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Abstract:  This review summarizes experimental and theoretical studies of transition metal 
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carbones CL2 as ligands, where the carbon(0) atom has two electron lone pairs which engage in 

double (σ and π) donation to the metal atom  [M] CL2. The second part of this review reports 

complexes which have a neutral carbon atom C as ligand. Carbido complexes with naked 

carbon atoms may be considered as endpoint of the series [M]-CR3 →  [M]-CR2 → [M]-CR → 

[M]-C. 
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1. Introduction 

 Transition metal compounds with metal-carbon bonds are the backbone of 

organometallic chemistry.  Molecules with M-C single bonds are already known since 1849 

when Frankland reported the accidental synthesis of diethylzinc while attempting to prepare 

free ethyl radicals [1,2]. Molecules with a [M]=CR2 double bond (carbene complexes) or a 

[M]≡CR triple bond (carbyne complexes) were synthesized much later [3-6]. Two types of 

compounds with metal-carbon double or triple bonds having different types of bonds are 

generally distinguished, which are named after the people who isolated them first. Fischer-type 

carbene and carbyne complexes are best described in terms of dative bonds following the 

Dewar-Chatt-Duncan (DCD) model [7,8] [M] CR2 and [M(─)] CR(+) whereas Schrock-type 

alkylidenes and alkylidynes are assumed to have electron-sharing double and triple bonds 

[M]=CR2 and [M]≡CR [9-11].  

 

This review deals with transition metal complexes with metal-carbon bonds to two 

types of ligands, which have only recently been isolated and theoretically studied. One type of 

ligand are carbones CL2 [12], which are carbon(0) compounds with two dative bonds to a 

carbon atom in the excited 1D state L→C�←L where the carbon atom retains its four valence 

electrons as two lone pairs that can serve as four-electron donors [13,14]. Thus, carbones CL2 

are four-electron donor ligands whereas carbenes CR2 are two-electron donors. Carbenes have 

a formally [15] vacant p(π) orbital that can accept electrons in donor-acceptor complexes M

CR2 whereas carbones are double (σ and π) donors in complexes [M] CL2. A good Lewis acid 

acceptor fragment A for a carbene complex has a vacant σ orbital and an occupied π orbital 

whereas a suitable acceptor for a carbone is a double Lewis acid with vacant σ and π orbitals as 

shown in figure 1a and 1b. If the Lewis acid A has an occupied π orbital it would lead to π 

repulsion with the π lone pair of the carbone CL2, whereby the repulsive interaction is reduced 

if L is a good π acceptor (Figure 1c). The two electron lone pairs of a carbone may bind to one 

or two monodentate Lewis acids A or protons or to a single bidentate Lewis acid as shown in 

Figure 1. The large second proton affinity is a characteristic feature of carbones, which 

distinguishes them from carbenes [16].  Examples of all cases are known and are described 

below.  
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       (a)        (b)             (c)          (d) 

 

Figure 1. Schematic representation of the most important orbital interactions between carbene 

ligands CR2 and carbones CL2 with Lewis acids A.  (a) Carbene complex with a monodentate 

Lewis acid; (b) Carbone with a bidentate Lewis acid; (c) Carbone with a monodentate Lewis 

acid; (d) Carbone with two  monodentate Lewis acids.  

 

 It is important to realize that the two electron lone-pairs of a carbone CL2 may 

additionally engage in π-backdonation to the ligands L whose strength depends on the 

availability of vacant π orbitals of the ligands L. Stronger π acceptor ligands L enhance the π-

backdonation L←C�→L which leads to wider bending angles at the carbon atom (Figure 2). The 

significant bending of free C(CO)2 [17,18] can straightforwardly be explained in terms of 

dative bonding in carbon suboxide C3O2 [19,20]. The π-acceptor strength of ligands L thus 

modulates the donor interaction of the carbone CL2.  

 

            
 
 
 

      
 
     

 Figure 2. Calculated and (in parentheses) experimental bond angles of carbones CL2 with 

different ligands L and partial charges Δq of the central fragments. The data are taken from ref. 

20. 
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The following list gives some essential features of carbones and their differences to 

carbenes. At the same time we want to stress that the distinction between carbenes and 

carbones are just a useful classification of compounds, which are a helpful model to explain the 

structures and reactivity of molecules. Nature does not exhibit a strict distinction line and there 

are complexes with electronic structures that have intermediate features between both classes of 

compounds. Carbenes and carbones are two ordering principles like ionic and covalent 

bonding. Intermediate cases are common and yet, the two concepts are essential ingredients of 

chemistry. The first part of this review summarizes experimental and theoretical work about 

transition metal complexes with carbone ligands [M]-CL2. 

 

1.  Carbones are neutral carbon(0) compounds of the general formula CL2, which possess 

two electron lone pairs of electrons of  and  symmetry, respectively. 

2. Carbones CL2 have dative σ bonds L→C�←L and weaker π backdonation L←C�→L 

which resemble donor-acceptor bonds in transition metal complexes. 

3. The carbon atom of carbones has very large electron densities and thus, unusually large 

negative partial charges.  

4. In contrast to carbenes, carbones exhibit high first and second proton affinities (PAs) in 

the region of about 290 and 150 - 190 kcal/mole, respectively; the second PA is a 

sensitive probe for the divalent C(0) character of a CL2 molecule. Carbones can take up 

one and two protons with formation of [HCL2]+  cations or [H2CL2]2+ dications, 

respectively.  

5. Carbones have a bent equilibrium geometry where the bending angle becomes wider 

when the ligand L is a better π acceptor. 

6. Carbones can take up one or two monodentate Lewis acids A building the complexes 

A←C(L2) and A←C(L2)→A  or one bidentate Lewis acid A C(L2). 

 

The second type of transition metal complexes with a carbon ligand features species 

with a naked neutral carbon atom as a ligand [M]-C, which can be considered as endpoint 

of the series [M]-CR3 →  [M]-CR2 → [M]-CR → [M]-C. Complexes with negatively 

charged carbon ligands [M]-C─, which are isoelectronic to nitride complexes [M]-N and are 

termed as carbides, were synthesized in 1997 by Cummins [21]. The first neutral carbon 
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complex [M]-C, which was prepared and structurally characterized was reported in 2002 by 

by Heppert and co-workers [22]. They isolated the diamagnetic 16 valence electron 

ruthenium complexes [(PCy3)LCl2Ru(C)] (L= PCy and 1,3-dimesityl-4,5-dihydroimidazol-

2-ylidene; Cy = Cyclohexyl) by a metathesis facilitated reaction. Quantum chemical 

calculations of model compounds suggested that the Ru-C bond in the complexes is best 

described by an electron-sharing double bond like in Schrock carbenes, which is reinforced 

by a donor bond  [23]. The field of neutral carbon complexes was systematically 

explored in recent years by Bendix [24]. This review summarizes in its second part the 

research in transition metal complexes with a naked carbon atom as ligand [M]-C that has 

been accomplished since 2002.  

 

2.  Transition metal complexes with carbone ligands [M]-CL2 

 

2.1. Transition metal addition compounds of symmetrical carbones C(PR3)2  

Among the existing carbones with a symmetric P-C-P skeleton, five species (1a to 1e) are 

known today as donor ligands to various transition metal fragments as outlined in  Figure 3. 

From other linear or bent carbones with this skeleton, no transition metal complexes are 

described so far. 

 

Figure 3. Symmetric carbones 1a – 1e as ligands for transition metal complexes. 
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1a was detected by Ramirez in 1961 [25] and 1b - 1d stem from the laboratory of 

Schmidbaurs group [26]. Later on a series of related carbones were synthesized, but for which 

transition metal complexes are unknown so far. Quite recently the new amino substituted 

carbone 1e was published together with Zn and Rh addition compounds [27]. In the 31P NMR 

spectra singlets at about -4.50 ppm (1a), -6,70 (1b), -29.6 (1c) -22.45 (1d), and 12.5 pm (1e)  

confirm the symmetric array of the compounds. All carbones have a bent structure but a linear 

form of 1a is realized if crystallized from benzene [28]. 1a has a short P-C distance of 1.633(4) 

Å and the P-C-P angle amounts to 130.1(6)º [29]. The carbone 1b exhibits a slightly longer P-C 

distance of 1.648(4) Å and the introduction of two less bulky methyl groups allows a more 

acute P-C-P angle of 121.8(3)º [30]. 1d has similar P-C bond distances of 1.645(12) Å 

1.653(14) Å and the shortest P-C-P angle in this series of 116.7(7)º [31,32].  For 1c, gas phase 

electron diffraction studies result in a P-C distance of 1.594(3) Å and a P-C-P angle of 

147.6(5)º assuming an apparent non-linearity but linearity in the average structure [31]. All 

structural parameters of 1e are close to those of 1a (P-C = 1.632(2) Å, P-C-P angle = 136.5(3)º 

[27]. 

 

 

Scheme 1: Selected transition metal compounds with the carbone 1a as two electron 

donor ligand; a) MI, b) CdI2, c) UCl4, d) Fe(N{SiMe3}2)2, e) ZnI2. 
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Scheme 2: Selected transition metal compounds with the carbone 1a as four electron 

donor ligand. 

 

 

 
 

Scheme 3: Selected transition metal complexes with the carbone 1b as two and four 
electron donor ligand. a) Ni(CO)4, b) Ni(CO)4 under CO atm, c) Fe(N{SiMe3}2)2, d) 
AuX(tht). 
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Scheme 4: Transition metal complex with the carbone 1c as two and four electron 

donor ligand. a) [Tp*(CO)2W≡CPMe3]+/PMe3 , b) 1c/ 2 MeAuPMe3. 

 

 

Scheme 5: Selected transition metal complex with the carbone 1e as two electron donor ligand. 

 

 In Table 1 transition metal addition compounds between carbones with the P-C-P core are 

collected. All compounds show longer P-C bonds than the basic carbones as consequence of 

the competition of the occupied p orbital at C(0) between the two P-* orbitals and those of A.  

Occupied d orbitals of Ni in the 1a-Ni(CO)3 complex elongate the C-Ni bond to a carbone 

(2.110 Å) [36] but leads to relative short bond length to a NHC (1.971 Å) moiety [33]. In 

contrast, UCl4 leads to a short bond to a carbone (2.411 Å) [48] indicating an appreciable U-C 

double bond character and a long one to a NHC base (2.612 Å) [34,35].  
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Table 1. Transition metal complexes with the carbones 1a to 1e including C-M and P-C bond 

lengths and P-C-P angles and 31PNMR shifts in ppm. 

