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Abstract: A simplified nonlinear dispersive BOUSSINESQ system of the BENJAMIN–BONA–MAHONY

(BBM)-type, initially derived in [2], is employed here in order to model the generation and propagation
of surface water waves over variable bottom. The simplification consists in prolongating the so-called
BOUSSINESQ approximation to bathymetry terms as well. Using the finite element method and the
FreeFem++ software [3], we solve numerically this system for three different complexities for the
bathymetry function: a flat bottom case, a variable bottom in space, and a variable bottom both
in space and in time. The last case is illustrated with the JAVA 2006 tsunami event. This article is
designed to be a pedagogical paper presenting to tsunami wave community a new technology and a
novel adaptivity technique along with all source codes necessary to implement it.
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1. Introduction

Tsunami waves represent undeniably a complex natural process. Moreover, they represent a
major risk for exposed coastal areas including also the local populations, infrastructure, etc. The
present work is devoted to the modelling tsunami generation and propagation processes. Moreover,
this article is designed as a tutorial paper in order to show to the readers how easily these processes
can be modelled in the framework of the FreeFem++, which is a free software (under the LGPL license).
FreeFem++ offers a large variety of triangular finite elements (linear and quadratic Lagrangian elements,
discontinuous P1, RAVIART–THOMAS elements, etc.) to solve Partial Differential Equations (PDEs).
It is an integrated product with its own high level programming language and a syntax close to
mathematical formulations, making the implementation of numerical algorithms very easy. Among
the features making FreeFem++ an easy-to-use and highly adaptive software we recall the advanced
automatic mesh generator, mesh adaptation, problem description by its variational formulation,
automatic interpolation of data, color display on line, postscript printouts, etc. The FreeFem++
programming framework offers the advantage to hide all technical issues related to the implementation
of the finite element method.
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Figure 1. The sketch of the physical domain Ω .

Traditionally, tsunami waves are modelled using hydrostatic models [4–7]. In the present
manuscript we employ a non-hydrostatic BOUSSINESQ-type system to be specified below. This
class of models is distinguished by the application of the so-called BOUSSINESQ approximation [8].
They can be used to study a variety of water wave phenomena in harbors, coastal dynamics and, of
course, tsunami generation and propagation problems [9–13].

In this study we consider an sBBM system derived by D. MITSOTAKIS (2009) in 2D over a variable
bottom in space h(x, y) and in time ζ(x, y, t) [2]:

ηt +∇ · ((h + η)V) + ζt + Ã∇ ·
(

h2∇ζt

)
+∇ ·

{
Ah2 [∇ (∇h ·V) +∇h∇ ·V]− bh2∇ηt

}
= 0 ,

Vt + g∇η +
1
2
∇|V|2 + Bgh [∇ (∇h · ∇η) +∇h∆η]− dh2∆Vt − Bh∇ζtt = 0 ,

(1)

where

â =

(
θ − 1

2

)
, b̂ =

1
2

(
(θ − 1)2 − 1

3

)
, Ã = νâ− (1− ν)b̂, A = −b̂, B = 1− θ,

b =
1
2

(
θ2 − 1

3

)
(1− ν), d =

1
2

(
1− θ2

)
(1− µ).

Constants θ, µ, ν are real parameters and g is the acceleration due to gravity. System (1) is an asymptotic
approximation to the three-dimensional full EULER equations describing the irrotational free surface
flow of an ideal fluid Ω ⊂ R3 [14,15], which is bounded below by −zb(x, y, t) = −h(x, y)− ζ(x, y, t)
and above by the free surface elevation η(x, y, t) (cf. Figure 1). The system (1) can be considered as a
generalization of the classical BOUSSINESQ system put forward by D. PEREGRINE [16,17].

The variables in (1) are X = (x, y) ∈ Ω and t > 0 are proportional to position along the channel
and time, respectively. η = η(X, t) being proportional to the deviation of the free surface departing

from its rest position and V = V(X, t) =

(
u(X, t)
v(X, t)

)
= (u, v)> = (u; v) being proportional to the

horizontal velocity of the fluid at some height. In our study, we suppose that η = O(a), with the
characteristic wave amplitude a (in other words, η is the difference between the water free surface and
the still water level). Also we set λ = O(`) be the wave length. In addition, we limit ourselves to the
case where η + zb > 0 (there are no dry zones in our computations).

This paper is organized as follows. In Section 2 we present the space and time discretization
of a simplified version (4) of Equations (1). In Section 3, we present the new domain adaptation
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technique. In Section 4, we establish the convergence of our numerical code, which validates the
adequacy of the chosen finite element discretization. Then, with this code we simulate the propagation
of a tsunami-like wave generated by the moving bottom (e.g. an earthquake). We present several test
cases in various regions of the world. First, we take a MEDITERRANEAN sea-shaped computational
domain with flat bottom and we solve the sBBM system1 (1) in it. The mesh in this study is generated
from a space image. Then, we consider the JAVA island region with real world bathymetry. Finally, we
apply this solver to simulate a realistic example of a tsunami wave near the JAVA island which took
place in 2006. The main conclusions of this study are outlined in Section 5.

2. Discretization of the sBBM system

In this section, we present the spatial discretization of (1) using Finite Element Method (FEM)
with P1 continuous piecewise linear elements. For the time marching scheme we use an explicit second
order RUNGE–KUTTA method.

2.1. Spatial discretization

We let Ω be a convex, plane domain, and Th be a regular, quasi-uniform triangulation of Ω
with triangles of maximum size h < 1. Setting Vh = {vh ∈ C0(Ω̄); vh

∣∣
T ∈ P1(T), ∀T ∈ Th} be a

finite-dimensional, where P1 is the set of all polynomials of degree ≤ 1 with real coefficients and
denoting by 〈·; ·〉 the standard L2 inner product on Ω, we consider the weak formulation of System (1):
find ηh, uh, vh ∈ Vh such that ∀φ

η
h , φu

h , φv
h ∈ Vh, we have:〈

ηht − b∇ ·
(
h2∇ηht

)
+∇ · ((h + ηh) (uh; vh)) + ζt; φ

η
h

〉
+
〈

Ã∇ ·
(
h2∇ζt

)
; φ

η
h

〉
+
〈
∇ ·

{
Ah2 [∇ (∇h · (uh; vh)) +∇h∇ · (uh; vh)]

}
; φ

η
h

〉
= 0,〈

uht − dh2∆uht + gηxh + uhuhx + vhvhx − Bhζxtt; φu
h
〉
+ Bg

〈
h
[
(∇h · ∇ηh)x + hx∆ηh

]
; φu

h

〉
= 0,〈

vht − dh2∆vht + gηyh + uhuhy + vhvhy − Bhζytt; φu
h

〉
+ Bg

〈
h
[
(∇h · ∇ηh)y + hy∆ηh

]
; φv

h

〉
= 0.

