

1 Article

2 **Anti-diabetic effects of wild soybean *Glycine soja* seed
3 extract on Type 2 diabetic mice and human
4 hepatocytes induced insulin resistance**5 **Eunjung Son¹, Hye Jin Choi², Seung-Hyung Kim², Dong-Gyu Jang³, Jimin Cha⁴, Jeong June
6 Choi^{2†}, Mee Ree Kim^{5*†}, Dong-Seon Kim^{1†‡}**7 ¹ Herbal Medicine Research Division, Korea Institute of Oriental Medicine, 1672 Yuseong-daero, Yuseong-gu,
8 Dajeon 34054, Republic of Korea; E.S.:ejson@kiom.re.kr, D-S.K:dskim@kiom.re.kr.9 ² Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 300-716, Republic of Korea;
10 H.J.C.:ejson@kiom.re.kr, S-H.K.:sksh518@dju.kr, J.J.C.: c27022@dju.ac.kr.11 ³ Daejeon Bio Venturetown 306-7, Yuseong-daero 1662, Yuseong-gu, Daejeon 34054, Republic of Korea; D-
12 G.J.: kocbio5267@hanmail.net.13 ⁴ Department of Microbiology, Faculty of Natural Science, Dankook University, Cheonan, Chungnam 330-
14 714, Republic of Korea; J.C.:jimincha@dankook.ac.kr.15 ⁵ Department of Food and Nutrition, Chungnam National University, Yuseong-Gu, Daejeon, Republic of
16 Korea; M.R.K.:mrkim@cnu.ac.kr .17 * Correspondence: J.J.C.: c27022@dju.ac.kr, Tel.: +82-42-280-2648; M.R.K.: mrkim@cnu.ac.kr, Tel.: +82-42-821-
18 6837; D-S.K: dskim@kiom.re.kr, Tel: +82-42-868-963919 [†] Dong-Seon Kim, Mee Ree Kim, and Jeong June Choi contributed equally to this work

20 Received: date; Accepted: date; Published: date

21 **Abstract:** Anti-diabetic effects of *Glycine soja* seed extract (GS) on Type 2 diabetes mellitus mouse
22 model and human hepatocytes induced insulin resistance were investigated. 3 weeks old *db/db* mice
23 were divided into 5 groups (*n* = 6) including two control groups and 3 GS treated groups with
24 different doses. Oral administration of GS for 6 weeks to diabetic *db/db* mice reduced blood glucose
25 level significantly in a dose dependent manner by 44.7% (300 mg/kg/day), 30.9% (150 mg/kg/day)
26 and 21.1% (75 mg/kg/day). GS treatment also lowered significantly plasma level of HbA1c, insulin,
27 IGF-1 and leptin, and increased that of adiponectin. GS treatment activated AMPK, and down-
28 regulated GLUT2 in liver tissues of mice while up-regulated GLUT4 in muscle tissues of mice. In *in*
29 *vitro* study with insulin resistance induced human hepatocyte, GS treatment increased glucose
30 uptake and increased the activities of Akt and PPAR- γ in response to insulin. Treatment of GS
31 appears to reduce blood glucose level by regulating energy metabolism positively through various
32 metabolic pathways and reducing insulin resistance in Type 2 diabetes mellitus.33 **Keywords:** *Glycine soja* seed, Type 2 diabetes mellitus, Antidiabetic, AMPK, Akt, PPAR- γ
3435 **1. Introduction**36 Many people suffer from a metabolic disorder, Type 2 Diabetes mellitus (T2DM) and its
37 complications [1]. Insulin has a key role to maintain the blood glucose level within a narrow range.
38 The main cause of T2DM has been reported to be insulin resistance though altered insulin secretion
39 seems to be responsible to some extent [2]. IGF-1 has an almost 50% amino acid sequence homology
40 with insulin and brings about nearly the same blood glucose lowering response [3]. It has been
41 reported that the effect of IGF-1 on insulin sensitivity and its relation to T2DM [4, 5]. It has been
42 reported that adiponectin [6] and leptin [7] concentrations in blood are functionally related to insulin
43 resistance and T2DM.

44 Impaired energy metabolism often observed in T2DM, obesity, hyperlipidemia and cardiovascular
45 diseases is closely related to biochemical malfunction in the cellular level [8]. Insulin resistance is
46 partly responsible for impaired energy metabolism that causes in turn various pathological events
47 [9]. AMPK acts as a sensor to maintain a balance of energy metabolism and has important biochemical
48 functions [10, 11]. AMPK stimulates or inhibits many downstream effectors in energy metabolism.
49 Thus, AMPK has been studied as a target for the development of drugs designed to correct impaired
50 energy metabolism since it has a key role in regulating both lipid and glucose metabolism [12, 13].

51 Akt pathway is a signal transduction pathway in response to extracellular signals and activated Akt
52 mediates many downstream responses by phosphorylating a range of intracellular proteins. In such
53 a way, Akt plays a key role in multiple cellular processes including glucose metabolism. Akt affects
54 glucose metabolism by increasing translocation of glucose transporters to the cell membrane,
55 stimulating glycogen synthesis by activation of the related enzymes [14].

56 Currently available hypoglycemic agents for T2DM have limitations to use because of side effects
57 and restrictions to treat the patients having kidney, liver, and heart problems [15-18]. Because PPAR-
58 γ regulates fatty acid storage and glucose metabolism, PPAR- γ agonists have been used in the
59 treatment of hyperglycemia as an insulin sensitizing agent [19]. PPAR- γ agonists also have side
60 effects [20], therefore, hypoglycemic agents increasing insulin sensitivity with less side effects still
61 need to be sought. It is desirable to find a safe herb from nature applicable for a long term treatment
62 to control hyperglycemia caused by T2DM.