Nr. 31P NMR C-M P-C P-C-P Ref 

Transition metal complexes with the carbone 1a 

1a→Ni(CO)2 19.20 1.990(3) 1.677(3) 1.676(3) 132.13(16) [36] 

1a→Ni(CO)3 9.92 2.110(3) 1.681(3) 1.674(3) 124.58(19) [36]  

1a→ZnI2  17.8 2.000(9) 1.691(9) 1.703(8) 128.3(6) [37] 

1a→CdI I2)CdI←1a 18.5 2.25(1) 1.700(9) 1.68(1) 124.8(7) [37]  

[1a→Hg←1a][Hg2Cl6]   21.2 2.057(6) 

2.082(7) 

1.731(6) 1.706(6) 

1.737(6) 1.702(7) 

124.2(4) 

125.7(3) 

[38] 

[1a→Ag←1a]I                13.6 2.115(8) 

2.134(7) 

1.656(7) 1.690(7) 

1.667(7) 1.663(7) 

128.5(5) 

129.1(5) 

[39] 

[1a→Cu←1a]I                15.8 1.944(5) 

1.951(5) 

1.683(6) 1.688(6) 

1.673(6) 1.694(5) 

125.6(3) 

128.3(3) 

[38] 

[1a→ReO3][ReO4]          29.5 1.997(7) 1.771(8) 123.1(4) [40] 

1a-CuCl                           16.5 1.906(2) nr 123.8(1) [41] 

1a→Cu-C5H5                    8.5 nr nr nr [42] 

1a→Cu-C5Me5                  7.5 1.922(6) 1.668(5) 1.660(6) 136.0(4) [42] 

1a→CuPPh3                       3.7 nr nr nr [42] 

1a→AgCl                        16.5 nr nr nr [41] 

1a→AgCp*                       6.5 nr nr nr [42] 

1a→Au-C≡C-R 

R = C6H4NO2-p 

nr 2.082(2) 1.688(2) 1.682(2) 133.64(13) [43] 

1a→Au-CH(COMe)2         nr nr nr nr [43] 

1a→AuCl                        13.7 14.4 nr nr nr [41] 

[1a→Ir(COD)]PF6              nr nr nr nr [44] 

1a→VCl3 21.13 2.050(3) 1.712(2), 1.722(2) 123.6(2) [45] 

1a→FeClCl2)FeCl←1a par 2.043(7)  1.689(7) 1.712(7) 121.3(4) [46] 

1a→Fe[N(SiMe3)2]2         par 2.147(2) 1.702(2) 1.720(2) 120.0(1) [47] 

1a→FeCl2                         par 2.055(8) 1.709(7) 1.702(7) 122.7(5) [46] 

1a→Fe(CH2Ph)2                par 2.097(5) 1.694(5) 1.671(5) 124.5(3) [46] 
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1a→FeCl[N(TMS)2]        par nr nr nr [46] 

1a→FeOTf[N(TMS)2]      par 2.040(3) 1.701(3) 1.704(3) 122.1(2) [46] 

1a→UCl4                                 nr 2.411(3) 1.705(3) 1.719(3) 125.05(16) [48] 

1a→(AuCl)2                     21.2 2.078(3) 

2.074(3) 

1.776(3) 1.776(3) 117.30(15) [43] 

[1aH-Ag-1aH]3+              23.6 2.221(5)  1.770(7) 1.779(7)  119.9(4) [49] 

[1aH-Au-1aH]3+               26.1 nr nr nr [43] 

[1aH→AuCl]+                    22.1 nr nr nr [43] 

Transition metal complexes with the carbone 1b 

1b→Fe[N(SiMe3)2]2           par 2.100(2) 1.694(2) 1.696(1) 120.8(9) [47] 

1b→Ni(CO)3                      2.6 2.091(2) 1.683(2) 1.673(2) 122.3(1) [50] 

1b→Ni2(CO)5                 12.1 2.080(5) 

2.070(5) 

1.742(5) 1.743(5) 117.1(3) [50] 

[1bH→AuC6F5]+                  22.7 2.029(6) 1.781(2) 1.792(2) 119.1 [51] 

[1bH→AuCl]+                      22.1                  nr nr nr [51] 

Transition metal complexes with the carbone 1c 

[1c→W(CO)2(Tp*)]PF6 36 2.11(1) 1.75(2) 1.77(1) 114.5(8) [52] 

1c→(AuMe)2 nr nr nr nr [124] 

Transition metal complexes with the carbone 1d 

1d→Ni(CO)3 3.5 2.0661(9) 1.712(2) 1,722(2) 117.19(9) [45] 

Transition metal complexes with the carbone 1e 

1e-ZnCl2                           28.9 1.994(2) 1.686(2) 125.3(1) [27] 

1e-Rh(CO)(acac)             32.9 2.092(3) 1.685(3)  128.56(17) [27] 

 

 

The cation [1a-ReO3]+ holds the longest one with 1.771(8) Å indicating an appreciable 

C=Re double bond character. This feature applies also in part to 1a-UCl4 and 1c-W(CO)2N3 

with elongated P-C bonds; a partial C-U double bond is confirmed by theoretical calculations. 

Similar long P-C bonds are found in the trication [1aH-Ag-1aH]3+, in 1a-(AuCl)2, and in 1b-

Ni2(CO)5, where the carbone provides each two electrons to two accepting Lewis acids as 

depicted in Figure 1d. The P-C-P angles are in the range between 115º and 132º reflecting the 
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required space of the appropriate Lewis acid. The 31P NMR shift of the carbone 1a amounts to 

about -5 ppm and those of the related addition compounds are shifted to lower fields and range 

between 4 ppm and 30 ppm. All iron(II) complexes of 1a and 1b are paramagnetic and 31P 

NMR spectra could not be obtained. 

For the 31P NMR spectrum of the carbone 1b, a shift of -6.70 ppm was recorded [26]. With 

exception of 1b→Ni(CO)3 which resonate at 2.6 ppm, low field shifts between 12 and 22 ppm 

were found when 1b act as a four electron donor [50].  

1e-ZnCl2 [27] and 1a-ZnI2 [37] have closely related structural parameters but exhibit 

shorter C-Zn bond lengths than to related NHC-addition compounds ( = 0.051 Å) [53]. In 

both compounds a nearly perpendicular array of the ZnX2 and the PCP plane are found. No 

tendency for an additional N-coordination to the amino ligand of 1e is recorded for the ZnCl2 

addition compound. In contrast the Rh-C distances in 1e-Rh(CO)2(acac) are longer ( = 0.117 

Å) than in the corresponding NHC compound [54] and a partial  interaction was found by 

DFT calculation; Rh shows also no tendency for coordination of the adjacent amino groups 

[27].   

2.2. Transition metal addition compounds of carbones C(PR3)2 with an additional pincer 

function  

Starting material for 2a is not the free carbone Ph2P-CH2-PPh2-C-PPh2-CH2-PPh2 which 

could not be prepared so far, but the dication [Ph2P-CH2-PPh2-CH2-PPh2-CH2-PPh2]2+
 as 

reported by Peringer [55]; the basic pincer ligand 2b was presented by the group of 

Sundermeyer in 2019 and the 31P NMR shift  = -5.6 ppm. The P-C-P angle in 2b amounts to 

133.76(13)º , P-C = 1.633(2), 1.642(2) [56]. 

 

Figure 4. Tripodal basic pincer ligand 2a and 2b.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 August 2020                   



12 
 

Table 2. Transition metal complexes with the phosphine based pincer ligands 2a and the 

pyridyl based pincer ligand 2b; C-M and P-C distances are included and 31P NMR shifts in 

ppm. 

Nr. 31P NMR C-M P-C P-C-P Ref 

Transition metal complexes with the tripodal carbone 2a 

[2a(PdCl)]Cl            34.5 2.062(2)       1.694(3) 124.9(2) [55,57] 

[2a(NiCl)]Cl           36.4 1.942(4)       1.6925(18) 125.1(2) [57] 

[2a(NiCl)]NiCl4
             nr 1.930(7) 1.696(7) 

1.701(7) 

126.3(4) [57] 

[2a(PtCl)]Cl           35.7 2.060(4) 1.692(5) 124.86(15) [57] 

[2a(NiMe)][AlCl2Me2] 31.8   1.959 1.697 120.9 [58] 

[2a(AuCl)]TfO2        2.080(8) 1.723(8) 124.5(5) [59] 

[2a(AuCl)](NO3)2   40.8 2.060(3) 1.721(3) 125.1(2) [59] 

[2a(AuI)](TfO)2                  41.1 2.082(8) 1.723(8) 124.9(5) [59] 

[2aH-PdCl]2+           [42.4 2.102(3) 1.803(3) 121.9(2) [55] 

[2aH-PtCl]2+           44.4 2.106(4) 1.811(4) 

1.823(4) 

120.4(2) [57] 

[2aH-NiCl]2+           32.7 1.990 1.801 – 1.834 121.1 [57,58] 

Transition metal complexes with the tripodal carbone 2b 

2b(CeBr3THF)  -10.2 2.597(6) 1.672(6) 122.5(4) [60] 

2b(CeBr)2b                nr 2.573(6) 

2.597(6) 

1.684(7) 120.5(4) [60] 

2b(UCl4)                    nr 2.471(7) 1.696(7) 121.3(4) [48] 

2b(TiCl3) [57] 18.24 2.144(6) 1.670(3) 

1.670(3) 

129.9(4) [56] 

2b(Cr(CO)3)           6.97 2.212(2) 1.651(3) 

1.650(3) 

133.6(2) [56] 

2b(MnCl2)                 par 2.1843(14) 1.6671(17) 

1.6636(17) 

127.70(9) [56] 

2b(CoCl2)                 par 2.015(6) 1.680(7) 

1.661(7) 

127.5(3) [56] 

2b(Mo2(CO)7)        9.49 2.355(4) 1.722(4) 

1.724(4) 

120.4(2) [56] 

[2b(PdCl)]Cl                 31.6 2.004(4)       1.689(4) 

1.676(4)  

132.4 [56] 

2b-Ni2(CO)4                  34.20   2.0635(18) 

2.0912(18) 

1.7142(18) 

1.7146(18) 

 [56] 
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Scheme 6. Selected compounds with the pincer ligands 2a and 2aH. a) MCl2 with a mixture of 
dppm and 2 eq. of CS2, b) AuCl(tht)/HNO3, c) HCl. 