(2)
For simplicity, we set φ

η
h = Φη , φu

h = Φu, φv
h = Φv, ηh = E , uh = U , vh = V , so that system (2) can be

rewritten in the following way:

〈
∂tE − b∇ ·

(
h2∇∂tE

)
; Φη

〉
= −

〈
(h + E)∇ · (U ;V) + (hx + Ex)U + (hy + Ey)V + ζt

+Ã∇ ·
(
h2∇ζt

)
+ A∇ ·

{
h2 [∇ (∇h · (U ;V)) +∇h∇ · (U ;V)]

}
; Φη

〉
= F (E ,U ,V , Φη) ,〈

(Id − dh2∆)∂tU ; Φu
〉

= −
〈

gEx + UUx + VVx + Bgh
[
(∇h · ∇E)x + hx∆E

]
− Bhζxtt; Φu

〉
= G (E ,U ,V , Φu) ,〈

(Id − dh2∆)∂tV ; Φv
〉

= −
〈

gEy + UUy + VVy + Bgh
[
(∇h · ∇E)y + hy∆E

]
− Bhζytt; Φv

〉
= H (E ,U ,V , Φu) .

(3)
However, the model presented above contains some drawbacks. In particular, when the

bathymetry function contains steep gradients, it causes instabilities in the numerical solution. We have
to mention that this problem is well-known in the framework of BOUSSINESQ-type equations [18]. In
order to avoid this kind of problems and to have a robust numerical model, we take two measures.
First of all, we perform the smoothing of the bathymetry data which is fed into the model. In this way,
we avoid noise in the bathymetry gradient. As a second and more radical step, we neglect higher order

1 Please, notice that BBM–BBM (1) and sBBM (4) systems coincide over flat bottoms.
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derivatives of the bathymetry function as it was proposed earlier in [2]. Thus, from now on we shall
use the following system of equations:

〈
∂tE ; Φη

〉
+ b

〈
h2∇∂tE ;∇(Φη)

〉
−
∫

Γn
bh2Φη ∂(∂tE)

∂n
∂γ = F (E ,U ,V , Φη)〈

∂tU ; Φu
〉
+ d

〈
h2∇∂tU ;∇Φu〉+ d 〈2h∇h · ∇∂tU ; Φu〉 −

∫
Γn

dh2Φu ∂(∂tU )
∂n

∂γ = G (E ,U ,V , Φu)〈
∂tV ; Φv

〉
+ d

〈
h2∇∂tV ;∇Φv〉+ d 〈2h∇h · ∇∂tV ; Φv〉 −

∫
Γn

dh2Φv ∂(∂tV)
∂n

∂γ = H (E ,U ,V , Φv)

(4)
with

F (E ,U ,V , Φη) = −
〈
(h + E)∇ · (U ;V) + (hx + Ex)U + (hy + Ey)V + ζt; Φη

〉
−Ã

〈
2hhxζxt + 2hhyζyt; Φη

〉
−A

〈
−2hhxhyVx + 2hh2

xVy; Φη
〉
+ A

(〈
2h2hxUx + h2hyVx; Φη

x

〉
+
〈

h2hyUx

+h2hxUy + h2hxVx + 2h2hyVy; Φη
y

〉)
− A

∫
Γn

(
(3h2hx + h2hy)Φη ∂U

∂n
+ (h2hx + 3h2hy)Φη ∂V

∂n

)
∂γ,

G (E ,U ,V , Φu) = −
〈

g
(

Id − B
(

2h2
x + h2

y

))
Ex + UUx + VVx − BghxhyEy − Bhζxtt; Φu

〉
+ Bg 〈2hhxEx; Φu

x〉

+Bg
〈

hhyEx + hhxEy; Φu
y

〉
−
∫

Γn
Bg(3hhx + hhy)Φu ∂E

∂n
∂γ,

and

H (E ,U ,V , Φv) = −
〈
−2BghxhyEx + UUy + VVy + g

(
Id − 2Bh2

y

)
Ey − Bhζytt; Φv

〉
+ Bg

〈
hhyEx; Φv

x
〉

+Bg
〈

hhxEx + 2hhyEy; Φv
y

〉
−
∫

Γn
Bg(hhx + 3hhy)Φv ∂E

∂n
∂γ.

Several intermediate computations are reported in Appendix A. We would like to underline the fact
that the performed simplification allows us to gain in numerical model stability and robustness at the
price of some higher order bathymetry effects.

2.2. Time marching scheme

Our method is based on the explicit second order RUNGE–KUTTA scheme. For that, let us
denote by (En+1,Un+1,Vn+1) and (En,Un,Vn) the approximate values at time t = tn+1 and t = tn,
respectively and by δt the time step size. Then, owing to (4), the unknown fields at time t = tn+1 are
defined as the solution of the following system:

〈En+1; Φη〉 = 〈En +
E k1 + E k2

2
; Φη〉,

〈Un+1; Φu〉 = 〈Un +
U k1 + U k2

2
; Φu〉,

〈Vn+1; Φv〉 = 〈Vn +
V k1 + V k2

2
; Φv〉,

(5)
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where 〈
E k1; Φη

〉
+ b

〈
h2∇E k1;∇(Φη)

〉
−
∫

Γn
bh2Φη ∂(E k1)

∂n
∂γ = δt · F (En,Un,Vn, Φη) ,〈

U k1 + 2dh∇h · ∇U k1; Φu
〉
+ d

〈
h2∇U k1;∇Φu

〉
−
∫

Γn
dh2Φu ∂(U k1)

∂n
∂γ = δt · G (En,Un,Vn, Φu) ,〈

V k1 + 2dh∇h · ∇V k1; Φv
〉
+ d

〈
h2∇V k1;∇Φv

〉
−
∫

Γn
dh2Φv ∂(V k1)

∂n
∂γ = δt · H (En,Un,Vn, Φv)

(6)
and 〈

E k2; Φη
〉
+ b

〈
h2∇E k2;∇(Φη)

〉
−
∫

Γn
bh2Φη ∂(E k2)

∂n
∂γ= δt · F

(
En + E k1,Un + U k1,Vn + V k1, Φη

)
,〈

U k2 + 2dh∇h · ∇U k2; Φu
〉
+ d

〈
h2∇U k2;∇Φu

〉
−
∫

Γn
dh2Φu ∂(U k2)

∂n
∂γ= δt · G

(
En + E k1,Un + U k1,Vn + V k1, Φu

)
,〈

V k2 + 2dh∇h · ∇V k2; Φv
〉
+ d

〈
h2∇V k2;∇Φv

〉
−
∫

Γn
dD2Φv ∂(V k2)

∂n
∂γ= δt · H

(
En + E k1,Un + U k1,Vn + V k1, Φv

)
.

