

1 Article

2

Control of transcription initiation by biased thermal

3

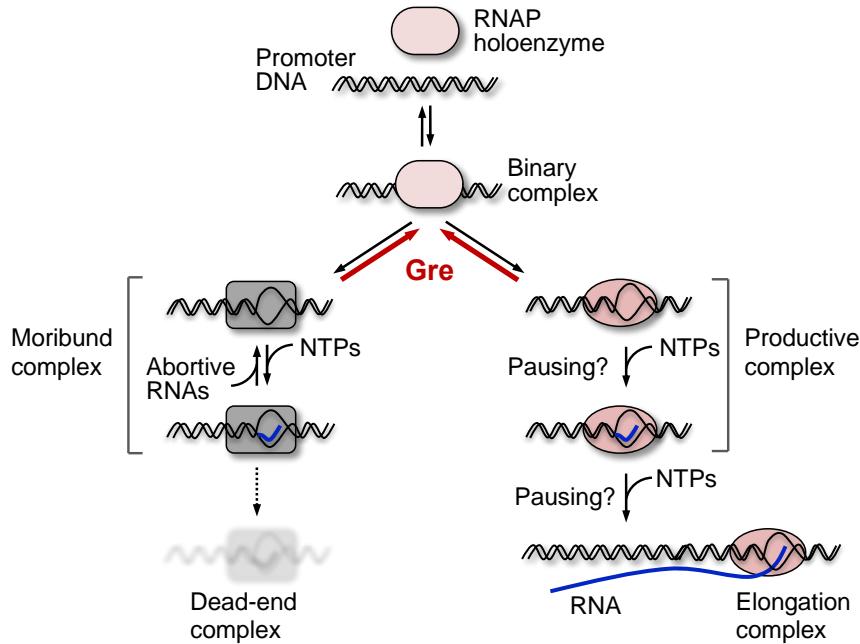
fluctuations on repetitive genomic sequences

4 **Masahiko Imashimizu^{1*}, Yuji Tokunaga¹, Ariel Afek², Hiroki Takahashi^{3,4,5}, Nobuo Shimamoto⁶**
5 **and David B. Lukatsky^{7*}**6 ¹Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science
7 and Technology, Tokyo, 135-0064, Japan8 ²Center for Genomic and Computational Biology, Department of Biostatistics and Bioinformatics, Duke
9 University.10 ³Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan11 ⁴Molecular Chirality Research Center, Chiba University, Chiba 263-8522, Japan.12 ⁵Plant Molecular Science Center, Chiba University, Chiba 260-8675, Japan13 ⁶National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.14 ⁷Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Ben Gurion Blvd 1, Beer-
15 Sheva 841050116 * Correspondence: D.B.L.: Tel: +972-8642-8370; E-mail: lukatsky@bgu.ac.il; M.I.: Tel: +81-3-3599-8232; E-mail:
17 m.imashimizu@aist.go.jp18 **Abstract:** In the process of transcription initiation by RNA polymerase, promoter DNA sequences
19 affect multiple reaction pathways determining the productivity of transcription. However, the
20 question of how the molecular mechanism of transcription initiation depends on sequence
21 properties of promoter DNA remains poorly understood. Here, combining the statistical mechanical
22 approach with high-throughput sequencing results, we characterize abortive transcription and
23 pausing during transcription initiation by *Escherichia coli* RNA polymerase at a genome-wide level.
24 Our results suggest that initially transcribed sequences enriched with thymine bases represent the
25 signal inducing abortive transcription. On the other hand, certain repetitive sequence elements
26 broadly embedded in promoter regions constitute the signal inducing pausing. Both signals
27 decrease the productivity of transcription initiation. Based on solution NMR and in vitro
28 transcription measurements, we also suggest that repetitive sequence elements of promoter DNA
29 modulate the rigidity of its double-stranded form, which profoundly influences the reaction
30 coordinates of the productive initiation via pausing.31 **Keywords:** promoter sequences; repetitive sequences; pausing; abortive initiation; RNA
32 polymerase; dsDNA rigidity

33

34

1. Introduction


35 In bacteria, transcription at a promoter is initiated by σ factor that forms a holoenzyme by
36 binding to RNA polymerase (RNAP) core enzyme. The principal σ factor in *Escherichia coli* is termed
37 σ^{70} . *E. coli* promoters targeted for transcription initiation by σ^{70} holoenzyme have been characterized
38 by having two consensus motifs approximately 10 and 35 bases upstream of the transcription start
39 site (TSS). These motifs consist of a TATAAT (-10 box) and a TTGACA (-35 box), conserved in the
40 promoters with high binding affinity to σ^{70} holoenzyme [1,2]. However, biologically functional
41 promoters with high transcriptional activities usually do not have the full consensus motifs but rather
42 have non-local sequence signatures across the overall promoter region [3]. The reason for this has
43 been a long-standing puzzle with respect to the regulatory mechanism of transcription initiation.44 In transcription initiation, σ^{70} holoenzyme synthesizes non-productive (abortive) short RNA
45 [4,5]. When it occurs in a promoter, this process is much slower than the productive initiation and

46 the following elongation processes [6,7]. During abortive synthesis, a ternary initiation complex of
47 the σ^{70} holoenzyme starts transcription and then backtracks to shorten the RNA-DNA hybrid, thereby
48 releasing short RNAs [8-11]. Such complex is termed moribund complex (see review [12]). Initiation
49 pathway leading to the abortive synthesis by the moribund complex is branched from the pathway
50 leading to full-length RNA synthesis by the productive complex [6], which can be a mechanism
51 controlling transcription initiation by RNAPs of *E. coli* and other bacteria [13-15] (Figure 1). The
52 binary moribund complex can be converted into the productive complex by binding of allosteric
53 effectors like Gre proteins to the complex [16]. This function of Gre proteins is different from their
54 well-known function, i.e. cleavage of the 3' RNA that is extruded from the active center of the
55 backtracked polymerase [17]. The level of abortive initiation depends on sequences both the upstream
56 and the downstream of TSS, and the first ~20 bp of the downstream sequence is termed initially
57 transcribed sequence (ITS) [18,19].

58 On the other hand, pausing that occurs on a pathway of productive initiation can delay
59 transcription kinetics on a physiological timescale by affecting promoter escape [8-10,20]. It has been
60 reported that specific sequences in ITS can induce pausing during initiation [19]. Therefore, not only
61 (i) the fraction of the moribund complex that is generated and branched from the entire binary
62 complex fraction but also (ii) the lifetime (and/or frequency) of pausing in the productive complex
63 may constitute the sequence-specific mechanisms controlling transcription during initiation. To date,
64 individual sequence signals that are responsible for abortive synthesis and pausing have not been
65 separately identified.

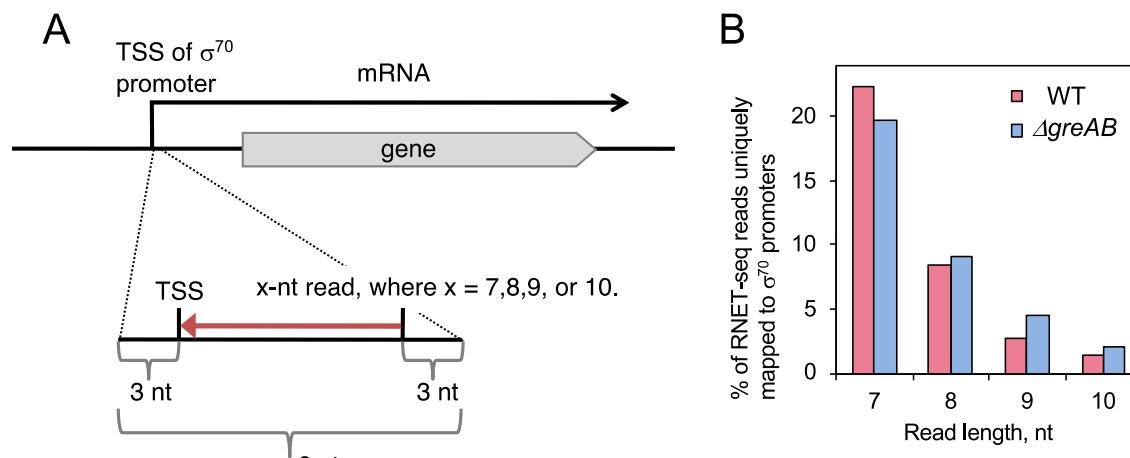
66 Previously, we identified a highly conserved sequence motif that induces elongation pausing in
67 *E. coli* [21]. This motif impedes forward translocation of RNAP, as well as the following NTP addition
68 [21]. However, our later analysis revealed that the presence of the conserved sequence motif alone is
69 not solely responsible for RNAP pausing [22]. In particular, we demonstrated that, during elongation
70 pausing, repetitive sequence elements can increase the magnitude of diffusive backtracking of RNAP
71 on the DNA upstream of the pausing site, generating a large variation in the lifetimes of RNAP
72 pausing under the catalytic control by the conserved sequence motif [22]. Therefore, our approach
73 allowed global prediction of elongation pausing in *E. coli*.

74 In this study, using a similar approach, we characterized abortive transcription and pausing
75 during initiation in *E. coli* at a genome-wide level. Our results suggest that T-rich signal located in
76 ITS can be the signal inducing abortive synthesis, while repetitive sequences of any base types widely
77 distributed in promoter regions can be the signal inducing pausing. We also identify the rigidity of
78 double-stranded DNA (dsDNA) as a possible physicochemical origin affecting reaction coordinates
79 of the productive initiation via pausing.

