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Abstract  
Two opposed p–n diodes are connected with another junction that causes cancellation of the electric 

field in the depletion layer of each diode by the field of the other diode. This derived quantum diode 

is called the A system. Another dual diode, constructed by the same process but with the p- and n-

types positioned as duality, called the B system. When a bias voltage is applied between the A and B 

systems, Lorentz conservation imparts a momentum (i.e., a wave number) to the carriers in the absence 

of any internal voltage. Thus, a superconducting bias current density appears without the need for 

cooling. The reappearances of electron–hole pairs on the junction surfaces are assumed to be described 

by entire wavefunctions normalized by the band gap. Based on the bias superconducting current, NOT 

and NAND gates were constructed from the quantum diode systems. Numerical calculations revealed 

that the constant phases of the entire wavefunctions of the p-and n-types converged. Accordingly, it 

was clarified that Bose–Einstein condensation and the Meissner effect (described by the London 

equation) occurred in the quantum diode systems. Moreover, the systems exhibited rectification 

characteristics and a switching speed of the order of 10-14 s. Combining this switching property with 

the large bias superconducting current (of the order of several V), we developed NOT and NAND 

gates with direct quantum correlations among many qubits, which are unaffected by random and 

thermal noises. These gates have memorization and initialization properties and are compatible with 

existing and accumulating programing algorithms. Moreover, when harvesting a divergent current 

output from these systems, the bias superconducting current and memorization property preserve the 

formed quantum correlations. 
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1. Introduction  

 
1.1 Brief summary of contents 

  

This paper describes new type of quantum diodes with superconducting properties at non-refrigeration 

temperatures, and discusses their computing applications. The developed quantum diodes can 

overcome most of the current problems in quantum computing. This paper is also relevant to 

condensed matter physics, because the quantum diodes produce a new type of superconductivity at 

room temperatures.  

 

1.2 Background part 1 (quantum computing)  

 

1.2.1 Moore’s law 

 

Moore’s law is a well-known rule in the computing world. Following this law, companies and 

researchers have been increasingly downsizing the sizes of transistors and other electronic elements, 

enabling the package of many elements into small-sized devices, and improvements in specifications. 

Thus far, downsizing has been relatively easy because the carriers in elements are governed by 

macroscopic physics. However, further increase in the number of elements and size reduction will 

require consideration of the microscopic physical equations and laws, which apply to atom-sized 

structures. Within this quantum realm, computing elements cannot be designed by conventional and 

existing methods. 

  

1.2.2 Lowered energy consumption 

 

Another problem in producing downscaled computing devices is large-scale energy consumption and 

losses. According to a current estimate, approximately 10% of human activities are invested in 

computers or IT devices [1]. Many computing famous companies such as Google and IBM are 

attempting to reduce their energy consumptions to mitigate CO2 emissions, which are largely 

responsible for the greenhouse effect. However, as demands for IT and computing devices continue to 

expand, these companies might need to completely replace their existing computing devices. 

 

1.2.3 Merits of quantum computing 

 

The above problems might be solved by a quantum computer that simultaneously solves several 

problems through quantum correlations. Quantum computing can dramatically reduce the number of 
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elements in a device. Current quantum computers are divisible into gate and annealing types. However, 

many problems must be overcome before quantum computers enter mainstream use. Let us consider 

the problems facing each category of quantum computers. 

 

1.2.4 Gate methods 

 

We first consider problems in gate-type quantum computing methods. 

Unlike conventional computing, quantum computing relies on quantum correlations; that is, the 

interactions among wavefunctions. Without these correlations, quantum computing becomes 

meaningless and high specifications cannot be achieved. To avoid the difficulty of making many direct 

correlations, researchers have attempted to make indirect correlations using the existing gate elements, 

photon, spins, and other known features [2]. However, indirect correlations inevitably increase the 

overhead and prevent compact downsizing. To exploit the merits of quantum computing, many direct 

quantum correlations are needed.  

The second problem is noise. Because quantum gates originate from microscopic physical 

parameters such as spins, they are generally very sensitive to thermal noises. The performance of a 

quantum computer is often defined by its error rate. The error rate of quantum correlations is still high 

(typically of order 10-3) [3-6]. If many quantum gates are constructed within a small space, 

superposition drives the error rate toward 1.0.  

The third problem stems from the clone prohibition theorem. Data in existing computers are 

commonly copied to guarantee the validities of programming and clock synchronization. Data copies 

are equally important in quantum computing, but are excluded by the clone prohibition theorem. 

Quantum algorithms that resolve this problem are only provisional at this stage.  

The final problem is loss of the quantum correlations when harvesting an output. As a 

wavefunction is related to the uncertainty relation between momentum and position, it is generally 

considered that when an output is observed, the momentum information is immediately lost, implying 

that the wavefunction’s combination and correlation are collapsed. Quantum algorithms can 

potentially solve this problem, but are also provisional.  

 

1.2.5 Annealing methods  

  

Let us now consider annealing methods, which are rooted in quantum statistical physics such as the 

Ising model. In annealing methods, noise effects are not concentrated in one element but are averaged 

over the entire scale. This approach provisionally resolves the noise problem but is limited to 

specialized cases. The “D-wave machine” model recognizes the technical merit of annealing schemes. 

D-wave machines have achieved some remarkable progresses [7-8] over existing computers, but 
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several reports have highlighted the disadvantages that would be removed even by existing computers. 