(7)

3. New domain adaptation, domains computation and initial data

We present here the new domain adaptation technique that will be compared in the sequel with
the mesh adaptation used in FreeFem++. In order to complete the literature review, we would like to
mention that alternative approaches exist, see e.g. [19,20].

3.1. New domain adaptation technique

Since some computation domains for many applications (here for tsunami waves [21]) may be
huge and the initial data is concentrated in a small domain, a circle C(O, R) or a rectangle [a, b]× [c, d],
before starting to propagate in the domain, we present here an idea to build a moving computation
domain around the solution only, as when we use a mesh adaptation. The difference between these
two methods is that the moving domain will be a cut from the initial one; i.e. all initials vertices, edges
and boundary labels are conserved and a new label is defined for the new boundary; while the mesh
adaptation technique don’t conserve the initials vertices and edges, so when we make interpolation of
solution from old to new mesh we will lose some information in the mesh adaptation technique but
not with the moving domain.

Firstly, we cut from the initial mesh Thinit a circle or a rectangle zone Th where our initial
solution lives (using trunc in FreeFem++, see (a) in Figure 2), we let uadapt be the initial solution used
for the domain adaptation, and we follow this algorithm:

• We deduce the limit min max of Th on x and y direction (using boundingbox in FreeFem++).
• We increase the mesh from Th to Th1 by adding layers from the original mesh (using trunc in
FreeFem++), the added zone is a size of epsadapt from each side and we mapped uadapt to unew
(using interpolate in FreeFem++, see (b) in Figure 2).
• We define a HEAVISIDE function unewadapt which have a 1 value if the absolute value of unew is

grater then or equal to a defined error (erradapt) by the user and 0 otherwise (see (c) in Figure 2).
• We smooth the function unewadapt (see (d) in Figure 2)) solving the following problem:

β usmadapt− ∆ usmadapt = β f, (8)

with zero DIRICHLET BC only on the new boundary label of Th1 and a NEUMANN BC in the
other boundary label. Here β is the real coefficient that control the smoothness of the solution
and f=unewadapt.

• We define a HEAVISIDE function ufinal which have a 1 value if the absolute value of usmadapt is
grater then or equal to a defined error (erradapt) by the user and 0 otherwise (see (c) in Figure 2).
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Figure 2. Domain adaptation technique step : (a) : initial solution, (b) : the solution unew mapped from the
initial solution over a mesh augmented by epsadapt, (c) : the new HEAVISIDE function unewadapt which
have a value of 1 (the red part in the figure) if |unew| ≥ erradapt and 0 otherwise, (d) : the function usmadapt
which is the smoothness of the unewadapt, (e) : the new HEAVISIDE function ufinal which have a value of 1
(the red part in the figure) if |usmadapt| ≥erradapt and 0 otherwise, (f) : mapped of the initial solution to the
final domain adapted.

• We cut from Th1, the region where ufinal is grater then a defined isoline isoadapt by the user
in order to obtain the final mesh Thnew (using trunc in FreeFem++), then we obtain the initial
solution mapped over the final mesh using interpolate in FreeFem++, see (f) in Figure 2).

We use a reflective Boundary Condition (BC) on the new boundary, i.e. homogeneous NEUMANN BC
for η and homogeneous DIRICHLET BC for the velocity V. This choice is justified theoretically over flat
bottom case in [22]. Moreover, the homogeneous NEUMANN BC for η can be shown to hold exactly in
the full EULER equations on solid vertical walls, see [23, Section §2.1.4] for the proof.

3.2. Domains computation

For the BBM–BBM system over a flat bottom, we use a mesh generated through a photo of the
MEDITERRANEAN sea (a cut of the mesh around the CRETE island is shown in Figure 3 at left panel)
and for the sBBM system over a variable bottom in space and in time, we use a mesh generated using
an imported bathymetry fxy for the sea near the JAVA island which can be downloaded from the
NOAA2 website where in this case we remove the dry zone from our mesh and we keep only the wet
zone. We can smooth the bathymetric data obtained from NOAA (cf. Figure 4, left panel) by solving (8)
with f = fxy. For all simulations with realistic bathymetry, we use β = 20 in (8) to smooth the initial

2 https://maps.ngdc.noaa.gov/viewers/wcs-client/
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(a) (b)

Figure 3. Left (a): the mesh around the CRETE island. Right (b): the place of �: wave gauge and ?: epicenter.

(a) (b)

Figure 4. Left (a): Bathymetry downloaded from the NOAA website, (min = −7239 m and max = 3002 m).
Right (b): smoothed bathymetry with β = 20 in (8), (min = −6207 m and max = −100 m).

bathymetry after the generation of the mesh (cf. Figure 4, right panel) in order to ensure the stability of
the numerical method. We also mention that we change the depth close to the shoreline to 100 m in
order to avoid the run-up problem in this study. Finally, all types of meshes used in our computations
are depicted in Figure 9.

The bathymetry data downloaded from the NOAA website are in geographical degrees
coordinates and we need to convert them back to meters and a CARTESIAN system. So, on the
first hand, we must know the degree of Latitude (South and North) and of Longitude (West and East)
of our domain where we can deduce the Latitude lat0 = .5(latSouth + latNorth) and the Longitude
long0 = .5(longWest + longEast). On the other hand, we must take into account the spherical shape of
the EARTH, even if it does not play significant role because of the small spatial scale of the experiments.
So, we know that the radius of the EARTH near the equator is Requator = 6378, 137 km, and near to the
pole Rpole = 6356, 752 km, thus the radius of our domain equals to:

R =

√√√√√(
R2

equator cos(lat0 · π/180)
)2

+
(

R2
pole sin(lat0 · π/180)

)2(
Requator cos(lat0 · π/180)

)2
+
(

Rpole sin(lat0 · π/180)
)2 .

