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Abstract 

Biological technologies are fundamentally unlike any other because biology evolves. 

Bioengineering therefore requires novel design methodologies with evolution at their core. 

Knowledge about evolution is currently applied to the design of biosystems ad hoc. Unless we 

have a unified engineering theory of evolution, we will neither be able to meet evolution’s 

potential as a design tool, nor understand or limit its unintended consequences on our 

designs. Our concept of the evotype offers a conceptual framework for engineering the 

evolutionary potential of biosystems. We show how a biosystem’s evolutionary properties 

might be rationally designed by engineering aspects of genetic variation, designed function, 

and natural selection. This idea could apply to all biosystems – from individual proteins to 

communities of whole-cells or even entire ecosystems – whether the goal is to direct evolution 

in the design process, or to limit its impacts during application. These principles could even 

be used beyond the realm of bioengineering to design entirely synthetic evolving auto-

adaptive technologies.  
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Introduction 

The past few decades have seen a revolution in our ability to engineer biology and create 

novel living systems 1. Yet, several hurdles still hinder our ability to harness biology’s full 

potential 2. These predominantly stem from the fact that engineering the stuff of life is not the 

same as engineering its properties, because life evolves. Evolution makes engineering living 

systems a radically different challenge to engineering other mediums. To be effective, we 

cannot just apply traditional engineering design principles to biology and deal with evolution 

as a secondary thought. If nothing in biology makes sense except in the light of evolution 3, 

then evolution must be a central part of an engineering theory of biology. 

 Evolution poses both a challenge and an opportunity when designing biosystems. On 

one hand it is a detrimental force that can unpick the meticulous plans of an engineer through 

mutation 4. Designed biosystems cannot escape evolution when used and loss of function is 

a particular concern for engineers, especially as there are often selection pressures for it 5,6. 

Thus, it is essential that we are able to build evolutionarily robust biosystems that can continue 

to operate under unavoidable evolutionary forces. 

 On the other hand, evolution is an extremely effective problem solver, and engineers 

have exploited this fact for decades 7–10. For example, directed evolution can be used to 

optimise or even generate completely novel traits in single proteins 11 or entire cells 12. 

However, these methods rely on the ability of evolution to find solutions in a reasonable length 

of time. For most systems, the search space is so vast that the starting point in this process 

must have the potential to generate useful phenotypes relatively quickly. Evolution may even 

be employed as a feature of the system during operation. For example, being used to develop 

adaptive systems that evolve in response to environmental cues, or even to create evolvable 

genetic circuits that can be designed with specific classes of phenotype that are reached as 

necessary through evolutionary change. To create such systems, it is critical that the biological 

design is evolvable, having the potential to generate desired phenotypes from a single starting 

point. 

 Even more critical, is our moral obligation to a deeper understanding of how synthetic 

biosystems will continue to evolve if deployed into our bodies or the wider environment 13. The 

field has rightly made efforts to develop tools to reduce and mitigate evolution 14, with fail-

safes such as kill switches 15 or metabolic dependencies 16. However, without a good 

theoretical understanding of how synthetic biosystems might continue to evolve once 

deployed, we risk these technologies developing unexpected faults with dire, but avoidable, 

consequences. 

Central to many of these issues is the view in traditional engineering disciplines that 

the engineered artefact is a final destination in the design process. This view breaks for 

biology. Instead, we believe that a new perspective is needed for a truly effective engineering 
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of biology; one that sees a designed biosystem as a starting point in a lineage of possibilities. 

Whilst much of evolutionary biology has concerned itself looking backwards at an organism’s 

history 17, bioengineers must consider the future, and specifically how a biosystem will 

continue to evolve when used 18. Here, we describe a framework to enable this transition 

offering a way to specify, test and conceive the properties of biosystems in terms of their 

evolutionary potential, and not just their phenotype (Figure 1). This provides a means to 

reimagine biological engineering in a way that works hand-in-hand with the ability for all life to 

evolve. 

 

The design type and the evotype 

To more fully harness the capabilities of biology, it is crucial to have a way of thinking about 

the evolutionary properties of engineered biosystems. We need to design not only the 

immediate functionalities of the system (i.e. its phenotypic traits), but also its potential for 

evolutionary change. Though these are properties of populations yet to exist, they can still be 

predicted for an individual biosystem. We consider the design type as the system that has 

been engineered consisting of a single genotype. We introduce the concept of the evotype to 

capture the evolutionary properties of a system. The evotype is the set of evolutionary 

dispositions of the design type, analogous to genotype and phenotype being sets of genes 

and traits, respectively. Unlike a trait, a disposition is not a directly observable property, rather 

it is a potential property of the system. For example, a protein may have the disposition of 

instability where its phenotype may change dramatically when mutated. Designing the 

dispositions of the evotype is a challenge fundamental to engineering biology.  