63 *Glycine soja* is an annual winder plant widely grows in Korea, Japan, China, and Russia [21]. It is
64 known to be an original species of soybean (*Glycine max*). *Glycine soja* has been reported to have about
65 10% more protein and 10% less fat than soybean. *Glycine soja* has been reported to reduce blood
66 glucose and total cholesterol in normal rats [22]. However, anti-diabetic effects of *Glycine soja* on
67 T2DM and its relationship with energy metabolism and insulin resistance have not been reported yet.

68 2. Results

69 2.1. Flavonoids and pinitol contents of GS

70 Three flavonoids, epicatechin, daidzin, and genistin were identified in the sample of *Glycine soja* seed
71 extract. The extract sample contained 41.2 ± 0.1 mg/g epicatechin, 8.1 ± 0.3 mg/g daidzin, and 6.5 ± 0.1
72 mg/g genistin(Fig. 1(A)). The pinitol content of the sample was 1.21 ± 0.01 mg/g(Fig. 1(B)).

73

74

75 **Figure 1.** (A) Representative HPLC chromatogram of GS extract at 220 nm; 1) epicatechin, 2)
 76 daidzin, 3) genistin. (B) Representative total ion chromatogram of GS for pinitol quantification; 4) pinitol.

77

78 2.2. *Animal study to evaluate effects of GS on T2DM*

79 2.2.1. Effects of GS on weight change and FER

80 Weights of experimental mice were continuously gained during 6 weeks of treatment. No cases of
 81 weight loss were observed. As shown in Table 1, there are no significant differences in food intake,
 82 body weight gain and FER of *db/db* mice orally treated with 300 mg/kg/day (GS300), 150 mg/kg/day
 83 (GS150), and 75 mg/kg/day (GS75) of *Glycine soja* seed extract or 150 mg/kg/day of metformin (PC)
 84 for 6 weeks, compared to NC (negative control).

85 **Table 1.** Food intake, body weight gain, and food efficiency ratio of *db/db* mice treated with *Glycine soja*
 86 extract

Treatment	Food intake	Body weight gain	Food efficiency ratio
	(g/day)	(g/day)	(FER, %)
NC	6.32	0.753 ± 0.06	11.9 ± 1.00
PC	6.63	0.645 ± 0.03	9.73 ± 0.39

GS300	5.29	0.606 ± 0.03	11.4 ± 0.54
GS150	6.85	0.556 ± 0.05	8.11 ± 0.74
GS75	6.32	0.659 ± 0.04	10.4 ± 0.57

87 Oral doses of 300 mg/kg/day (GS300), 150 mg/kg/day (GS150), and 75 mg/kg/day (GS75) of
 88 *Glycine soja* extract or 150 mg/kg/day of metformin (PC) were administered for 6 weeks. Values
 89 are expressed as mean ± SEM ($n = 6$).

90 2.2.2. Effects of GS on plasma levels of AST, ALT, and BUN

91 To evaluate potential toxic effects of *Glycine soja* extract, plasma toxicity markers for liver (ALT, AST)
 92 and kidney (BUN) were assayed at the end of the experimental period. Plasma level of AST is shown
 93 to decrease significantly in PC compared to NC (Table 2). Plasma levels of AST and ALT are shown
 94 to decrease in GS groups compared to NC group as is shown in Table 2. However, the measurements
 95 were not statistically significant. Plasma level of BUN is not altered significantly in PC and GS groups
 96 compared to NC group. These data indicate that administration of 75 ~ 300 mg/kg/day of GS for 6
 97 weeks has no significant adverse effects on experimental mice.

98 **Table 2.** Plasma levels of AST, ALT and BUN of *db/db* mice treated with *Glycine soja* extract

Treatment	AST (U/L)	ALT (U/L)	BUN (mg/dL)
NC	138.6 ± 30.5	77.6 ± 15.5	21.0 ± 3.3
GS300	101.1 ± 40.8	58.7 ± 12.7	22.2 ± 2.9
GS150	104.6 ± 22.2	66.3 ± 12.5	22.4 ± 4.4
GS75	122.0 ± 52.9	66.5 ± 9.7	25.9 ± 5.8
PC	92.4 ± 19.7*	57.0 ± 16.3	23.0 ± 2.1

99 Oral doses of 300 mg/kg/day (GS300), 150 mg/kg/day (GS150), and 75 mg/kg/day (GS75) of
 100 *Glycine soja* extract or 150 mg/kg/day of metformin (PC) were treated for 6 weeks. NC is a vehicle
 101 control. Values are expressed as mean ± SEM ($n = 6$). * $p < 0.05$ (compared to NC) express
 102 significant decrease as determined by one-way ANOVA.

103 2.2.3. Effects of GS on plasma lipid profile

104 The summary of plasma lipid profile is shown in Fig. 2. Plasma levels of triglyceride and LDL
 105 cholesterol are significantly decreased while HDL cholesterol level is significantly increased in PC
 106 group. LDL cholesterol level is significantly reduced in GS groups. However, triglyceride level is
 107 significantly reduced only in GS300 group.

108

109 **Figure 2.** Plasma levels of triglyceride, total cholesterol, HDL-cholesterol, and LDL-cholesterol of
110 *db/db* mice treated with 300 mg/kg/day (GS300), 150 mg/kg/day (GS150), and 75 mg/kg/day (GS75) of
111 *Glycine soja* extract, or 150 mg/kg/day of metformin (PC) for 6 weeks. Values are expressed as mean
112 \pm SEM (n = 6). * p < 0.05, ** p < 0.01, and **** p < 0.001 (compared to NC) express significant differences
113 as determined by one-way ANOVA.

114

115 2.2.4. Effects of GS on blood level of glucose, HbA1c, insulin, IGF-1, adiponectin, and leptin

116 Blood glucose level of each experimental group was measured weekly from week 2 to week 6.
117 Increment of blood glucose level is shown to decrease significantly from week 2 to week 6 in PC
118 (increment of 118.2 mg/dL), GS300 (increment of 193.8 mg/dL), and GS150 (increment of 242.2
119 mg/dL), compared to NC (increment of 285.2 mg/dL) as shown in Fig. 3.