So, we move the mesh of our domain using the following translation (coefl0 = πR/180):

[x; y] −→ [(x− lon0) cos(πy/180)coefl0; (y− lat0)coefl0].
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(a) (b)

Figure 5. Left panel (a): Surface projection of the fault’s plane and the mesh around, �: wave gauge, ?: epicenter.
Right panel (b): the 14-th Okada solution (min= −0.09 m, max= 0.17 m ).

Finally, for the active generation case, since the fault plane is considered to be the rectangle with
vertices located at (109.20508◦ (Lon),−10.37387◦ (Lat)), (106.50434◦ (Lon),−9.45925◦ (Lat)), (106.72382◦

(Lon),−8.82807◦ (Lat)) and (109.42455◦ (Lon),−9.74269◦ (Lat)), we will consider that our bottom
displacement is concentrated on the big rectangle which is equidistant of 1◦ from each side of the
initial fault plane as in Figure 5 (left panel).

3.3. Initial data

Tsunami waves considered in this study are generated by the co-seismic deformation of the
Ocean’s or sea’s bottom due to an earthquake. The adopted modelling of the tsunami wave generation
process is inspired by [2,11,24,25]. The co-seismic displacement is computed according to the celebrated
OKADA’s solution [26,27]. We assume the dip-slip dislocation process underlying the earthquake.
The vertical component of displacement vector O(x, y) is given by the following formulas employing
CHINNERY’s notation, cf. [24,25]:

f (ξ, η) ||= f (ξ, p)− f (ξ, p−W)− f (ξ − L, p) + f (ξ − L, p−W) ,

O(x, y) = − U
2π

(
d̃q

R(R + ξ)
+ sin δ arctan

ξη

qR
− I sin δ cos δ

)∣∣∣∣∣∣∣∣ ,

where
ξ = (x− x0) cos φ + (y− y0) sin φ, Y = −(x− x0) sin φ + (y− y0) cos φ,

p = Y cos δ + d sin δ, q = Y sin δ− d cos δ,

ỹ = η cos δ + q sin δ, d̃ = η sin δ− q cos δ,

R2 = ξ2 + η2 + q2 = ξ2 + ỹ2 + d̃2, X2 = ξ2 + q2

and

I =


µ

λ + µ

2
cos δ

arctan
η(X + q cos δ) + X(R + X) sin δ

ξ(R + X) cos δ
if cos δ 6= 0,

µ

λ + µ

ξ sin δ

R + d̃
if cos δ = 0.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2020                   doi:10.20944/preprints202008.0616.v1

Peer-reviewed version available at Geosciences 2020, 10, 351; doi:10.3390/geosciences10090351

https://doi.org/10.20944/preprints202008.0616.v1
https://doi.org/10.3390/geosciences10090351


9 of 25

Here, W and L are the width and the length of the rectangular fault, (x, y) are the points where we
computes displacements, (x0, y0) is the epicenter, d = fault depth(x0, y0) + W sin δ, δ is the dip angle,
θ is the rake angle, D is the BURGERS’s vector, U = |D| sin θ is the slip on the fault, φ is the strike angle
which is measured conventionally in the counter-clockwise direction from the North (cf. Figure 6 (left)),
µ, λ are the LAMÉ constants derived from elastic-wave velocities: λ = ρc

(
V2

P −V2
S
)

and µ = ρcV2
S ,

where ρc is the crust density, VP is the compressional-wave (P−wave) velocity, VS is the shear-wave
(S−wave) velocity. The Matlab script to compute the OKADA solution can be downloaded at the
following URL:

https://mathworks.com/matlabcentral/fileexchange/39819-okada-solution/
We shall distinguish here the two types of tsunami wave generation mechanisms [28,29]: active

and passive generation mechanisms.

(a) (b)

Figure 6. Geometry of the source model (left) and the initial solution for η (right, min= −0.46 m, max= 0.71
m).

3.3.1. Passive generation

We remind that the passive generation approach consists in transposing the bottom deformation
on the free surface as an initial condition for tsunami propagation codes. In order to compute the initial
data for η(x, y, 0) = O(x, y) in meters (cf. Figure 6 (right)), V(x, y, 0) = 0 which is referred to as a passive
generation of a tsunami wave near the JAVA island, using our domain adaptive technique, we will use
the fact that the solution is concentrated in the small rectangle [x0− 3.2W; x0 + 1.2W]× [y0− L; y0 + L]
where L = 100 km, W = 50 km, δ = 10.35◦, φ = 288.94◦, θ = 95◦, U = 2 m, ρc = 2700kg/m3, VP = 6000
m/s, VS = 3400 m/s, (x0; y0) = (107.345◦,−9.295◦) and the fault depth 10 km. All these geophysical
parameters can be downloaded from this file hosted by USGS:

https://Earthquake.usgs.gov/archive/product/finite-fault/usp000ensm/us/1486510367579/
web/p000ensm.param

3.3.2. Active generation

In contrast to passive generation, the active generation approach consists in generating a tsunami
waves by computing fluid layer interaction with moving bottom. For a more realistic case of the JAVA

2006 event, we use precisely this so-called active generation approach by following [11,30]. In this
case we consider zero initial conditions for both the free surface elevation and the velocity field, and
assume that the bottom is moving in time. This case may be described by considering the bottom
motion formula: −zb(x, y, t) = −h(x, y)− ζ(x, y, t) with

ζ(x, y, t) =
Nx ·Ny

∑
i=1
H(t− ti) ·

(
1− e−α(t−ti)

)
· Oi(x, y),
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where Nx sub-faults along strike and Ny sub-faults down the dip angle,H(t) is the HEAVISIDE step
function and α = log(3)/tr, where tr = 8 s is the rise time. We choose here an exponential scenario,
but in practice, various scenarios could be used (instantaneous, linear, trigonometric, etc.) and could
be found in [11,24,25,30,31]. Parameters such as sub-fault location (xi, yi), depth di, slip U and rake
angle θ for each segment are given in [11, Table 3]. In this table, we notice that the fault’s surface is
conventionally divided into Nx = 21 sub-faults along strike and Ny = 7 sub-faults down the dip angle,
leading to a total number of Nx × Ny = 147 equal segments.