80

81 **Figure 1.** Branched initiation pathway. The action of Gre proteins at branches is shown by red color.
 82 In the presence of Gre proteins, the branching becomes reversible (thick red arrows) so that the
 83 moribund and the productive complexes can be exchanged each other [13]. Abortive RNA synthesis
 84 by the moribund complex is a slow process compared to full-length RNA synthesis (usually, up to 20
 85 min [7,20]), which is reduced by Gre proteins, and thus is genome-wide detectable by RNET-seq
 86 with Gre-dependency of the data [21]. At several promoters, the moribund complex is further
 87 converted into a dead-end complex that still retains abortive RNA but has no elongation activity [6].
 88 RNAP also pauses during productive initiation [8-10,20], which often involves backtracking of
 89 RNAP by one bp and thus can be reduced by Gre. Long-lifetime pausing by the moribund complex
 90 is incorporated in the processes of abortive transcription.

91 **2. Results**


92 We have previously developed RNase-footprinting followed by NET-seq (RNET-seq) method
 93 to identify the complexes that were paused during transcription elongation in *E. coli* wild type (WT)
 94 and in an isogenic strain deficient in genes for GreA and GreB (*ΔgreAB*) [21]. Briefly, *E. coli* cells were
 95 rapidly lysed and any transcribing RNAPs were released from the genomic DNA and co-
 96 transcriptional translation by digestion with DNase I and RNase A, respectively. All RNAPs
 97 including those associated with the fragmented dsDNAs and their 5'-truncated nascent RNAs were
 98 immobilized on Ni²⁺-NTA beads via the histidine-tagged β' subunit and then washed. The 5' ends of
 99 the transcripts in the ternary complexes were trimmed with RNase T1/V1 to leave a minimal length
 100 of RNA protected by RNAP. The RNases were removed by further washing. Elution with imidazole
 101 generated ternary complexes carrying ~6-30 nt long transcripts.

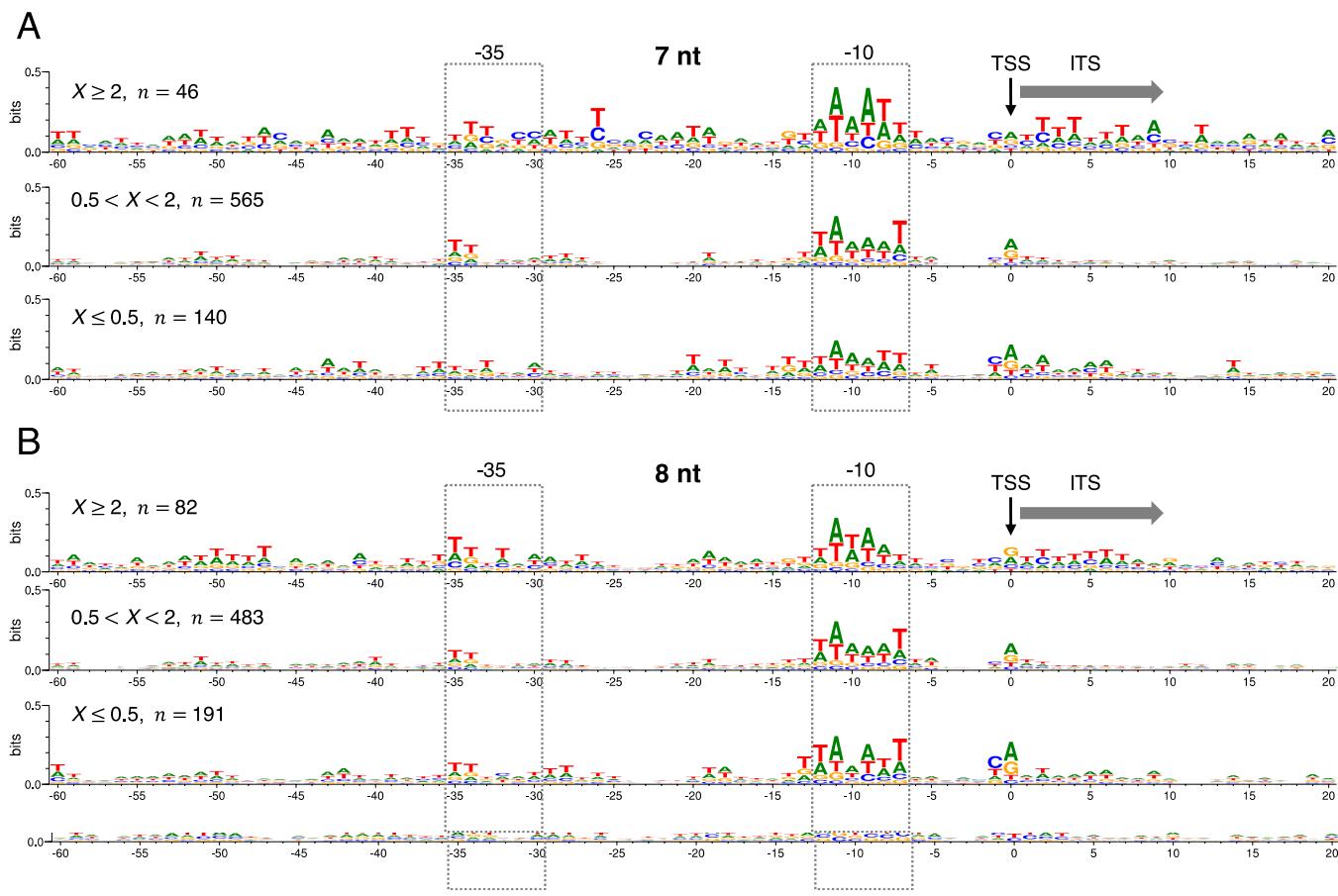
102 In RNET-seq method, the longer the time that RNAP occupies a particular DNA site during
 103 elongation, the stronger pausing at the DNA site are detected. Here we noticed that this method can
 104 also collect 6~13 nt long abortive RNA transcripts retained (prior to their release) in the moribund
 105 complex, in addition to RNA transcripts retained in the paused productive complex. The 5' end of
 106 the unreleased abortive transcripts should be mapped at TSS and increased in the *ΔgreAB* cells as
 107 compared with WT cells (Figure 1). To confirm this possibility, we mapped and aligned short RNET-
 108 seq reads to TSS and the close vicinity in 775 σ^{70} promoter sequences that are experimentally
 109 identified and are available from RegulonDB [23] (Figure 2A). Figure 2B shows the results for 7~10
 110 nt transcripts for the 775 promoters.

111 We then classified those σ^{70} promoters into the following three groups according to the
 112 magnitude of the ratio, X, of the amounts of nascent RNA transcripts (nrt) in *ΔgreAB* cells,

113 *nrt*(Δ greAB), to that in WT cells, *nrt*(WT), respectively, $X = \frac{nrt(\Delta greAB)}{nrt(WT)}$. We always define this
 114 ratio, X , separately for each transcript length, 7nt, 8nt, 9nt, and 10nt, respectively. We term the three
 115 groups as increased ratio ($X \geq 2$), similar ratio ($0.5 < X < 2$), and reduced ratio ($X \leq 0.5$), respectively.
 116 Since Gre factors unlikely affect binding of RNAP holoenzyme to specific promoter sequences [17,24],
 117 we assume that only the first promoter group ($X \geq 2$) possesses much abortive synthesis, while the
 118 second ($0.5 < X < 2$) and third ($X \leq 0.5$) groups possess little abortive synthesis. Transcripts belonging
 119 to the third group may originate due to indirect influence or unknown functions of Gre factors. In
 120 other words, we suggest that abortive synthesis is predominately represented by the first group, but
 121 we do not suggest that all the transcripts in this group are abortive transcripts. As we mentioned
 122 above, pausing during productive initiation is also classified in the first group when the pausing
 123 involves backtracking. Thus, we hereafter term the first group *abortive/pausing-enriched* group.

124 Next, we investigated the group-specific sequence properties in terms of the following two
 125 different binding modes: (i) specific RNAP-DNA binding on consensus DNA motifs and (ii)
 126 nonspecific RNAP-DNA binding on repetitive DNA sequence elements. We assume here that these
 127 two types of binding mechanisms are entirely decoupled, i.e. the specific binding mechanism (i) does
 128 not affect the nonspecific binding mechanism (ii), and vice versa. Hereafter, we term the former
 129 mechanism as *consensus mode* of RNAP-DNA binding, and the latter mechanism as *nonconsensus mode*
 130 of RNAP-DNA binding, respectively. The consensus mode conventionally assumes a single (or a few)
 131 dominant conformation(s) in the complex. This effect is often represented by information content, the
 132 level of sequence conservation within the motif defined [25]. The nonconsensus mode assumes many
 133 conformations of the complex that are exchanged as a result of thermal fluctuations. This effect can
 134 be modeled as one-dimensional diffusion of RNAP on DNA induced and biased by repetitive DNA
 135 sequence elements [26]. In particular, in our recent works we have developed statistical mechanical
 136 modeling approach taking into account the effect of certain repetitive DNA sequence elements on
 137 protein-DNA binding free energy [27,28]. We have shown in these works that certain repetitive
 138 nonconsensus genomic background sequences surrounding a consensus motif can significantly
 139 modulate binding of the target protein to DNA via the entropy dominated mechanism [27,28]. We
 140 have quantitatively characterized this mechanism using an equilibrium statistical mechanics model
 141 without fitting parameters, where actual genomic DNA sequences constitute the only input
 142 parameter [27,28]. This statistical concept has allowed us to quantitatively characterize microscopic
 143 heterogeneity of protein-DNA complexes stemming from thermal fluctuations as entropy-dominated
 144 free energy, which strongly depends on certain repetitive DNA sequence elements recognized by a
 145 protein [27-29]. We term this *free energy index for the nonconsensus mode of protein-DNA binding*
 146 (FEINC). Using this approach, we have previously predicted that repetitive genomic sequences
 147 significantly enhance RNAP pausing during elongation by increasing the number of the paused
 148 complex conformations induced by thermal fluctuations [22]. Such a prediction was experimentally
 149 verified as the observation of enhanced diffusive backtracking of *E. coli* RNAP in genomic pause sites
 150 that are enriched with repetitive sequence elements [22].