For all but the very simplest biosystems, it is impractical to enumerate every potential 

evolutionary disposition, just as it is impossible to consider every trait of the phenotype. 

Instead, an appropriate sample of the evotype must be used for the purpose at hand, just as 

samples of traits are used when describing the phenotype. How we take this sample, and thus 

the scope of the evotype covered, should be determined by knowledge of the design type, its 

intended function, and the context in which it will be used. This could include the size of 

population, environment, and number of generations over which the system must operate 

reliably.  

The key properties of the evotype can be understood by describing a landscape 

surrounding the design type in sequence space that captures the interwoven roles of genetic 

variation and natural selection, as well as the mapping between sequences (i.e. genotypes) 

and their associated function. The bioengineer’s goal is to sculpt this landscape to their 

specification and ensure the landscape of the evotype has a structure in line with their 

requirements. 
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Variation 

Not all point mutations are equally likely with transversions and transitions differing in their 

likelihoods 19, and methylation 20, genomic context 21, and species 22 all influencing local and 

global mutation rates. Furthermore, algorithmic mutations 23 may occur. These are mutations 

that result in changes of several nucleotides in one mutation event (thus an algorithm can 

describe the change) and can be thought of as shortcuts through sequence space (Figure 

1B, left). The likelihood of an algorithmic mutation may be much greater than the sum 

likelihood of the equivalent sequence of individual point mutations. For example, the chance 

of an insertion of the two-base motif ‘AC’ into a tandem repeat region due to slipped strand 

mispairing may be more likely than two insertion events of ‘A’ and ‘C’ occurring independently 

24. Recombination 25 and mobile genetic elements 26 are other examples of biological 

processes capable of producing algorithmic mutations. 

Sequence space is therefore not explored in a uniformly random way. Instead, the path 

evolution can take is determined by the variation operator set, which defines all the different 

point and algorithmic mutations that can occur in the system. Each variation operator in this 

set has an associated probability distribution that represents the likelihood of arriving at a 

given sequence from another (i.e. by this operator acting on the design type). The distributions 

of the variation operator set can be combined to produce the variation probability distribution, 

which describes the chance of arriving at a given sequence from the design type due to all the 

processes of genetic variation present in the system (Figure 1B, right). As a design type 

evolves, the variation probability distribution can be recalculated for each lineage in a 

population to understand further dispositions available to a system. 

The variation operator set depends on the specifics of the biosystem being engineered, 

and the set to be used in practice is dependent on available knowledge of the system. For 

example, the variation operator set for a plasmid with many repeated parts may be said to 

include transition mutations, transversion mutations, and homologous recombination. A 

sample population can be generated by applying the operator set to the design type. This 

population, with the design type at its centre, may be named a quasispecies; as is used for 

the related concept in viral evolution 27. 

The variation probability distribution can be considered in all stages of the engineering 

process. Global and local mutation rates could be specified in a design and standardised 

mutation rates could be listed in part datasheets and it is likely that improvements to the 

prediction of mutation probabilities will be made with the increasing availability of sequence 

data and improvements in computational methods. Design rules for influencing the local 

genetic variability are already known (e.g. avoiding the use of repeated parts to reduce 

homologous recombination and avoiding repeat sequences to avoid sequence mutation) 28, 

and global mutation rates can also be rationally engineered and manipulated 12,29
 . Design 
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types could even be constructed with specific sets of variation operators. For example, making 

a system capable of recombination of certain genetic parts but not others. Highly specific 

recombination systems can also be directly built into the genome of a cell, such as the 

SCRaMbLE system found in the synthetic yeast Sc2.0 30. In the future it may be possible to 

design and build systems capable of carefully specified algorithmic mutations by controlling 

combinations of biochemical mechanisms such as recombination, CRISPR mediated 

modifications, and methylation to name but a few. Finally, advances and increased 

accessibility and throughput of quantitative sequencing 31 will enable better characterisation 

of a system's genetic variation in detail. 