We compute each OKADA solution Oi on a circle of center (xi − 10m, yi − 10m) and of radius
6 max(L, W) and at the end all the OKADA solution will be interpolated on the big rectangle before
starting to compute the vertical displacement of the bottom ζ(x, y, t), in Figure 5 (right panel) we plot
O14. For the computation of ζ(x, y, t), we start the mesh by a circle of center (xc − 5m, yc − 5m) and
of radius 4 max(L, W) and we adapt the mesh each 3 iterations i.e. each 6 s by using the following
value for the domain adaptation uadapt = ζ, isoadapt= 5× 10−2, erradapt= ×10−4, β= 5× 10−9,
epsadapt= 5× 104.

We show in Figure 7, the bottom displacement ζ(x, y, t) at time t = 100 s and t = 270 s using our
domain adaptation technique. We note that after building the OKADA solution O(x, y) in the passive
generation orOi(x, y) in the active generation, we can remark that this solution is non-local and decays
slowly to zero, that is why in our domain adaptation technique we put 0 where the absolute value
of the solution is less then min(|min (Oi(x, y))| , |max (Oi(x, y))|) < 9.2 m. We make the same thing
without adaptive mesh in order to compare the solution using the same initial data.

(a) (b)

Figure 7. Bottom displacement at t = 100 s (left, min= −0.18 m, max= 0.38 m) and at t = 270 s (right,
min= −0.18 m, max= 0.45 m).

4. Numerical simulations

In this section, we study first the rate of convergence of our schemes for the sBBM System (4)
with non-dimensional and unscaled variables i.e., with g = 1 over a variable bottom in space, which
establishes the adequacy of the chosen finite element discretization and the used time marching scheme,
for the flat bottom case, we refer to [32], where we use the same technique as in this paper. Then,
we simulate the propagation of a wave, that is similar to a real-world tsunami wave generated by
an earthquake, in the MEDITERRANEAN sea with the BBM–BBM model over a flat bottom. Then, we
switch to the JAVA island region with real variable bottom in space. Finally, we study the active tsunami
generation scenario which took place in 2006 near the JAVA island. In all numerical simulations we
used P1 continuous piecewise linear functions for η, u, v, h and ζ.

4.1. Rate of convergence

We present the evidence here, following the work done for the 1D case of the BBM–BBM system
in [33], that the second order RUNGE–KUTTA time scheme considered for the sBBM variable bottom
in space is of order 2. We note that the function ζ(x, y, t) is only used for the generation of tsunami
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Table 1. L2 norm of the error for η and V.

N δt NL2 (η) rate NL2 (V) rate NH1 (η) rate NH1 (V) rate
25 .01/20 0.24145 - 1.10773 - 0.60317 - 1.62575 -
26 .01/21 0.06078 1.990 0.28016 1.983 0.30196 0.998 0.81276 1.000
27 .01/22 0.01524 1.996 0.07038 1.993 0.15119 0.998 0.40696 0.999
28 .01/23 0.00381 1.999 0.01760 1.999 0.07578 0.998 0.20355 0.999

wave and, thus, will not be taken into account in the convergence rate test. In this example, we
take bi-periodic Boundary Conditions (BC) for ηh, uh and vh on the whole boundary of the square
[0, 2L]× [0, 2L], where L = 50 and we consider the following exact solutions:

ηex = .2 cos(2πx/L− t) cos(2πy/L− t), uex = .5 sin(2πx/L− t) cos(2πy/L− t),

vex = .5 cos(2πx/L− t) sin(2πy/L− t), h(x, y) = 1− .5 cos(2πx/L) cos(2πy/L),

adding an appropriate function to the right-hand side to make these solutions exact. We measure at

time T = 1 and for θ2 =
2
3

, δt =
0.01
2n and δx =

2L
N

=
2L

2n+5 ∀n ∈ {0, 1, 2, 3, 4}, the following errors

NL2(η) = ‖ηh − ηex‖L2 ,

NH1(η) = ‖ηh − ηex‖H1 ,

NL2(V) = ‖uh − uex‖L2 + ‖vh − vex‖L2 ,

NH1(V) = ‖uh − uex‖H1 + ‖vh − vex‖H1

and we end up with the results reported in Table 1. So, the L2 rates for η and V is of order ∼ 2 and the
H1 rates for η and V is of order ∼ 1 as shown in the Figure 8 and which confirms the convergence of
the second-order RUNGE–KUTTA scheme in time for the sBBM system with variable bottom in space.
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Figure 8. Rate of convergence for sBBM system (4) with variable bottom in space.

4.2. Propagation of a tsunami wave in the Mediterranean sea with a flat bottom

We simulate here, the propagation of a wave that looks like a tsunami wave generated by an
earthquake in the MEDITERRANEAN sea with the sBBM System (4) with a flat bottom −h(x, y) = −1, 5
km which is the average depth of the MEDITERRANEAN sea. This wave was defined above in the passive
generation part of the Section 3 where, in this case, the initial solution is concentrated in the small
rectangle [x0 − 5W; x0 + 4W]× [y0 − 1.5L; y0 + 2.5L] and we take these following values: L = 20 Km,
W = 10 km, δ = 7◦, φ = 0◦, θ = 90◦, E = 9.5 GPA is the YOUNG’s modulus, ν = 0, 27 is the POISSON’s
ratio, U = 2.5 m, (x0; y0) = (2390. ∗ scale, 590. ∗ scale) and the fault depth 10 km. In this example, we
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(a) (b) (c)

Figure 9. The mesh and the numerical isoline of the solution at t = 1000 s, with the full method at the left panel
(a), the domain adaptive method at the center panel (b) and the FreeFem++ adaptation with err=1.e-7 at the
right panel (c).

(a) (b) (c)

Figure 10. The solution at t = 3000 s, with the full method at the left panel (a), the domain adaptive method at
the center panel (b) and the FreeFem++ adaptation with err= 10−7 at the right panel (c) (min= −5.5× 10−2

m, max= 4.7× 10−2 m, for the three case).

will take the fact that the LAMÉ constants µ and λ are given by the formulas µ = E/2(1 + ν) and
λ = Eν/(1 + ν)(1− 2ν).

