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Abstract: Emerging and reemerging pathogens is a global challenge for public health. Recently, 11 

a novel coronavirus disease emerged in Wuhan, Hubei province of China, in December 2019. It is 12 

named COVID-19 by World Health Organization (WHO). It is known to be caused by Severe 13 

Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) that affects the lower respiratory tract 14 

and manifests as pneumonia in humans. Coronaviruses (CoVs) are structurally more complicated 15 

as compared to other RNA viruses. This viral epidemic has led to the deaths of many, including 16 

the elderly or those with chronic disease or compromised immunity. Viruses cause infection and 17 

diseases in humans of varying degrees, upper respiratory tract infections (URTIs) cause common 18 

cold while lower respiratory tract infections induce pneumonia, bronchitis, and even severe acute 19 

respiratory syndrome (SARS). The costs of COVID-19 are not limited. It equally affects all the 20 
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medical, sociological, psychological, and economic aspects globally. This is regarded as the third 21 

deadly outbreak in the last two decades after Severe Acute Respiratory Syndrome SARS (2002–22 

2003) and Middle East Respiratory Syndrome MERS (2012). Based on the sequence homology of 23 

SARS-CoV-2, different animal sources including bats, snakes, and pangolins have been reported 24 

as potential carriers of this viral strain. Real-time RT-PCR represents the primary method for the 25 

diagnosis of new emerging viral strain SARS-CoV-2. The transmission dynamics suggest that 26 

SARS-CoV-2 is transmitted from person-to-person through direct contact or coughing, sneezing, 27 

and by respiratory droplets. Several anti-viral treatments including lopinavir/ritonavir, remdesivir, 28 

chloroquine phosphate, and abidor are also suggested with different recommendations and 29 

prescriptions. Protective and preventive strategies as suggested by various health organization i.e. 30 

WHO and US Center for Disease Control and Prevention (CDC) must be adopted by everyone. 31 

This review covers the important aspects of novel COVID-19 including characteristics, virology, 32 

symptoms, diagnostics, clinical aspects, transmission dynamics, and protective measures of 33 

COVID-19.   34 

Keywords: Coronavirus, sequence homology, transmission, virology, diagnosis, virus control, 35 

vaccination. 36 

1. Introduction  37 

Emerging and reemerging pathogens is a global challenge for public health [1]. Very recently, a 38 

novel coronavirus which was temporarily named “2019 novel coronavirus (2019-nCoV)” emerged 39 

in Wuhan, China, home to 11 million people [2].  Coronaviruses (CoVs) primarily cause multiple 40 

respiratory and intestinal infections in humans and animals [3]. Although the history of CoVs 41 

began in the 1940s [4, 5], the identification of the first human CoVs was reported in the 1960s, as 42 

causative agents for mild respiratory infections.  43 

Coronaviruses are non-segmented positive-sense RNA viruses and have been placed to the family 44 

Coronaviridae and the order Nidovirales [6]. Based on genetic and antigenic criteria, CoVs have 45 

been organized into four groups: α-CoVs, β-CoVs, γ-CoVs, and δ-coronavirus  ( Table 1 ) [3, 7]. 46 

Outbreaks of the two ß-coronaviruses, one being the Severe Acute Respiratory Syndrome 47 

Coronavirus (SARS-CoV) [8-10] while the other Middle East Respiratory Syndrome Coronavirus 48 

(MERS-CoV) [11, 12] have induced more than 10,000 cases in the past twenty years, with 49 

mortality rates of 37% for MERS-CoV and 10% for SARS-CoV [13, 14]. SARS-CoV also caused 50 

a major viral outbreak in Guangdong (China) in 2002 and 2003  [15]. MERS-CoV was the 51 

pathogen responsible for severe respiratory disease outbreaks in 2012 in the Middle East [12]. 52 
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Coronaviruses not only infect humans but also infect mammals and birds which harmed the 53 

farming industry [16-20].54 

 Table 1: Organization of CoV’s species 55 

Group Species 

 

 

α-CoVs 

Transmissible Gastroenteritis Coronavirus 

(TGEV) 

Canine Coronavirus (CCoV) 

Porcine Respiratory Coronavirus (PRCoV) 