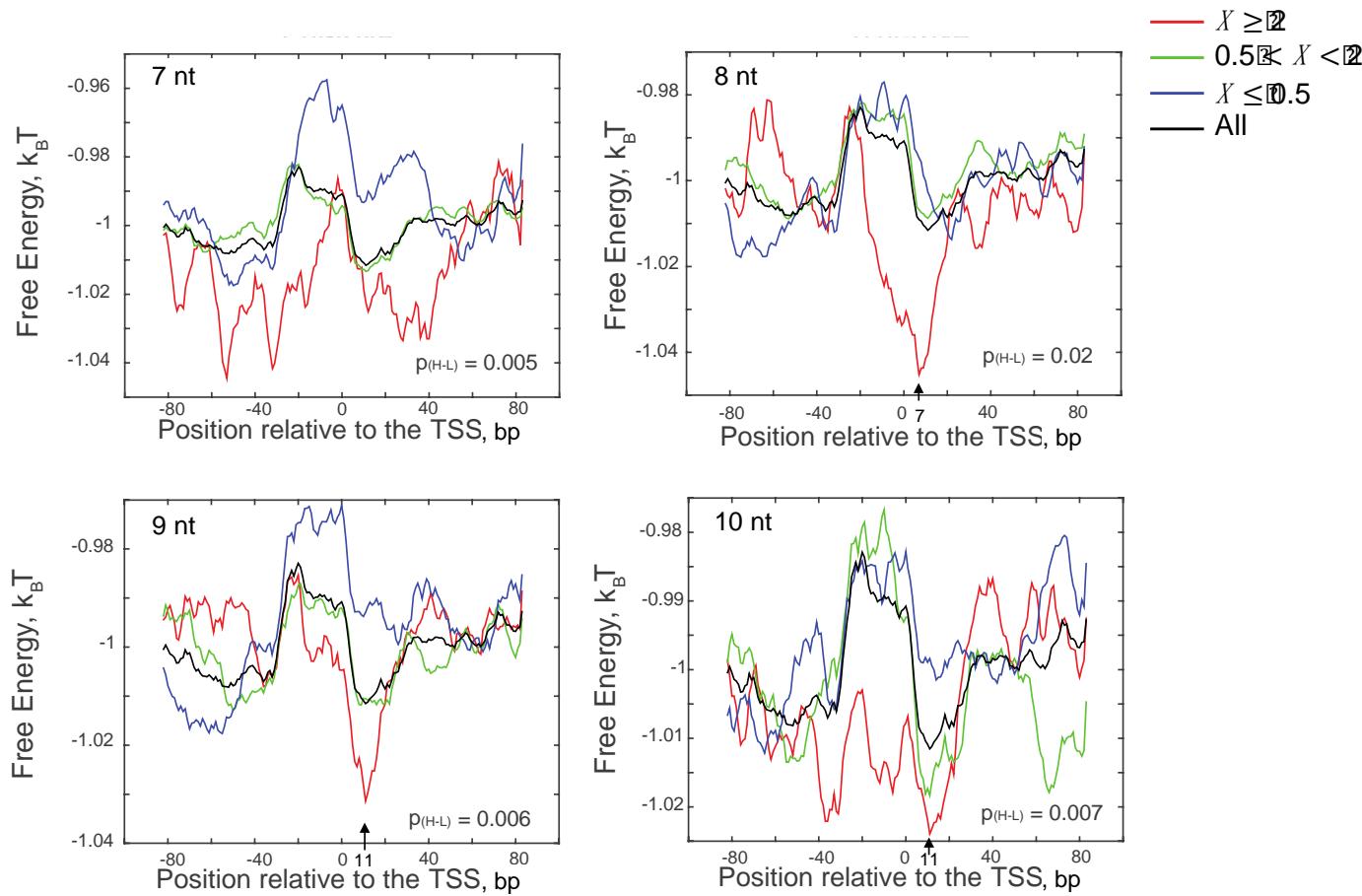
152 **Figure 2.** RNET-seq analysis for abortive transcription and pausing during initiation. (A) The short
153 RNET-seq reads of a fixed length (7, 8, 9 or 10 nt long) were mapped to the TSS downstream of 775
154 σ^{70} promoter regions. We allowed ± 3 nt positional fluctuations of TSS. Since the 7-10 nt reads were
155 too short to be uniquely and precisely mapped to the entire *E. coli* genome, we extracted the TSS
156 downstream sequences (± 3 nt) from the genome as reference sequences enabling us to uniquely map
157 these fixed-length reads to the reference. Using this procedure, the 775 experimentally identified σ^{70}
158 promoters were selected from the total of 1873 candidates provided by RegulonDB [23]. (B) The short
159 reads of each length, with sense orientation to mRNA genes, were mapped to the special references
160 by Blat program [30]. The uniquely mapped reads with perfect matches were selected for the analysis
161 performed in the present study. The reads were obtained by RNET-seq of the nascent RNAs of *E. coli*
162 WT and *ΔgreAB* cells [21].


163 2.1. The significance of consensus mode of RNAP-DNA binding

164 We found that only one of the 775 promoters (*metY* gene) has full consensus motifs -10
165 (TATAAT)/-35 (TTGACA). In any groups, the -10 and -35 motifs are not well conserved (information
166 contents <0.5 bits) through the complexes carrying the four different lengths of RNA (Figure 3). This
167 indicates that -10/-35 motifs alone are insufficient to describe the mechanism to initiate transcription
168 at σ^{70} promoters *in vivo*. In fact, we detected no major differences in -10 or -35 motifs among the three
169 groups of *nrt(ΔgreAB)* /*nrt(WT)* ratios (Figure 3). Only in the relatively well-conserved -10 motifs, we
170 observed a minor difference at -7 positions among those three groups: T base at the position -7 tends
171 to be avoided in the abortive/pausing-enriched group (Figure 3).

172 On the other hand, we found that approximately 6 consecutive T bases are slightly conserved in
173 ITS in the abortive-pausing-enriched group (Figure 3). It has been reported that T bases in ITS
174 stimulates abortive synthesis or pausing during initiation via biasing translocation equilibrium of
175 RNAP toward the pre-translocated state [18,19]. The bias to the pre-translocated state increases
176 probability of backtracking of the RNAP relative to RNA-DNA hybrid, thereby being able to induce
177 abortive transcription. Backtracking can be also induced by the unstable U-dA base pairs within the
178 RNA-DNA hybrid that is encoded by the consecutive T bases [31-33]. Therefore, T-rich ITS signal
179 could be a candidate of a sequence signal to induce a process of abortive transcription *in vivo*,
180 although it is not clear whether this signal is included in the consensus RNAP-DNA binding effect.
181 More details about the relation between T-rich ITS and RNAP backtracking are discussed below.

182 Note that the consensus -10/-35 motifs are much better conserved when those promoter DNAs
183 are isolated solely by the binding strength specific to the holoenzyme [34]. Taken together, the -10/-
184 35 motifs undoubtedly determine the strength of the holoenzyme-promoter-DNA binding but are
185 not enough to determine the fate of transcription initiation including abortive synthesis and pausing
186 *in vivo*. The consecutive T repeats within ITS may participate in inducing abortive synthesis or
187 pausing.


188

189

190 **Figure 3.** The effect of consensus mode of holoenzyme-DNA binding on initiation complexes having
 191 nascent RNAs of 7 nt (A), 8 nt (B), 9 nt (C), and 10 nt (D), respectively. The consensus effect is classified
 192 into the three promoter groups where abortive synthesis or pausing was decreased ($X \geq 2$) (top),
 193 unaffected ($0.5 < X < 2$) (middle) and increased ($X \leq 0.5$) (bottom) by Gre proteins. Here X represents
 194 $nrt(\Delta greAB)/nrt(WT)$ ratio for the RNET-seq reads of each length that is mapped to the close vicinity
 195 of TSS of σ^{70} promoters; n represents the number of promoters composing the group. We have
 196 excluded rRNA promoters and promoters for unexpressed genes from these 775 σ^{70} promoters. The
 197 sequence conservation (information content, bits) in the promoter DNA region (from -60 to +20, where
 198 TSS is +1) is represented by Sequence Logo [25]. -10 and -35 motifs are shown by boxes. TSS and ITS
 199 are shown by a vertical arrow and by a lateral arrow, respectively.

200

201
202
203
204
205
206
207
208

Figure 4. The free energy index for the nonconsensus mode of RNAP-DNA binding (FEINC) was reduced for the initiation complex in the vicinity of TSS. Here we grouped the sequences into three groups according to the ratio, $X = nrt(\text{AgreAB})/nrt(\text{WT})$, for the RNET-seq reads with the length of 7 nt, 8 nt, 9 nt, and 10 nt, respectively, mapped to TSS of each σ^{70} promoter. Free energy for the nonconsensus binding was calculated as described in [22]. In the calculation of the nonconsensus RNAP-DNA binding free energy, we used the sliding window width, $L = 30$ bp, and we assumed that RNAP-DNA contact window length, $M = 8$ bp. In each plot for 8 nt, 9 nt, and 10 nt, a base position that has the lowest free energy is shown with an arrow.