These disadvantages are listed below. 

1. Annealing methods are designed to solve specific optimization problems, and are not generic. 

Some researchers claim that expanding the specifications of annealing methods would impart 

generic properties. However, very complex procedures and contrivances are needed, which are 

not suitable for societal spreading. 

2. Annealing methods are applied to optimization problems. However, many problems are difficult 

to recast as optimization problems.  

3. Finally, because a D-wave machine employs conventional refrigerated superconductors, it 

requires cooling apparatus with expensive running costs. Employing this machine many times 

increases the electric power consumption and CO2 emissions. Therefore, its spread would 

counteract our current solutions to energy problems.  

 

1.3 Summary of our proposed device  

 

The proposed device is simple: prepare two p–n diodes, and connect them by a further junction 

that causes co-cancellation of the electric field in the depletion layers of the original p–n junctions. 

Because the electric fields vanish, the electrons and holes are re-generated in the depletion layers. 

Moreover, the carriers possess momentum in the absence of voltage in the depletion layers, implying 

superconductivity. Under a relatively large electric potential, the carriers acquire large momentums 

through Lorentz conservation. The superconductivity mechanism (i.e., formation of a Cooper pair and 

the Meissner effect) will be described later. With these superconducting properties, named the bias 

electric potential or current, the quantum diode operates as a NOT or NAND gate without requiring 

refrigeration. Importantly, the quantum diodes can be configured as two systems, named the A and B 

systems. An electric potential applied to the A system is provided by the voltage source connected to 

the B system.  

Besides the electric potential of the bias, we propose taps for inputting and outputting electric 

potentials smaller than the bias. When a superconductive system can supply voltages to multiple taps, 

the quantum states of the taps can be correlated through the superconductivity, generating a qubit [9-

10]. Multiple qubits are easily generated by expanding such systems. These directly generated 

quantum correlations are expected to exhibit quantum supremacy in a compact space, and (as 

mentioned above) can be configured as NOT and NAND gates.  

Because the bias is several volts in magnitude and the input potential and output current density 

are of the orders 0.1 V and 103 A/m2, respectively, random and thermal noises can be ignored, as their 

magnitudes are much smaller than these quantities. 

Meanwhile, the input voltage (i.e., a correlation) in the system is canceled by the reverse output 
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voltage induced by the superconducting bias current, annulling the voltage concept. Moreover, this 

superconductivity is generated without cooling, and incurs minimal running cost. Thus, the energy 

losses in our quantum diode systems are almost zero. Only a small electric power is consumed at the 

moment of harvesting the output current density.  

As mentioned above, if the current density is harvested from the output tap, the corresponding 

input tap receives energy from the input voltage source. Note that these input voltage sources between 

the A and B are prepared independently from the voltage source generating bias electric potentials.    

This mechanism sustains and memorizes the correlations and quantum states. Thus, the quantum 

correlations are not destroyed by harvesting the output current density from a tap.  

Later, we will demonstrate the rectification characteristics and switching speed of the proposed 

quantum diodes. The switching speed (of order 10-14 s) is much faster than in conventional diodes, 

which are hampered by capacitance factors. This ultra-fast switching, combined with the memorizing 

property imparted by the superconducting bias current, enables very fast memorization and 

initialization. Accordingly, the system can accommodate conventional and accumulated programming 

methods at much faster calculation speeds.  

 

1.4 Background part 2 (superconductivity) 

 

1.4.1 Superconductivity 

 

This paper proposes quantum diode systems with a new superconductivity mechanism that operates 

at non-freezing temperatures. We now review the background and history of superconductivity. 

Typical superconductors are characterized by zero electrical resistance and the Meissner effect. The 

zero-resistance property greatly reduces the energy consumption, and is now being exploited in 

superconducting energy storage and electric power transmitting systems [11]. However, 

superconductivity appears only under strongly cooled conditions and incurs a high manufacturing 

costs. These disadvantages prevent the wider dissemination of superconductors in practice. 

  

1.4.2 Brief history of superconductors  

 

Superconductivity was discovered approximately one century ago, when an Hg superconductor was 

refrigerated in liquid He (4.2 K). This finding triggered a search for further metal-based 

superconductors. Eventually, the critical temperature of superconductivity was raised to around 20 K. 

The Bardeen–Cooper–Schrieffer theory [12], which has been supported by some researches, upper-

limits the critical temperature of superconductivity to 30 K. However, ceramic cuprates with critical 

temperatures higher than liquid-N2 temperature (77 K) were discovered in 1986 [13]. Since that time, 
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novel compounds with higher critical temperatures have been actively sought, culminating in Fe-based 

superconductors (~50 K) [14], MgB2 metal superconductors (39 K) [15], and H-based high-pressure 

superconductors [16] (> 250 K but requiring pressures above 250 GPa). However, compounds with 

critical temperatures around room temperature (300 K) at atmospheric pressures have not been found. 

The discovery of such room-temperature superconductors is expected to revolutionize the electrical 

and energy industries.  

 

1.5 Summary of superconductivity in our proposed device 

  

As mentioned above, this paper proposes room-temperature superconductivity by a circuit 

configuration approach rather than seeking new compounds. The entire wavefunction is considered as 

a superposition of electrons and holes, respectively. In numerical calculations, the convergence of 

constant phases in the entire wavefunction clarify Bose–Einstein condensation and the Meissner effect 

(via the London equation). These calculations theoretically verify the appearance of superconductivity.  