120

121 **Figure 3.** The blood glucose level of *db/db* mice treated with 300 mg/kg/day (GS300), 150 mg/kg/day
 122 (GS150), and 75 mg/kg/day (GS75) of *Glycine soja* extract, or 150 mg/kg/day of metformin (PC) for 6
 123 weeks. Values are expressed as mean \pm SEM (n = 6). ** p < 0.01, *** p < 0.005, and **** p < 0.001
 124 (compared to NC) express significant decreases as determined by one-way ANOVA.

125 Blood glucose level measured after 6 weeks treatment is shown to decrease significantly in PC (225.2
 126 \pm 59.7 mg/dL), GS300 (331.3 \pm 78.6 mg/dL), GS150 (414.3 \pm 97.2 mg/dL), and GS75 (473.0 \pm 21.4 mg/dL),
 127 compared to NC (599.3 \pm 86.3 mg/dL) as shown in Fig. 4A. Plasma glucose level of GS groups is
 128 significantly decreased in a dose dependent manner.

129 Plasma HbA1c level is shown to decrease significantly in PC (3.8%) and GS300 (3.9%) compared to
 130 8.2% in NC (Fig. 4B).

131 Plasma insulin level measured after 6 weeks treatment is shown to decrease significantly in PC (0.59
 132 \pm 0.28 ng/mL) and GS150 (1.59 \pm 0.26 ng/mL), compared to NC (2.90 \pm 0.33 ng/mL) as shown in Fig.
 133 4C. Plasma IGF-1 level is significantly decreased in PC (110 \pm 45 ng/mL), GS300 (174 \pm 47 ng/mL), and
 134 GS150 (219.5 \pm 28 ng/mL), compared to NC (380 \pm 69 ng/mL) as shown in Fig. 3D. Plasma adiponectin
 135 level is significantly increased in PC (61.7 \pm 8.3 μ g/mL), GS300 (56.3 \pm 7.8 μ g/mL), and GS150 (71.2 \pm
 136 8.4 μ g/mL), compared to NC (27.2 \pm 8.2 μ g/mL) as shown in Fig. 4E. Plasma leptin level is significantly
 137 decreased in PC (390.9 \pm 76.4 ng/mL), GS300 (436.7 \pm 39.6 ng/mL), and GS150 (448.4 \pm 25.7 ng/mL),
 138 compared to NC (692.4 \pm 148.2 ng/mL).

139

140 **Figure 4.** (A) Plasma glucose level, (B) plasma HbA1C level, (C) plasma insulin level, (D) plasma IGF-
 141 1 level, (E) plasma adiponectin level, and (F) plasma leptin level of *db/db* mice treated with 300
 142 mg/kg/day (GS300), 150 mg/kg/day (GS150), and 75 mg/kg/day (GS75) of *Glycine soja* extract, or 150
 143 mg/kg/day of metformin (PC) for 6 weeks. Values are expressed as mean \pm SEM (n = 6). * p < 0.05, **
 144 p < 0.01, *** p < 0.005, and **** p < 0.0001 significant decreases as determined by one-way ANOVA.

145

146 2.2.5. Effects of GS on expression of AMPK, GLUT-2, and GLUT-4

147 AMPK expression is significantly increased in liver tissues of PC and GS300, compared to NC as
 148 shown in Fig. 5A. GLUT-2 expression is significantly decreased in liver tissues of PC, GS300, and
 149 GS150, compared to NC as shown in Fig. 5B. GLUT-4 expression is significantly increased in muscle
 150 tissues of GS300 and GS150, compared to NC as shown in Fig. 5C.

151

152 **Figure 5.** (A) p-AMPK expression in liver tissue, (B) GLUT-2 expression in liver tissue, and (C) GLUT-4 expression in muscle tissue of *db/db* mice treated with 300 mg/kg/day (GS300), 150 mg/kg/day (GS150), and 75 mg/kg/day (GS75) of *Glycine soja* extract, or 150 mg/kg/day of metformin (PC) for 6 weeks. Values are expressed as mean ± SEM (n = 6). * p < 0.05, ** p < 0.01, *** p < 0.005, and **** p < 0.001 (compared to NC) express significant increase as determined by one-way ANOVA.

157

158 2.2.6. Histological observations

159 Histological observation reveals (Fig. 6) that lipid droplets are less accumulated and smaller in size
 160 in liver tissues of PC and GS300, compared to NC. Fig. 6 shows that the size of adipocytes is smaller
 161 in subcutaneous fat tissues of PC and GS300, compared to NC.

162

163 **Figure 6.** Stained tissues of liver and subcutaneous fat of *db/db* mice treated with 300 mg/kg/day
 164 (GS300), 150 mg/kg/day (GS150), and 75 mg/kg/day (GS75) of *Glycine soja* extract, or 150 mg/kg/day
 165 (PC) of metformin for 6 weeks.

166

167 2.3. *In vitro* study to evaluate effects of GS on T2DM

168 2.3.1. Effects of GS on glucose uptake, Akt activity, and PPAR- γ activity in hepatocytes

169 Human HepG2 cell line was used to evaluate the anti-diabetic effects of GS on glucose uptake by
 170 hepatocytes. The concentration level for GS treatment was validated by MTT assay that demonstrated
 171 no cytotoxicity throughout all the concentrations applied for the experiments (Fig. 7A). GS treatment
 172 significantly increased glucose uptake by HepG2 cells approximately 60% at the concentrations of
 173 0.1, 1, and 10 μ g/mL (Fig. 7B). The level of glucose uptake was determined by measuring intracellular
 174 level of 2-deoxyglucose.