 

 

Scheme 7. Selected compounds with the pincer ligand 2b as two and four electron donor. a) 
CeBr3 in THF, b) UCl4, c) 2 eq Mo(CO)3(NCMe)3, d) 2 eq Ni(CO)4. 
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 Various cationic complexes where reported with the pincer ligand 2a and group 10 

metal halides and one dication with the group 11 metal Au. The 31P NMR shifts range between 

32 and 41 ppm. As with 1a the carbone carbon atom of 2a is basic enough to accept a proton to 

generate complexes of the type 2aH-MCl dications with all group 10 elements.  

A series of complexes with the N,C,N pincer ligand sym-bis(2-

pyridyl)tetraphenylcarbodiphosphorane (2b) were reported recently by the group of 

Sundermeyer. Remarkable is the molybdenum complex 2b-Mo2(CO)7 in which 2b provides 

four pairs of electrons for donation to a Mo2 unit with an Mo-Mo separation of 3.0456(5) Å 

[56]. 

 

2.3. Transition metal addition compounds of Carbones C(PR3)2 with an additional 

ortho metallated pincer function  

Source for the Rh complex 3a-Rh(PMe3)2H was the half pincer compound 5a-Rh(C6H8) 

upon reacting with PMe3 under loss of cod. 3a-Pt(SMe2) forms upon reacting 1a with 

[Me2Pt(SMe2)]2 and loss of 4 molecules of CH4 [61]. PEt3 replaces the labile bonded SMe2 

group of 3a-Pt(SMe2) to produce 3a-PtEt3, which is transformed with P(OPh)3 into 3a-

Pt(OPh)3. The dication [3a-PtPEt3(-Ag2)Et3PPt-3a]2+ was obtained upon addition of AgOTf to 

3a-PtPEt3. According to the carbone C atom as four electron donor the Pt complexes with -Ag 

functions show long Pt-C distances between 1.737 and 1.749 Å (mean values) and the 31PNMR 

shifts are in the narrow range of 33 and 36 ppm [63]. More complicated is the formation of 3a-

Pt(CO); it stems from hydrolysis of the related 3a-Pt(CCl2) complex (not isolated) [62]. 

The carbone complex 3b-Pt(CO) was obtained from reacting the yldiide platinum 

complex (see Scheme 9) with 1 atm CO that inserts into the N-Si bond of the yldiide. 
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Figure 5. Bis-ortho metallated pincer complexes 3a and 3b. 

 

Table 3. Transition metal complexes with ortho metallated tripodal pincer ligand 3a derived 

from 1a and the related pincer ligand 3b and 31P NMR shifts. 

Nr. 31P NMR C-M P-C P-C-P Ref 

Transition metal complexes with the tripodal ligand 3a 

3a-Rh(PMe3)2H 8.56 2.203(3) 1.674(3) 138.32(18) [61] 

3a-PtSMe2   30.42 nr nr nr [61] 

3a-PtCO 41.5 2.037(5) 1.706(3) 128.4(3) [62] 

3a-PtPEt3      28.5 2.067(2) 1.697(2) 124.88(14) [63] 

3a-PtP(OPh)3    nr nr nr nr [63] 

[3a-PtPEt3(-AgPPh3)3]+  32.5 2.130(4) 1.737 126.0(2) [63] 

[3a-PtP(OPh)3 (-AgPEt3]+ 36.0 2.105(3) 1.743 122.9(2) [63] 

[3a-PtPEt3(-Ag2)Et3PPt-3a]2+ 33.4     2.128(3) 1.749 125.29(18) [63] 

3aH-PtCl       27.9 2.077(6) 1.796(6) 123.4(4) [62] 

Transition metal complexes with the tripodal ligand 3b 

3b-Pt(CO)     46.9 2.002(5) nr 133.3(3) [64] 
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Scheme 8. Selected addition compounds with the pincer ligand 3a and 3aH and those with the 

Ag-bridged cations or dication, respectively. a) from 3aH-PtCl via 3a-Pt(CCl2) and H2O, b) 

PMe3, c) from 5a-Pt(C8H11) (see Scheme 11) and CHCl3, d) PPh3, e) 2 AgOTf. 
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Scheme 9. Two mesomeric forms of 3b-Pt(CO); 3ba favors a tricarbene coordination at Pt(0) 

whereas 3bb is consistent Pt(II) forming two C-Pt s-bonds similar to 3a-Pt(CO). The short 

central C-Pt bond length of 2.002 Å indicates a partial doubly donation of the carbone C atom 

as shown in Figure x1b. The planar environment at Pt is typical for Pt(II) and supports this 

view [64]. 

2.4.  Transition metal complexes with p-c-p five membered ring  

The carbone 4 was obtained by deprotonation of the cation [4H]+. According to two P 

atoms in different chemical environments two doublets in the 31P NMR spectrum were 

recorded at = 60.0 and 71.5 ppm; 2JPP = 153 Hz. From X-ray determination stem the P-C(1) 

and  P-C(2) distances of 1.644(19) and 1.657(17) Å, respectively, and the P-C-P angle amounts 

to 104.82(10)º [65]. The bond lengths are close to that reported for the carbone 1a. 

 

Figure 6. Structure of compound 4. 
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Table 4. Transition metal complexes with the cyclic carbone 4, containing 31P NMR shifts and 

relevant structural parameters. 

Nr. 31P NMR M-C P1-C 

P2-C 

P-C-P Ref 

4-PdCl(-C3H5) 61.2    71.9 (225) 2.120(2) 1.673(2) 

1.694(2) 

106.66(13) [65] 

4-RhCl(nbd) 64.6   75.7 (230) 2.115(18) 1.676(18) 

1.702(18) 

106.86(10) [65] 

4-Rh(CO)2Cl 68.2   75.6 (224) nr nr nr [65] 

4-AuOBut      64.1    60.4 (225) 2.018(6) 1.674(7) 

1.687(7) 

108.5(4) [66] 

4-CuOBut      69.8    62.6 (195) 1.8923(15) 1.6763(15) 

1.6887(15) 

106.90(8) [66] 

4-CuCl          63.2   70.6 (186) 1.8914(19) 1.6700(19) 

1.6869(19) 

107.20(11) [66] 

 

 

Scheme 10: Selected complexes with the cyclic carbone 4. R = iPr. a) [{PdCl(allyl)}2], b) 
[{RhCl(nbd)}2]. 

From the cyclic and asymmetric carbone 4 six transition metal complexes are known in 

which the ligand acts as two electron donor via the C atom. As in the starting compound 4 the 

P2-C bond distances are slightly longer than P1-C ones. Addition of CuCl and AuCl(SMe2) to 
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4H+/tBuOK generates the compounds 4-CuOtBu and 4-AuOtBu, respectively; in CH3Cl2 or 

CHCl3 4-CuOtBu is converted into 4-CuCl [66]. 4-Rh(CO)2Cl stems from the reaction of 4 

with [{RhCl(CO)2}2] [65]. 4-CuOtBu and 4-AuOtBu catalyze the hydroamination or 

hydroalkoxylation of alcrylonitrile [66]. 

 

2.5.  Transition metal complexes with asymmetric P-C-P ligands  

Several asymmetric carbones with orthometallation (5a-M, 5d-M), with an additional 

donor function (5c), or with a functionalized phenyl ring (5b) were reported that form TM 

complexes. 

 

Figure 7. Structures of compounds 5a-M, 5b, 5c and 5d-M. 

 

The neutral asymmetric carbone 5b (X = PPh2) has the structural parameters P1-C = 

1.642(2), P2-C = 1.636(1) Å, and a P-C-P angle of 140.74(8)º; the P atoms resonate at  = -6.9 

and -3.4 ppm (2JPP = 93 Hz) [67]. Those of 5c are P1-C = 1.6416(16) Å, P2-C = 1.6398(17) Å, 

and P-C-P = 133.25(10)º [68]. Three complexes in which the carbone 1a is half-side 

orthometallated forming 5a-M complexes are described [61,65,69]. 
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Table 5. Transition metal complexes with the unsymmetrical carbones 5a – 5d; 31P NMR shifts 

in ppm. 

Nr 31P NMR 

(2JPP) 

M-C P1-C 

P2-C 

P-C-P Ref. 

Transition metal complexes of 5a-M 

5a-Ptcod(C8H11)     14.9  

5.7 (59.8) 

2.072(3) 1.694(4) 

1.716(4) 

114.8(2) [69]  

5a-Rhcod(p)         10.15  

12.40 (50.9) 

2.165(2) 1.693(2) 

1.692(2) 

124.50(13) [61] 

5a-PdC3H5              39.8 9.9 (54) nr nr nr [65] 

Transition metal complexes with the carbone 5b 

5b-AuCl 

(X=PPh2)                  

8.6  

18.7 (52) 

2.043 1.701(4) 

1.696(2) 

126.0(2) [67] 

5b-AuCl 

(X=PPh2-AuCl) 

25.6  

20.2 (47)  

2.037(3) 1.690(3) 

1.689(3) 

131.4(2) [67] 

5b-(AuCl)2 

(X=PPh2-AuCl)      

25.4  

26.9  

2.089 

2.064 

1.774(5) 

1.763(5) 

123.6(3) [67] 

5b-PtMe2 

(X = Me)                

19.3 nr nr nr [70] 

Transition metal complexes with the carbone 5c 

5c-UCl4                    par 2.461(5) 1.699(5) 

1.711(5) 

120.6(3) [48] 

[5cAuPPh3]+         19.70   

15.03 (30.7) 

2.067(9) 1.688(9) 

1.707(9) 

124.3(5) [68] 

[5c(CuCl)(AuPPh3)]+ 39.7  

26.2  (m) 

2.111(4) Au 

1.981(5) Cu 

1.732(5) 

1.750(5) 

120.2(3) [68] 

[5c(AuCl)(AuPPPh3)]+ 

 

35.4  

27.5 (m) 

2.080(9) Au2 

2.127(8) Au1 

1.756(9) 119.3(5) [68] 

Transition metal complexes with the carbone 5d 

5d-Pt-5d                 19.3 - - - [70] 
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Scheme 11: Selected structures of transition metal complexes with the carbone 5a; a) ½ 

[PdCl(allyl); b) 1/3 [PtI2(cod)]; c) ¼ [RhCl(cod)]. All complexes are formed upon release of the 

cation [1aH]+. 