The search for new superconducting compounds, which is currently undertaken by almost all 

researchers, is unlikely to reveal superconductors with critical temperatures above room temperature. 

However, our circuit approach promises an easy solution. Although our literature search revealed 

several new types of superconductivity at room temperatures and pressures [17-20], we believe that 

the circuit approach is a breakthrough in the search for superconductivity.  

 

2. Principle  
 

As shown in Fig. 1, we connect two p–n diodes in reverse order. In this configuration, the electric-

field directions in the depletion layers of the upper and lower diodes oppose each other, and thus cancel 

at the junction (labeled O-O’ in Fig. 1). As the electric field is cancelled, electrons and holes can be 

re-generated in the depletion layer. Moreover, under the momentum conservation law, these 

reappeared carriers have zero momentum only at the junction O-O’. However, as discussed later, 

many-body interactions of realms’ carriers create a constant phase in the macroscopic wavefunction, 

implying Bose–Einstein condensation and a net superconductivity, i.e. the Meissner effect.  
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Fig. 1. In this configuration of normal p–n diodes, the electric fields in the depletion layers of both diodes 

cancel at the junction. Consequently, electron–hole pairs reappear at the junction surface. In the bottom 

panel, the electrons and holes at the junction are replaced with their functions ψn and ψp, respectively. 

 

3. Theory  
 

3.1 Motion equation and electrostatic potential V0 at the junction 

 

Let us consider the conservation of momentum of each quantity. The electric fields of the holes in the 

upper and lower p–n diodes at the junction are given by 

+�(+�) =
���

��
 ,      (1-1) 

+�(−�) =
���

��
 ,      (1-2) 

where �� > 0 and q and kh denote the carrier charge and wavenumber of a hole, respectively.  

From these equations, the electrostatic potentials V0 at the junction are given by 

−��� = ∫
���

��
��, (2-1) (upper diode),  (2-1) 
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+��� = ∫
���

��
��, (2-2) (lower diode).  (2-2) 

 

The electrostatic potentials of the electrons at the junction are similarly given by 

+��� = ∫
���

��
��, (3-1) (upper diode),  (3-1) 

−��� = ∫
���

��
��, (3-2) (lower diode),   (3-2) 

where �� > 0 is the wave number of an electron. 

 

In the upper diode, Eqs. (2-1) and (3-1) are superposed as follows: 

�(�� − ��) =
�

��
∫(�� + ��)��.      (4-1) 

In the lower diode, Eqs. (2-2) and (3-2) are similarly superposed as  

 

�(�� − ��) =
�

��
∫(�� + ��)��.      (4-2) 

From these equations, we get 

0 = � ∫(�� + ��)��,      (5) 

Assuming that the first and second terms in the kernel of this expression are both positive, we have 

�� + �� = 0 ,       (6) 

and hence 

�� = �� = 0.     (7) 

Therefore a reappeared hole and electron have zero phase at the junction surface O-O’. 

That is, 

�� = |��| exp(��) ≈ |��|,      (8) 

�� = |��| exp(��) ≈ |��|,      (9) 

and 

∫(|��|� + |��|�)�� = 1.     (10) 

Note that this volume integral should be very small because the wave numbers ke and kh are almost 

zero. Importantly, as discussed later, when considering the entire and macroscopic wave functions, it 

is assumed that the bias electric potentials exist, and thus conservation from these potentials will create 

the converged phases and momentums, 
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3.2 Normalization of the entire wavefunctions  

 

The total probability density function |�| of both carriers is normalized as follows: 

∫(���,��
�

+ ���,��
�

)�� = 1,     (11) 

where ��,�  and ��,�  are the total and macroscopic wavefunctions of the holes and electrons, 

respectively. 

The band gap EG in the depletion layer is given by 

ħ�� = �� ,       (12) 

where ħ  is the reduced Planck constant and ��   is the corresponding angular frequency. The 

corresponding wavelength is 

�� =
ħ�

��
,       (13) 

where c is the speed of light. The above normalization then becomes 

∫ 2|�|��� = 2|�|���
� = 1,      (14) 

|�|� =
�

�
× (

��

ħ�
)�,       (15) 

where  

|�|� ≡ ���,��
�

= ���,��
�
.     (16) 

 

For example, when the band gap EG=1.5 eV, we have 

|�|� = 2.2 × 10��.      (17) 

 

3.3 Converged constant phases of the macroscopic wavefunctions 

 

Next let us consider whether the phases of the entire wavefunctions of the electrons and holes are 

constant and convergent. 

 

First, assume that the probability density function of an electron at the junction O-O’ interacts with 

that of a normal electron in the vicinity of the junction. 

��,� = |��| + |��|[exp(��)],     (18) 

where the second term is a solution of the Schrodinger equation, and i denotes an imaginary number.  

This assumed wavefunction implies an interaction of the probability density functions at the junction, 

which was discussed in the previous section, and a neighboring carrier, and that this carrier’s general 

wavefunction can be approximated as a plane wave. The second term in Eq. (18) stems from the 

conversion of the bias-potential energy to kinetic energy. 