209

2.2. The significance of nonconsensus mode of RNAP-DNA (RNA-DNA hybrid) binding

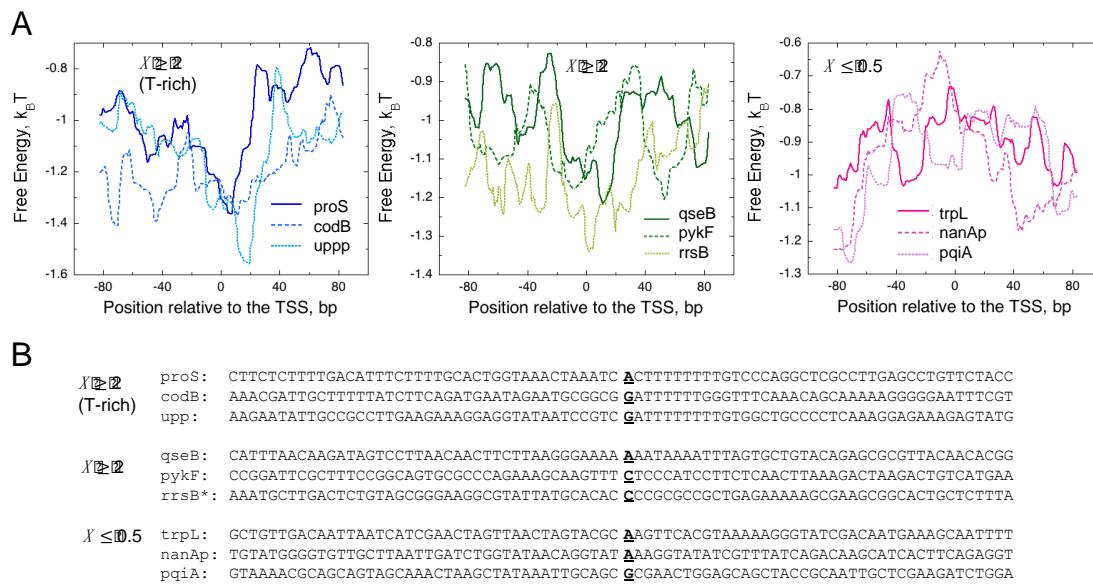
210
211
212
213
214
215
216
217
218
219

The sequence effect represented by the average FEINC was significantly different between the abortive/pausing-enriched group ($X \geq 2$) and the abortive/pausing-depleted group ($X \leq 0.5$) (Figure 4). The former group ($X \geq 2$) is characterized by the low FEINC for 7~10-nt transcripts. Interestingly, in the complexes retaining 8-nt-to-10-nt nascent RNAs, the FEINC of the former group ($X \geq 2$) is the lowest at the site with the position shifted towards the 3' end of the nascent RNAs. This FEINC landscape appears to indicate an enhanced sliding of RNAP along DNA (i.e. backtracking relative to the RNA-DNA hybrid in the case of the ternary complex), according to our previous characterization of the elongation pausing [22]. Likewise, prevention of backtracking is predicted from the high average FEINC (i.e. high energy barrier to backtracking) upstream of TSS in the opposite group ($X \leq 0.5$) for the complexes retaining 7-nt or 9-nt nascent RNA (Figure 4) [22].

220
221
222
223
224
225

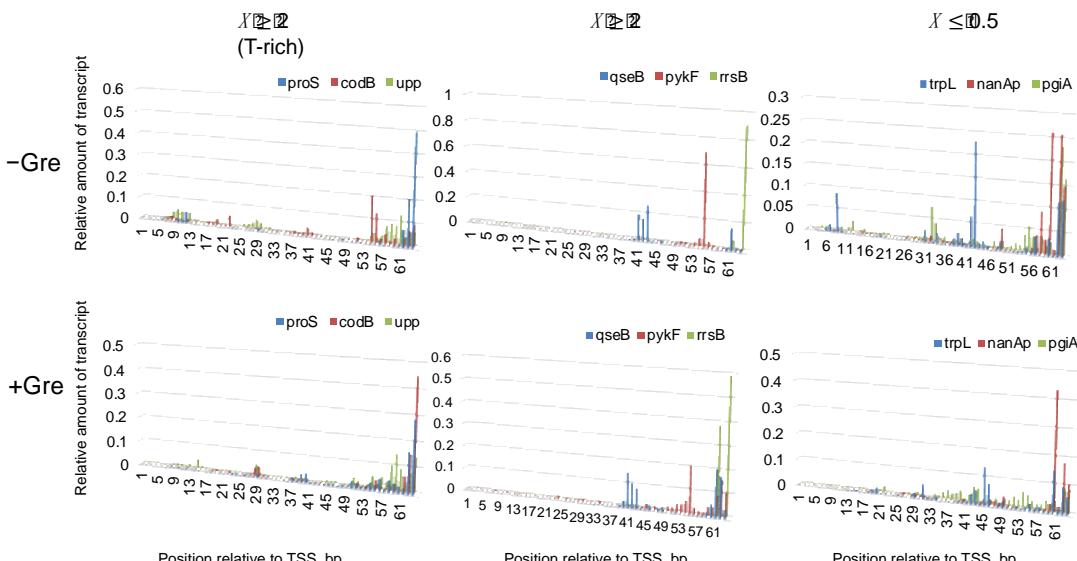
The RNAP backtracking has been proposed for abortive RNA release from the secondary channel [12]. The model is so far consistent with the biochemical/biophysical results obtained by various research groups [8-10,12]. As mentioned above, backtracking is also predicted by the T-rich signal in ITS [18,19]. In fact, slight enrichment of the homopolymeric T in ITS is observed only in the abortive/pausing-enriched group (Figure 3, $X \geq 2$). Examples of the FEINC for 9 individual promoters are shown in Figure 5. We selected those examples from the three representative groups of DNA

226 sequences. The first and second group corresponds to $X \geq 2$, with and without the T-rich signal in ITS,
227 respectively, and the third group corresponds to $X \leq 0.5$ (Figure 5). The first and second group exhibit
228 a qualitatively similar FEINC landscape within -40 bp to +40 bp (a valley in the region (0, +20) bp
229 around TSS is observed). Such low FEINC stems from the presence of repetitive sequence elements
230 in the $X \geq 2$ group. Thus, repetitive sequences can accelerate reaction pathways via backtracking of
231 RNAP on DNA, including abortive synthesis and pausing. Higher FEINC within the region -40 bp to
232 +40 bp in the $X \leq 0.5$ group are obtained by less repetitive sequence elements.

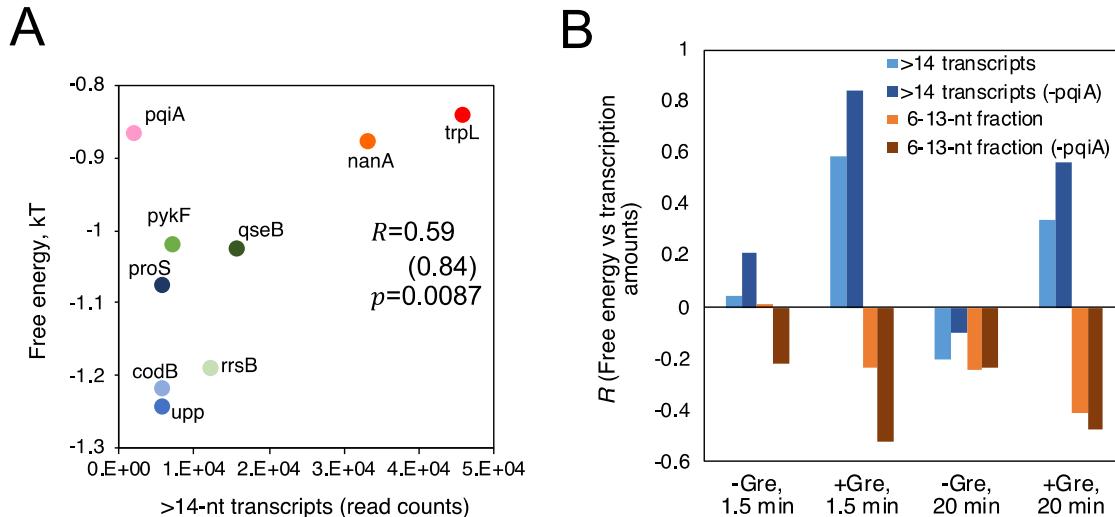

233 We then question (i) whether both the enrichments of >40 bp repetitive sequences and ~6-bp T-
234 rich ITS encode the same signal allowing backtracking, and (ii) whether such respective sequence
235 signals affect differently abortive synthesis and pausing. In order to address these questions, we
236 performed single-round transcription assay using purified *E. coli* RNAP, GreAB proteins and linear
237 140-bp DNA templates for 9 promoters. The results were analyzed by high-throughput sequencing
238 of total RNA. The sequences of the 9 promoters are shown in Figure 5B: 3 of 6 promoters of the
239 abortive/pausing-enriched group ($X \geq 2$) possess the T-rich ITS, while the other 3 do not possess the T-
240 rich ITS. The remaining 3 promoters belong to the opposite group ($X \leq 0.5$). By 20 min incubation with
241 100 μ M NTPs, more 6-13-nt transcripts were produced by the presence of T-rich ITS in the former
242 group, and the number of those short transcripts were reduced by GreAB, as expected for abortive
243 initiation (Figure 6). Furthermore, the fraction of 6-13-nt transcripts increased time-dependently as
244 predicted from the branched initiation pathway where slow abortive synthesis continues to occur
245 long after completion of full-length RNA synthesis (Figure 1 and Supplementary Figure S1). Thus,
246 our in vitro analysis showed that T-rich ITS induces abortive transcription. We discuss more details
247 about these in vitro results in Supplemental Information.

248 We further explored a relation between FEINC and transcription initiation from the 9 different
249 promoters in vitro. We found that the FEINC of these promoters tends to positively correlate with
250 the number (i.e. the read count) of long >14-nt transcripts, when pqiA promoter is exclude as an
251 outlier (Figure 7A). The opposite (i.e. negative correlation) trend was observed in the relative fraction
252 of short, 6-13-nt transcripts (Figure 7B). In order to obtain such correlations, we added Gre proteins
253 and shortened the reaction time (1.5 min) (Figure 7B). Under these conditions, the abortive synthesis
254 by moribund complex (typically >1.5 min) should be decreased or negligible, since Gre proteins
255 enable switching of the complex into the productive complex by lowering the high activation energy
256 to the pathway branched in these two complexes (Figure 1 and Supplementary Figure S1) [12,13].
257 Thus, we interpreted the low FEINC as indicating pausing of the productive complex rather than
258 abortive synthesis of the moribund complex. The exceptional behavior of pqiA promoter appears to
259 be consistent with its belonging to $X \leq 0.5$ group, especially for the high FEINC over -40 bp to +40 bp.
260 It is likely that the high FEINC may contribute to generate the exceptionally high activation energy
261 to the branched pathway, making it less dependent on Gre proteins.