As depicted in Scheme 11, three neutral complexes of 1a are known in which one of its 

phenyl group is orthometallated to produce the 5a-M core. The 31P NMR shift of the 

unchanged PPh3 group range between about 6 and 13 ppm whereas for the orthometallated side 

shifts between 15 and 40 ppm where recorded. Both P-C distances do not differ markedly and 

amount to about 1.700 Å. 

 

Scheme 12. Selected structures of transition metal complexes with the carbone 5b. a) 

[AuCl(tht)], b) 2 [AuCl(tht), 3 [AuCl(tht)]. 
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All complexes shown in Scheme 12 have a further PPh2 function at the ortho position of 

one phenyl group of 1a. In the complex 5b-(AuCl)2 the carbone provides four electrons for 

donation with typical long P-C distances of about 1.770 Å [67]. 

 

Scheme 13. Selected structures of transition metal complexes with the mono pyridyl 

substituted carbone 5c. 

The paramagnetic 5c- UCl4 exhibits a short C-U distance indicative for a double dative 

bond of the carbone C atom as in 2b-UCl4 and was obtained by reacting UCl4 with the dication 

5c-H2/NaHMDS. Upon further coordination of the pyridyl group (U-N = 2.537(4) Å) the U 

atom attains the coordination number 6 [48]. 

[5c-AuPPh3]+ was obtained from reacting the carbone 5c with [PPh3AuCl]/Na[SbCl6]. In 

the cationic complex [5c-(CuCl)((AuPPh3)]SbF6, the carbone 5c acts as a six electron donor 

with a Cu-N distance of 2.267(6) Å and Cu-Au separation of 2.8483(10) Å. The Cu and Cl 

atoms are each disordered over two positions with occupancy of about 0.8 to 0.2. If CuCl is 

replaced by AuCl as in [5c-(AuCl)(AuPPh3)]SbF6 the C-AuPPh3 distance is slightly elongated 

and no coordination of the pyridyl N atom is observed. The Au-Au separation is with 3.1274(6) 

Å too long for a metallophilic interaction. In both compounds, the carbone C atom constitutes a 

chiral center according to four chemical different substituents and acts as a four electron donor. 

The PPh3 group resonates between 15 and 27 ppm [68]. In the related symmetric pyridyl-free 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 August 2020                   



23 
 

complex 1a-(AuCl)2 slightly shorter C-Au (2.076(3) Å) were recorded accompanied by longer 

P-C (1.776(3) Å) bond lengths [43]. 

2.6.  Transition metal complexes of carbones with cyclobutadiene  

 

The carbones 6a and 6b can also be seen as an all-carbon four-membered ring bent 

allene (CBA); 6a is stable for several hours at -20º but decomposes when warmed up to -5º. 

The optimized geometry reveals a very acute allene bond angle of 85.0º and coplanarity of the 

ring carbon atoms including the two nitrogen atoms. The C=C bonds of the allene fragment 

amount to 1.423 Å and are significantly longer than in typical linear allenes (1.31 Å). Short CN 

bonds of 1.36 Å indicate some double bond character. The CCC carbon atom resonates in the 

13C NMR spectrum at 151 ppm. The first and second proton affinities (PAs) are very high 

amounting to 307 and 152 kcal/mol [71].  

C

NN

N N

6b

C

NN

6a

Bertrand
Tamm

 

Figure 8.  Structures of compounds 6a and 6b. 

 

The molecular orbitals show that the HOMO and HOMO-1 have clearly the largest 

coefficients at the central carbon atom and exhibit the typical shape of lone-pair molecular 

orbitals with  (HOMO) and  (HOMO-1) symmetry; however, with reversed order with 

respect to CDPs and CDCs. To emphasize the proximity of 6 to CDP carbones, we use the 

same symbolism mimicking a metal. 

The free CBA 6b could not be obtained only the cationic 6bH+ and 6bH2
2+ are known 

and used as starting compounds for the syntheses of the related transition metal complexes 

[72]. 
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Table 6. Transition metal complexes with the all carbon ligand 6; 13C NMR shifts (in ppm) of 

the donating carbon atom. Distances in Å, angles inº. 

Nr. 13C NMR C-M C-C C-C-C Ref. 

 Transition metal complexes with the carbone 6a 

6a-RhCl(cod) 136.6 (41) 2.038(5) 1.405(6) 88.4(3) [71] 

6a-IrCl(cod) 138.6 nr nr nr [71] 

6a-RhCl(CO)2 124.7 (32) nr nr nr [71] 

6a-IrCl(CO)2 129.2 nr nr nr [71] 

Transition metal complexes with the carbone 6b 

6b-W(CO)5 130.1 2.319(3) 1.419(4) 88.0(2) [72] 

6b-AuCl             123.6 2.001(4) 1.409(5) 90.5(3) [72] 

6b-RhCl(CO)2 131.2 (32) 2.0602(14) 1.4102(19) 89.73(11) [72] 

 

 

Scheme 14. Selected structures of complexes with the cyclic carbones 6a and 6b. Preparation 

see text. 
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The 13C NMR shifts of the central carbon atom are shifted to higher fields relative to the 

starting free carbone ranging between 124 and 139 ppm. 

All complexes of the CBA 6a where obtained by reacting the freshly prepared free carbone 

6a at -20º with [{MCl(cod)}2] with M = Rh, Ir. The cod ligand can be replaced by bubbling CO 

through solutions of 6a-MCl(cod) to produce the related 6a-MCl(CO)2 compounds [71]. 

Transition metal complexes with 6b as ligand where obtained by reacting 1,1,2,4-

tetrapiperidino-1-buten-3-yne with a) [(tht)AuCl], b) [RhCl(CO)2]2, c) [(NMe3)W(CO)5]; 

during the reaction rearrangement of the starting buten-3-yne to 6b has occurred [72]. 

2.7.  Cyclopropenylidene 

Stephan described the first carbodicarbene stabilized by flanking cyclopropylidenes, named 

carbodicyclopropylidene 7.  

 

 

Figure 9. Possible description of the bonding in 7. 

Neither the neutral singlet 1,2-diphenylcyclopropenylidene as carbene ligand L in 7 nor 

the carbone tetraphenylcarbodicyclopropenyliden (CDC) 7 itself are stable compounds at room 

temperature. The free carbene L has only been observed in an argon matrix isolated at 10 K and 

7 could be characterized in solution by low temperature NMR spectroscopy; for the central 

carbon atom a 13C NMR shift at  = 133 ppm was recorded at −60°C.  
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The first and second proton affinities of 7 were determined to be 283 and 153 kcal 

mol˗1, respectively. Thus, the energy difference between the linear allenic structure and the bent 

arrangement is shallow amounting to 6.6 kcal mol˗1 for a bending angle of 140 ° and 10 kcal 

mol˗1 for 130°. The molecular structure of 7 was determined by computational methods. 

Calculations reveal that the central carbon atom is in a linear environment the C-C distances 

were calculated at 1.308 Å and the C-C-C angle to 180 º. The highest occupied molecular 

orbital (HOMO) and HOMO-1 of 2 are degenerate and incorporate the p orbitals of the C2-C1-

C2a fragment. 

 The central C atom is more negatively charged (- 0.19 a.u.) than the adjacent C atoms 

suggesting nucleophilic character [73]. 

 

Table 7. Complexes with the carbone 7. 13C NMR shifts (in ppm) of the donating carbon atom. 

Nr 13C NMR M-C C-C C-C-C Ref. 

[7-AuNHC-Ad]+      92.7 2.071(6) 2.047(6) nr nr [73] 

[7-AuNHC-Dipp]+ 98.0 nr nr nr [73] 

 

 

Scheme 15: Selected structures of complexes with the cyclo propylidene stabilized carbone 7. 

a) KHMDS/ (NHC)AuOTf. 

The addition compounds [7-AuNHC-Ad]OTf and [7-AuNHC-Dipp]OTf were prepared 

from reacting [7H]+ with KHMDS and the related (NHC)AuOTf at -45º [73]. 
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2.8.  Carbodicarbenes 

Carbodicarbenes, CDCs, are neutral compounds, where a bare carbon atom with its four 

electrons is stabilized by two NHC ligands which plays the role of a phosphine group as in 

carbodiphosphoranes, CDPs. Theoretical studies have demonstrated that this class of 

compounds could be stable and their existence was predicted by Frenking [74] and short times 

later realized by the group of Bertrand [75]. 

 

Figure 10. Symmetrical CDCs from which transition metal complexes are known. 

Structural and spectroscopic parameters of the following symmetric CDCs are 

available: 8a, C-C = 1.343(2) Å, C-C-C = 134.8(2)º, 13C NMR 110.2 ppm [75]. 8b, C-C = 

1.333(2) Å and 1.324(2) Å, C-C-C = 143.61(15)º [76]. 8c, C-C = 1.335(5) Å, C-C-C = 

136.6(5)º [77].  

 

Figure 11. Unsymmetrical CDCs from which transition metal complexes are reported. 
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Structural parameters of the unsymmetrical CDCs are reported: 8e, C-C = 1.3401(16) Å 

and 1.3455(16), C-C-C 137.55(12)º. For 8f, no data are available [78]. 

8g: C-C = 1.344(3) Å and, 1.318(3) Å, C-C-C = 146.11(19)º [78]. 8h was obtained at -

60º by reacting 8hH+ with KMDS, and characterized spectroscopically; on warming to room 

temperature, it dimerizes. 13C NMR:  = 105.5 ppm [79].  

Table 8. Collection of transition metal complexes with the CDCs 8a-8h. 13C NMR shifts of the 

central carbon atom (in ppm). 

Nr 13C NMR M-C C-C C-C-C Ref. 