Because the wavefunction (18) describes a boson, the entire wavefunction is expressed as 

��,� = ∏ ��,� = ∏ [|��|��
+ |��|exp (���)],    (19) 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 August 2020                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 August 2020                   doi:10.20944/preprints202008.0577.v1

https://doi.org/10.20944/preprints202008.0577.v1


 

10 
 

Similarly, the entire wavefunction of holes is 

��,� = ∏ ��,� = ∏ [|��|��
+ |��|exp (−���)],   (20) 

Note that in the calculations, the plane waves in the second terms of Eqs. (19) and (20) are replaced 

by cosine functions.  

 

Figures 2 and 3 are schematics of the entire wavefunctions given by Eqs. (19) and (20), respectively. 

Accurate calculations will be presented in the Results section. As indicated in the normalization 

equation, the absolute value of the wavefunction must be nonzero and finite. In the Results section, 

we will show that the maximum value of Eq. (19) and (20) is the square root of Eq. (15) at a particular 

constant phase ± ��. This implies that the phase convergence of the electron and hole wavefunctions 

produce Bose–Einstein condensation and the Meissner effect (which signify superconductivity). 

Details will be presented in the Discussion section. 

 

  

 

Fig. 2 Phase convergence of the entire wavefunction of electrons.  

 

   

 

Fig. 3 Phase convergence of the entire wavefunction of holes. This phase is initiated by the bias potential and 
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opposes that of the electrons.  

 

3.4 Bias current density 

 

3.4.1 Steady state 

 

Forward bias case 

 

Let us consider the bias current density under an applied electrostatic potential φB. By Lorentz 

conservation (see Fig. 4), we have 

(ħ�)� − (
�

�
)� ≡ 0,       (21) 

where the energy ε of a carrier is given by 

ε = +���.       (22) 

Here, e is the charge of the carrier. 

The above equation implies the forward bias. Substituting Eq. (22) into Eq. (21) the wave number k is 

derived as 

� = +
���

ħ�
.       (23) 

Considering the probability density flow, the current density jt0 at steady state is 

��� = �|�|� ħ�

�
= +��|�|� ��

��
,     (24) 

where m denotes the mass of an electron and 

|�|� =
�

�
× (

��

ħ�
)�.      (25) 
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Fig. 4 Application of a bias electrostatic potential +� � .������� conservation guarantees a superconducting 

current density ���. Note that the electric potential +� �  is not a voltage (see Fig. 5). 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Schematic of dual systems. Note the different positions of the p- and n-type semiconductors in the two 

systems. These dual systems act as quantum diodes that apply electric potentials to each system.  

 

Note that the above +�� is an electrostatic potential, not a voltage (see Fig. 5). The A system in Fig. 

5 is identical to Fig. 4, but the B system, which opposes rather than corresponds to the p- and n-type 

semiconductors, remains to be configured. Subsequently, voltage sources are applied between the 

corresponding taps of the A and B systems. 

��a a’ 

b b’ 

O 

O’ 

��

�� ��

+�� 

��a a’ 

b b’ 

O 

O’ 

��

�� ��

−�� 

A system B system 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 August 2020                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 August 2020                   doi:10.20944/preprints202008.0577.v1

https://doi.org/10.20944/preprints202008.0577.v1


 

13 
 

 

Reverse bias case 

  

At t = 0, the forward bias current density jt0 is assumed by given by Eq. (24). Under this condition, the 

sign of bias-electrostatic potential is reversed: 

�� → −��. 

Consequently, a reverse current density jr is superimposed on the initial jt0. 

Thus, the net current density becomes 

������ = ��� + �� = +��|�|� ��

��
−��|�|� ��

��
→ 0 .    (26) 

In summary, an electrostatic potential should be added to provide a superconducting bias current 

density. Adding a reverse electrostatic potential then reduces the bias current density to zero.  

 

3.4.2 Properties in the transient state 

 

General notation 

 

The previous subsection discussed the switching property in steady state. This subsection analyzes the 

switching properties during the transient state. To this end, we modify the Lorentz conservation Eq. 

(21) by replacing the term “0” in the right-hand-side by the time-dependent momentums. 

  

Transient-state forward bias case 

 

We first consider the momentum change 

Δ� = −����,        (27) 

where t and F0 denote the time and a constant force, respectively. 

The force is induced by an electric field EB as 

�� = ���.        (28) 

Moreover, this electric field is related to an electrostatic potential φB. 

���

��
≈

��

�
= −��,        (29) 

where ξ denotes the coherence of a Cooper pair (for details, see the Results and Discussion sections). 

Thus we have 

�� = −�
��

�
,        (30) 

and 

Δ� = e
��

�
��.        (31) 
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Now, the Lorentz conservation of Eq. (21) is modified as follows: 

(ħ�)� − �
�

�
�

�
= (�

��

�
��)� ,     (32) 

where 

ε ≡ +e��.        (33) 

Thus,  

(ħ�)� = (�
��

�
��)� + (

���

�
)� = (

���

�
)�[1 + (

�� ���

�
�� �

�

)�].  (34) 

Approximately and conclusively, we have 

ħ� ≈ (
���

�
)[1 +

�

�
(

���

�
)�].      (35) 

The transient-state forward bias is subjected to the following initial condition: 

Δ� = 0 → � = �� ≡ 0.      (36) 

Thus, in this case only, we get 

ħk = �
���

�
�[

�

�
(

���

�
)�].      (37) 

Considering the equation of probability density flow, the forward bias current density in the transient 

state becomes 

�� = �|�|� ħ�

�
= +�|�|� ���

��
[

�

�
(

���

�
)�].     (38) 

 

Transient-state reverse bias case 

 

In this case, the total current is obtained by summing the steady bias current density jt0 (which is 

assumed to already exist) and the current density jr derived from the reversed bias in Eq. (35), in which 

the sign of the bias is switched: 

������ = ��� + �� = ��|�|� ��

��
+ �|�|� �

��
(−��)[1 +

�

�
(

���

�
)�]= −�|�|� ���

��
[

�

�
(

���

�
)�]. (39)  

 

The derived current densities in the transient state will be presented in the Results section.  