 

Function 

Each genotype maps to a phenotype. However, these are not necessarily distributed evenly 

throughout sequence space, and physical and biological constraints mean that not all 

conceivable phenotypes may be possible. This means the topology of the genotype-

phenotype map has an underlying structure, which influences evolvability 32. When talking 

about phenotypes, we are really talking about traits or subsets of traits. As engineers, the trait 

we are interested in is the design type’s function – the behaviour or properties specified by the 

designer. Thus, we are interested in the genotype-function map of the region surrounding our 

design type. We may group functions into distinct classes, or work with a continuous function 

space (Figure 1C). This could be a literal mathematical function like a logic function, a physical 

characteristic like colour or size, or a combination of several properties.  

Any system has a degree of utility – the extent to which the system fulfils a 

specified/desired function. The sole goal of a traditional engineering design process is to 

maximise the utility of the design type. However, the topology of the function landscape 

surrounding the design type, and thus of the utility landscape, is also important. It may be 

highly variable with the function rapidly changing across sequence space, or it may have large 

neutral regions, where function changes little or remains constant. It may be rugged, where 

the function changes chaotically and unpredictably, or it may be smooth, where gradients can 

be predicted across larger distances in sequence space. These properties are a key design 

consideration: what is the functional range to be covered by the design type’s evotype? Should 

it be large (e.g. for directed evolution), or limited (e.g. for robust devices)? Most likely the 

function landscape should be smooth and predictable, but how is this best achieved? Which 

regions of function space must be avoided, and which can be tolerated?  

Designs may have identical functionality but occupy regions of function space with very 

different topological properties. If a system is designed without considering its surrounding 

function landscape, a design with an undesirable evotype is a likely outcome. For example, a 

rugged chaotic landscape where function is unstable, or a landscape where the desired 
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functions are inaccessible to directed evolution. We might engineer as much redundancy into 

our system as possible, so that mutations are less likely to result in dramatic changes of 

function (i.e. a flat or gently sloping landscape). Alternatively, we may want to maximise 

variability, however, this may be constrained to favour certain classes of function. For 

example, it may be necessary to reduce irrelevant or harmful functions as much as possible 

(e.g. in a diagnostic application regions of function space that causes false negatives must be 

avoided, whilst false positives can be tolerated). Engineering this landscape is not trivial: it 

requires significant knowledge of the physical, biochemical, and organisational properties of 

the biosystem. However, awareness of this challenge will enable engineers to think beyond 

the utility of the individual and consider the performance of future lineages as a whole. 

 

Selection 

Selection is the force that gives the otherwise random (but constrained) processes of genetic 

variation a ‘direction’, driving a population up the slopes of the adaptive landscape 33. Uniquely, 

an engineered biosystem is a result of two forms of selection: natural selection and the design 

process. Natural selection acts on reproductive fitness of the biosystem, and the design 

process can be thought of as a sophisticated form of artificial selection acting on its utility. 

Understanding the interplay between these two processes is critical for good evotype design, 

since there is often a tension between utility and fitness (Figure 1D). If the two are 

uncorrelated, then natural selection will always strive to undo the work of the engineer. 

However, if fitness and utility are highly correlated, then natural selection will also drive up 

utility. It should be noted that natural selection here is meant as the process that acts on the 

reproductive ability of the biosystem. Neither the environment nor biosystem need to be 

natural (e.g. the organisms could be engineered to make use of non-canonical amino acids 

and grown within a bioreactor). The critical distinction is that natural selection acts on survival 

of the biosystem without the input of the engineer. 

The aim of a bioengineer is to maximise fitneity – defined as a function that combines 

utility and fitness (Figure 1D). Biosystems with either high utility but low fitness or high fitness 

but low utility will both have low fitneity. To maximise fitneity both fitness and utility must be 

considered. How these two are weighted, and the exact function that makes up fitneity is 

dependent on the use-case and the properties of the system to be engineered. In some cases, 

utility may be prioritised, in others, the system may only require some minimal level of 

functionality, as long as it can survive under high natural selection pressures. 

Careful design could ease the tension between utility and fitness by reducing the 

selection pressures of a design, for example by reducing metabolic load. The interplay 

between utility and natural selection can also be controlled, for instance by correlating the two 

in a directed evolution experiment. Evotype engineering then, is to sculpt the fitneity landscape 
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of the design type. The design type itself should have maximal fitneity, but a robust design 

must also be in a region of sequence space with high fitneity. Similarly, an evolvable design 

ideally has a fitneity landscape with smooth slopes and single peak that can be climbed by 

natural selection.  