Transition metal complexes with the CDC 8a 
8a-RhCl(CO)2    64.1 2.089(7) 1.398(10) 121.2(7) [75] 
8a-RuCl2(=CHPh)NHC 73.01 mes 2.2069(18) 1.352(3) 1.429(3) 119.84(17) [80] 
8a-RuCl2(=CHPh)NHC 73.4 iPr 2.210(7) 1.345(11) 1.439(9) 116.9(6) [80] 

Transition metal complexes with the CDC 8b 
[8b-PdCl]+ nr 1.973(3) 1.369(5) 1.398(5) 126.5(3) [76] 
[8b-Fe0.5]2+  2.018(3) 1.374(3) 128.4(3) [81] 
[8b-Fe0.5]3+  1.968(4) 1.387(6)  125.2(4)  [81] 
[8b-Fe0.5]4+  1.928(3)  1.407(4) 125.4(2)  [81] 

Transition metal complexes with the CDC 8c 

8c-PdClC3H5 nr 2.207(4) 1.404(5) 1.377(5) 119.7(4) [77] 

8c-RhCl(CO)2    63.7 2.109(2) 1.4113)  1.385(3) 117.4(2) [77] 

Transition metal complexes with the CDC 8d 

8d--RhCl(CO)2  2.123(2) 1.416(3) 1.368(3) 116.8(2) [77] 

Transition metal complexes with the asymmetric CDC 8e 

8e-PdCl2(POR)3 nr 2.0398(18) 1.395(3) 1.328(3) 119.20(16) [82] 

8e-PdCl2PPh3 nr 2.063(2) 1.383(3) 1.409(3) tP 115.63(19) [83] 

8e-PdCl2PTol3 nr 2.049(4) 1.374(7) 1.412(8) tP 117.7(4) [83] 

8e-PdCl2PCy3 nr 2.111(2) 1.343(3) 1.415(4) tP 123.6(2) [83] 

Transition metal complexes with the asymmetric CDC 8f 

8f-RhCl(CO)2     67.1 2.117(2) 1.369(3) 1.424(3) 117.8(2) [78] 

Transition metal complexes with the asymmetric CDC 8g 

8g-RhCl(CO)2      63.2 2.1164(17) 1.374(2)NHC  1.420(3) 118.77(16) [78] 

Transition metal complexes with the asymmetric CDC 8h 

8h-IrCl(CO)2       nr nr nr nr [79] 

8h-IrCl(cod)     166.4 nr nr nr [79] 
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Scheme 16. Selected structures of transition metal complexes with symmetric CDCs 8a and 8b; 

a)  Fe(OTf)2(MeCN)2  

 

Scheme 17. Selected structural representation of 8e-PdCl2P(OiPr)3 a) PdCl2P(OiPr)3 

8a-RhCl(CO)2 was prepared by addition of a suspension of 8a in benzene to a solution 

of [RhCl(CO)2]2 [75]. [8b-Fe0.5]2+ contains Fe2+ in octahedral environment coordinated by two 

molecules of 8b. Fe(II) can be successively oxidized to the corresponding tri-, tetra-, and 

pentacationic species [81].  
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 The addition compounds 8c-RhCl(CO)2 and 8d-RhCl(CO)2 where obtained upon 

reacting the appropriate carbone 8c or 8d with [RhCl(CO)2]2; similarly addition of 

[Pd(allyl)Cl]2 to 8c leads to the allyl complex 8c-PdCl(C3H5) [77].  

As depicted in Scheme 17, introduction of PdCl2P(OiPr)3 to 8e afforded the complex 

8e-PdCl2P(OiPr)3; it features a square planar Pd center with a short interatomic distance of one 

phosphite oxygen atom and the carbon atom of the NHC molecule of 2.890 Å that is smaller 

than the sum of van der Waals radii. This indicates strong attractive interaction between the 

atoms [82]. The three Pd complexes 8e-PdCl2PPh3, 8e-PdCl2PTol3, and 8e-PdCl2PCy3 were 

obtained by reacting the carbone 8e with the appropriate PdCl2PR3; between the NHC and the 

aromatic phosphine substituents (Ph or Tol) an unexpected - interaction was detected. One 

Ph and Tol group are nearly parallel to the imidazole rings with centroid-centroid distances of 

3.25 Å (Ph) and 3.30 Å (Tol), respectively [83].  

8f –RhCl(CO)2 and 8g-RhCl(CO)2 stem from reacting the appropriate carbone with 

[RhCl(CO)2]2 [78]. The cod ligand of [Ir(cod)Cl]2 was replaced by bubbling CO through a 

mixture with 8h to generate the complex 8h-IrCl(CO)2 [79]. 

2.9. Tridentate cyclic diphosphino CDCs 

The carbones 9a and 9b are functionalized carbodicarbene in which the donating carbon 

atom is part of a seven membered ring. 

 

Figure 12. Hypothetical free carbones 9a and 9b. 

The neutral 9a and 9b could not be isolated, source for transition metal complexes are 

the related cations 9aH+ and 9bH+ [84]. 
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Table 9. Transition metal complexes with the carbones 9a and 9b; 13C NMR signal of the 

central donating carbon atom. 

Nr 13C NMR M-C C-C C-C-C Ref. 

Transition metal complexes with the carbone 9a 

9a-RhCl                 73.0 nr nr nr [84] 

[9a-RhNCMe]+ nr 2.043 1.398 1.387  [84] 

[9a-Rh(CO)]BF4 nr nr nr nr [84] 

[9a-Rh(styrene)]BF4 nr 2.075(2) 1.404(3) 1.391(3) 121.7(2) [85] 

[9aH-Rh(CO)](BF4)2 nr nr nr nr [85] 

Transition metal complexes with the carbone 9b 

9b-RhCl                 73.4 nr nr nr [84] 

[9b-RhNCMe]BF4 nr nr nr nr [84] 

[9b-Rh(CO)]BF4     [84] 

 

 

Scheme 18. Selected structures of transition metal complexes with the carbones 9a and 9b. a) 

[Rh(cod)Cl]2/NaOMe, b) 9a-RhCl/styrene/NaBF4. 

The neutral complexes 9a-RhCl and 9b-RhCl where prepared upon reacting the cations 

9aH+ or 9bH+, respectively with [Rh(cod)Cl]2/NaOMe; if treated with AgBF4/MeCN the 

cationic spezies [9a-Rh(MeCN)]BF4 and [9b-Rh(MeCN)]BF4, respectively, were isolated. The 

related carbonyl complexes [9a-Rh(CO)]BF4 and [9b-Rh(CO)]BF formed similarly upon 

reaction with [Rh(CO)2Cl]2/NaOMe [84]. The styrene complex [9a-Rh(styrene)]+ was obtained 

upon treating the related chloro complex with styrene/NaBAr4; the styrene complex catalyzes 
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the hydroarylation of dienes. Protonation of [9a-Rh(CO)]+ with HBF4 OEt2 generates [9aH-

Rh(CO)]2+ in which the carbone acts as four electron donor [85]. 

2.10.  Tetraaminoallene (TAA) transition metal complexes  

 

 

Figure 13. Linear tetraaminoallene (TAA) and the extreme formulation as a carbodicarbene 

with a bent array. TAA’s has hidden or masked pairs of electrons.  

The 13C NMR shift of the central carbon atom amounts to 142.8 ppm. The first and 

second PAs of 10 are 282.5 and 151.6 kcal/mol, respectively [16,74]. 

 

 

Scheme 19: Structure of [10-AuPPh3]SbF6; a) AuClPPh3/NaSbF6 

The salt [10-AuPPh3]SbF6 is the only transition metal complex of TAA, which has been 

reported so so far. Both carbene moieties are planar, but are tilted relative each other, to relieve 

allylic strain [86]. The Au-C bond lengths amounts to 2.072(3) Å and the slightly different C-C 

dative bonds has interatomic distances of 1.406(5) and 1.424(5) Å. The central C-C-C bond 

angle is reported with 118.5(3)o. 
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2.11. Transition metal complexes of carbones with the P-C-C skeleton  

Mixed carbene-phosphine stabilized carbones from the working group of Bestmann 

(1974) and Alkarazo (2009).  

 

 

Figure 14. In compounds 11 the C(0) is stabilized by a phophine and a carbene ligand. 

The crystal structure of 11a reveals a planar configuration of the carbene ligand 

C(OEt)2. Short P-C and C-C distances indicate some p back donation; P-C = 1.682(4)Å, C-C = 

1.316(10) Å, C-C-C 125.6º [87]. 

Table 11. Transition metal complexes with the mixed carbones 11a and 11b. 31P NMR shifts in 

ppm. 

Nr 31P NMR M-C P-C 

C-C 

P-C-C Ref. 

Transition metal complexes with the carbone 11a 

11a-RhCl(CO)2 25.1 nr nr- nr [88] 

11a-AuCl       26.7 2.014916) 1.7449(16) 

1.362(2) 

114.30(12) [88] 

11a-(AuCl)2 28.1 2.081(4)  2.103(4) 1.785(4) 

1,425(6) 

114.2(3) [88] 

Transition metal complexes with the carbone 11b 

11b-AuCl       22.2 nr nr nr [88] 
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Scheme 20. Selected structural representation of transition metal complexes of 11a. a) one 

equiv. of AuCl(SMe2), b) two equiv. of AuCl(SMe2). 

The neutral Rh complex 11a-RhCl(CO)2 was obtained from reacting the carbone 11a with 

[Rh(CO)2Cl]2. Similarly, the complex 11b-AuCl results from reaction of 11b with AuCl(SMe2) 

[88]. 

2.12. Transition metal complexes of carbones with the P-C-Si skeleton  

The neutral compound 12 is a carbone in which the C(0) atom is stabilized by a donor 

stabilized silylene and a phosphine ligand.  

 

Figure 15. Carbone complex reported by Kato et al [89].  

The crystal structure of a related compound to 12 (a cyclopentene instead of a 

cyclohexene ring) shows a P-C distance of 1.6226(4) Å and Si-C distance of 1.6844(4) Å; the 

Si-C-P angle amounts to 140.03(3)º. Addition of CuCl generates the complex 12-CuCl. No 

spectroscopic or structural details are available [89]. 
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2.13. Transition metal complexes of carbones with the P-C-S skeleton  

A series of carbones (13a to 13c) based on a P-C-S core containing the neutral S(IV) 

ligands SPh2=NMe (Figure 16) were reported by Fujii [90].  

 Figure 16. Carbone complexes reported by Fujii et al [90]. 

Crystal structures and 31P NMR shifts of the following basic carbones are available: 

13a,  = -2.64 ppm; 13b  = -1.39 ppm, P-C = 1.663(2) Å, S-C 1.602(2) Å, P-C-S = 

125.59(15)º. The authors revealed a high electron density at the central carbon atom. 

Table 12. Collection of transition metal complexes with the carbones 13a to 13c. 31P NMR 

signals (in ppm) are given. 