 

3.5 Gate elements 

 

3.5.1 NOT gate 

 

The above-mentioned quantum diode was outfitted with four taps named (ai, aj) and (bi, bj), as shown 
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in Fig. 6. A bias current density jt0 is assumed in advance. Here, the two diode systems in Fig. 5 are 

dual to each other. The A and B systems in Fig. 6 correspond to those shown in Fig. 5.  

Each (bi, bj) input receives an electric potential when two taps of a power supply are connected 

between the A and B systems, provided that these connecting taps correspond to each other.  

An input vector is expressed as 

��� = ��0�⃗ + ��1�⃗ ,      (40) 

where the voltage vin between bi and bj must be defined. This voltage is described by the symmetric 

integral 

��� = ∫ ���
�

��
,        (41) 

where the origin of the coordinates is located at the p–n junction (i.e. at the surface O-O’).  

Note that �� = �� is prohibited, because a voltage vin cannot be defined in this case.  

The bases in the spaces 0�⃗  and 1�⃗  are respectively defined as 

0�⃗ ≡ ��,� = |�|exp (−���),     (41-1) 

and 

1�⃗ ≡ ��,� = |�| exp(+���),     (41-2) 

where the wavefunctions are the previously discussed macroscopic superconducting wavefunctions, 

and θ0 and |�| denote the macroscopic wavefucntion’s  phase and magnitude, respectively. Recall 

that 

|�|� =
�

�
× (

��

ħ�
)�.        

Therefore, the input vector becomes 

��� = ��|�| exp(−���) + ��|�| exp(+���) .   (42) 

In two-dimensional Hilbert space, the components of this vector are 

(
��|�|

��|�|). Generally, the components of a Hilbert space need not be normalized, so (bi, bj) can take 

arbitrary values. 

For example, if 

(��, ��) ≡ (�, −�),      (43) 

we can write 

��� = �|�| exp(−���) + (−�) |�| exp(+���).    (44) 

The output vector implies a voltage vout with the absolute value of vin in Eq. (41) but of opposite 

direction (sign) owing to the superconducting bias current jt0. Importantly, if a voltage is applied to a 

quantum diode in the system, a reverse voltage must appear to maintain the superconducting state: 

���� = −���.       (45) 

The output vector is then given as 

���� = ��|�| exp(−���) + ��|�| exp(+���) .= −�|�| exp(−���) + �|�| exp(+���). (46) 
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The vectors ��� and ���� are weighted by the probability |�|. Note that the coefficient ½ appears 

in Eq. (15). The importance of this coefficient is demonstrated in Fig. 7. In this figure, bi corresponds 

to ai or aj with equal probability (50%), and bj also corresponds to ai or aj with probability 50%. The 

following mapping  

��� = ��|�| exp(−���) → ��|�| exp(−���) = ����  : Not occur   (47) 

is prohibited because the voltages vin and vout are undefined so the superconducting property and Eq. 

(45) are not used. 

Thus, the plus signs in the vector equations of ��� and ���� have an essential physical meaning; 

specifically, they imply the existence of quantum correlations. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 Schematic of a one-qubit system. In this figure, (��, ��) ��� (��, ��) are paired and the dual systems are 

named the A system and the B system. By inputting voltages between these systems, an electric potential is 

applied to each tap in the qubit system.  

 

To harvest the output electric potentials, each output tap in the A system in Fig. 5 is connected and 

shorted to its corresponding tap in the B system. Divergent currents then flow and Joule heating losses 

do not appear. The divergent current flow from the A to the B system implies a reverse divergent 

current from the B to the A system, which passes an input voltage source. Energy conservation holds 

in this system, but the input (bi, bj) and output (ai, aj) can be reversed such that (ai, aj) is input and (bi, 

bj) is output; that is, the system is symmetric. 

 

 

 

�� 
a a’ 

b b’ 

O 

O

’ 

�� 

�� �� 

�� �� 

�� �� 

A system  
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Fig. 7 Schematic of mapping from an input vector’s components to an output vector’s components. In this figure, 

(bi, bj) is a paired component of the input vector in Hilbert space, and (ai, aj) is a paired component of the output 

vector. Note that the mapping is not one-to-one. 

 

Let us now consider the two-qubit configuration.  

The two-qubit configuration of the A system is shown in Fig. 8. First, the normalization is given as 

∫ �2���,��
�

+ 2���,��
�

��� ≡ 1.     (48) 

Thus we have 

|�|� =
�

�
× (

��

ħ�
)�.       (49) 

After obtaining four bases, we describe the quantum correlations among (b1, b2, b3, b4) in Fig. 8. 