Feline Coronavirus (FeCoV) 

Porcine Epidemic Diarrhoea Coronavirus 

(PEDV) 

Human Coronavirus 229E (HCoV-229E) 

Human Coronavirus NL63 (HCoV-NL63) 

 

 

β-CoVs 

Bat Coronavirus (BCoV) 

Porcine Hemagglutinating 

Encephalomyelitis Virus (HEV) 

Murine Hepatitis Virus (MHV) 

Human Coronavirus 4408 (HCoV-4408) 

Human Coronavirus OC43 (HCoV-OC43) 

Human Coronavirus HKU1 (HCoV-HKU1) 

Severe Acute Respiratory Syndrome 

Coronavirus (SARS-CoV) 

Middle Eastern Respiratory Syndrome 

Coronavirus (MERS-CoV) 

γ-CoVs Avian Infectious Bronchitis Virus (IBV) 

Turkey Coronavirus (TCoV) 

 

δ -CoVs Bird Coronavirus 

 56 

Some coronaviruses were originally implied as enzootic infections, limited only to their natural 57 

animal hosts. But they have transversed the animal-human species barrier and progressed to be 58 

established as the source of zoonotic diseases in humans [21-23]. Consequently, these cross-59 

species barrier jumps conceded the CoVs like the SARS-CoV and MERS- CoV to manifest as 60 
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virulent human viruses. Their existential history is unknown so far but often they are linked with 61 

mild infections and in the worst case scenario, a new high virulent strain appears after few years. 62 

This review aims to provide a brief knowledge of the pathogenicity and history of SARS, as well 63 

as the lessons learned. The other purpose is to review the characteristics, virology, immunity and 64 

infection, clinical characteristics, diagnosis, and management of patients infected with SARS-65 

CoV-2 and transmission dynamics for a better understanding of this deadly coronavirus and 66 

suggests its prevention, treatment, and management strategies. 67 

2. Characteristics of Coronaviruses 68 

2.1. Structure 69 

These viruses are called coronaviruses (CoVs ) because of their crown-like unique appearance 70 

(Figure 1). Coronaviruses (CoVs) are structurally more complicated as compared to other RNA 71 

viruses. Among all RNA viruses, CoVs have the largest virus genomes of size about 26 - 32 kb 72 

(kilobases). These viruses have a spherical shape and a diameter of ≈ 100 nm [24, 25]. 73 

 74 

 75 

Figure 1: Structure of Coronavirus 76 

 77 

The major part of CoVs structure consists of four or five structural proteins. Minor components 78 

are also present which include non-structural and host cell-derived proteins [26]. The protein coat 79 

(capsid) around CoVs protects the genetic material of these viruses. All viruses are made up of  80 

Nucleocapsid (N), Spike (S), Envelope (E), and Membrane (M) structural proteins and some also 81 

encodes a hemagglutinin–esterase (HE) protein [27]. Although these proteins are structurally 82 

complicated and carry a range of functions, they occupy only a third of the coding capacity in the 83 

CoVs genome [28, 29]. A major portion of the genome, some two-thirds located at the 5’ end 84 

encodes two long open reading frames 1a and 1b that together encode the polyprotein precursors 85 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 August 2020                   doi:10.20944/preprints202008.0516.v1

https://doi.org/10.20944/preprints202008.0516.v1


5 
 

pp1a and pp1ab of the virus. Several viral proteases are also present in polyprotein which together 86 

develop pp1a and pp1ab into 16 non-structural proteins (nsp1–16) that are necessary at different 87 

phases of the virus replication [27]. Cellular membranes are encountered by the virus surface 88 

proteins, S, M, and E to initiate the infection again during the replication phase that is transformed 89 

and fused into the endoplasmic reticulum and Golgi intermediate compartment (ERGIC)  [30]. 90 

Finally, budding of the developed virions takes place into the secretory pathway [28, 29]. Among 91 

all the proteins in CoVs, the spike proteins (S) play an important role in the activation and initial 92 

attachment of the virion with DPP4 (dipeptidyl peptidase 4) host cell receptor. The RBDS 93 