An efficient mesh adaptivity algorithm using metrics control is used to adapt the mesh every 50
time steps, we use the standard function (adaptmesh) which is an efficient tool offered by FreeFem++
to efficiently adapt 2D meshes by metrics control [34], see [35, Section §3.2] for more details. We also
use the following settings: for the step time δt = 0.1 s, a reflective BC for all the boundary, for the
adaptmesh of FreeFem++:

Th=adaptmesh ( Th , uadapt , e r r =1. e−7, errg =1. e−2,hmin=Dx , i s o =true , nbvx=1e8 ) ;

where err : is the interpolation error level inside the geometry, errg : is the interpolation error level
on the boundary, hmin : the minimum edge size, iso : forces the metric to be isotropic or not and
nbvx : is the maximum number of vertices allowed in the mesh generator. Finally, for our domain
adapt technique: isoadapt= 5× 10−2, erradapt= 1× 10−7, β = 5× 10−3, epsadapt= 2× 10−2.
We note that, we adapt the mesh around the solution each 100 iterations i.e. each 10 s by using
uadapt= η + u + v .

In order to compare the results between adaptive mesh generated by FreeFem++, our new domain
adaptation technique and without using mesh adaptation, we plot in addition to the free surface
elevation η in the Figures 9→ 10, the variation of η vs time in Figure 12 at two wave ’gauges’ placed at
the positions represented by � in Figure 3 at right and the mass of the water

∫
η . Specifically, gauges
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(a)

(b)

(c)

Figure 11. Comparison between the three method full (a), domain adaptation (b) and adaptive mesh generated
by FreeFem++ with err= 10−7 (c) of the maximum of the propagation of the solution of a tsunami wave in the
MEDITERRANEAN sea for t = 6800 s (min= 0 m, max= .4 m, for three cases).
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were placed at the points (i) : (2350. ∗ scale, 550. ∗ scale), (ii) : (2104. ∗ scale, 665. ∗ scale). In Figure 11,
we represent the comparison between the three methods: full mesh, domain adaptation and FreeFem++
internal mesh adaptivity of the maximum of the propagation of the solution at time t = 6800 s. We
also plot the computation time for each adapt mesh, the computation time of the simulation, the
number of degree of freedom in Figure 13. We can see in Figures 12 and 13 that the adaptive mesh
generated by FreeFem++ with err= 10−2 is the fastest method but unfortunately it does not preserve

the mass invariant
∫

η. On the other hand, our new domain adaptation technique preserves the

mass invariant throughout the simulation with an error of order 2.1× 10−3 and an important time
computation difference with the one without mesh adaptation which is very promising method for
the tsunami wave propagation. For the adaptive mesh generated by FreeFem++ with err=1.e-7 and
errg= 10−2, we also almost get the mass conservation with an error of order 9.5× 10−4, but we obtain
some difference in wave gauge with the full method which is due to the refinement mesh adaptation
and the interpolation of the solution, although the computation time is almost the double of the new
domain adaptation technique. Thus, we can go faster with our new domain adaptation technique if we
can also deduce the mass matrix after cutting the mesh, of course, if the mass matrix does not change
along the simulation of the full mesh. This is an outgoing project.
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Figure 12. Comparison between the three methods: full, FreeFem++ adaption with err= 10−2 and err= 10−7

and the domain adaptation of the free surface elevations (in meters) vs time (in seconds), computed numerically
at two wave gauges (up and middle) and of the mass conservation (down).

4.3. Propagation of a tsunami wave near the Java island: passive generation

We will take here the same initial data as defined above in the passive generation part of Section 3,
we take δt = 1 s as the time step size and we note that, we adapt the mesh after computing the
initial data for η and then every 50 s by using the following value for the domain adaptation uadapt=
η + u + v, isoadapt= 3× 10−2, erradapt= 10−4, β = 5× 10−9, epsadapt= 3× 104. We compare
here the results between our new domain adaptation technique and without using mesh adaptation.
To this end, we plot the free surface elevation η in the Figures 14 and 15, the variation of η vs time (in
Figure 16) at four numerical wave gauges placed at the following locations: (i) (107.345◦,−9.295◦), (ii)
(106.5◦,−8◦), (iii) (105.9◦,−10.35◦) and (iv) (107.7◦,−11◦) (see Figure 5 (left)) where (i) is the position
of the epicenter. However, because of the large variations of the bottom, shorter waves were generated,
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Figure 13. Comparison between the three methods: full, FreeFem++ adaption with err= 10−2 and err= 10−7

and domain adaptation of the computation time of each mesh/domain adaptation (left), the number of degrees of
freedom (middle) and the computation time of the simulation (right).

(a) t = 250 s (b) t = 500 s (c) t = 1000 s

Figure 14. Passive generation: the bottom together with the free surface elevation at different instances of time
obtained with the proposed domain adaptivity method.

especially around CHRISTMAS Island (southwest of JAVA) and around the undersea canyon near the
earthquake epicenter.

Finally, we present a comparison of the kinetic, potential and total energies with the full mesh
(in Figure 17, top left panel) and with the domain adaptivity method (in Figure 17, top right panel)
defined in [36] as follows:

Ec =
1
2

ρw

∫
Ω

(∫ η

−h(x,y)
|V|2dz

)
dxdy, Ep =

1
2

ρw · g
∫

Ω
η2dxdy, (9)

where ρw = 1027 kg/m3 is the ocean water density, the number of degrees of freedom (in Figure 17,
down left panel) and the computation time of the simulation (in Figure 17, down right panel). We
obtain here an error of order 2.6× 10−4 between the total energy with domain adaptivity and without
any adaptation. We present in Figure 18 the comparison of the maximum of the propagation of the
solution between the full and domain adaptivity methods at t = 1750 s.

4.4. Propagation of a tsunami wave near the Java island: active generation

For a more realistic case as in the JAVA 2006 event, we use the active generation in order to model
the generation of a tsunami wave as in [11,30]. In this case we consider zero initial conditions for both
the surface elevation and the velocity field, we take δt = 2 s as the time step size, we assume that the
bottom described in the Section 3 is moving in time and we note that we adapt the mesh, before the
end of the generation time t = 270 s, every three iterations i.e. every 6 s by using the following value
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(a) Domain adaptivity (b) Full mesh

Figure 15. Passive generation: comparison between the bottom and the free surface elevation at t = 1500 s
between the domain adaptation method and the full mesh.
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Figure 16. Passive generation: comparison between the two methods the full one and domain adaptivity of the
free surface elevations (in meters) vs time (in seconds), computed numerically at four wave gauges where the
gauge (i) corresponds to the epicenter.
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Figure 17. Passive generation: comparison between the two methods the full one and domain adaptivity of the
kinetic, potential and total energies, the number of degrees of freedom and the computation time of the simulation.