The total wavefunction of the electrons is given by 

��,� → ��,�
� = ∏ (���,�� + ���,��� exp(j ��))�.    (50) 

This wavefunction is schematized in Fig. 9 (an accurate calculation will be given in the Results 

section). The corresponding total wavefunction of the holes is depicted in Fig. 10. Note that the 

wavefunctions in Figs. 9 and 10 are discontinuous at the origin, because one describes the behavior of 

the electrons and the other describes that of holes. The electrons exist in two quantum states (i.e. two 

constant phases). This result implies that the n-type with b1 and n-type with b3 occupy different 

quantum states. The same phenomena were found in the p-type semiconductors (Fig. 10). When the 

junction surface O-O’ is selected as the origin, the two-qubit quantum state must satisfy Eq. (41):  

��� = ���00����⃗ + ��11����⃗ � + (��01����⃗ + ��10����⃗ ).    (51) 

In this equation, the four bases are expressed as 

00����⃗ = |�| exp(−���) = lim
��→ ��

|�| exp(���),      (52) 

11����⃗ = |�| exp(+���) = lim
��→ ��

|�| exp(���),     (53) 

�� �� 

�� �� 

50% 

50% 

50% 

50% 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 August 2020                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 August 2020                   doi:10.20944/preprints202008.0577.v1

https://doi.org/10.20944/preprints202008.0577.v1


 

18 
 

01����⃗ = |�| exp(−���),        (54) 

10����⃗ = |�|exp (+���).        (55) 

 

By Eq. (45), the output vector becomes 

���� = ���00����⃗ + ��11����⃗ � + (��01����⃗ + ��10����⃗ ) → ���00����⃗ + ��11����⃗ � + (��01����⃗ + ��10����⃗ ). (56) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.8 

Schematic of the two-qubit configuration. The bias current density jt0 is assumed to be on. Because the four 

states are correlated, the magnitudes and constant phases of the entire wavefunction can change (unlike the 

one-qubit case).  

 

 

  

Fig. 9 Schematic of the entire wavefunction of the electrons in the 2-qubit case. Two constant phases appear.  

�� �� 

�� �� 

�� �� 

�� �� 

O 

O’ 

�� �� �� �� 

�� �� �� �� 

A system 
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Fig. 10 

Schematic of the entire wavefunction of the holes in the two-qubit case. Two constant phases appear. Note that 

the phases at the origin should be distinguished because the wavefunctions of the electrons and holes are 

discontinuous there. Thus there are right- and left-limits near the origin.  

 

3.5.2 NAND gate 

 

Fig. 11 illustrates a NAND gate using the proposed quantum diode system. In this figure, (ai, aj) and 

(bi, bj) are the input taps, and (pi, pj) are the output taps. For example, when taps (ai, aj) receive an 

open voltage, they are turned ON, whereas taps (ai, aj) receive a shorted current density are turned 

OFF. Note that the directions of the voltage and current density are not considered here. Note that 

another dual NAND gate exists in the B system. The important considerations are as follows: 

1) An electrostatic potential from a voltage source is input between the corresponding taps of the A 

and B systems. 

2) A shorted current appears between the corresponding taps of the A and B systems. 

 

3) When both taps (ai, aj) and (bi, bj) are ON, taps (pi, pj) in the A system are shorted to the 

corresponding taps of another NAND gate in the B system.  

 

The Results section tabulates the truth values of the output (pi, pj), assuming that the bias current jt0 is 

ON. 
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Fig. 11 Schematic of a NAND gate. (ai, aj) and (bi, bj) are the input taps and (pi, pj) are the output taps. This 

NAND gate resides in the A system (a dual NAND gate resides in the B system). 

 

3.6 Bias current density and initialization of information 

 

Let us revisit the NOT gate in the A system in the one-qubit case. First, when the bias current density 

jto is on and (bi, bj) is also ON (i.e., receiving a voltage), then (ai, aj) is turned ON. Tap (ai, aj) can be 

turned OFF by a shorted current from the A system to the B system. This current density is 

counteracted by a dual reverse current from the B system to the A system passing an input voltage 

source. When the bias current density jt0 is off and a voltage is input to (bi, bj), then (ai, aj) receives no 

reverse voltage, because the junction O-O’ fails the superconductivity condition. 

When the voltages of (bi, bj) and (ai, aj) are ON, suppose that the bias current density jt0 is turned 

OFF in both the A and B systems. In this case, although (ai, aj) is shorted, a persistent and steady 

current density does not exist. Instead, the current decays because the superconductivity disappears, 

so the information of (ai, aj) is eventually lost. Note that to obtain a steady output current density, the 

voltage inputs from the voltage sources must reach the output taps; otherwise, the output taps receive 

no power and the output current density must decay. This implies that the information of (ai, aj) is 

initialized.  

 

 

 

�� 
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O’ 

�� 

�� �� 

�� �� 
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�� 
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4. Results 

 
Noe that, in simulations of this paper, MS excel software was employed. 

 

4.1 Switching properties of the quantum diodes  

 

Figs. 12 and 13 display the current-density states from off to steady and from steady to off, respectively. 

In both instances, the switching speed is of the order of 10-14 s, much faster than in conventional p–n 

diodes.  

Note that to apply the equation derived in the theoretical section, we must estimate the coherence ξ of 

a Cooper pair.  

Considering the energy gap discussed previously, we have 

e��� = ħ�,       (57) 

which includes the fine structure constant α. Details are given in the Discussion section. 

Assuming the derived wavelength as the coherence of a Cooper pair, we obtain 

� ≡ � =
ħ�

���

�

�
≈ 7.3 × 10��m,     (58) 

where the bias potential �� ≡ 3.7V. 