(receptor- binding domains) of the S proteins exclusively recognize the human angiotensin-94 

converting enzyme 2(ACE2) [31].  95 

Hence, this protein has a major role in the spread of coronavirus specifically from humans to 96 

humans and cross-species as well. Furthermore, numerous non-structural proteins also act together 97 

with membranes as is in common with other positive-strand RNA (Ribonucleic acid) viruses. Virus 98 

replication takes place in specialized cellular compartments induced by viral proteins that 99 

transform host membranes to originates sites for replication that are veiled from the cellular 100 

inducers of innate immunity [32]. The blend of various membrane intermingling factors and 101 

numerous sites of membrane interfaces make coronaviruses (CoVs) to more genetic variables and 102 

infectious virus [33]. 103 

2.2. Virology of Coronavirus 104 

The International Committee for Taxonomy of Viruses proclaims: Coronaviruses (CoVs) belong 105 

to two subfamilies: Torovirinae and Coronavirinae which are members of the family: 106 

‘Coronaviridae’, and order: Nidovirales. Coronavirinae (subfamily) is further categorized into 107 

four major classes: Alpha-coronaviruses (α-CoVs), Beta-coronaviruses (β-CoVs), Gamma-108 

coronaviruses (γ-CoVs), and Delta-coronaviruses (δ-CoVs) (Figure 2) [3]. HCoV-NL6 and 109 

HCoV-229E are Alpha-coronaviruses while SARS coronavirus, HCoV-HKU1, HCoV-OC43, and 110 

MERS coronavirus are the Beta-coronaviruses. Both kinds of coronaviruses (α-coronavirus and β-111 

coronavirus) infect just mammals, while the γ-coronavirus and δ-coronavirus habitually infect 112 

birds [34]. According to currently reported databases, it has been observed that all human 113 

coronaviruses (CoVs) originate from animals: MERS-CoVs, HCoV-229E, SARS-CoVs, and 114 

HCoV-NL63 originate from bats while HKU1and HCoV-OC43 are possibly derived from rodents 115 

[25, 35]. 116 
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 117 

           Figure 2. Classification of Coronavirus 118 

The novel coronavirus (2019-nCoV) is the seventh (7th) member of the CoVs’ family that infects 119 

human beings, after Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute 120 

respiratory syndrome coronavirus (SARS-CoV). The novel coronavirus (2019-nCoV) is a Beta-121 

coronavirus (β-CoV) [36] of group 2B, which has about 70% resemblance in genetic sequence 122 

with SARS coronavirus [37]. The genetic sequence of this coronavirus (2019-nCoV) became 123 

accessible to the world health organization (WHO) by employing genome sequencing. The origin 124 

of the novel coronavirus (2019-nCoV) infection has been established as bats. Zhou and his 125 

coworkers, through full-length genome sequences, established that novel coronavirus are ≈ 96% 126 

alike at the whole genome level to a bat coronavirus (CoV) [38]. Wu and collaborators executed 127 

the phylogenetic study on the whole viral genome. They concluded that 2019-nCoV was strongly 128 

linked with SARS-nCoV alike coronavirus, formerly reported from bats in China [39]. Ji and team-129 

mates accomplished extensive sequence studies and evaluation in combination with RSCU 130 

(relative synonymous codon usage) partiality amongst various animal genera established on the 131 

novel coronavirus (2019-nCoV) RNA (Ribonucleic acid) genome sequence. They concluded that 132 

the novel coronavirus is possibly a recombinant virus among the bat coronavirus (CoV) and 133 

additional permutation coronavirus (CoV) with an indefinite source. Because of the virus's relative 134 

synonymous codon usage (RSCU) closest to the snake, they established that the indefinite source 135 

is probably the snake [40]. Zhu and coworkers employed algorithmic techniques to study the gene 136 

sequences of   2019-nCoV and other CoVs and to identify possible viral hosts. They concluded 137 

that minks and bats could-be the two possible hosts of the 2019-nCoV [41]. The novel coronavirus 138 