Nr 31P NMR                         M-C  P-C     S-C P-C-S Ref 

Transition metal complexes with the carbone 13a based on a P-C-S core 

13a-AgCl             10.8 2.131 1.711    1.648 121.9 [90] 

[13a-AuPPh3]OTf 15.2 nr nr nr [90] 

[13a-(AuPPh3)2]OTf2   29.7 nr nr nr [90] 

Transition metal complexes with the carbone 13b based on a P-C-S core 

13b-AgCl            9.13 2.098 1.728      1.636           119.1 [90] 

[13b-AuPh3]OTf 12.88 nr nr nr [90] 

[13b-(AuPPh3)2]OTf2 27.45 2.127 2.118 1.788       1.737 115.6 [90] 

13b-Ag-13b         8.43 2.160 1.707       1.635 121.8 127.0 [90] 

13b-HAuPPh3     17.1 2.106 1.817        1.782 116.3 [90] 

Transition metal complexes with the carbone 13c based on a P-C-S core 

13c-CuN(SiMe3)2     [90] 
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Scheme 21. Selected structures with the carbones 13a und 13b: a) 0.5 eq. of AgOTf, b) 2 eq. of 

AuCl(PPh3)/ 2 eq. of AgSbF6, c) 1 eq. of AuCl(PPh3)/ 1 eq. of AgSbF6, d) ion exchange (OH- 

form), 1 eq. of AuClPPh3/ 1 eq. of AgOTf [90].  

 

The addition products 13a-AgCl and 13b-AgCl were obtained from reacting [13aH]+ or 

[13bH]+, respectively with ion exchange resin (Cl- form) and Ag2O/CH2Cl2. For the other 

products, see Scheme 21 [90]. 

Addition of TM fragments to 13a or 13b elongates P-C and S-C bond length as reported for 

1a. That of [13bH-AuPPh3](OTf)2 in which 13b acts as four electron donor are elongated to 

normal single bonds [90].  
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2.14. Transition metal complex with a P-C-S core possessing a neutral S(II) ligand 

The carbone 14 contains a phosphine and a S(II) ligand with a free pair of electrons to 

stabilize the C(0) atom. However, the bare 14 could not be isolated, but only the protonated 

cation [14H]+ and used as starting material [91]. 

 

Figure 17. Mixed P and S stabilized carbone 14. 

The transition metal complex [14-CuN(SiMe3)2]OTf was prepared upon reacting [14H]+ 

with KHMDS/CuCl. X-ray analysis reveals a Cu-C distance of 1.903(4) Å and the P-C and S-C 

distances amount to 1.709(5) and 1.677(5) Å, respectively. As found in carbone addition 

compounds of 13a and 13b the P-C distance is longer than the S-C distance. An acute P-C-S 

angle of 115.3(2)º was recorded. The 31P NMR signal is shifted to lower fields at 66.5 ppm 

[91]. 

2.15. Transition metal complexes of carbones with the S-C-S skeleton  

In the carbones 15 (carbodisulfanes, CDS) the central carbon atom is stabilized by two 

neutral S(II) ligands (15a), or S(II), S(IV) groups (15b) or two S(IV) (15c) ligands.  

 

Figure 18. Sulfur based carbones 15 as ligands for transition metal complexes. 

The molecular structure of 15a was investigated computationally [92]. For the carbones 

the following parameters were recorded: 15b, C-SII 1.707(2), C-SIV 1.648(2), S-C-S 

106.67(14). 13C NMR, d = 35.4 ppm [93]. 15c: S-C 1.635(4), 1.636(2); S-C-S 116.8(2) [94]. 
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Similar to CDCs the first and second PAs of 15b amount to 288.0 and 184.4 kcal/mol, 

respectively. 

 

Table 13. Transition metal complexes with selected bond length (Å) and angles (deg) of the 

carbone ligands 15a to 15c. 13C NMR signal (in ppm) of the central carbon atom. 

Transition metal complexes with the CDS 15a 

 13C NMR C-M SII-C SII-M-SII Ref. 

15a-AgCl                        not obs 2.058(8) 1.707(8) 1.698(8) 107.3(5) [92] 

[15a-AuPPh3]OTf         65.4 - - - [92] 

[15a-(AuPPh3)2]2+          not obs 2.116(6) 2.084(5) 1.782(6) 1.767(6) 115.4(3) [92] 

[15aH-AuPPh3]2+         66.0 2.090(7) 1.837(7) 1.805(7) 104.4 [92] 

Transition metal complexes with the CDS 15b 

 13C NMR C-M SII-C              SIV-C SII-M-SIV  

[15b-AuPPh3]OTf         67.4 - - - [92] 

[15b-Ag-15b]OTf           not obs 2.111(7) 2.097(7) 1.718(6) 1.664(7) 106.3(6) [92,95] 

[15b-(AuPPh3)2](OTf)2    not obs 2.130(3) 2.103(3) 1.792(3)  1.746(3) 106.27(18) [92] 

[15b-Ag2-15b](OTf)2  not obs - - - [95] 

[15b-Ag4-15b](OTf)4 not obs 2.192 2.187   [95] 

[15bH-AuPPh3](OTf)2      72.1 2.098(3) 1.796(3) 1.789(3) 106.83(17) [92] 

Transition metal complexes with the CDS 15c 

  C-M SIV-C SIV-M-SIV  

[15c-AuPPh3]OTf         65.1 - - - [92] 

15c-AgCl                        not obs 2.134(3) 1.690(3) 1.678(3) 112.16(14) [92] 

[15c-(AuPPh3)2](OTf)2    not obs 2.126(4)  2.125(4) 1.789(4)  1.735(5) 112.5(2) [92] 

[15c-Ag-15c]OTf          40.0 2.116 2.127 1.671-1.696 114.6 115.6 [95] 

[15c-Ag2-15c](OTf)2        43.1 2.147 1.666          1.696 114.7 [95] 

[15c-Ag4-15c](OTf)4 nr 2.228 2.193 nr nr [95] 

{[15c(AuPPh3)2AgOTf](OTf)4}2 nr 2.139  2.108 1.757        1.747 116.8 [92] 
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Scheme 22. Selected of complexes with the carbone 15a. a) 2 eq AuCl(PPh3), b) AuCl(PPh3)2. 

 

 

Scheme 23. Selected of complexes with the carbone 15b. a) 0.5 eq AgOTf, b) 1.0 eq AgOTf, c) 

2.0 eq AgOTf, d) 2 eq AuCl(PPh3), e) AuCl(PPh3). 
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Scheme 24. Selected complexes with the carbone  ligand 15c; a) AgOTf, b) 0.5 eq AgOTf, c) 

1.0 eq AgOTf, d) 2.0 eq AgOTf. {[15c-(AuPPh3)2AgOTf](OTf)4}2 is dimeric linked by two 

OTf anions. 

15a-AgCl was obtained from [15aH]+ upon treating with Ag2O/CH2Cl2. The salt [15a-

AuPPh3]OTf formed reacting the bare 15a with AuCl(PPh3) followed by addition of NaTfO in 

THF. [15a-(AuPPh3)2](OTf)2 and [15aH-AuPPh3](SbF6) are sketched in Scheme 22 [92].  

[15b-AuPPh3]OTf was obtained analogously formed from reacting 15b with AuCl(PPh3) 

followed by addition of NaTfO in THF. For the other compounds, see Scheme 23 [92]. 
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The preparation of [15c-AuPPh3]OTf and 15c-AgCl follows the procedure outlined for the 

related 15b compounds [92]. For the other compounds, see Scheme 24 [92,95]. The hetero 

hexametallic cluster {[15c-(AuPPh3)2AgOTf](OTf)4}2 is supported by two carbone ligands that 

adopt a 4C,C’,N,N’ coordination mode. The Au---Ag separation amounts to 3.003 Å [92]. 

13C NMR signals of the donating C(0) atoms (if available) of all addition compounds of 15a 

to 15c are less shielded than that of the basic carbones [92]. 

 

2.16. Transition metal complexes of carbones with the S-C-Se skeleton (16) 

Compound 16 is the first carbone containing a Se(II) compound together with a S(IV) one 

as ligand for stabilization of a C(0) atom. 

 

Figure 19. Carbone with Se and S based ligands L. 

Table 14. Transition metal complexes with selected bond length (Å) and angles (deg) of the 

carbone 16 13C NMR signal (in ppm) of the central carbon atom. 

 13C NMR C-M C-S 

C-Se 

S-C-Se Ref. 

[16-Ag-16]OTf      not obs. nr nr nr [95] 

[16-Ag2-16](OTf)2  52.7 nr nr nr [95] 

[16-Ag4-16](OTf)4  not obs 2.174(5)  1.714(5)   

1.923(6) 

106.4(3) [95] 

[16H-Ag-16H](BF4)3            not obs 2.164(4) 2.177(4) 1.772(5) 1.771(5) 

1.936(4) 1.948(5) 

103.8(2) [93] 
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Scheme 25. Transition metal complexes with the carbone 16 as two and four electron donor. a) 

0.5 eq AgOTf, b) 1 eq AgOTf, c) 2.0 eq AgOTf, d) AgBF4/CH2Cl2. 

The tetranuclear complex [16-Ag4-16]4+ contains a rhomboidal [Ag4]4+ core surrounded 

by two carbones 16. In this and in [16H-Ag-16H]3+ the donating C(0) acts as a four electron 

donor [95]. 

3.  Transition metal carbido complexes [M]-C 

  The second part of this review summarizes the research of transition metal complexes 

with a naked carbon atom as ligand [M]-C. They are often termed as carbides but the bonding 

situation is clearly different from well-known carbides of the alkaline and alkaline earth 

elements E, which are salt compounds of acetylene EnC2. The electron configuration of carbon 

atom in the 1D state (2s22px
22py

02pz
0) is perfectly suited for dative bonding with a transition 

metal following the DCD model [7] in terms of σ donation and π backdonation [M] C|. 

Carbon complexes [M]-C may thus be considered as carbone complexes [M]-CL2 without the 

ligands L at the carbon atoms. A theoretical study showed in 2000 that the 18 valence electron 

(VE) complex [(CO)4Fe(C)] is an energy minimum structure with a rather strong Fe-C bond 

[96]. However, such 18 VE systems could not be synthesized as isolated species but were only 

found as ligands where the lone-pair electron at the carbon atom serves as donor (see below). It 
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seems that the electron lone-pair at carbon in the 18 VE complexes [M]-C makes the adducts 

too reactive to become isolated. 