175 The effects of GS on insulin responsiveness were investigated. It is known that the responsiveness to
 176 insulin signaling with respect to Akt activity is decreased in T2DM [23]. To mimic T2DM in this
 177 experiment, palmitate was treated to reduce insulin sensitivity, leading to the suppression of insulin-
 178 induced Akt phosphorylation. In Fig. 6C, GS treatments show significant recovery effects against the
 179 attenuated Akt phosphorylation caused by palmitate.

180 As shown in Fig. 6D, palmitate treatment attenuates insulin-induced transcriptional activity of PPAR-
 181 γ whilst GS treatment (10 μ g/mL) significantly recovers from the attenuated transcriptional activity
 182 of PPAR- γ .

183

184 **Figure 7.** (A) Cytotoxicity test for GS treatment to HepG2 cells. (B) Effects of GS on glucose uptake in
 185 HepG2 cells. ** $p < 0.01$, *** $p < 0.001$ vs. Con. 2-DG; 2-deoxyglucose, Con; control, Ins; insulin, GS;
 186 *Glycine soja* extract. (C) Effects of GS on insulin-induced Akt signaling pathway in HepG2 cells. +†† $p < 0.001$ vs. Nor; * $p < 0.05$, ** $p < 0.01$ vs. Ins + Pal. Nor; no treatment, Ins; insulin only, Ins + Pal; insulin
 187 with palmitate, GS; *Glycine soja* extract with palmitate and insulin. (D) Effects of GS on PPAR- γ
 188 activity in HepG2 cells. +†† $p < 0.001$ vs. control, +††† $p < 0.001$ vs. insulin only, *** $p < 0.001$ vs. insulin
 189 with palmitate, GS; *Glycine soja* extract.

191 **3. Discussion**

192 This study was designed to evaluate anti-diabetic effects of GS on T2DM animal model of *db/db*
 193 (*BKS.Cg-m+/+Lepr^{db}/J*) mice. During the weeks study, treatment of GS showed no significant adverse
 194 effects on the liver and kidney of experimental mice. Administration of GS is regarded to be safe
 195 considering observations on food intake, body weight gain and behavior of experimental mice.

196 T2DM is due to insulin resistance and inadequate insulin production by β -cells, though the
 197 causes are not completely understood so far. Two distinctive pathways are important in the
 198 regulation of blood glucose level. One is AMPK dependent mechanisms, and the other is insulin-
 199 dependent pathway that upregulates serine/threonine protein kinase Akt [23]. Metformin, used to
 200 treat T2DM by AMPK, increases peripheral glucose intake while reducing glucose production by
 201 liver. [24]. Akt signaling plays a key role in insulin-stimulated glucose uptake by both skeletal muscle
 202 and adipose tissue while inhibiting the release of hepatic glucose [25]. Insulin activates Akt
 203 phosphorylation which in turn promotes GLUT-4 translocation and glucose uptake in skeletal muscle
 204 [26]. In T2DM, the responsiveness to insulin signaling with respect to Akt activity is decreased [27].

205 In T2DM, hyperinsulinemia increases blood level of IGF-1 [28]. In this study, GS treatment
 206 reduced blood levels of glucose and HbA1c in T2DM animal model. However, GS treatment also
 207 reduced blood levels of insulin and IGF-1. This outcome seems to be achieved by increasing insulin
 208 (and IGF-1) responsiveness against insulin resistance of T2DM. Activation of AMPK by GS treatment
 209 is believed to assist sensitizing insulin considering that activated AMPK, in turn, inhibits GLUT-2
 210 expression in liver and activates GLUT-4 expression in muscle as demonstrated in this study.

211 Though glucose disposal occurs only a small fraction by adipose tissue, physiological role of
 212 adipose tissue is crucial in regulating glucose metabolism [29]. Leptin is an adipokine mostly

213 produced by adipocytes. Blood glucose level is regulated by leptin as well as by insulin. Leptin has
214 positive effects on energy metabolism resulting in weakening of hyperglycemia, hyperinsulinemia,
215 and insulin resistance [30]. Adiponectin is known to modulate a number of metabolic processes,
216 including glucose regulation and fatty acid oxidation [31]. Adiponectin has also been reported to
217 mediate insulin-sensitizing effect to improve hyperglycemic conditions and hyperinsulinemia [32]. It
218 has been reported that the reduction of adiponectin is associated with insulin resistance [33].
219 Physiological relationship between adipokines released from adipocytes and activation of AMPK has
220 been reported [34].

221 In our study, blood level of adiponectin was increased while that of leptin was decreased by GS
222 treatment. This outcome suggests that GS treatment increases leptin sensitivity as well as insulin
223 sensitivity. And elevated adiponectin seems to regulate energy metabolism positively to improve
224 hyperglycemic conditions, possibly via insulin-sensitizing effect.

225 Our *in vitro* study demonstrated that GS treatment increased glucose uptake by hepatocytes. GS
226 treatment also activated Akt acting as a key effector of insulin signaling pathway in an induced
227 insulin resistance model, and recovered from the attenuated insulin-induced transcriptional activity
228 of PPAR- γ . This outcome supports the evidences of our animal study that GS treatment works
229 positively on energy metabolism regulating blood glucose level and on insulin sensitivity.

230 Treatment of GS is thought to have effects on regulating energy metabolism to reduce blood
231 glucose level and increasing sensitivities of insulin, IGF-1, and leptin, and activating AMPK and Akt
232 in T2DM.

233 4. Materials and Methods

234 4.1. Preparation of wild *Glycine soja* seed extract

235 The seeds of wild *Glycine soja* were collected in Moonkyung, Korea. After ten days of natural dry, the
236 seeds were pulverized to powder. To make GS extract sample, 1 kg of the powder was extracted with
237 10 L of water at 80°C for 4 hrs. The extracts were filtered, and then concentrated under reduced
238 pressure in a rotary evaporator. Water extract sample was prepared by lyophilization of the extract.