262 The pausing of the productive initiation complex likely stems from diffusive backtracking of
263 RNAP as shown in elongation [22], although its detection in the presence of Gre proteins appears to
264 be inconsistent with backtracking. Compared to the elongation complex, the reduction of pausing
265 lifetime by the Gre-dependent 3' RNA cleavage in the initiation complex may be limited because the
266 time that the 3' RNA end dissociates from the template DNA would be too short to be accessed by
267 Gre proteins when the nascent RNA is ~10 nt or shorter. However, such a short time should be
268 sufficient to partially block the access of small molecule NTPs into the active site, thereby leading to
269 a short-lived pausing.


270 On the other hand, the short 6-13-nt transcripts that were produced from the promoters with T-
271 rich ITS were significantly reduced by Gre proteins and by the shorter reaction time (Figure 6 and
272 Supplementary Figure S1), clearly indicating that this signal is involved in abortive synthesis by the
273 moribund complex. The T-rich ITS encoding unstable dA-U hybrid allows energetically favored
274 backtracking to form stable dA-dT duplex [35], likely resulting in abortive poly-U release. The
275 backtracked state originating from the latter mechanism should be much more stable than each of the
276 thermally diffusive backtracked states indicated by the low FEINC.

277 Although further studies are needed to examine whether such in vitro conditions could properly
 278 represent the in vivo system, our results suggest that T-rich ITS induces abortive transcription. On
 279 the other hand, differently from this latter sequence signal, certain repetitive DNA sequences
 280 characterized by the low FEINC induce pausing. Both sequence signals presumably induce
 281 backtracking but only in T-rich ITS, the backtracked state becomes more stable than the non-
 282 backtracked state.
 283


284

285 **Figure 5.** The relation between the FEINC (free energy) landscapes (A) and DNA sequences (B),
 286 representing examples of sequences from the three groups characterized by Table 2. for the RNET-seq
 287 reads with T-rich signal, by the ratio $X \geq 2$ without T-rich signal, and by the ratio $X \leq 0.5$, respectively.
 288 Each group has three representative promoters in which TSS of the panel B is indicated by bold font
 289 with underline. Note that the rrsB promoter, indicated by asterisk, has $X=3.81$ but was excluded from
 290 sequence analyses shown in Figures 3 and 4 due to the redundant property of the rRNA gene.

291
 292
 293
 294

291 **Figure 6.** In vitro single-round transcription from 9 different promoters shown in Figure 5B. (A)
 292 Entire transcription profiles at 20 min incubation with NTPs are shown in the presence (bottom) or
 293 absence (top) of GreAB. See the legend of Figure 5 for the categorization of promoters.
 294

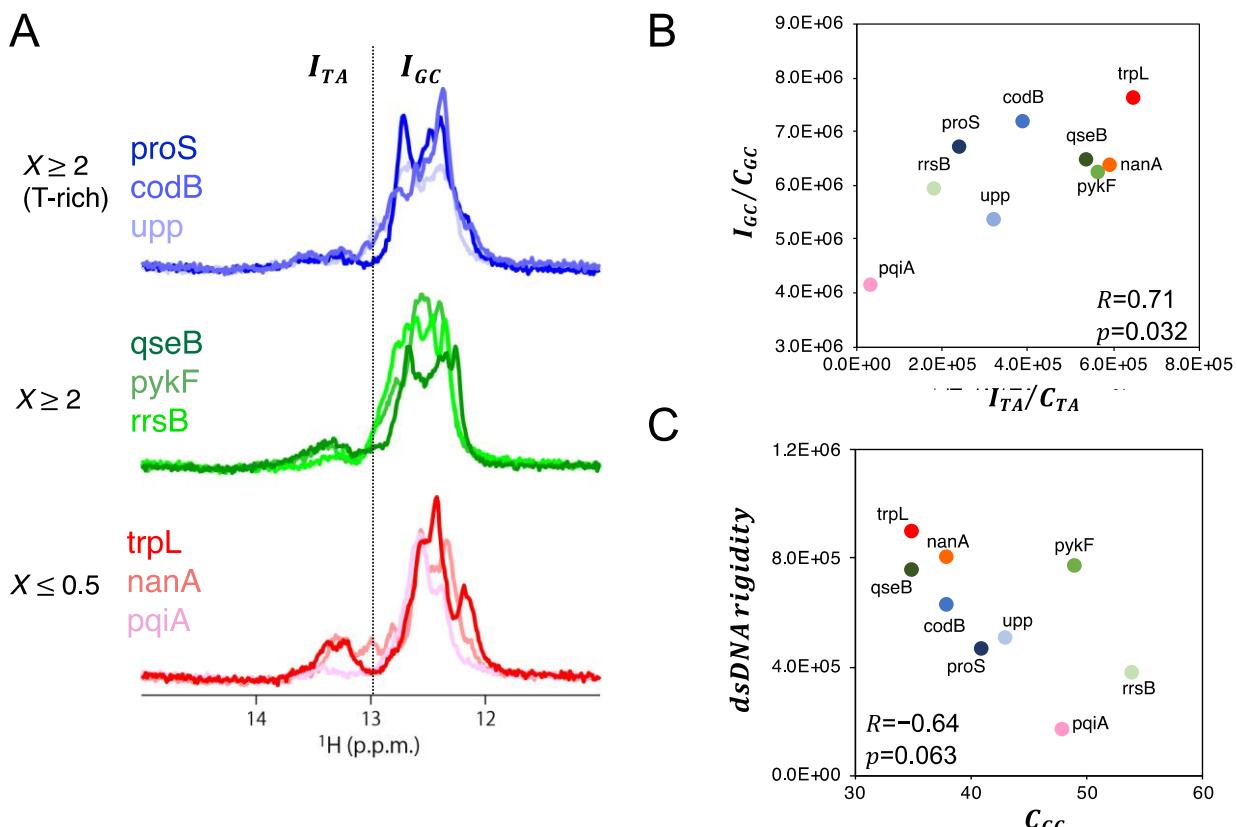
295
296

297 **Figure 7.** FEINC may predict the productivity of transcription initiation in vitro. (A) Positive
298 correlation of the average FEINC (shown as free energy), which was computed for individual
299 promoters within the interval (-40 bp to +40 bp) around TSS, with the number (read counts) of long
300 >14 nt transcripts. Color code of 9 promoters is same as that of Fig. 5A. Pearson correlation coefficient
301 R between the two variables is shown in each graph. R values except pqiA are also shown in
302 parentheses as well as the p-value. (B) GreAB and incubation time with NTPs alter the positive and
303 negative correlation trends of the free energy (FEINC) with the number of >14-nt transcripts and the
304 relative fraction of short 6-13 nt transcripts, respectively.

305 2.3. Sequence and dsDNA-rigidity-related contribution to transcription productivity

306 In order to investigate the physicochemical properties of dsDNA that determine the productivity
307 of initiation, we performed solution NMR experiment using the 9 promoter DNA of 80 bp shown in
308 Figure 5B. It is generally accepted that imino protons hydrogen-bonded in dsDNA can exchange with
309 water protons only after opening of the base-pairs [36]. Intensities of imino proton resonances
310 detected by NMR experiment indicate how resistant to opening the base-pairs are, and therefore the
311 sum of those intensities through the entire dsDNA can reflect the nonlocal rigidity of dsDNA
312 molecule.

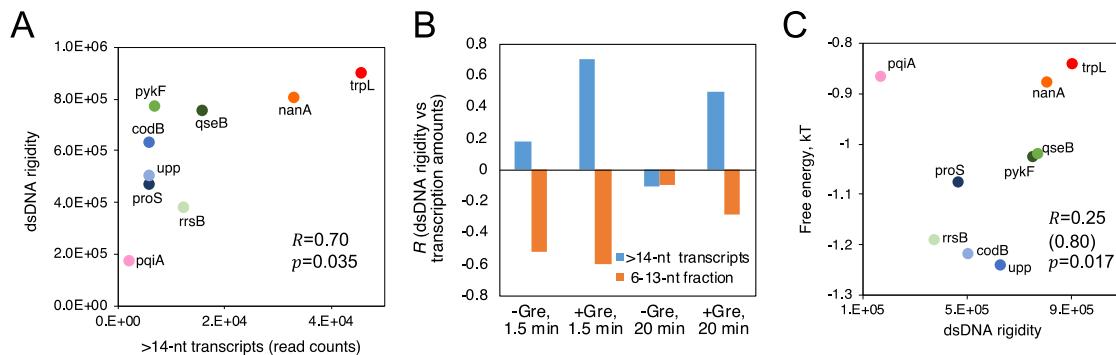
313 We observed degenerate imino-proton signals derived from individual base pairs in different
314 chemical shift positions (Figure 8A). We assigned those signals to dT-dA base pairs and dG-dC base
315 pairs, respectively, by their dependency on the GC content (Supplementary Figure S2). Since the
316 degenerate signal intensities reflect not only the opening dynamics of base pairs but also the content
317 of base-pairs in dsDNA, we normalized the signal intensities by dividing them by the base-pair
318 content of the dsDNA, focusing only on the rigidity. The normalized signal intensities of dT-dA and
319 dG-dC base pairs globally correlated with each other (Figure 8B), indicating that this value simply
320 reflect nonlocal rigidity of dsDNA. Thus, we define dsDNA rigidity as follows:


$$321 \text{dsDNA rigidity} = \frac{I_{TA}}{C_{TA}} + \alpha \frac{I_{GC}}{C_{GC}}$$

322 where I_{TA} and I_{GC} represent the integrated signal intensities of dT-dA and dG-dC base pairs,
323 respectively, and C_{TA} and C_{GC} represent TA and GC contents (%) of the promoter DNA, respectively.
324 A correction coefficient α (~0.033) is obtained by an average value of $(\frac{I_{TA}}{C_{TA}})/(\frac{I_{GC}}{C_{GC}})$ among 9 promoter
325 DNAs tested, which is used for adjusting the different intensity scale between I_{TA} and I_{GC} due to the
326 different base pair stability. We noticed that dsDNA rigidity tends to negatively correlate with GC
327 content (C_{GC}) through 9 promoter DNA (Figure 8C), suggesting that the maintenance of a certain
328 rigidity in promoter DNA might be physiologically significant especially when the GC content is low.