 It came as a surprise when Heppert and co-workers reported in 2002 the first neutral 

adducts with a naked carbon atom as a ligand, which are the formally 16 VE diamagnetic 

ruthenium complexes [(PCy3)LCl2Ru(C)] (L= PCy and 1,3-dimesityl-4,5-dihydroimidazol-2-

ylidene; Cy = Cyclohexyl) [22]. A subsequent bonding analysis of the model compound 

[(Me3P)2Cl2Ru-C] considered five different models A – E for the Ru-C bonds that are shown in 

Figure 20 [23]. It turned out that the best description for the bonding interactions is a 

combination of electron-sharing and dative bonds. An energy decomposition analysis [97] 

suggested that the model B provides the most faithful account of the bond, where the σ bond 

and the π bond in the Cl2M plane come from electron-sharing interactions Cl2M=C whereas the 

π bond in the P2M plane is due to backdonation (Me3P)2Ru→C. The compounds 

[(PCy3)LCl2Ru(C)] should therefore be considered as 18 VE Ru(IV) adducts. The following 

section summarizes the research of transition metal complexes with a naked carbon atom as 

ligand [M]-C  that has been accomplished since 2002.  

 

Figure 20. Bonding models A – E for the bonding between a transition metal (TM) and a naked 

carbon atom in the compound [(R3P)2Cl2Ru-C]. 
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3.1. The system RuCl2(PCy3)2C  ([Ru]C) 

By far the most known complexes with carbido ligands that have been synthesized and 

structurally characterized are ruthenium adducts. The progress in the chemistry of 

ruthenium carbido complexes was reviewed in 2012 by Takemoto and Matsuzaka [121].  In 

the following we summarize the present knowledge on ruthenium carbido complexes, 

which was reported in the literature.  

The X-ray analysis of [Ru]C exhibits a Ru-C distance of 1.632(6) Å. A signal at 471.8 

ppm was attributed to the ligand carbon atom [98]. A general route to carbon complexes is 

described in [99]. 

 

Figure 21. The [Ru]C core 

Addition of PdCl2(SMe2)2 gives the complex [Ru]C→PdCl2(SMe2), while with 

Mo(CO)5(NMe3) the carbonyl complex [Ru]C→Mo(CO)5 is generated [24,98]. A series of 

[Ru]C→PtCl2L complexes were obtained by Bendix from reacting the dimeric complex 

{[Ru]C→PtCl2]2 with various lígands L (L = PPh3, PCy3, P(OPh)3, AsPh3, CNtBu, CNCy). 

Complexes with bridging Ligands L such as {[Ru]C→PtCl2]2bipy,  {[Ru]C→PtCl2]2pyz, and 

{[Ru]C→PtCl2]2pym formed upon displacing ethylene from the related (C2H4)PtCl2-L-

PtCl2(C2H4) by [Ru]C. {[Ru]C→PtCl]2(-Cl)pz results from an ethylene complex and [Ru]C as 

depicted in Scheme 26 [100]. A series of Pt, Pd, Rh, Ir, Ag, Ru complexes were presented by 

Bendix with X-ray data and 13C NMR shifts of the ligand carbon atom ranging between 340 

and 412 ppm [101]. Sulfur containing TM complexes with the metals Pd, Pt, Au, and Cu stem 

from the same laboratory. The sulfur ligands are ttcn =  1,4,7-trithiacyclononane and 

S4(MCp*)3 (see Fig. 22) [102]. 
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Figure 22. Spezification of ligands of Table 15. 

Table 15. Selected structural (in Å and deg) and spectroscopic (13C NMR in ppm) details of 
[Ru]C addition compounds 

 13C NMR  Ru-C M-C Ru-C-M ref 
[Ru]C→PdCl2(SMe2) 381.23 1.662(2) 1.946(2) 175.1(1) [98] 
{[Ru]C→PdCl3}- 380.9 nr nr nr [101]  
[Ru]C→Mo(CO)5 446.31 nr nr nr [98] 
[Ru]C→PtCl2Py 350.34 nr nr nr [24]  

[100]  
[Ru]C→PtCl2NCr(dbm)2 nr 1.676(2) 1.899(2) 174.5(1) [24] 
{[Ru]C→PtCl3}- 344.7 nr nr nr [24] 

[101]  
{[Ru]C→PtCl2}2 326.23 1.676(8) 1.871(8) 1796(4) [24]  

[100]  
[Ru]C→PtCl2PPh3 388.81 1672(2) 1.983(2) 173.7(1) [100] 
[Ru]C→PtCl2P(OPh)3 387.54 1.659(2) 2.001(2) 179.3(2) [100] 
[Ru]C→PtCl2AsPh3 374.68 1.670(2) 1.949(2) 171.9(2) [100] 
[Ru]C→PtCl2CNtBu 376.26 1.661(2) 1.967(6) 176.5(3) [100] 
[Ru]C→PtCl2CNCy 376.04 nr nr nr [100] 
[Ru]C→PtCl2PCy3 396.77 1.666(3) 1.971(2) 174.5(2) [100] 
[Ru]C→PtCl2(dmso) 349.0    [101] 
{[Ru]C→PtCl2}2bipy 348.27 1.679(3) 1.891(4) 171.4(2) [100] 
{[Ru]C→PtCl2}2pyz 342.48 1.668(6) 1.895(6) 176.3(3) [100] 
{[Ru]C→PtCl2}2pym 341.36 1.678(3) 1.893(3) 176.0(2) [100] 
{[Ru]C→PtCl}2(-Cl)pz 355.09 1.678(4) 1.909(4) 169.9(2) [100] 
[Ru]C→AuCl 395.3 nr nr nr [101] 
{[Ru]C→Au←C[Ru]}+ 395.3 nr nr nr [101] 
{[Ru]C→IrCl(CO)←C[Ru]} 397.4 nr nr nr [101] 
{[Ru]C→Rh(CO)}2(-Cl)2 396.4 nr nr nr [101] 
[Ru]C→RhCl(cod) 411.7 nr nr nr [101] 
[Ru]C→IrCl(cod) 387.6 nr nr nr [101] 
{[Ru]C→Ag(4’-H-terpy)} 433.5 nr nr nr [101] 
{[Ru]C→Ag(4’-Ph-terpy)} 433.1 nr nr nr [101] 
[Ru]C→Ag(ttcn) nr 1.653(4) 1.876(4) 177.3(2) [101] 
[Ru]C→Cu(ttcn) nr 1.622(7) 2.098(7) 176.9(5) [101] 
[Ru]C→Pd-S4(MoCp*)3 nr 1.672(3) 1.971(3 178.3(2) [101] 
[Ru]C→ Pt-S4(MoCp*)3 nr 1.689(7) 1.896(7) 178.2(5) [101] 
[Ru]C→ Pd-S4(WCp*)3 nr 1.668(5) 1.959(5) 178.1(3) [101] 
[Ru]C→ Pt-S4(WCp*)3 nr 1.699(9) 1.874(9) 178.8(6) [101] 
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Scheme 26. Selected [Ru]C→M carbido complexes and synthesis of {[Ru]C→PtCl}2(-Cl)pz 

3.2. The system RuCl2(PCy3)(NHC)C (NHC[Ru]C) 

The X-ray analysis of NHC[Ru]C exhibits a Ru-C distance of 1.605(2) Å. A signal at 

471.5 ppm was attributed to the ligand carbon atom. No addition compounds were 

described so far [22]. 

 

 

Figure 23. The NHC[Ru]C core 
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3.3. The system (NHC*)Cl3RuC- (NHC*[Ru]-C) 

 

 

Figure 24. The NHC*[RuCl3]-C core 

Treating the carbene complex (NHC*)Cl2(PCy3)Ru=CH2 at 55º in benzene generated  

the neutral complex depicted in Fig. 25. X-ray analysis revealed a Ru1-C distance of 1.698(4) Å 

and the Ru2-C distance of 1.875(4) Å with a Ru-C-Ru angle of 160.3(2)º. In the 13C NMR the 

bridging C atom resonates at the typical value of 414.0 ppm.[123] 

Ru C Ru
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Cl Cl
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Figure 25. Structural representation of the Ru carbido complex Ru2(NHC*)2Cl3H. 

 

3.4. The system RuClX(PCy3)2C ([Ru]XC) 

Various carbido complexes were reported in which one or both chloride ions in [Ru]C 

are replaced by X (X = Br, I, CN, NCO, NCS). {[Ru](MeCN)C}OTf is the first cationic 

carbido complex which is also starting point for most of the substituted carbido complexes. 

X-ray data for {[Ru](MeCN)C}OTf, [Ru](CN)2C, [Ru](Br)C, and [Ru](NCO)C are 

available  [103]. 
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Figure 26. Carbido compounds of [Ru]XC with various X. 

 

Table 16. Carbido complexes with the [Ru]XC core. 

 
13C NMR Ru-C M-C Ru-C-M Ref 

{[Ru](MeCN)C}OTf 
464.75 nr nr nr [103] 

[Ru](CN)2C 
464.7 nr nr nr [103] 

[Ru](F)C 
474.58 nr nr nr [103] 

[Ru](Br)C 471.38 nr nr nr [103] 

[Ru](I)C 469.74 nr nr nr [103] 

[Ru](CN)C 
474.91 nr nr nr [103] 

[Ru](NCO)C 
473.51 nr nr nr [103] 

[Ru](NCS)C 
477.50 nr nr nr [103] 

 

3.5. The systems OsCl2(PCy3)2C,  OsI2(PCy3)2C and OsCl2(PCy3)2C ([OsX]C) 

The carbido complexes [OsX]C were studied by X-ray analysis. The most important 

structural parameter is the Os-C separation, which for X = Cl amounts to 1.689(5) Å [104]. 

Single-crystal X-ray diffraction reveals that molecular [OsX]C adopts an approximately square-

pyramidal core geometry, with the carbido ligand occupying the apical position and a short Os-

C bond. In the 13C NMR spectrum the signal at 471.8 ppm for X = Cl was attributed to the 
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ligand carbon atom. It was synthesized via S-atom abstraction from the thiocarbonyl complex 

Os(CS)(PCy3)2Cl2 by Ta(OSi-t-Bu3)3. The diiodo derivative was synthesized from [OsCl]C 

upon reacting with 10 eq of Me3SiI and exhibits a 13C NMR signal at 446.14 ppm. 

 

Figure 27. The [Os]C core 

 

3.6. The system [Tp*Mo(CO)3≡C]+ ([Mo]+C) 

 

*T = tris(3,5-dimethylpyrazolyl)borate 

  

Figure 28. The [Mo]+C core. 

The reaction between Tp*Mo(CO)2CCl and KFeCp(CO)2 generates the carbido 

complex [Mo]C→FeCp(CO)2 [105]. When Tp*Mo(CO)2CSe was allowed to react with 

[Ir(NCMe)(CO)(PPh3)2]BF4 the tetranuclear carbido complex (μ-Se2)[Ir2-

{[Mo]C}2(CO)2(PPh3)2] was obtained, see Fig. 29 [106]. A solution of Tp*Mo(CO)2CBr in 

THF was treated with BuLi followed by addition of HgCl2 resulted in the formation of the 

carbido complex [Mo]C →Hg←C[Mo] [107]. 
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Table 17. Compounds with [Mo]+C core.  