239 4.2. Quantitative analysis of extract samples for flavonoids and pinitol

240 Flavonoids in samples were analyzed by reverse phase-high performance liquid chromatography of
241 Waters Alliance 2695 system (Waters Co., Milford, MA, USA) coupled with 2996 photodiode array
242 detector. Acquity UPLC® BEH C18 column (2.1 × 100 mm, 1.7 μ m; Waters, Milford, MA, USA) was
243 used for the stationary phase. The mobile phase was composed of 0.1% (v/v) formic acid in water (A)
244 and 0.1% (v/v) formic acid in acetonitrile (B). At zero time, the mobile phase consisted of 95% A and
245 5% B and was held for 20 min. From 20 to 25 min, a gradient was applied to 65% A and 35% B, and
246 from 25 to 27 min, to 0% A and 100% B, then after 27 min, to 95% A and 10% B. For separation, 0.4
247 mL/min of flow rate and 2 μ L of injection volume were kept throughout analyses that performed at
248 40°C.

249 Pinitol in samples was analysed by reverse phase-high performance liquid chromatography of
250 Waters Alliance 2695 system (Waters Co., Milford, MA, USA) coupled with 2996 photodiode array
251 detector. Acquity UPLC® HSS T3 column (2.1 × 100 mm, 1.8 μ m; Waters, Milford, MA, USA) was
252 used for the stationary phase. The mobile phase was composed of 0.1% (v/v) ammonium hydroxide
253 in water (A) and acetonitrile (B). At zero time, the mobile phase consisted of 98% A and 2% B and
254 was held for 10 min. From 10 to 12 min, a gradient was applied to 30% A and 70% B, and from 12 to
255 13 min, to 98% A and 2% B, then after 13 min, to 98% A and 2% B. For separation, 0.5 mL/min of flow
256 rate and 5 μ L of injection volume were kept throughout analyses that performed at 40°C. Positive
257 electrospray ionization mode (ESI+) was used for the detection and pinitol (m/z 194.2) ion was
258 monitored in the single ion-monitoring (SIM) mode. The following MS conditions were applied. The
259 capillary voltage and probe temperature were set to 0.8 kV and 600°C, respectively. And nitrogen
260 was used as dissolving and nebulizer gas. The cone voltage was set to 5 V.

261 Identification of flavonoids was made by comparing retention times and UV spectra for the peaks of
262 HPLC/PDA chromatogram to those of commercially available standards. Quantification of sample
263 flavonoids was made in comparison to the mixture of external standards of known concentration.
264 Peak area of chromatograms was determined at 220 nm. Identification of pinitol was made by
265 comparing retention times and mass spectra for the peaks of HPLC/QDa TIC with those of reference
266 standard (Sigma, St. Louis, MO, USA). Quantification of sample pinitol was made in comparison to
267 the external standard with selected ion chromatography mode.

268 4.3. Animal study to evaluate effects of GS on T2DM

269 4.3.1. Animals and experimental treatments

270 3 weeks old *db/db* (BKS.Cg-*m*+/+*Lepr*^{db}/J) mice (19 ~ 22 g) were purchased from Daehan Biolink
271 Co., Eumsung, Korea and allowed to adapt for one week. The mice were housed in an air-conditioned
272 SPF animal room having a 12 h light/12 h dark cycle at 23 ± 1°C temperature and 45 ± 11% humidity.
273 They were allowed to access to diet and water ad libitum. Mice were divided into 5 groups of NC
274 (negative control), PC (positive control), and 3 GS (*Glycine soja* seed extract treatment) groups of
275 different doses. 6 mice were allocated to each group. NC group was administered orally with saline
276 while PC group was administered with 150 mg/kg/day of metformin, a well-known drug being used
277 widely to treat T2DM. 75 mg/kg/day (GS75), 150 mg/kg/day (GS150) and 300 mg/kg/day (GS300) of
278 oral dosage were applied for GS groups. Oral administration to mice was made twice a day by
279 dissolving a half of daily dosage in 0.2 mL of saline. The experiment was lasted for 6 weeks.

280 4.3.2. Measurement of weight change and food efficiency ratio (FER)

281 Body weight gain and amount of food intake were measured at the same time and the same day of a
282 week during 6 weeks of experimental period after a week of adaptation period. Average body weight
283 gain and average amount of food intake were calculated daily and recorded. FER was calculated by
284 (total weight gain / total food intake) × 100.

285 4.3.3. Measurement of blood glucose level

286 Blood glucose level of mice was measured weekly. The mice were fasted for 6 hrs before collecting
287 blood samples from the tail. The collected blood was immediately transferred to a portable kit (One
288 TOUCH@Ultra, Johnson & Johnson, New Brunswick, NJ, USA) to measure the blood glucose level.

289 4.3.4. Plasma assays for biochemical parameters

290 At the end of 6 week experimental period, the mice were fasted for 16 hrs prior to sacrifice. Blood
291 samples were collected from the tail and transferred to ethylene diamine tetra acetic acid vacuum
292 tube and stirred to prevent blood clotting. They were then centrifuged at 3000 rpm for 15 min at 4 °C.
293 The supernatants were collected and the separated plasma samples were stored at -80 °C. The plasma
294 level of triglyceride, total cholesterol, high density lipoprotein (HDL) cholesterol, low density
295 lipoprotein (LDL) cholesterol, alanine aminotransferase (ALT) and aspartate aminotransferase (AST)
296 was analyzed by automatic biochemical analyzer (Hitachi-720, Hitachi Medical, Japan). The plasma
297 concentration of HbA1C (Crystal Chem, IL, USA), insulin (Shibayagi, Shibukawa, Japan), IGF-1
298 (Insulin-like growth factor-1; R&D system, MN, USA), adiponectin (R&D system, MN, USA), and
299 leptin (R&D system, MN, USA) were assayed with corresponding mouse ELISA (enzyme-linked
300 immunosorbent assay) kits according to the protocols offered by the manufacturers. Plasma
301 concentrations of the biomarkers were calculated by measuring absorbance with a microplate reader
302 (Labsystems, Vantaa, Finland).

