v}, bv,r(v)) + DoV′d(l(v), k− k′ − 1, S ∪ {v}, bv,l(v))}+ 1¶′v

}
. (7)

Note that the definition is exactly the same as constructive case except for the pre-condition. Also the441

base cases are the same as before if we substitute ¶′v for ¶v. The prove of the following theorem is similar442

to the Theorem 7; then we omit it to avoid repetition.443

Theorem 8. Given a tree T = (V, E), and budget B, the DP (7) gives a set of seed nodes S (|S| 6 B) which444

maximizes DoVspv
d .445

6.2.2. Maximizing MoV in SPV under ICM446

Similar to Section 6.1.2, we do not know the most scored parties after the diffusion started from a447

set of optimal seed nodes. However, it has been shown that by maximizing DoVspv
c (resp. DoVspv

d ) we448

get a 1
3 (resp. 1

2 ) approximation algorithm for maximizing MoVspv
c (resp. MoVspv

d ) [9].449

7. Discussion450

Controlling election via SI is one of the most crucial parts of each democratic election. It has been451

shown that many campaigns are using this powerful tool to influence the voters and change their opinion452

during elections. In this work, we considered the multi-winner election control utilizing SI so that the453

attacker tries to maximize/minimize the number of winners from his target party, concerning the party454

with the most winners.455

We exhibited different results, including hardness of approximation, approximation guarantee, and456

optimal solutions for our problem considering different structures, diffusion models, and voting systems.457

In ICM, each voter has a preference list over the candidates and will vote for one or more candidate458

according to the voting rule, e.g., plurality, Borda’s rule, k-approval, and anti-plurality. In this case,459

the influenced voters change their opinion by promoting/demoting the candidates’ position in their460

preference list. On the other hand, in LTM, we consider that the voters have a probability distribution461

over all candidates. Each voter votes for one or more candidates proportional to the probability of voting462

for them. In this model, the activated voters change their opinion based on the incoming activated463

neighbors’ influence.464

We proved the problem is hard to approximate within any factor when the structure is a general465

graph, and the diffusion model is LTM. We also considered the problem when the structure is an466

arborescence, and the diffusion process follows the ICM rules. We showed that the problem is467

inapproximable within any factor, except P = NP. Another structure that we investigated is a tree468

5 To generalize the proof using any non-increasing scoring function g(·), we should change the updating part of each
maximization (the fixed part) similar to the formula in the footnote 4.
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where the voting system is a variation of Straight-party voting. We presented a polynomial-time algorithm469

to maximize the expected score of our target party regarding both LT and IC diffusion models. It yields470

that we can get a 1
3 -approximation factor for maximizing MoV in constructive case, and 1

2 -approximation471

factor concerning MoV in the destructive model.472

The results of this paper open several research directions. Considering the MWEC through SI on473

arborescence, when the diffusion model is LTM can be an exciting research problem. We conjecture that474

maximizing both objective functions (MoV and DoW) is hard; even though, there exists a polynomial-time475

algorithm for the IM problem on arborescence under LTM. We plan to consider maximizing MoV in476

SPV to either present an optimal solution or provide a hardness result regarding both constructive and477

destructive cases. Also, maximizing DoV on the bidirected trees, where a child can activate its parent478

too, can be impressive. We conjecture that the problem accepts a polynomial-time algorithm following a479

similar dynamic programming approach.480
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