(2019-nCoV) exhibited an analogous form of infection to other CoVs (SARS-nCoVs, MERS-139 

nCoVs, and Bat SARS-like CoVs) in humans. Xu and coworkers while modeling the spike protein 140 
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of the receptor for novel coronavirus (2019-nCoV) stated that the enzyme ACE2 (angiotensin-141 

converting enzyme 2) may be the possible receptor for this novel virus [42]. Likewise, ACE2 is 142 

also a preferred receptor for SARS coronavirus and NL63 virus [43-45]. They also reported that 143 

the binding affinity between the novel coronavirus and angiotensin-converting enzyme-2 is greater 144 

than the threshold needed for virus attack, although being smaller than that between SARS 145 

coronavirus and angiotensin-converting enzyme 2 (ACE2). Zhou and team-mates performed virus 146 

infectivity analyses and established that ACE2 is necessary for novel coronavirus to penetrate 147 

HeLa cells [46]. They also concluded that the angiotensin-converting enzyme-2 (ACE2) may be 148 

the receptor for novel coronavirus. Zhao and coworkers examined lung tissue cells in eight healthy 149 

persons. They concluded that the Asian donors have almost five times more angiotensin-150 

converting enzyme-2 expressing cell ratio as compared to American, African, and white donors 151 

[47, 48]. These results indicated susceptibility of Asian population, though more data and 152 

confirmation are required to derive such results. 153 

3. Immunity and infection (Host response) 154 

Host immune response consists of multiple tissues, cells, and molecules that are responsible for 155 

the protection of the host from an invasion of pathogenic microorganisms like viruses. The immune 156 

response is a key factor to control viral infection and works to stop viral gene transfer and blocks 157 

or reduce pathogenic transgene expression [49]. The innate immune system recognizes the 158 

invading virus using different types of cell or body receptors. Several types of receptors like pattern 159 

recognition receptors (PRRs) detecting viral DNA or RNA, induce type I interferons  (IFNs) and 160 

other pro-inflammatory cytokines inside infected cells [50]. The adaptive immune response is an 161 

antigen-specific, long term response to the viral infection that takes several days to weeks for its 162 

development.  Native T cells proliferate and produce long term memory cells that completely 163 

remove the viral infection and are useful to cure a viral infection in the future [51].  A balance 164 

between host viral interaction and an immune response is very important as a deficiency in immune 165 

response will increase viral infection. While overactive immune response will lead to 166 

immunopathological disorders [52].  Here we will briefly discuss the human immune response to 167 

coronavirus and its infection. 168 

3.1. Innate Immune response 169 

The innate immune system acts as the first line of defense and produces rapid and broad response 170 

against viral invasion and replication. Recognition of pathogen-associated molecular patterns 171 

(PAMPs) helps detect viral infections by making use of pattern recognition receptors (PRRs).  172 
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NOD-like receptors, Toll-like receptors, RIG-like receptors, and C-type lectin-like receptors are 173 

the main types of PRRs.  Some of the free molecular receptors like IF16, STING, DAI, and cGAS 174 

are also present freely in the cytoplasm [53].  175 

3.1.1. Toll-like receptors 176 

Toll-like receptors are a group of toll-like proteins, found in both invertebrates and vertebrates. 177 

These receptors recognize pathogens by PAMPs of nucleic acid (DNA, RNA) proteins, lipids, and 178 

lipoproteins [54]. Depending on localization and associated PAMP ligands, these receptors are 179 

categorized into two types. One type which consists of TLR 1,2,4,5,6 and 11 primarily recognizes 180 

viral membrane components such as proteins, lipids, and lipoproteins and is present on the cell 181 

surface. The second type comprises TLR 3,7,8 and 9; and is found in intracellular components 182 

which include lysosome, endosome, and endoplasmic reticulum (ER); and detect viral DNA or 183 

RNA for initiation of immunity response in the cell [55].  Different types of TLRs induce different 184 

biological responses by activating TIR domain-containing adapter molecules. For example, 185 

surface TLR1-2-6 and TLR-5 mainly induce inflammatory cytokines. Further type I interferon and 186 

cytokine inflammatory response is generated by TLR3 and TLR4.  This difference was understood 187 

by the finding of the TIR-domain which includes molecules that are activated by different TLRs 188 

using different signaling paths. MYD88 has first discovered molecules that are universally 189 

activated by all TLRs except TLR-3 and activate inflammatory response by the activation of 190 

mitogen-activated protein kinase and transcription factor NF-κB. While TLR-3 and TLR-4 use 191 