(a) (b)

Figure 18. Passive generation: comparison between the maximum of the solution at t = 1 750 s, with the domain
adaptivity method (left panel) and with the full one (right panel).
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(a) t = 100 s (b) t = 200 s (c) t = 270 s

Figure 19. Active generation: the bottom and the free surface elevation computed with the domain adaptivity
method.

(a) t = 500 s (b) t = 1 000 s

Figure 20. Active generation: the bottom and the free surface elevation computed with the domain adaptivity
method.

for the domain adaptation uadapt = η + u + v, isoadapt= 5× 10−2, erradapt= 10−4, β = 5× 10−9,
epsadapt= 5× 104 and then for t > 270 s every 25 iterations i.e. each 50 s. We compare here only the
results between our new domain adaptation technique and without using mesh adaptation. To this end,
we plot the free surface elevation η in the Figures 19→ 21. However, as in the passive case, because of
the large variations of the bottom, shorter waves were generated, especially around the CHRISTMAS

Island (southwest of JAVA island) and around the undersea canyon near the earthquake epicenter. We
plot the variation of η vs time (in Figure 22) at four numerical wave gauges placed at the following
locations: (i) (107.345◦,−9.295◦), (ii) (106.5◦,−8◦), (iii) (105.9◦,−10.35◦) and (iv) (107.7◦,−11◦) (see
Figure 5 (left panel)) where (i) is the position of the epicenter. Finally, we present a comparison of
the kinetic, potential and total energies with the full mesh (in Figure 23, top left panel) and with the
domain adaptivity method (in Figure 23, top right) defined in (9), the number of the degrees of freedom
(in Figure 23, lower left panel) and the computation time of the simulation (in Figure 23, lower right
panel). We obtain here an error of order 2× 10−5 between the total energy with domain adaptivity and
without any adaptation. We present in Figure 24 the comparison of the maximum of the propagation
of the solution between the full and domain adaptivity method at t = 1 750 s.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 August 2020                   doi:10.20944/preprints202008.0616.v1

Peer-reviewed version available at Geosciences 2020, 10, 351; doi:10.3390/geosciences10090351

https://doi.org/10.20944/preprints202008.0616.v1
https://doi.org/10.3390/geosciences10090351


19 of 25

(a) Domain adaptivity (b) Full mesh

Figure 21. Active generation: comparison between the bottom and the free surface elevation at t = 1 500 s
between the domain adaptivity method and the full mesh.
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Figure 22. Active generation: comparison between the two methods (the full one and domain adaptivity) of the
free surface elevations (in meters) vs time (in seconds), computed numerically at four wave gauges where the
gauge (i) correspond to the epicenter.
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Figure 23. Active generation: comparison between the two methods (the full one and the domain adaptivity)
of the kinetic, potential and total energies, the number of degrees of freedom and the computation time of the
simulation.

(a) (b)

Figure 24. Active generation: comparison between the maximum of the solution at t = 1 750 s, with the domain
adaptivity method (left panel) and with the full one (right panel).
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5. Conclusion and Outlook

In this manuscript we demonstrated how to discretize a simplified version of the BBM–BBM
system (1) using the FEM and dedicated open-source software FreeFem++. The use of this numerical
technique was demonstrated in view of applications to tsunami wave modelling [25,37]. The concrete
cases of wave propagation in the MEDITERRANEAN sea and in JAVA island region (INDONESIA) were
considered. The digital computing environment that we developed allows the integration of realistic
data (bathymetry and geography) in a relatively simple software framework. The codes used in this
study are made freely available for all our readers. Moreover, a novel mesh and domain adaptation
technique was proposed to speed-up substantially the computations. The gain in terms of the CPU
time after applying this technique can be clearly seen in Figure 23. The accuracy of the ‘accelerated’
solution is more than acceptable to make this technique useful in a variety of tsunami propagation
problems. It goes without saying that this technique can be applied to other events and other regions
of the world with minimal changes in the provided codes.

Regarding the perspectives of this study, we would like to develop also the parallel version of
this code together with the domain adaptation technique to make computations practically faster than
the real time tsunami wave propagation. However, we underline that even the current version can be
efficiently run even on a modest laptop personal computer. There is another direction that we can see
to improve the proposed method. Namely, the idea could be called the ’un-adaptivity’, which consists
in removing the portions of the mesh once the wave passed by. This would allow us to keep only the
portions of the computational domain where something is going on.
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FEM Finite Element Method
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MOST Method Of Splitting Tsunami
NOAA National Oceanic and Atmospheric Administration
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Appendix A. Simplified system derivation

After integrating by parts, the left hand side of (3) becomes:

−
〈

b∇ ·
(

h2∇∂tE
)

; Φη
〉
= b

〈
h2∇∂tE ;∇(Φη)

〉
−
∫

Γn
bh2Φη ∂(∂tE)

∂n
∂γ,

−
〈

dh2∆∂tU ; Φu
〉
= d

〈
h2∇∂tU ;∇Φu

〉
+ d 〈2h∇h · ∇∂tU ; Φu〉 −

∫
Γn

dh2Φu ∂(∂tU )
∂n

∂γ,
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and

−
〈

dh2∆∂tV ; Φv
〉
= d

〈
h2∇∂tV ;∇Φv

〉
+ d 〈2h∇h · ∇∂tV ; Φv〉 −

∫
Γn

dh2Φv ∂(∂tV)
∂n

∂γ,

where Γn is the boundary of the domain Ω. Dealing with the right-hand side F (E ,U ,V , Φη) of the
first equation in System (3), we expand the two complex terms which are multiplied by A and Ã such
as:〈
∇ ·

(
h2∇ζt

)
; Φη

〉
=

〈(
h2ζxt

)
x
+
(

h2ζyt

)
y

; Φη

〉
=
〈

2hhxζxt + h2ζxxt + 2hhyζyt + h2ζyyt; Φη
〉

,

and 〈
∇ ·

{
h2 [∇ (∇h · (U ;V)) +∇h∇ · (U ;V)]

}
; Φη

〉
=
〈
∇ ·

{
h2
[((

hxU + hyV
)

x ;
(
hxU + hyV

)
y

)
+
(
hx∇ · (U ;V); hy∇ · (U ;V)

)]}
; Φη

〉
=
〈
∇ ·

(
h2hxxU + h2hxUx + h2hxyV + h2hyVx + h2hx∇ · (U ;V); h2hxyU + h2hxUy

+h2hyyV + h2hyVy + h2hy∇ · (U ;V)
)

; Φη
〉

=
〈
(2hhxhxx + 2hhyhxy + h2hxyy + h2hxxx)U + (2hhxhxy + 2hhyhyy + h2hyyy

+h2hxxy)V + (4hh2
x + 3h2hxx + 2hh2

y + h2hyy)Ux + 2(h2hxy + hhxhy)Uy + (4hh2
y

+3h2hyy + 2hh2
x + h2hxx)Vy + 2(hhxhy + h2hxy)Vx; Φη

〉
+
(〈

2h2hxUxx; Φη
〉

+
〈

h2hyUxy; Φη
〉
+
〈

h2hxUyy; Φη
〉
+
〈

h2hyVxx; Φη
〉
+
〈

h2hxVxy; Φη
〉
+
〈

2h2hyVyy; Φη
〉)

.