 

 

  

 

Fig. 12 Bias current density jt versus time (from off to steady state). The quantum diode switches in 

approximately �.�× ����� �. 
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Fig. 13 Bias current density vs. time (from steady state to off). The switching time is that in Fig. 12. 

 

4.2 Many-body wavefunctions in the one-qubit case 

 

Figs. 15 and 16 show the wavefunctions of the electrons and holes, respectively determined by Eqs. 

(19) and (20), respectively. In both plots, the phases converge to constant values. Note that |��| and 

|��| contained in Eqs. (19) and (20) respectively were normalized by Eq. (15). 

 

 

  

Fig. 15 Entire wavefunction of electrons. The wavefunction converges at 8.4 rad. 
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Fig. 16 Entire wavefunction for holes. The wavefunction converges at -8.4 rad. 

 

4.3 Many-body wavefunctions in the two-qubit case 

 

Figs. 17 and 18 show the entire wavefunction of the electrons and holes, respectively, in the two-qubit 

case. Both plots show two converged quantum states. In Eq. (50), the value of ���,�� was determined 

by Eq. (19). 

 

  

Fig.17 Entire wavefunction of the electrons in the two-qubit case. The entire wavefunction converges to two 

phases. This implies that among the four semiconductors in Fig. 8, two semiconductors have a constant phase. 
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Fig. 18 Entire wavefunction of the holes in the two-qubit case. The sign of the converged phase opposite that in 

Fig. 17. Note that Figs. 17 and 18 are discontinuous at the origin because they are plotted for different carries. 

That is, near the origin, there are right- and left-limits. 

 

4.4 Result of NAND gate 

 

Table 1 shows the truth values of the derived NAND gate.  

 

 

Table 1 Truth values of the derived NAND gate 

  

 

 

 

 

 

 

 

5. Discussion 
 

5.1 Bias current, its superconductivity and the Meissner effect  

 

To discuss general superconductivity, we must clarify the force that combines two carries into a Cooper 

pair. In this paper, the combining force is assumed as the applied electric-potential bias. More 

(�� ��)  (�� ��) (�� ��)

off on on 

on off off 

on off on 

on on off 
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concretely, a photon related to this electric potential provides an attractive force that combines two 

carries. As reported in our previous papers [21-22], the electromagnetic potential is not strictly 

equivalent to a photon, as the latter has a momentum. To convert this potential to a photon energy, we 

introduce the fine structure constant α to the potential. The combination energy V of a Cooper pair is 

then expressed as 

� = e�� × � .        (59) 

The critical bias potential ��,������ at room temperature is obtained as 

e��,�������� × � ≈ ���,       (60) 

where kB denotes the Boltzmann constant, and the temperature T is 300 K. 

Performing this calculation, we get 

��,�������� ≈ 3.7 V.      (61) 

The applied electric potential must exceed ��,�������� . 

 

Let us discuss the deeper mechanism of superconductivity in terms of the bias current. Most specialists 

consider that superconductivity is automatically implied by a macroscopic and entire wavefunction 

with constant phase, i.e., the Meissner effect. In the present paper, we attempt to obtain a London 

equation, which provides direct evidence of the Meissner effect.  

The numerical calculation revealed that the many-body wavefunctions, Eqs. (19) and (20) 

converged to macroscopic plane waves with a constant phase ± ��. Under an applied magnetic field 

B (i.e., vector potential A), we can derive the Aharonov–Bohm (AB) effect [23] from the initial 

macroscopic wavefunction of electrons 

��,� → �� = |�|���[(�� +
�

ħ
∫ ���) �},      (62) 

where q, j and �� denote the electron charge, imaginary unit and converged phase of the macroscopic 

wavefunction, respectively.  

        

Note that this section considers only the one-qubit system. 

From Eq. (62), we have 

(�� +
�

ħ
∫ ���) = 2��,        (63) 

where n is an integer. Putting n = 0, we have 

�� = −
�

ħ
∫ ��� ,        (64) 

and  

�� = ���,         (65) 

where x is a variable, and ds defines the coherence ξ of a Cooper pair. 

Substituting Eq. (65) in Eq. (64) and differentiating both sides of Eq. (64), we obtain 

�� = −
�

ħ
��� ≡ −

�

ħ
��.        (66) 

The probability density flow is given by 
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�� = �|�|� ħ��

�
.         (67) 

Substituting Eq. (66) in Eq. (67), we derive the following London equation: 

�� = −��|�|� ��

�
.              (68) 

 

5.2 Switching speed and memorization  

 

As indicated in the Results section, the switching speed of the designed quantum diode was of the 

order of 10-14 s, substantially faster than that of conventional semiconductor devices (with ns-order 

switching times). Although this system has quantum supremacy and quantum correlation, it generally 

requires data initialization by switching the bias current jt0. Initialization is needed when mounting the 

quantum diodes and systems in an actual computer. Although quantum computing is usually limited 

by the clone prohibition theorem, memory in the proposed system is retained by the bias current 

density. Therefore, the quantum diode is compatible with conventional and existing programming, and 

quantum algorithms are not necessarily needed. Furthermore, owing to the much faster switching 

speed of the quantum diode than of conventional diodes, a computer constructed from such quantum 

diodes would operate much faster than conventional computers with the same programming methods.  

 

 

5.3 Energy consumptions of the output current density and bias superconducting current density in the 

NOT gate 

 

The currents in the system are the bias current and output currents. As mentioned above, the bias 

current is a superconducting current that generates no Joule heating or other energy losses. 