 

Conclusion 

Like the genotype and phenotype, the evotype is a further way to think about the properties of 

engineered biosystems and how they relate to each other (Table 1). It is a framework for 

thinking about an important but often overlooked property: the role the biosystem itself plays 

in its future evolution. As engineered biosystems are the result of both human thought and 

natural adaptation, a holistic consideration of both the roles of design and evolution is 

necessary. The evotype helps us do this by explicitly considering the effects that variation, 

function, and selection will have on a design (Figure 1).  

We can now design and build genotypes with great precision, but we must account for 

the inevitable processes of genetic variation that will follow. The statistical structure of variation 

is unique to the biosystem and something we have control over. Yet understanding the details 

of genetic variation is insufficient if we don’t also understand how this will manifest in changes 

of the designed function of the biosystem. Even a system with low mutation rates can be 

evolutionarily unstable if function changes wildly with small sequence alterations. Directed 

evolution will not be successful, despite the mutation strategy, if desired functions are simply 

not accessible from the starting point. If the biosystem's utility (i.e. its success as a design) 

and its fitness (i.e. its success as a biological replicator) are at odds, well designed dispositions 

for variation or function might not save the design from the pressure of natural selection. This 

must also be understood as conflict between utility and fitness landscapes across sequence 

space surrounding the original design type. It is clear then that all three of the aspects of the 

evotype – variation, function, and selection – must be considered together, and all offer 

significant scope for engineering. For instance, imagine a large genetic circuit that places an 

unavoidably high metabolic burden on the host cell. If it is crucial that the function of the circuit 

is maintained over long periods of time, then redundancy could be used to accommodate 

unavoidable mutations. However, if the dent to reproductive fitness is severe, this may still not 

be enough. Therefore, combining redundancy in the design with a hyper-stable host cell (e.g. 

one where all mobile genetic elements have been deleted and efficient DNA repair 

mechanisms are present 34) might be the only way to achieve the desired goal for the system. 

Designing biosystems with evolution in mind is a step towards a more complete 

engineering theory of biology. However, to be practical, supporting tools must exist that can 

provide key information regarding the genetic variation, genotype-function mapping and 

selective pressures within a biosystem. Advances in sequencing offer a means to 
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quantitatively measure millions of genotypes in parallel 35 and when combined with techniques 

such as fluorescence activated cell sorting (FACS) make it possible to infer simplified 

genotype-function maps 36. Even so, the vastness of evotype landscapes and the need for 

functions calculated from many outputs of a system mean that new methods with greater 

throughputs are also necessary, especially those able to measure many characteristics of 

each cell simultaneously (e.g. via automated high-content microscopy 37 or high-throughput 

Raman spectroscopy 38). Parallel to these experimental methods, a promising direction to 

bypass the need to directly measure these properties are the development of sufficiently 

comprehensive computational models (e.g. encompassing whole cells 39) to allow for a 

mechanistic understanding of the biases in processes related to variation and reproductive 

rate. In these cases, and if sufficiently accurate, the evotype could be predicted and used 

within computer aided-design workflows 40 to reduce the need to physically implement every 

possible design. 

In addition to characterising evotypes, tools for bioengineers to directly sculpt their 

landscapes must also be available. (Figure 2). Here, we have touched upon the numerous 

ways that biomolecular components have been repurposed and genome engineering 

performed to alter the types of possible variation and selective pressures that are present. 

However, the spectacular diversity of molecular machines dedicated to manipulating genetic 

information found in the natural world lends support to the idea that we will likely require a 

large library to allow for precise modifications we might like to shape evotype landscapes any 

way that we want. 

An engineering theory of evolution is both a new way of looking at evolutionary theory, 

and a new way of thinking about what it is that engineers do, and what the design process is. 

The concept of the evotype, with some modifications, may also find use in evolutionary 

science, where it offers a framework for considering the mechanistic constraints of evolution 

and a way of talking about the evolutionary characteristics of organisms. It may also be applied 

beyond biological engineering fields to create new auto-adaptive technologies. Here the 

framework could be applied to ask how we design technologies to evolve, and not just how to 

engineer systems that already do.  
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Tables 

Table 1: Role of genotype, phenotype and evotype when describing biological systems 

 Genotype Phenotype Evotype 

Describes Informational/ 

Hereditary properties 

Physical/Environmental 

properties 

Evolutionary 

properties 

Is a set of... Genes/Sequences Traits Dispositions 

Pig example Hox gene Four legs Chance of evolving 

wings 

Protein example Codon Structural stability 

under temperature a 

Structural stability 

under mutation b 

a. For example, strengthened hydrophobic interactions in the interiors of thermostable proteins 41. 