303 4.3.5. Assay for p-AMPK, GLUT-2, and GLUT-4 expressions

304 Tissue samples of mouse liver and muscle were added with PBS containing protease inhibitor and
305 homogenized, and then centrifuged at 10,000 g for 5 min. Protein concentration was determined by

306 BCA assay (Pro-measure, Intron Biotechnology, Seoul, Republic of Korea). Quantified proteins were
307 separated by 12% SDS-polyacrylamide gel (Bio-Rad, CA, USA) electrophoresis and transferred onto
308 PVDF membrane (Bio-Rad, CA, USA). The membranes were blocked with 5% skimmed milk and
309 then incubated at 4 °C overnight with primary antibodies (Cell Signaling Technology, MA, USA)
310 against AMPK, p-AMPK, β-actin, GLUT-2, and GLUT-4. The membranes were then incubated with
311 the corresponding horseradish peroxidase-conjugated secondary antibodies (Santa Cruz
312 Biotechnology, TX, USA) for 1 hr at room temperature. Antibody binding was visualized by
313 chemiluminescence detection system (Amersham Bioscience, NJ, USA) and image analyzer (LAS-
314 3000, Fujifilm, Tokyo, Japan). Quantification of the expressed proteins was estimated with ImageJ
315 software (NIH, MD, USA).

316 4.3.6. Histological observations

317 After sacrificing mice, the tissues of liver and subcutaneous fat were fixed in 10% neutral formalin
318 solution for one day and embedded in paraffin. All tissues were sliced to 10 μm in thickness and
319 stained with H&E (hematoxylin and eosin). Histological examination was performed with the stained
320 samples and photos were taken with light microscope (Olympus BX51, Olympus Optical Co., Japan).
321 The differentiated cells were washed twice with PBS and then fixed with 10% formalin for 1 hr. The
322 fixed cells were stained with 0.3% oil red O solution for 10 min. The cells were visualized with
323 Olympus CKX41 microscope (Olympus, Tokyo, Japan) and photographed at 100× magnification
324 using the Motic image Plus 2.0 program (Motic, Causeway Bay, Hong Kong).

325 4.4. *In vitro* experiments to evaluate effects of GS on T2DM

326 4.4.1. Cell culture

327 Human hepatocyte, HepG2 cell line was purchased from Korea cell line Bank (Seoul, Korea). The
328 cells were cultured in Dulbecco's modified eagle's medium (DMEM; Lonza, Walkersville, MD, USA)
329 with 10% fetal bovine serum (FBS; Lonza), 100 U/mL penicillin and 100 μg/mL streptomycin (Lonza)
330 in a humidified incubator at 37 °C.

331 4.4.2. MTT assay

332 HepG2 cells were seeded in a 96-well plate at the concentration of 2×10^5 cells/mL and treated with
333 GS at the concentrations from 0.1 to 100 μg/mL for 24 hrs. After then, the cells were washed with PBS
334 and incubated with MTT solution (5 mg/mL) for 4 h at 37 °C. The crystal formazan was dissolved in
335 dimethyl sulfoxide. The optical density was measured by microplate reader at 570 nm microwave
336 length.

337 4.4.3. Glucose uptake assay

338 Glucose uptake assay was performed with Glucose Uptake Assay kit (Abcam) according to
339 manufacturer's instruction. Briefly, HepG2 cells were seeded in a 96-well plate at the concentration
340 of 2×10^5 cells/mL, and treated with GS (0.1, 1 and 10 μg/mL) for 24 hrs. After then, the cells were
341 incubated with BSA-KRPH (Krebs ringer phosphate HEPES) for 40 min and treated with insulin (10
342 μg/mL) or GS (0.1, 1 and 10 μg/mL) for 20 min. The cells were, then, treated with 2-deoxyglucose (10
343 mM) for 20 min and washed with PBS. The optical density was measured by microplate reader at 405
344 nm.

345 4.4.4. Akt activity assay

346 HepG2 cells were seeded in a 96-well plate at the concentration of 2×10^5 cells/mL. The cells were
347 pre-treated with GS for 1 hr prior to incubation in a cell culture media containing BSA-palmitate for
348 24 hrs. Then, the cells were incubated with insulin (10 μg/mL) for 20 min. The cell lysates were
349 harvested to measure Akt activity by Phospho-Akt ELISA kit (R&D systems, Minneapolis, MN, USA)
350 according to manufacturer's manual.

351 4.4.5. PPAR- γ activity assay

352 HepG2 cells were seeded on 60-mm culture dishes at the concentration of 2×10^5 cells/mL. The cells
353 were pre-treated with GS for 1 hr prior to incubation in a cell culture media containing BSA-palmitate
354 in the presence or absence of GS for 24 hrs. After then, the cells were treated with insulin (10 μ g/mL)
355 for 20 min before the cell nuclear extracts were harvested by nuclear extract kit (Active Motif,
356 Carlsbad, CA, USA). The transcriptional activity of PPAR- γ was measured by TransAM PPAR- γ
357 Transcription Factor Assay kit (Active Motif, California, USA) according to manufacturer's protocol.

358 4.5. Statistical analysis

359 Differences between groups were assessed by an analysis of variance (one way ANOVA) followed
360 by Tukey's test for verification (GraphPad Prism 7.0, GraphPad software Inc., San Diego, USA). The
361 data are presented as mean \pm SEM (Standard Error of the Mean) or mean \pm SD (Standard Deviation).
362 Differences were considered significant when the *p* values were less than 0.05.