activate transcription factor IRF-3 and NF-κB that induces activation of inflammatory factor and 192 

type I interferon [56].  Alison et al after a series of experiments revealed that in mice, TLR 193 

signaling is very important to protect it from SARS-CoV infection. Balanced immune response 194 

based on both MYD88 and TRIF signaling pathways induces the most efficient host response to 195 

viral infection [57]. Feline infectious peritonitis (FTIP) is a fatal intestinal disease induced by 196 

feline coronavirus (FCoV). TLR (2,4 and 8) receptors detect FCoV viruses by their structural 197 

proteins and nucleic acid patterns that generate inflammatory pathways of action against viral 198 

infection [58]. 199 

3.1.2. RIG-I-like receptors 200 

RIG-I-like receptors (RLRs) are a group of H receptors that include (MDA5, RIG-I, and LGP-2). 201 

These are nucleic acid-based receptors that detect pathogens (viruses) and viral infections based 202 

on RNA sequences to generate antiviral response [59]. These RLR receptors use molecular 203 

machinery for recognition of RNA and activate signaling through mitochondrial adaptive signaling 204 

(MAV) that further activates antiviral response by the manifestation of cytokines involving type I 205 

and type III interferons. N-terminal caspase recruitment structure present on MDA5 and RIG-I 206 
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interacts with downstream adapter MAVs. C-terminal termination Domain (CTD) and viral RNA 207 

helicase structure identify RNA that needs ATP to induce conformational changes to generate 208 

Caspase Recruitment Domain CARD structure that interacts with MAVS to induce immune 209 

response [60].  210 

The most common viral characteristics recognized by RLRs are double-stranded RNA (dsRNA) 211 

or 5’ RNA (ppp-RNA) generated during viral replication and transcription of the viral genome 212 

[61]. RIG-I detects diversity of RNA viruses which includes Hepatitis C virus, Newcastle disease 213 

virus, Influenza virus, measles virus by ppp-RNA, and 5’-end of double-stranded RNA. While 214 

MDA5 receptors recognize RNAs of poliovirus, picornavirus, and encephalomyocarditis virus by 215 

characteristic RNA strand greater than 1 kbp [62, 63]. A coronavirus is a group of positive-sense 216 

RNA viruses and both RIG-I and MDA5 respond to their invasion [64]. But these large RNA 217 

viruses have genetic space that encodes for several proteins to stop immunity response. For 218 

example, SARS coronavirus encodes Papin like protease (PLpro) to inhibit interferon III 219 

activations by RIG-I receptors [65]. Middle East Coronavirus (MERS) encodes ORF86B  protein 220 

that inhibits the interaction between MDA5/RIG-I receptors and MAVS that stops the activation 221 

of interferon III as an immune response [66]. The nucleocapsid protein of SARS-coronavirus has 222 

been found effective in the suppression of RNA in mammals that affects the response of MDA5 223 

receptors [66]. SARS and MERS-coronaviruses also avoid host detection of dsRNA by replicating 224 

in virus-induced double-membrane vesicles that lack PRRs for viral dsRNA identification. 225 

Moreover, capping of viral mRNA with complexes such as nsp-10 and nsp-16 generated by both 226 

MERS and SARS coronavirus are helpful in inhibiting   immune response of MDA5 and 227 

interferons [67-69]. 228 

3.1.3. C-Type lectin-like Receptors 229 

 C-type lectin receptors are a huge group of soluble receptors comprising of higher than 100 230 

members present on myeloid cells. They bind to carbohydrates in a calcium-dependent manner 231 

and their lectin activity is facilitated by carbohydrate-recognition domains (CRDs). Due to their 232 

multiple signaling pathways and large motif structure, CLRs perform a variety of functions such 233 

as induction of endocytosis, platelet activation, cell adhesion, and natural immune response. Based 234 

on molecular structure and cellular activation CLRs are mainly divided into two types as 235 

macrophage-induced C-type lectins (Mincles), and dectin-2 receptors. Mincles are directly 236 

activated by type II transmembrane receptors. While the dectin—2 receptors are activated by the 237 

activation of HAM-like motifs within the intracellular tail of receptors (Dectin-1 and DNGR-1 238 

receptors) [70-72]. This leads to the activation of molecules like MAPKs and NF-κB that triggers 239 
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the diversity of cellular immune response such as maturation, chemotaxis, and cell phagocytosis 240 