329 We found that dsDNA rigidity positively correlates with the number (i.e. the read count) of
 330 productive >14 nt transcripts (Figure 9A). However, the opposite, negative correlation was observed
 331 in the relative fraction of short 6-13 nt transcripts (Figure 9B). The higher the dsDNA rigidity, the
 332 higher the productivity of initiation. This trend can be interpreted as indicating that the introduced
 333 nonlocal dsDNA rigidity constitutes one of the key reaction coordinates of the productive initiation.
 334 We stress that this parameter is entirely sequence-dependent and it is fundamentally determined by
 335 nonlocal physicochemical properties of dsDNA. Consistent with the correlative relationship between
 336 FEINC and the number of productive (>14 nt) transcripts (Figure 7A), the dsDNA rigidity also
 337 positively correlates with the FEINC when pqiA was again excluded as an outlier (Figure 9C). The
 338 highest correlation for the number of productive transcripts with the dsDNA rigidity was detected
 339 when short (6-13-nt) transcript level was the lowest (by 1.5 min incubation with NTPs in the presence
 340 of Gre proteins), while the lowest correlation was obtained when the short transcript level was the
 341 highest (by 20 min incubation in the absence of Gre proteins) (Figure 9B). This is similar to the
 342 observed correlation between the number of transcripts with FEINC (Figure 7B). These results
 343 suggest that the dsDNA rigidity is likely determined to some extent by the presence of repetitive
 344 sequence elements.

345 In summary, our results imply that the pausing-dependent productivity of transcription
 346 initiation may be predicted from the two parameters characterizing nonlocal (-40 bp, +40 bp)
 347 properties of promoter DNA: (i) an experimentally observable (using NMR) quantity defined here as
 348 the dsDNA rigidity and (ii) a calculated measure characterizing repetitive DNA sequence elements
 349 defined here as FEINC. These two parameters are presumably connected to each other in terms of
 350 the energetics of transcription initiation.


351

352
 353
 354
 355
 356

Figure 8. Solution NMR spectroscopy measuring imino proton resonances in 80-bp dsDNA with promoter sequences. (A) Proton NMR spectra of the promoter groups shown in Figure 5B. The dotted line represents the boundary between the imino proton signals that are derived from dT-dA base pair (I_{TA}) and that from dG-dC base pairs (I_{GC}). Larger integrated signal represents overall rigidity between

357 dsDNA molecules (slow exchange of the imino proton with water proton), while smaller integrated
 358 signal represents overall flexibility between dsDNA molecules (rapid exchange of the imino proton
 359 with water proton). (B) Global correlation in the base-content-normalized imino proton resonances
 360 between dT-dA base pairs (I_{TA}/C_{TA}) and dG-dC base pairs (I_{GC}/C_{GC}) among 9 promoter DNA. (C)
 361 dsDNA rigidity tends to negatively correlate with GC contents (C_{GC}) of promoter DNA. Pearson
 362 correlation coefficient R and the p-value is shown in each graph of panels B and C.

363

364 **Figure 9.** Productivity of transcription depends on nonlocal dsDNA rigidity within promoter region.
 365 (A) Correlation analysis between the dsDNA rigidity and the number (read counts) of long >14-nt
 366 transcripts. The condition of 1.5 min incubation with NTPs in the presence of Gre proteins was used
 367 for the analysis. This condition provided the least abortive transcripts from the 9 promoters on
 368 average (see Supplementary Figure S1C). (B) The higher positive and negative correlations of dsDNA
 369 rigidity with the long and short transcriptions, respectively, are achieved by the lower production of
 370 abortive transcripts. The transcription conditions (\pm Gre proteins, incubation time with NTPs) are
 371 indicated at the bottom of each graph. (C) Correlation analysis between the dsDNA rigidity and the
 372 average FEINC (shown as free energy) calculated for individual promoters within the interval (-40 bp
 373 to +40 bp) around TSS. In the panel A and C, Pearson correlation coefficient R and the p-value is
 374 shown. In the panel C, R value except pqiA is also shown in parentheses.

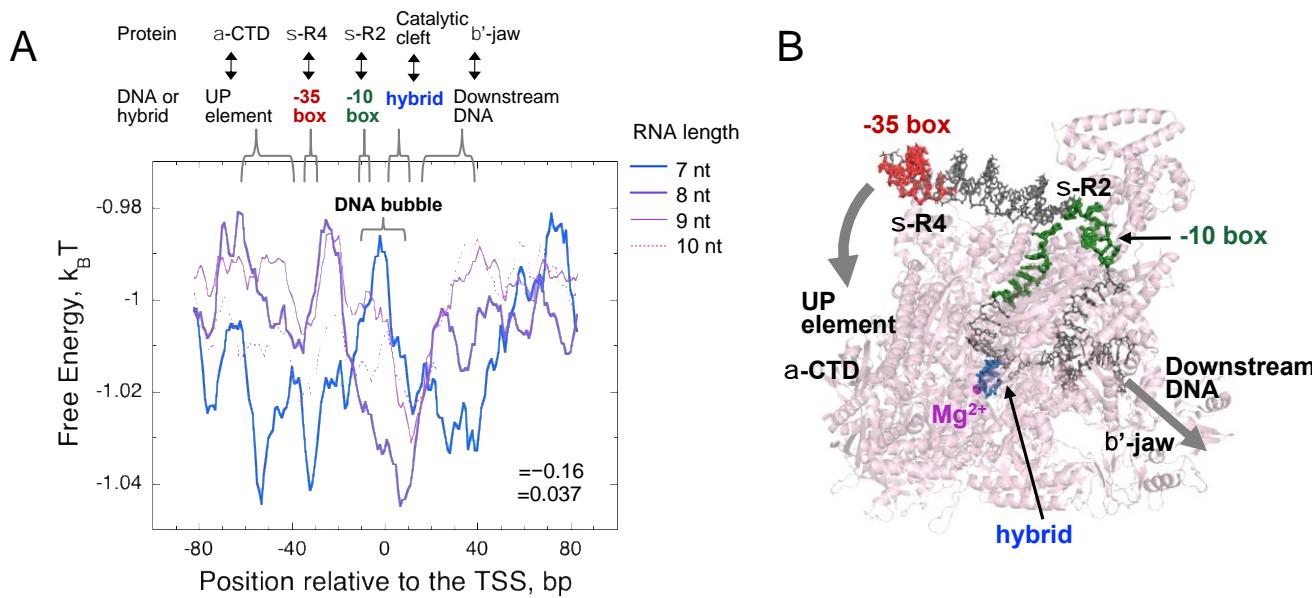
375 3. Discussion

376 In this study, we demonstrated that pausing during initiation is induced by nonlocal interactions
 377 between RNAP holoenzyme and promoter DNA with the length of ~80 bp. Our results suggest that
 378 such nonlocal interactions are modulated by repetitive DNA sequence elements and are quantified
 379 by FEINC, which are also connected to an index of the nonlocal dsDNA rigidity. We identify the
 380 nonlocal dsDNA rigidity directly from intensities of imino proton resonances detected by NMR.
 381 Therefore, the dsDNA rigidity represents an experimentally identifiable reaction coordinate that
 382 depends on physicochemical properties of DNA.

383 In particular, DNA sequences depleted in repetitive sequence elements (such sequences possess
 384 high FEINC, Figure 9C) are characterized by high dsDNA rigidity. In other words, in the higher
 385 rigidity region, RNAP-DNA binding turns to favor the consensus mode (sequence-specific binding)
 386 more than the nonconsensus mode (sequence-nonspecific binding). Our key finding here is that the
 387 high dsDNA rigidity (high FEINC) around σ^{70} promoters appears to play a role in preventing
 388 initiation from the pathway decreasing the productivity. More precisely, our results suggest that the
 389 high dsDNA rigidity (high FEINC) within the promoter regions can significantly increase the
 390 activation energy to the pathways dominated by thermal fluctuations including RNAP sliding on
 391 DNA. When dsDNA is less rigid over a wide area including -35 motif, promoter DNA would become
 392 more loosely fixed to the σ^{70} subunit of holoenzyme, which allows positional fluctuations (i.e. sliding)
 393 between RNAP and DNA. These fluctuations interfere with the σ^{70} -specific promoter recognition
 394 during the initial binary complex formation, and also induce backtracking in the following stage of
 395 the ternary complex. The diffusive backtracking impedes forward translocation that is necessary for
 396 the next NTP addition to the nascent 3' RNA end during progressing transcription. This results in
 397 pausing. Indeed, in the promoters with a smaller dsDNA rigidity, we observed decreased amounts

398 of promoter-specific transcriptions and increased lifetime of pausing during promoter escape (Figure
399 9 A and B).

400 We also identified T-rich ITS as a sequence motif weakly conserved for increasing abortive
401 transcription genome-wide. Such T-rich ITS encodes dA-U hybrid that is less stable than its dsDNA
402 form dA-dT duplex [35], thereby allowing abortive release of oligomeric U by backtracking. After
403 releasing of oligomeric U, a more stable dA-dT DNA duplex can form. In this sense, the backtracking
404 induced by the signal is energetically favored and is different from that induced by thermal
405 fluctuations on repetitive sequences. We verified that the T-rich ITS causes abortive initiation using
406 the in vitro transcription assay.