363

364 5. Conclusions

365 Oral administration of GS at the doses of 300 mg/kg/day and 150 mg/kg/day showed significant anti-
366 diabetic effects on T2DM. However, administration of GS at the dose of 75 mg/kg/day fell into non-
367 efficacious dosage region. During the 6 week mice study, GS treatments showed no significant
368 adverse effects to experimental mice.

369 Treatment of *Glycine soja* seed extract appears to reduce blood glucose level by regulating energy
370 metabolism positively through various metabolic pathways and reducing insulin resistance in T2DM.

371 With an appropriate standardization, GS can be developed as a hypoglycemic agent increasing
372 insulin sensitivity having no adverse effects for a long term treatment of T2DM.

373

374 **Author Contributions:** Conceptualization; D-S.K., M.R.K; Formal analysis, E.S., H.J.C., S-H.K, D-G. J.;
375 Writing-Original Preparation, E.S., J.J.C.; Writing-Review & Editing, J.C., J.J.C.; All author read and approved
376 the final manuscript.

377 **Funding:** This research was financially supported by a grant from the Korea Institute of Oriental Medicine (no.
378 KSN2012330).

379 **Acknowledgments:** The authors would like to thank Korea Institute of Oriental Medicine for the financial
380 support to carry out this research, as well as the Daejeon University for the use of their lab.

381 **Conflicts of Interest:** The authors declare no conflict of interest.

382

383 References

384

- 385 1. Akash, M.S.H.; K. Rehman; S.Q. Chen. Role of inflammatory mechanisms in pathogenesis of type 2
386 diabetes mellitus. *Journal of Cellular Biochemistry* **2013**, 114(3), 525-531.
- 387 2. Collaboration, N.C.D.R.F. Worldwide trends in diabetes since 1980: a pooled analysis of 751
388 population-based studies with 4.4 million participants. *Lancet* **2016**, 387(10027), 1513-1530.
- 389 3. Boulware, S.D.; Tamborlane, W.V.; Rennert, N.J.; Gesundheit, N.; Sherwin, R.S. Comparison of the
390 metabolic effects of recombinant human insulin-like growth factor-I and insulin. Dose-response
391 relationships in healthy young and middle-aged adults. *J Clin Invest* **1994**, 93(3), 1131-1139.
- 392 4. Sandhu, M.S.; Heald, A.H.; Gibson J.M.; Cruickshank, J.K.; David, D.B.; Wareham, N.J. Circulating
393 concentrations of insulin-like growth factor-I and development of glucose intolerance: a prospective
394 observational study. *Lancet* **2002**, 359(9319), 1740-1745.

395 5. Schneider, H.J.; Friedrich, N.; Klotsche, J.; Schipf, S.; Nauck, M.; Völzke, H.; Sievers, C.; Pieper, L.;
396 März, W.; Wittchen H.; Stalla, G. K.; Wallaschofski, H. Prediction of incident diabetes mellitus by
397 baseline IGF1 levels. *Eur J Endocrinol* **2011**, *164*(2), 223-229.

398 6. Sheng, T.; K. Yang. Adiponectin and its association with insulin resistance and type 2 diabetes. *J Genet
399 Genomics* **2008**, *35*(6), 321-326.

400 7. Fischer, S.; Hanefeld, M.; Haffner, S.M.; Fusch, C.; Schwanebeck, U.; Köhler, C.; Fücker, K.; Julius, U.
401 Insulin-resistant patients with type 2 diabetes mellitus have higher serum leptin levels independently
402 of body fat mass. *Acta Diabetol* **2002**, *39*(3), 105-110.

403 8. Wing, R.R.; Goldstein, M.G.; Acton, K.J.; Birch, L.L.; Jakicic, J.M.; Sallis Jr, J.F.; Smith-West, D.; Jeffery,
404 R.W.; Surwit, R.S. Behavioral science research in diabetes: lifestyle changes related to obesity, eating
405 behavior, and physical activity. *Diabetes Care* **2001**, *24*(1), 117-123.

406 9. Chang, L.; Chiang, S.H.; Saltiel, A.R. Insulin signaling and the regulation of glucose transport.
407 *Molecular Medicine* **2004**, *10*(7-12), 65-71.

408 10. Zhang, B.B.; Zhou, G.C.; Li, C. AMPK: An Emerging Drug Target for Diabetes and the Metabolic
409 Syndrome. *Cell Metabolism* **2009**, *9*(5), p. 407-416.

410 11. Evans, A.M.; Mustard, K. J.W.; Wyatt, C.N.W.; Peers, C.; Dipp, M.; Kumar, P.; Kinnear, N.P.; Hardie,
411 D.G. Does AMP-activated protein kinase couple inhibition of mitochondrial oxidative
412 phosphorylation by hypoxia to calcium signaling in O₂-sensing cells? *Journal of Biological Chemistry*
413 **2005**, *280*(50), 41504-41511.

414 12. Kahn, B.B.; Alquier, T.; Carling, D.; Hardie, D.G. AMP-activated protein kinase: Ancient energy gauge
415 provides clues to modern understanding of metabolism. *Cell Metabolism* **2005**, *1*(1), 15-25.

416 13. Wong, A.K.F.; Howie, J.H.; Petrie, J.R.; Lang, C.C. AMP-activated protein kinase pathway: a potential
417 therapeutic target in cardiometabolic disease. *Clinical Science* **2009**, *116*(7-8), 607-620.

418 14. Nicholson, K.M.; Anderson, N.G. The protein kinase B/Akt signalling pathway in human malignancy.
419 *Cellular Signalling* **2002**, *14*(5), 381-395.