On the other hand, we have:〈
2h2hxUxx; Φη

〉
= −

〈
2h2hxUx; Φη

x

〉
−
〈
(4hh2

x + 2h2hxx)Ux; Φη
〉
+
∫

Γn
2h2hxΦη ∂U

∂n
∂γ,

〈
h2hyUxy; Φη

〉
= −

〈
h2hyUx; Φη

y

〉
−
〈
(2hh2

y + h2hyy)Ux; Φη
〉
+
∫

Γn
h2hyΦη ∂U

∂n
∂γ,

〈
h2hxUyy; Φη

〉
= −

〈
h2hxUy; Φη

y

〉
−
〈
(2hhxhy + h2hxy)Uy; Φη

〉
+
∫

Γn
h2hxΦη ∂U

∂n
∂γ,

〈
h2hyVxx; Φη

〉
= −

〈
h2hyVx; Φη

x

〉
−
〈
(2hhxhy + h2hxy)Vx; Φη

〉
+
∫

Γn
h2hyΦη ∂V

∂n
∂γ,

〈
h2hxVxy; Φη

〉
= −

〈
h2hxVx; Φη

y

〉
−
〈
(2hhxhy + h2hxy)Vx; Φη

〉
+
∫

Γn
h2hxΦη ∂V

∂n
∂γ,

〈
2h2hyVyy; Φη

〉
= −

〈
2h2hyVy; Φη

y

〉
−
〈
(4hh2

y + 2h2hyy)Vy; Φη
〉
+
∫

Γn
2h2hyΦη ∂V

∂n
∂γ,

and, consequently, we deduce the final form of F (E ,U ,V , Φη) as follows:

F (E ,U ,V , Φη) = −
〈
(h + E)∇ · (U ;V) + (hx + Ex)U + (hy + Ey)V + ζt; Φη

〉
−Ã

〈
2hhxζxt + h2ζxxt + 2hhyζyt + h2ζyyt; Φη

〉
− A

〈
(2hhxhxx + 2hhyhxy + h2hxyy

+h2hxxx)U + (2hhxhxy + 2hhyhyy + h2hyyy + h2hxxy)V + h2hxxUx + h2hxyUy − 2hhxhyVx
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+(h2hyy + 2hh2
x + h2hxx)Vy; Φη

〉
+ A

(〈
2h2hxUx + h2hyVx; Φη

x

〉
+
〈

h2hyUx + h2hxUy

+h2hxVx + 2h2hyVy; Φη
y

〉)
− A

∫
Γn

(
(3h2hx + h2hy)Φη ∂U

∂n
+ (h2hx + 3h2hy)Φη ∂V

∂n

)
∂γ.

For the right-hand side G (E ,U ,V , Φu) of the second equation in System (3), we have:

G (E ,U ,V , Φu) = −
〈

gEx + UUx + VVx + Bgh
[(

hxEx + hyEy
)

x + hx(Exx + Eyy)
]
− Bhζxtt; Φu〉

= −
〈

gEx + UUx + VVx + Bg
(
hhxxEx + hhxyEy

)
− Bhζxtt; Φu〉− Bg

〈
2hhxExx + hhyExy + hhxEyy; Φu〉

= −
〈

gEx + UUx + VVx + Bg
(
hhxxEx + hhxyEy

)
− Bhζxtt; Φu〉+ Bg 〈2hhxEx; Φu

x〉+ Bg
〈
(2h2

x + 2hhxx)Ex; Φu
〉

+Bg
〈

hhyEx + hhxEy; Φu
y

〉
+ Bg

〈
(h2

y + hhyy)Ex + (hxhy + hhxy)Ey; Φu
〉
−
∫

Γn
Bg(3hhx + hhy)Φu ∂E

∂n
∂γ

= −
〈

g
(

Id − B
(

hhxx + 2h2
x + hhyy + h2

y

))
Ex + UUx + VVx − BghxhyEy − Bhζxtt; Φu

〉
+ Bg 〈2hhxEx; Φu

x〉

+Bg
〈

hhyEx + hhxEy; Φu
y

〉
−
∫

Γn
Bg(3hhx + hhy)Φu ∂E

∂n
∂γ.

Finally, for the right-hand sideH (E ,U ,V , Φv) of the third equation in System 3, we have:

H (E ,U ,V , Φv) = −
〈

gEy + UUy + VVy + Bgh
[(

hxEx + hyEy
)

y + hy(Exx + Eyy)
]
− Bhζytt; Φv

〉
= −

〈
gEy + UUy + VVy + Bg

(
hhxyEx + hhyyEy

)
− Bhζytt; Φv〉− Bg

〈
hhyExx + hhxExy + 2hhyEyy); Φv〉

= −
〈

gEy + UUy + VVy + Bg
(
hhxyEx + hhyyEy

)
− Bhζytt; Φv〉+ Bg

〈
hhyEx; Φv

x
〉
+ Bg

〈
(hxhy + hhxy)Ex; Φv〉

+Bg
〈

hhxEx + 2hhyEy; Φv
y

〉
+ Bg

〈
(hxhy + hhxy)Ex + (2h2

y + 2hhyy)Ey; Φv
〉
−
∫

Γn
Bg(hhx + 3hhy)Φv ∂E

∂n
∂γ

= −
〈
−Bg(2hxhy + hhxy)Ex + UUy + VVy + g

(
Id − B

(
hhyy − 2h2

y

))
Ey − Bhζytt; Φv

〉
+ Bg

〈
hhyEx; Φv

x
〉

+Bg
〈

hhxEx + 2hhyEy; Φv
y

〉
−
∫

Γn
Bg(hhx + 3hhy)Φv ∂E

∂n
∂γ.
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