[73]. 241 

CLRs are very important in viral detection and activation of immune response and research 242 

revealed that deadly viruses such as HIV and dengue viruses disrupt the function of these receptors 243 

to stop immune response against viral infection [74]. Avian coronavirus is a poultry virus and 244 

infects respiratory epithelium and other respiratory organs. DC-SIGN/L-SIGN (C-type lectin 245 

receptors) are found to be effective in detection and inhibition of viral infection [75]. CD209L; a 246 

CLR receptor of human lungs expressed in endothelial cells and type II alveolar cells are found to 247 

be the potential target of SARS-CoV and other enveloped viruses (such as Sindbis and 248 

Ebolavirus).A large protein S glycoprotein (spike protein) encoded by SARs-CoV binds with 249 

ACE2 and CD209L during viral invasion and infection [76].  250 

3.1.4. Type I Interferons 251 

Type I interferons are key effector cytokines of host immune response against viral infections. 252 

They limit the viral spread with an immunomodulatory response that enhances the phagocytosis 253 

of antigens and activation of natural killer cells to restrict viral infection to the target cell. Thus the 254 

production of IFNs precisely influences the existence of the virus in the host [77, 78].  Type I 255 

interferons are further classified into IFN-I, IFN-II, and IFN_III according to their cognate 256 

receptors and IFN transcribing genes. Upon viral invasion, PRRs like toll-like receptors (TLRs), 257 

nucleotide receptors (NLRs), scavenger receptors (SR), RIG-like receptors, and nucleotide-258 

binding oligomerization domain-like receptors (NLRs) activate NF-kB and IRF7 signaling 259 

pathways to induce the pro-inflammatory response of interferons [79]. 260 

Murine coronavirus; known as the mouse hepatitis virus (MHV), is recognized by MDA5 as a 261 

PRR receptor. These receptors induce Type I IFN and secretion of IFN- β in animal brain cells. 262 

This approves the importance of IFNs in the immune response against viral infection [80]. IFN-α 263 

activated by plasmacytoid dendritic cells (pDCs) is also found effective in potential control against 264 

mouse (MHV) coronavirus and human Severe Acute Respiratory Syndrome (SARS) coronavirus 265 

[81]. Viral infections are lethal if they suppress or stop production or activation of type I 266 

interferons. SARS coronavirus encodes the production of M protein that antagonizes activation of 267 

IFN-stimulated response and stops the transcription process of type I interferons.  Porcine 268 

Epidemic Diarrhea Coronavirus (PEDV) that causes acute diarrhea in swine; encodes 269 

endoribonuclease that suppresses the activity of type I interferons [82, 83]. SARS coronavirus-2; 270 

known as a novel coronavirus (COVID-19), is found to be more sensitive than SARS coronavirus 271 

against Type I interferons pretreatment.  COVID-19 has a more sensitive response with increased 272 
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STAT 1 phosphorylation and stimulated gene induction (SGI) protein synthesis. Single-cell RNA 273 

technology was used recently to understand the human immune response against COVID-19. 274 

Detection of the viral invasion, gene expression level, and type I interferon response was found to 275 

be a key factor to control viral infection and life-threatening stage in humans [84]. Thus, a complete 276 

understanding of type I interferon immune response will be useful in the treatment of acute 277 

coronavirus infections.  278 

Dendritic cells (DCs) are the antigen cells that initiate and modulate the immune response by 279 

effectively stimulating B and T lymphocytes which combine the innate and adaptive immune 280 

response. B-cells are precursors of antibody-secreting cells that directly recognize native antigen 281 

through B-cell receptors. T lymphocytes cannot directly recognize antibody and need major 282 

histocompatibility complex (MHC) presented on the surface of APC for recognition of antigen 283 

fragments. Immature dendrite cells can easily move while mature DCs efficiently activate T cells 284 

for initiation and regulation of immune response against viral infection [85, 86].   285 