420 15. Katsuki, A.; Sumida, Y.; Urakawa, H.; Gabazza, E.C.; Murashima, S.; Maruyama, N.; Morioka, K.;
421 Nakatani, K.; Yano, Y.; Adachi, Y. Increased visceral fat and serum levels of triglyceride are associated
422 with insulin resistance in Japanese metabolically obese, normal weight subjects with normal glucose
423 tolerance. *Diabetes Care* **2003**, *26*(8), 2341-2344.

424 16. Rains, S.G.; Wilson, G.A.; Richmond, W.; Elkeles, R. The effect of glibenclamide and metformin on
425 serum lipoproteins in type 2 diabetes. *Diabet Med* **1988**, *5*(7), 653-658.

426 17. Zhou, G.; Li, R.M.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doeber, T.; Fujii, N.; Musi,
427 N.; Hirshman, M.F.; Goodyear, L.J.; Moller, D.E. Role of AMP-activated protein kinase in mechanism
428 of metformin action. *J Clin Invest* **2001**, *108*(8), 1167-1174.

429 18. Altun, E.; Kaya, B.; Paydaş, S.; Sarıakçalı, B.; Karayaylalı, I. Lactic acidosis induced by metformin in a
430 chronic hemodialysis patient with diabetes mellitus type 2. *Hemodial Int* **2014**, *18*(2), 529-531.

431 19. Li, Y.; Qi, Y.; Huang, T.H. W.; Yamahara, J.; Roufogalos, B.D. Pomegranate flower: a unique traditional
432 antidiabetic medicine with dual PPAR-alpha/-gamma activator properties. *Diabetes Obesity &
433 Metabolism* **2008**, *10*(1), 10-17.

434 20. Atanasov, A.G.; Wang, J.N.; Gu, S.P.; Bu, J.; Kramer, M.P.; Baumgartner, L.; Fakhrudin, N.; Ladurner,
435 A.; Malainer, C.; Vuorinen, A.; Noha, M.M.; Schwaiger, S.; Rollinger, J.M.; Schuster, D.; Stuppner, H.;
436 Dirsch, V.M.; Heiss, E.H. Honokiol: A non-adipogenic PPAR gamma agonist from nature. *Biochimica
437 Et Biophysica Acta-General Subjects* **2013**, *1830*(10), 4813-4819.

438 21. Chung, G.; Singh, R.J. Broadening the genetic base of soybean: A multidisciplinary approach. *Critical
439 Reviews in Plant Sciences* **2008**, *27*(5), 295-341.

440 22. Kim, M.; Kim, D.K.; Cha, Y.S. Black Adzuki Bean (*Vigna angularis*) Extract Protects Pancreatic Cells and
441 Improves Glucose Tolerance in C57BL/6J Mice Fed a High-Fat Diet. *Journal of Medicinal Food* **2016**, *19*(5),
442 442-449.

443 23. Mackenzie, R.W.; Elliott, B.T. Akt/PKB activation and insulin signaling: a novel insulin signaling
444 pathway in the treatment of type 2 diabetes. *Diabetes Metab Syndr Obes* **2014**, *7*, 55-64.

445 24. Lalau, J.D.; Race, J.M. Metformin and lactic acidosis in diabetic humans. *Diabetes Obes Metab* **2000**, *2*(3),
446 131-137.

447 25. Scott, J.W.; Norman, D.G.; Hawley, S.A.; Kontogiannis, L.; Hardie, D.G. Protein kinase substrate
448 recognition studied using the recombinant catalytic domain of AMP-activated protein kinase and a
449 model substrate. *J Mol Biol* **2002**, *317*(2), 309-323.

450 26. Sakamoto, K.; Holman, G.D. Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of
451 GLUT4 traffic. *Am J Physiol Endocrinol Metab* **2008**, *295*(1), E29-37.

452 27. Wolfrum, S.; Dendorfer, A.; Schutt, M.; Weidtmann, B.; Heep, A.; Tempel, K.; Klein, H.H.; Dominiak,
453 P.; Richardt, G. Simvastatin acutely reduces myocardial reperfusion injury in vivo by activating the
454 phosphatidylinositol 3-kinase/Akt pathway. *J Cardiovasc Pharmacol* **2004**, *44*(3), 348-355.

455 28. de Herder, W.W.; Eng, C. Obesity, diabetes mellitus, and cancer. *Endocr Relat Cancer* **2012**, *19*(5), E5-7.

456 29. Chang, L.; Chiang, S.H.; Saltiel, A.R. Insulin signaling and the regulation of glucose transport. *Mol*
457 *Med*, **2004**, *10*(7-12), 65-71.

458 30. Paz-Filho, G.; Mastronardi, C.; Wong, M.; Licinio, J. Leptin therapy, insulin sensitivity, and glucose
459 homeostasis. *Indian J Endocrinol Metab* **2012**, *16*(3), S549-555.

460 31. Diez, J.J.; Iglesias, P. The role of the novel adipocyte-derived hormone adiponectin in human disease.
461 *Eur J Endocrinol* **2003**, *148*(3), 293-300.

462 32. Ukkola, O.; Santaniemi, M. Adiponectin: a link between excess adiposity and associated
463 comorbidities? *Journal of Molecular Medicine-Jmm* **2002**, *80*(11), 696-702.

464 33. Yadav, A.; Kataria M.A.; Saini, V.; Yadav, A. Role of leptin and adiponectin in insulin resistance. *Clinica*
465 *Chimica Acta* **2013**, *417*, 80-84.

466 34. Banerjee, R.R.; Rangwala, S.M.; Shapiro, J.S.; Rich, A.S.; Rhoades, B.; Qi, Y.; Wang, J.; Rajala, M.W.;
467 Pocai, A.; Scherer, P.E.; Steppan, C.M.; Ahima, R.S.; Obici, S.; Rossetti, L.; Lazar, M.A. Regulation of
468 fasted blood glucose by resistin. *Science* **2004**, *303*(5661), 1195-1198.

469

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).