 Mo-C M-C Mo-C-M 13C NMR Ref 

[Mo]C→FeCp(CO)2 1.819(6) 1.911(8) 172.2(5) 381 [105] 

(μ-Se2)[Ir2-{[Mo]C}2(CO)2(PPh3)2] 1.843(5) 1.974(5) 171.3(3) 168.2(3) 286.1 [106] 

[Mo]C→Hg←C[Mo] nr nr nr 373 [107] 

[Mo]C→AuPPh3 nr nr nr nr [108] 

 

Figure 29. Selected structures of compounds with the [Mo]+C moiety. 

 

3.7. Unique Mo carbido complex  

A further unique carbido complex was described recently as shown in Fig. 28. A signal at 

360.8 ppm in the 13C NMR spectrum was assigned to the ligand carbon atom [109]. 

 

Figure 30. The carbido complex with the P2(CO)Mo≡C core. 
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3.8. The system [Tp*W(CO)3≡C]+ ([W]+C) 

 

 

Figure 31. The [W]+C core 

Reaction of [W]C-Li(THF) with NiCl2(PEt3)2 produced the complex 

[W]C→NiCl(PEt3)2 [110]. Similarly, with [W]C-Li(THF) and FeCl(CO)2Cp or HgCl2 the 

compounds [W]C→Fe(CO)2Cp and [W]C→Hg←C[W], respectively, were obtained. 

[W]C→AuPEt3 was prepared from reacting [W]C→SnMe3 with AuCl(SMe2) followed by 

addition of PEt3. A similar reaction with AuCl(PPh3) yielded [W]C→AuPPh3. 

[W]C→AuAsPh3 and [W]C→AuPPh3 form a tetrameric assembly as depicted in Fig. 32. The 

X-ray analysis of the tetrameric unit revealed Au-C distances of 1.995 and 2.078 Å and a W-C 

distances of 1.877 Å [108]. 

 

Table 18. Compounds with [W]+C core. 

 W-C M-C W-C-M 13C NMR Ref 

[W]C→NiCl(PEt3)2 nr nr nr nr [110] 

[W]C→Fe(CO)2Cp nr nr nr nr [108] 

[W]C→Hg←C[W] nr nr nr nr [108] 

[W]C→AuAsPh3 nr nr nr nr [108] 

[W]C→AuPPh3 nr nr nr nr [108] 

[W]C→AuPEt3 nr  nr nr 397.7 [108] 
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Figure 32. Tetrameric unit from [W]C→AuAsPh3 and [W]C→AuPPh3 [108]. 

 

3.9. The systems N3MoC and O3MoC 

The potassium salt of NMOC- is dimeric with two K+ ions bridging two anions and can be 

transformed with the crown ethers 2.0-benzo-15-crown-5 and 1.0 2,2,2-crypt into the related 

ion pairs. X-ray analysis of the crown ether salt revealed a Mo-C distance of 1.713(9) Å 

[21,111]. 

           

Figure 33. The [NMo]-C and  [OW]-C core. 

The complex [OW]C→Ru(CO)2Cp was prepared from reacting [OW]C-Et with 

Ru(C≡CMe)(CO)2Cp under loss of MeCCEt. The ligand C atom resonates at 237.3 ppm (1JWC 

= 290.1 Hz). Distances are W-C = 1.75(2) Å, Ru-C = 2.09(2) Å and the W-C-Ru angle amounts 

to 177(2) º [112]. 
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3.10. Symmetrically bridged carbido complexes M=C=M 

3.10.1. The Fe=C=Fe core 

[Fe(TPP)]2C was obtained from FeIII(TPP)Cl in the presence of iron powder by reacting 

with CI4 (TPP = 5, 10, 15, 20-tetraphenylporphyrin; according to FeII the complex is 

diamagnetic [113] X-ray analysis revealed an Fe-C bond length of 1.675 Å and a Fe-C-Fe angle 

of 180º [114]. 

[Fe(pc)(1-meim)}2C was similarly obtained as the Tpp derivate; starting with pcFe and 

CI4 followed by addition of sodium dithionite gave the -carbido bridged dimer; the Fe-C bond 

distance amounts to 1.70(1) Å and the Fe-C-Fe angle is 178(1) º (1-meim = 1-methylimidazole, 

pc = phthalocyanine) [115]. 

 

3. 10.2. The Rh=C=Rh core 

[Rh(PEt3)2(SGePh3)]2C was obtained upon reacting Rh(PEt3)2(SGePh3)CS with 

Rh(PEt3)3(Bpin) via the intermediate mixed carbido complex 

(SGePh3)(PEt3)2Rh=C=Rh(PEt3)2(SBpin) which rearranges to this complex and 

[Rh(PEt3)2(SBpin)]2. The X-ray analysis was performed (see Table 19) [116] 

[Rh(PEt3)2(SBpin)]2C was prepared earlier by the same working group from Rh(PEt3)3(Bpin) 

and 0,5 eq of CS2 (X-ray data see Table 19). Addition of MeOH generated the carbido complex 

[Rh(PEt3)2(SH)]2C [117]. [Rh(Cl)(PPh3)2]2C resulted from reacting the thiocarbonyl complex 

Rh(Cl)(PPh3)2CS with HBCat. The central C atom resonates at 424 ppm (t, 1JRhC = 47 Hz). In 

the chloro complex the chloride ion can be replaced with  K[(H2B(pz)2], K[(H2B(pzMe2)2], or 

K[(HB(pz)3] to produce the carbido complexes [Rh(H2B(pz)2)(PPh3)]2C, 

[Rh(H2B(pzMe2)2)(PPh3)]2C, and [Rh(HB(pz)3)(PPh3)]2C, respectively. The unusual 

asymmetric carbido complex [Rh2H(μ-C)(μ-C6H4PPh2-2){HB(pzMe2)3}2] contains a RhI atom 

with a shorter Rh-C distance, while the RhIII –C distance is longer [118]. 
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Table 19. Rh-C distances (in Å) and Rh-C-Rh angles (in deg). 13C NMR of the bridging carbon 

atom in ppm. 

 13C NMR Rh-C Rh-C Rh-C-Rh Ref 

[Rh(PEt3)2(SGePh3)]2C 425.8 1JRhC = 47 1.788(4) 1.798(4) 175.6(2) [116] 

[Rh(PEt3)2(SBpin)]2C nr 1.790(7) 1.766(7) 176.1(4) [116,117] 

[Rh(PEt3)2(SH)]2C nr nr nr nr [117] 

[Rh(Cl)(PPh3)2]2C 424 t, 1JRhC = 47 1.7828(19) 1.7828(19)  [118] 

[Rh(H2B(pz)2)(PPh3)]2C nr 1.7644(11) 1.7644(11) 169.1(7) [118] 

[Rh(H2B(pzMe2)2)(PPh3)]2C nr 1.7794(9) 1.7794(9) 168.8(6) [118] 

[Rh(HB(pz)3)(PPh3)]2C nr 1.7761(7) 1.7761(7) 163.7(4) [118] 

[Rh2H(μ-C)(μ-C6H4PPh2-2) 

{HB(pzMe2)3}2] 

447.2 1JRhC = 40, 

50 

1.740(6) 

RhI 

1.818(6) 

RhIII 

165.9(3) [118] 

 

 

Figure 34. Selected structures of Rh=C=Rh complexes. 
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3.10.3. The Ru=C=Ru core 

The tetranuclear carbido complex [Ru(PEt3)Cl(-Cl3)RuAr]2C was prepared from the 

reaction of [(p-cymene)Ru(μ-Cl)3RuCl(C2H4)-(PCy3)] with HCCH in THF. X-ray analysis 

adopts Ru-C distances of 1.877(9) Å and a Ru-C-Ru angle of 178.8(9)º [119]. 

 

 

Figure 35. Structural representation of the Ru carbido complex [Ru(PEt3)Cl(-Cl3)RuAr]2C. 

 

3.10.4. The Re=C=Re core 

The unique carbido complex [Re(CO)2Cp]2C results from reaction of [Re(thf)(CO)2(-

C5H5)], CS2, and PPh3 (with the aim of the thiocarbonyl complex [Re(CS)(CO)(-C5H5)]) as 

by-product in small amounts. X-ray analysis revealed Re-C distances of 1.882(14) and 

1.881(14) Å and a Re-C-Re angle of 173.3(7)º. A 13C NMR shift for the ligand carbon atom at 

C = 436.4 ppm was measured [120]. 

 

Figure 36. Structural representation of the Re carbido complex [Re(CO)2Cp]2C. 
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3.11. Asymmetrically bridged carbido complex M’=C=M 

3.11.1. The Fe=C=Re core 

The asymmetrical carbido complex (TPP)Fe=C=Re(CO)4Re(CO)5 was prepared upon 

reacting the dichlorocarbene complex (TPP)Fe=CCl2 with 2 eq of pentacarbonylrhenate, 

[Re(CO)5]-,  under release of CO and 2 Cl-; TPP is tetraphenylporphyrin. Crystals were 

analyzed by X-ray diffraction and revealed a Fe=C distance of 1.605(13) Å and a C=Re 

distance of 1.957(12) Å. The Fe-C-Re angle amounts to 173.3(9) º; the Fe-C distance is 

somewhat smaller than in [(TPP)Fe]2C and the Re-C distance is appreciable longer than in 

[Re(CO)2Cp]2C. In the 13C NMR spectrum the central carbido C atom resonates at 211.7 ppm 

[122] 

 

Figure 37. Structural representation of the Fe=C=Re carbido complex (TPP)Fe=C=Re2(CO)9. 

 

4. Conclusion  

The experimental and theoretical research about transition metal complexes with 

carbone ligands [M]-CL2 and carbido complexes [M]-C has blossomed in the recent past and it 

can be foreseen that it will remain a very active area of organometallic chemistry in the future. 

The well-known family of transition metal complexes with C1-bonded carbon ligands that 

comprise alkyl (CR3), carbene (CR2) and carbyne (CR) groups has been extended by carbones 

(CL2) and carbido (C) ligands. The summary of recent work, which is described in this review, 

indicates that carbone and carbido complexes are still largely terra incognita and that many new 

discoveries can be expected.  
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