Furthermore, because the divergent output currents from the A system to the B system are shorted and 

unassociated with a voltage, they also generate no Joule heating. However, a simultaneous dual 

divergent current density appears, which reversibly passes the input voltage source from the B system 

to the A system. Because this current density is associated with the voltage from the voltage source, 

electric power is consumed. No other energy is consumed in the proposed system. The input voltages 

must be less than the bias electric potential (with a critical value of ��,�������� ≈ 3.7 V), but the 

magnitude of the divergent current was not estimated. Allowing an approximate estimation and 

assuming that the output divergent current is proportional to the input electric potential, a critical bias 

of 3.7 V permits an input electric potential of the order of 100 mV. Therefore, the corresponding 

divergent output current density will be of the order of 103 A/m2. This estimation is reasonable, because 

the corresponding superconducting current density jt0 at ��,�������� ≈ 3.7 V has been calculated as 
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7.6 × 10� A/m2, which is derived by the equation of the bias current density jt0, eq. (24), at the bias 

3.7 V. If the bias is larger than ��,�������� , the electric potential will increase but more electric power 

will be consumed.  

 

5.4 Quantum supremacy and harvesting data 

 

In the two-qubit system, all electric potentials at all taps (i.e., all classical bits) can be input 

simultaneously and quantum correlations can form in the system. This paper claims that direct 

quantum correlations are possible, thus avoiding the extra overhead of indirect correlations. 

Furthermore, although a tap outputs a classical bit (a divergent current), the dual divergent input 

current passing the voltage source maintains the state of the quantum correlation, provided that the 

superconductivity, bias, and memory are maintained.  

 

5.5 Complete design of gate elements using NOT and NAND gates  

 

This paper proposed quantum NOT and NAND gates. Because these gates are very stable against 

relatively large bias voltages, they should be configurable into other gates such as AND gates. 

Therefore, the developed quantum diodes are expected to realize large-scale quantum computers with 

quantum correlations and quantum supremacy, which might completely replace existing computers. 

 

5.6 Bias and input electric potentials 

 

As mentioned, the input electric potential should not exceed the electric potential of the bias. If 

multiple input electric potentials dominate over the bias potential, the superconductivity is broken. 

Analogously, conventional and existing electric circuits require a bias DC voltage to convey a lower-

magnitude AC signal.  

 

5.7 Compact size and required carrier number for superconductivity  

  

Reducing the gate size is a main focus of computing and semiconductor research. The ideal dimensions 

will contain a countable number of carriers. However, superconductivity requires a certain number of 

carriers are needed. In our numerical calculations, approximately 100 carriers converged the many-

body wavefunctions (Eqs. (19) or (20)) to a constant phase. This carrier number is within the 

mesoscopic realm, implying that the quantum diode system can realize compact size in the mesoscopic 

realm.  
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5.8 EPR pairs  

 

As mentioned, our quantum diodes are functional only when the A and B systems cooperate as dual 

systems. When a small voltage (small electric potential) is input between the A and B systems and the 

output state of the A system is determined, an output state of the B system is simultaneously and 

immediately determined as the dual state. We identify these dual states as an Einstein–Podolsky–

Rosen pair [24-25].  

 

5.9 Stability to random and thermal noises  

 

The bias must arbitrarily exceed 3.7 V, so an input electric potential smaller than the bias can itself be 

very large. As mentioned above, the critical bias allows a 100 mV-order input and an output of order 

103 A/m2. If the bias is stable and sufficiently large, noises can be ignored, as their magnitudes will be 

much smaller than the input and output signals. Thus this quantum diode should operate stably even 

when mounted in a relatively large-scale computer. 

 

5.10 Significances of the presented contents 

 

The most significant contributions of this paper are summarized below 

1) A new room-temperature superconductivity has been introduced to condensed matter physics. 

2) A superconducting system with potential applicability to quantum computing has been proposed. 

Very recent quantum computing machines developed by other researchers are based on the existing 

refrigerated superconductors. Although these machines have technical merits (i.e. near-zero Joule 

heating losses, requiring only the refrigerating and running costs), the refrigerating costs are not low. 

Moreover, the liquid helium used for cooling metal superconductors is a limited resource on Earth. In 

contrast, the proposed system requires no refrigeration and is downsizable to small gate-elements. 

Because it accommodates many elements in a compact size and incurs low running costs, the system 

promises a departure from the existing computer types.  

3) The proposed quantum diodes can be produced from the cheapest p–n silicon based diodes, 

it can be fabricated by the manufacturing technologies of conventional diodes, which have 

accumulated since the onset of p–n diodes and transistors. Therefore, the manufacturing cost of a 

computer constructed from the proposed quantum diodes should be very low. Considering that the 

superconducting bias current is generated without cooling, the low manufacturing costs should be 

matched by low running costs.  
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6. Conclusions  
 

This paper presented a new superconductivity phenomenon that requires no refrigeration, and 

developed novel quantum diode systems. The new superconductivity was verified in numerical and 

analytical calculations. NOT and NAND gates, composed with many qubits and quantum correlations, 

promised to overcome almost all of the problems faced by current quantum computing research. The 

developments are expected to be shortly implemented in practice, as they incur low manufacturing 

and running costs.  

As a natural follow-up, the presented theory should be investigated in further experiments. 
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