Upon viral invasion dendrite, cells receive signals that initiate and regulate the cell-dependent 286 

immune response.  Dendrite cells have a very efficient mechanism that detects pathogens and 287 

signals for the activation and differentiation of antigens specific T cells to induce an immune 288 

response against viral infection [86]. Dendritic cells are principal antigen-presenting cells (APC)  289 

that activate cytotoxic T lymphocytes CTL response with the help of CD4+ T cells which induces 290 

long term immune response through CD8+ CTL antiviral activity. Sometimes, viruses directly or 291 

indirectly hinder immune response by modulating dendritic cells. Viruses might exploit or disable 292 

immune response by interfering with dendrite cells or CD4+ cell activities [87]. For example, 293 

human respiratory epithelial cells have been found highly vulnerable to MERS-CoV. MERS-294 

Coronavirus readily infect and replicate in human macrophages and dendritic cells that trigger the 295 

abnormal production of pro-inflammatory cytokines or chemokines leading to immense apoptosis 296 

in these cells [88].  SARS coronavirus also modulates the response of both immature and mature 297 

DCs proving its ability to suppress the innate and adaptive immune response of humans against 298 

these viral infections [89].   299 

3.2. Adaptive immune response 300 

3.2.1. The immune response of T cells 301 

T cells are lymphoid cells that originate from hematopoietic stem cells produced in the bone 302 

marrow. They are further divided into four main types as CD4+ helper cells, CD8+ cytotoxic cells, 303 

memory t cells, and natural killer T cells. Activated by PRRs, T cells secrete cytokines that attack 304 
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infected cells and stimulates the growth of other T cells [90]. Regulatory T cells play a very 305 

important role in balancing between activation and response of CD4+ T cells, and CD8+ T cells 306 

and reduce the risk of autoimmunity or overwhelming inflammation [91]. Cytotoxic T cells attack 307 

viruses or virally infected cells while memory t cells are prepared against future infections. Both 308 

CD4+ T cells and CD8+ T are involved in response to the invasion of the SARS-coronavirus M 309 

antigen [92].  Experiments on a mice model revealed that CD4+ T cells regulate primary immune 310 

response and eliminate virally infected cells from the lungs while CD8+ memory cells do not affect 311 

viral replication or clearance at the time of infection [93]. By screening the patients recovered from 312 

SARS-CoV T-cells response to SARS coronavirus was studied. Data showed that CD4+ T cells 313 

mostly produce TNFα, IFNγ, and IL-2 while a very small percentage of cells also respond by 314 

producing inflammatory cytokines. On the other hand, CD8+ memory cells mostly produce TNFα, 315 

macrophage inflammatory protein (MIP) 1α, IFNγ, or MIP 1β alone or in combination [94]. It has 316 

been found that the number of T cells in the blood is significantly reduced during the acute phase 317 

of SARS infection. Therefore, an appropriate response of CD4+ T cells is necessary to cure 318 

coronavirus infections. Existing data show that CD8+ memory T cells persist up to 6 years of post-319 

infection in recovered SARS patients [95]. Vaccination to enhance T cell process will provide 320 

robust and long term treatment against severe coronavirus infections. 321 

3.3. Antibody response to coronavirus 322 

Natural antibodies are glycoproteins termed as immunoglobin (Igs) that are produced in response 323 

to immune reactions. Based on binding structures, antigens are further divided into five types such 324 

as IgG, IgA, IgM, IgE, IgD, and camelid antibodies. They are key components of adaptive immune 325 

response and provide broad-spectrum, fast response against viral invasion. Their functionalities 326 

include the recognition and removal of nascent cells and other self-antigens to restrict viral 327 

infection [96, 97].  The immune response of antibody is a complex dynamic mixture of monoclonal 328 

antibodies that target different antigen domains expressed on the enveloped glycoprotein of the 329 

virus. Coronavirus uses its spike protein to facilitate its invasion through a special receptor DPP4 330 

(dipeptidyl peptidase-4). This receptor then transmits signals for activation of the innate and 331 

adaptive immune response [98]. Human monoclonal antibody m336; detached from the human 332 

genome library, effectively neutralize MERS-CoV by interacting with the receptor-binding region 333 

of spike protein in vitro analysis [99]. Monoclonal antibody m336 was also found effective to cure 334 