407 *3.1. FEINC predicts conformational heterogeneity of moribund complexes*

408 One of the key advantages of our statistical approach using the RNET-seq data is that it allows
409 us to analyze the conformational heterogeneity of the ternary complexes *in vivo*, depending on the
410 length of the nascent RNA retained. Focusing on the abortive/pausing-enriched promoter group
411 (Figure 4, $X \geq 2$), we found an opposite trend in the landscape of the average FEINC for the complexes
412 retaining 7-nt RNA, as compared to the complexes retaining 8-nt RNA (Figure 10A).

413 In particular, the free energy (i.e. FEINC) of the 7-nt RNA retained complex was higher
414 compared to the corresponding free energy of the ≥ 8 -nt RNA retained complex, within the range of
415 DNA sequence forming the DNA bubble and the RNA-DNA hybrid (~11 to +7). However
416 conversely, the free energy of the 7-nt RNA retained complex was lower through the upstream and
417 downstream dsDNA flanking the bubble and the hybrid (Figure 10 A and B). Such dsDNA-RNAP
418 interactions include (i) σ region 4 and -35 DNA motif, (ii) the C-terminal domain of the α subunit (α -
419 CTD) and the upstream DNA (UP-element), and (iii) so-called jaw domain of the β' subunit and the
420 downstream DNA (Figure 10 A and B) [37]. The increased nonconsensus binding mode through the
421 broad range of dsDNA interactions with the protein surface may loosen the strong interaction
422 stemming from σ region 3.2 loop and phosphates of the 5' nascent transcript by increasing the sliding
423 between the protein and dsDNA [20]. Indeed, single-molecule studies of different research group
424 have identified a long-lived pausing that likely stems from the σ -5' RNA interaction on lacCONS
425 promoter when the growing RNA reaches 7-nt [8,9,20]. Interestingly, the pausing observed was
426 involved in 1-bp backtracking [20]. When the RNA was extended to ≥ 8 nt, the lower free energy
427 region was more localized to the hybrid and the bubble if compared to that of the 7-nt RNA retained
428 complex, and was shifted to the upstream when the RNA was further extended to 9 nt and 10 nt.

429 Overall, the RNA-length-dependent difference in the FEINC landscapes suggests that the
430 functional significance of the nonconsensus mode in the RNAP-dsDNA-hybrid binding varies
431 depending on the nascent RNA length. Unlike the nonconsensus mode, no striking difference was
432 observed in the -10/-35 consensus motifs between the ternary complexes of the abortive/pausing-
433 enriched group carrying 7-nt and 8-nt RNAs (Figure 3 A and B). This result suggests that the
434 nonconsensus mode predicted by the FEINC landscape rather than the conventional consensus
435 motifs mainly contributes to determine the RNA-length-dependent conformational heterogeneity.

436

437 **Figure 10.** FEINC landscape is altered by the nascent RNA length. (A) An opposite trend of the FEINC
 438 landscapes is observed between the ternary complexes retaining 7-nt and 8-nt (9 nt and 10 nt) RNA,
 439 in the abortive/pausing-enriched group ($X \geq 2$). Pearson correlation coefficient R and the p -value in the
 440 comparison of the entire free energy indices between the complexes having 7-nt RNA and 8-nt RNA
 441 are shown in the graph. (B) X-ray crystal structure of the *E. coli* initiation complex with 4-bp RNA-
 442 DNA hybrid (PDB ID: 4YLN) [38]. Key interactions between holoenzyme and dsDNA/RNA-DNA
 443 hybrid that are described in the panel A are also shown within the structure. DNA and holoenzyme
 444 molecules are shown by gray and pink colors, respectively.

445 4. Conclusion

446 Our statistical analysis of transcription initiation using the concept of the nonconsensus mode
 447 of protein-DNA binding suggests that the fate of the nascent transcript on σ^{70} promoters is
 448 determined, at least partially, by repetitive DNA sequence elements around TSS. Repetitive sequence
 449 elements can increase the number of possible conformational states of the ternary complex including
 450 backtracking. We suggest that certain types of repetitive elements can also decrease the productivity
 451 of initiation by lowering dsDNA rigidity. Therefore, we argue that the definition of functional
 452 promoter sequences should be reconsidered, including quantitative measures accounting for the
 453 effect of repetitive sequence elements and nonlocal dsDNA rigidity.

454 Finally, we demonstrate here that concepts of statistical mechanics provide a firm theoretical
 455 framework for handling high-throughput sequencing data containing the information on
 456 microscopic heterogeneity of a protein-DNA-RNA ternary complex [29]. In this study, we
 457 demonstrate that such a dynamic property of macromolecules in aqueous solution can be directly
 458 accessed by solution NMR experiment. In future, such a combination of NMR with the statistical
 459 approach should further uncover interesting but unexplained phenomena that still remain in the field
 460 of transcription.

461 5. Materials and Methods.

462 5.1. *In vitro* transcription.

463 *E. coli* RNAP holoenzyme, GreA and GreB proteins were purified as described previously
 464 [39,40]. NTPs and oligonucleotides were purchased from GE Healthcare and Fasmac, respectively.
 465 The liner DNA templates from -77 to +63 when TSS is +1, each of which contains one of 9 promoters

466 shown in Figure 5B, was prepared by PCR using oligonucleotides (see Table S1 for the full sequences).
467 These DNA templates were purified by PAGE.

468 All reactions were performed in transcription buffer (TB; 20 mM Tris-HCl, pH 7.6, 5 mM MgCl₂,
469 1 mM 2-mercaptoethanol, 0.1 M KCl) at room temperature. The holoenzyme (200 nM) and DNA
470 template (10 nM each of 9 promoter DNA) were preincubated for 10 min in TB. Where present, GreA
471 and GreB proteins were added to the holoenzyme at final concentration of 7 μ M and 4 μ M,
472 respectively. Reaction was started by adding 100 μ M NTPs at final concentration. Heparin
473 (250 μ g/ml) was added together with the substrates to eliminate enzyme turnover, which assures
474 single-round reaction. After incubation for 1.5 min or 20 min, reaction was stopped by adding
475 phenol/chloroform/isoamyl alcohol (25 : 24 : 1). The experiments with presented results in this study
476 were repeated twice and the represented ones are shown.

477 RNA transcripts were analyzed by Illumina sequencing. Briefly, cDNA libraries were
478 constructed according to [21]. Quantification of the cDNAs was performed by RT-PCR. Illumina
479 sequencing was performed with MiniSeq High Output Kit (75 Cycles). A typical output of the
480 sequencing was $\sim 3 \times 10^6$ reads per sample. The number of 3' RNAs that were mapped and aligned to
481 DNA template was counted as described previously [21].

482 5.2. Solution NMR.

483 DNA oligonucleotides that were purified by reverse phase cartridge were purchased from
484 Fasmac. Each double-stranded DNA (dsDNA) of 50 μ M was generated in a 250 μ L solution consisting
485 of 90% H₂O/10% D₂O solvent with 20 mM Tris-D11 (pH 7.6 at 25°C), 5 mM MgCl₂, and 50 mM KCl,
486 which was transferred into a 5-mm microtube (Shigemi, Tokyo). NMR experiments were performed
487 on an Avance 700 spectrometer (Bruker, Billerica, MA) equipped with a 5-mm TXI triple resonance
488 probe at 15, 25, and 35°C. Proton one-dimensional spectra were recorded with a 22 ppm spectral
489 width, centered at 4.7 ppm, using the WATERGATE building block for solvent suppression. Sodium
490 3-(trimethylsilyl)-1-propanesulfonate was used as an external chemical shift standard. Free induction
491 decays (FIDs) were acquired for 133 ms with 2,048 digital points. The FIDs were accumulated 4096
492 times with interscan delays of 4.0 (15°C) and 2.5 s (25 and 35°C). Raw FIDs were multiplied by a
493 cosine window function and Fourier transformed to frequency domain data, followed by phase
494 correction and baseline correction. Signals in the chemical shift range of 11.6-14.2 ppm were
495 integrated, which we used as the imino proton signal intensity.

496

497 **Acknowledgements:** We thank Mikhail Kashlev and Lucyna Lubkowska for helpful discussions and for *E. coli*
498 RNAP and Gre proteins. We also thank Koh Takeuchi for critical reading of the manuscript. This work was
499 financially supported by JSPS KAKENHI Grant 18K18731 and 20H03298 (to M.I.).

500 References

1. Saecker, R.M.; Record, M.T.; Dehaseth, P.L. Mechanism of bacterial transcription initiation: RNA polymerase - promoter binding, isomerization to initiation-competent open complexes, and initiation of RNA synthesis. *J Mol Biol* **2011**, *412*, 754-771, doi:10.1016/j.jmb.2011.01.018.
2. Browning, D.F.; Busby, S.J. The regulation of bacterial transcription initiation. *Nat Rev Microbiol* **2004**, *2*, 57-65, doi:10.1038/nrmicro787.
3. Einav, T.; Phillips, R. How the avidity of polymerase binding to the -35/-10 promoter sites affects gene expression. *Proc Natl Acad Sci U S A* **2019**, *116*, 13340-13345, doi:10.1073/pnas.1905615116.
4. Johnston, D.E.; McClure, W.R. *Abortive initiation of in vitro RNA synthesis on bacteriophage DNA*; Cold Spring Harbor Laboratory Press,: NY, 1976; pp. 413-428.
5. Carpousis, A.J.; Gralla, J.D. Cycling of ribonucleic acid polymerase to produce oligonucleotides during initiation in vitro at the lac UV5 promoter. *Biochemistry* **1980**, *19*, 3245-3253, doi:10.1021/bi00555a023.
6. Kubori, T.; Shimamoto, N. A branched pathway in the early stage of transcription by *Escherichia coli* RNA polymerase. *J. Mol. Biol.* **1996**, *256*, 449-457.
7. Sen, R.; Nagai, H.; Shimamoto, N. Polymerase arrest at the lambdaP(R) promoter during transcription initiation. *J Biol Chem* **2000**, *275*, 10899-10904, doi:10.1074/jbc.275.15.10899.