b. For example, the robustness of the genetic code to amino acid mutations due to synonymous 

codons 42.
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Figures and captions 

 

Figure 1: The evotype and its key properties. (A) The evotype visualised as a landscape 

surrounding the design type (red square), where fitneity (the combined function of fitness and 

utility) is plotted as a vertical axis against a 2D plane of sequence space with the probability 

of evolution exploring regions of sequence space overlaid in grey. The properties of this 

landscape are determined by the interaction of three components: variation, function, and 

selection. (B) A variation probability distribution can be projected onto sequence space, which 

represents the likelihood of exploring a given sequence through genetic variation. Darker 

regions represent regions of higher probability. This is the sum of the distributions of the 

individual variation operators present in the system (variation operator set). For example, point 

mutation (bottom layer in set), recombination of homologous regions (middle layer in set), and 

slip-strand mutation (top layer in set). Red arrows in middle and bottom layers represent 

algorithmic and point mutations respectively. (C) How phenotypic functions are distributed in 

sequence space surrounding the design type is critical. Function space may be considered as 
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discrete (top), where the space may have high genotypic robustness (left grid) or high 

variability (right grid). A continuous utility space (bottom) plotted against a 1D projection of 

sequence space. The colour under the curve represents the discrete function associated with 

that region of sequence space and the utility that each has as a continuous value. For 

example, if the goal is to produce blue-like functions, dark blue may have the highest utility, 

followed by lighter variants in the spectrum. The bioengineer must define a minimal threshold 

(dashed line), below which the design is deemed to be a failure (e.g. non-desired function is 

exhibited). (D) Sequences differ in their reproductive fitness. This is the driver of natural 

selection and can be plotted across sequence space as an adaptive landscape (red dotted 

line). Utility (blue dashed line) may or may not correlate with reproductive fitness across 

sequence space. The fitneity (grey solid line) is the combination of the fitness and utility. 

Bioengineers must optimise fitneity both for the design type and throughout the landscape.  
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Figure 2: Engineering evotypes by sculpting their landscapes.  Different biosystem 

designs may share the same phenotype but have very different evotypes (top row). Rational 

engineering approaches could be used to transform a naive design (middle column), where 

evotype has not been considered, into either robust (left column) or evolvable (right column) 

evotypes, which are characterised by their fitneity landscapes. Bioengineers can sculpt the 

evotype by modifying three major factors: variation, function and selection. Variation (green 

row): In a naive design, a mixture of variation operators may be in play. This might create a 

system that can reach many different regions of sequence space. It could be made more 

robust by reducing global mutation rates (e.g. host strain engineering), or by removing 

homologous regions to reduce the chance of recombination. Conversely, a naive design might 

be made more evolvable by increasing mutation rates in focused areas of sequence space 

(e.g. via methylation) and incorporating site-specific recombination or gene-shuffling (e.g. the 

SCaMbLE system). Function (blue row): A naive design may have high utility, however, if its 

function changes rapidly and chaotically across sequence space, it may be inherently 

unstable. A robust evotype has large neutral regions in function space. This may be 
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engineered by designing in redundancy (e.g. redundant genes), by employing part 

equivalence (e.g. amino acid mutations with similar properties), or through the application of 

control engineering principles to accommodate variability. Conversely a design can be made 

more evolvable if it can access a large range of new phenotypes, of a specific class (e.g. 

produce a colour), and the landscape may be smoothed (e.g. through removing crosstalk 

between features) and thus made amenable to evolutionary search. Selection (orange row): 

If, as in the naive design, reproductive fitness (red dotted line) and utility (blue dashed line) 

are highly uncorrelated, then the design type may have a strong selection pressure acting 

against it, and regions where both fitness and utility are maximised may be rare or non-

existent, so high fitneity (grey solid line), may not be achievable. In a robust design, one might 

act to reduce the effects of natural selection through global increases in fitness (e.g. through 

reducing metabolic load of a genetic circuit), by reducing toxicity of gene products, or by 

smoothing either fitness or utility landscapes  (e.g. through orthogonal parts). A naive design 

can be made more evolvable by closely correlating fitness and utility (e.g. through coupling 

function to survival). This means natural selection will act to drive up the utility of the design: 

the precise goal of a directed evolution experiment. 
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