516 8. Lerner, E.; Chung, S.; Allen, B.L.; Wang, S.; Lee, J.; Lu, S.W.; Grimaud, L.W.; Ingargiola, A.; Michalet, X.;
517 Alhadjid, Y., et al. Backtracked and paused transcription initiation intermediate of *Escherichia coli* RNA
518 polymerase. *Proc Natl Acad Sci U S A* **2016**, *113*, E6562-E6571, doi:10.1073/pnas.1605038113.

519 9. Duchi, D.; Bauer, D.L.; Fernandez, L.; Evans, G.; Robb, N.; Hwang, L.C.; Gryte, K.; Tomescu, A.; Zawadzki,
520 P.; Morichaud, Z., et al. RNA Polymerase Pausing during Initial Transcription. *Mol Cell* **2016**, *63*, 939-950,
521 doi:10.1016/j.molcel.2016.08.011.

522 10. Dulin, D.; Bauer, D.L.V.; Malinen, A.M.; Bakermans, J.J.W.; Kaller, M.; Morichaud, Z.; Petushkov, I.;
523 Depken, M.; Brodolin, K.; Kulbachinskiy, A., et al. Pausing controls branching between productive and
524 non-productive pathways during initial transcription in bacteria. *Nat Commun* **2018**, *9*, 1478,
525 doi:10.1038/s41467-018-03902-9.

526 11. Samanta, S.; Martin, C.T. Insights into the mechanism of initial transcription in *Escherichia coli* RNA
527 polymerase. *J Biol Chem* **2013**, *288*, 31993-32003, doi:10.1074/jbc.M113.497669.

528 12. Shimamoto, N. Nanobiology of RNA polymerase: biological consequence of inhomogeneity in reactant.
529 *Chem Rev* **2013**, *113*, 8400-8422, doi:10.1021/cr400006b.

530 13. Susa, M.; Kubori, T.; Shimamoto, N. A pathway branching in transcription initiation in *Escherichia coli*.
531 *Mol. Microbiol.* **2006**, *59*, 1807-1817.

532 14. Henderson, K.L.; Felth, L.C.; Molzahn, C.M.; Shkel, I.; Wang, S.; Chhabra, M.; Ruff, E.F.; Bieter, L.; Kraft,
533 J.E.; Record, M.T. Mechanism of transcription initiation and promoter escape by. *Proc Natl Acad Sci U S A*
534 **2017**, *114*, E3032-E3040, doi:10.1073/pnas.1618675114.

535 15. Imashimizu, M.; Tanaka, K.; Shimamoto, N. Comparative Study of Cyanobacterial and *E. coli* RNA
536 Polymerases: Misincorporation, Abortive Transcription, and Dependence on Divalent Cations. *Genet Res
537 Int* **2011**, *2011*, 572689, doi:10.4061/2011/572689.

538 16. Sen, R.; Nagai, H.; Shimamoto, N. Conformational switching of *Escherichia coli* RNA polymerase-promoter
539 binary complex is facilitated by elongation factor GreA and GreB. *Genes Cells* **2001**, *6*, 389-401.

540 17. Borukhov, S.; Sagitov, V.; Goldfarb, A. Transcript cleavage factors from *E. coli*. *Cell* **1993**, *72*, 459-466,
541 doi:10.1016/0092-8674(93)90121-6.

542 18. Skancke, J.; Bar, N.; Kuiper, M.; Hsu, L.M. Sequence-Dependent Promoter Escape Efficiency Is Strongly
543 Influenced by Bias for the Pretranslocated State during Initial Transcription. *Biochemistry* **2015**, *54*, 4267-
544 4275, doi:10.1021/acs.biochem.5b00272.

545 19. Heyduk, E.; Heyduk, T. DNA template sequence control of bacterial RNA polymerase escape from the
546 promoter. *Nucleic Acids Res* **2018**, *46*, 4469-4486, doi:10.1093/nar/gky172.

547 20. Lerner, E.; Ingargiola, A.; Lee, J.J.; Borukhov, S.; Michalet, X.; Weiss, S. Different types of pausing modes
548 during transcription initiation. *Transcription* **2017**, *8*, 242-253, doi:10.1080/21541264.2017.1308853.

549 21. Imashimizu, M.; Takahashi, H.; Oshima, T.; McIntosh, C.; Bubunenko, M.; Court, D.L.; Kashlev, M.
550 Visualizing translocation dynamics and nascent transcript errors in paused RNA polymerases in vivo.
551 *Genome Biol* **2015**, *16*, 98, doi:10.1186/s13059-015-0666-5.

552 22. Imashimizu, M.; Afek, A.; Takahashi, H.; Lubkowska, L.; Lukatsky, D.B. Control of transcriptional pausing
553 by biased thermal fluctuations on repetitive genomic sequences. *Proceedings of the National Academy of
554 Sciences of the United States of America* **2016**, *113*, E7409-E7417, doi:10.1073/pnas.1607760113.

555 23. Santos-Zavaleta, A.; Salgado, H.; Gama-Castro, S.; Sánchez-Pérez, M.; Gómez-Romero, L.; Ledezma-
556 Tejeida, D.; García-Sotelo, J.S.; Alquicira-Hernández, K.; Muñiz-Rascado, L.J.; Peña-Loredo, P., et al.
557 RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation
558 in *E. coli* K-12. *Nucleic Acids Res* **2019**, *47*, D212-D220, doi:10.1093/nar/gky1077.

559 24. Stepanova, E.; Lee, J.; Ozerova, M.; Semenova, E.; Datsenko, K.; Wanner, B.L.; Severinov, K.; Borukhov, S.
560 Analysis of promoter targets for *Escherichia coli* transcription elongation factor GreA in vivo and in vitro.
561 *J Bacteriol* **2007**, *189*, 8772-8785, doi:10.1128/JB.00911-07.

562 25. Schneider, T.D.; Stephens, R.M. Sequence logos: a new way to display consensus sequences. *Nucleic Acids
563 Res* **1990**, *18*, 6097-6100, doi:10.1093/nar/18.20.6097.

564 26. Schurr, J.M. The one-dimensional diffusion coefficient of proteins absorbed on DNA. Hydrodynamic
565 considerations. *Biophys Chem* **1979**, *9*, 413-414.

566 27. Sela, I.; Lukatsky, D.B. DNA sequence correlations shape nonspecific transcription factor-DNA binding
567 affinity. *Biophys J* **2011**, *101*, 160-166, doi:10.1016/j.bpj.2011.04.037.

568 28. Afek, A.; Schipper, J.L.; Horton, J.; Gordán, R.; Lukatsky, D.B. Protein-DNA binding in the absence of
569 specific base-pair recognition. *Proc Natl Acad Sci U S A* **2014**, *111*, 17140-17145, doi:10.1073/pnas.1410569111.

570 29. Imashimizu, M.; Lukatsky, D.B. Transcription pausing: biological significance of thermal fluctuations
571 biased by repetitive genomic sequences. *Transcription* **2018**, *9*, 196–203, doi:10.1080/21541264.2017.1393492.

572 30. Kent, W.J. BLAT—the BLAST-like alignment tool. *Genome Res* **2002**, *12*, 656–664, doi:10.1101/gr.229202.

573 31. Imashimizu, M.; Kireeva, M.L.; Lubkowska, L.; Gotte, D.; Parks, A.R.; Strathern, J.N.; Kashlev, M. Intrinsic
574 Translocation Barrier as an Initial Step in Pausing by RNA Polymerase II. *Journal of molecular biology* **2013**,
575 425, 697–712, doi:10.1016/j.jmb.2012.12.002.

576 32. Imashimizu, M.; Oshima, T.; Lubkowska, L.; Kashlev, M. Direct assessment of transcription fidelity by
577 high-resolution RNA sequencing. *Nucleic acids research* **2013**, *41*, 9090–9104, doi:10.1093/nar/gkt698.

578 33. Komissarova, N.; Becker, J.; Solter, S.; Kireeva, M.; Kashlev, M. Shortening of RNA:DNA hybrid in the
579 elongation complex of RNA polymerase is a prerequisite for transcription termination. *Mol Cell* **2002**, *10*,
580 1151–1162.

581 34. Shimada, T.; Yamazaki, Y.; Tanaka, K.; Ishihama, A. The whole set of constitutive promoters recognized by
582 RNA polymerase RpoD holoenzyme of *Escherichia coli*. *PLoS One* **2014**, *9*, e90447,
583 doi:10.1371/journal.pone.0090447.

584 35. Huang, Y.; Weng, X.; Russu, I.M. Structural energetics of the adenine tract from an intrinsic transcription
585 terminator. *J Mol Biol* **2010**, *397*, 677–688, doi:10.1016/j.jmb.2010.01.068.

586 36. Gueron, M.; Kochyan, M.; Leroy, J.L. A single mode of DNA base-pair opening drives imino proton
587 exchange. *Nature* **1987**, *328*, 89–92, doi:10.1038/328089a0.

588 37. Ruff, E.F.; Record, M.T.; Artsimovitch, I. Initial events in bacterial transcription initiation. *Biomolecules* **2015**,
589 *5*, 1035–1062, doi:10.3390/biom5021035.

590 38. Zuo, Y.; Steitz, T.A. Crystal structures of the *E. coli* transcription initiation complexes with a complete
591 bubble. *Mol Cell* **2015**, *58*, 534–540, doi:10.1016/j.molcel.2015.03.010.

592 39. Imashimizu, M.; Kireeva, M.L.; Lubkowska, L.; Kashlev, M.; Shimamoto, N. The Role of
593 Pyrophosphorolysis in the Initiation-to-Elongation Transition by *E. coli* RNA Polymerase. *J Mol Biol* **2019**,
594 doi:10.1016/j.jmb.2019.04.020.

595 40. Imashimizu, M.; Oshima, T.; Takahashi, H.; Lubkowska, L.; Kashlev, M. Direct Assessment of Transcription
596 Fidelity by RNA Sequencing. *Biophysical Journal* **2014**, *106*, 486A–486A, doi:10.1016/j.bpj.2013.11.4468.

597

598