MERS-CoV infection in monkeys and rabbit lung tissues [100, 101]. Mun et al. cured MERS 335 

coronavirus in mice model by inoculation of AddaVax-adjuvanted S377-588-Fc vaccine that 336 

produced neutralizing antibodies against MERS infection [102]. Newly identified novel 337 

coronavirus (2019-nCoV) has created a disastrous situation all around the globe by infecting more 338 
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than a million people in 213 countries with 51000+ deaths [103]. However, there is no proper 339 

antiviral medication or vaccines possible to cure COVID-19 infection. Xiaolong et al. recently 340 

reported that CR3022 a human monoclonal antibody can potentially bind with spike protein of 341 

2019-novel coronavirus. More experiments can be helpful to develop antibodies that can 342 

completely bind with spike protein and stop the COVID-19 invasion [93]. This could be helpful 343 

in the rapid treatment of novel coronavirus infection by neutralizing monoclonal antibodies as 344 

compared to waiting for a time-consuming vaccination process. Figure 3 illustrates the Immune 345 

Response (Innate and adaptive) against Coronavirus infection. 346 

 347 

 348 

 349 

 Figure 3: Immune Response (Innate and adaptive) against Coronavirus infection  350 

 351 

4. Clinical Characteristics  352 

The clinical purview of COVID-19 extends from asymptomatic to extremely severe health 353 

conditions like collapsing of the respiratory system, severe pneumonia and ultimately leading to 354 

the deterioration of multi-organ systems. The COVID 19 largely proliferates via droplets, 355 

respiratory tract, and its secretions and also through direct contact [104].  356 

ACE2 protein (a functional receptor for coronavirus) residing on the lung epithelial cells assists in 357 

perceiving the track of this infection and the way this disease extends itself [105] Epidemiological 358 

investigations suggest the incubation period to be from 1 to 14 days, and mostly 3 to 7 days [106]. 359 

The COVID 19, being infectious, is highly impartible in humans, essentially targeting the older 360 
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population. People with older age and other cerebrovascular diseases are more susceptible to this 361 

infection. The median age of the patients is found to be 47 to 59 with no significant gender parity 362 

as the ratio of male to female patients is 56% to 45% [107]. Younger ones are mildly affected but 363 

may still act as carriers of this infection.  364 

4.1. Laboratory testing and diagnostic criteria  365 

Cases of COVID-19 are confirmed by the nucleic acid amplification test (NAAT) by real-time 366 

polymerase chain reaction (PCR). As reported by WHO, respiratory material is collected from 367 

upper respiratory tracts such as oropharyngeal/nasopharyngeal swabs, nasal secretions, or lower 368 

respiratory tract namely sputum or bronchoalveolar lavage. Specimens are stored at 2 to 8 degrees 369 

Celsius. In addition to this, other samples can also be collected, as COVID-19 has been detected 370 

in blood and stool as well [108]. Serological methods for the detection of lgM, lgG antibodies are 371 

also performed. However, this method alone is not reliable for detection and it should be backed 372 

with RT-PCR. Samples obtained from severely infected patients have had a lesser count of CD4 373 

and CD8 lymphocytes, higher levels of CRP (C-reactive protein), CK (creatine kinase) and LDH 374 

(lactate dehydrogenase). Several inflammatory factors are also found in severe and critical illness 375 

states. 376 

4.2.Clinical symptoms 377 

Typical signs and symptoms of COVID-19 include fever (87.9%), dry cough (67.7%), shortness 378 

of breath (18.6%), etc. Atypical symptoms are nausea (5%), sore throat (13.9%), diarrhea (3.7%), 379 

headache (13.6 %), fatigue (38.1), congestion (4.8%), chills (11.4%), myalgia (14.8%). [109]. 380 

According to the Chinese CDC report, considering the stern clinical indications of this malady, it 381 

has been sectioned into mild, moderate, severe, and critical categories [110]. 382 

4.2.1. Mild Infection 383 

Patients with mild COVID-19 infection have indications of upper respiratory tract deterioration 384 

along with mild fever, dry cough, sore throat, nasal congestion, headache, muscle pain, or malaise. 385 

81% of the reported cases have had a mild infection. 386 

4.2.2. Moderate infection 387 

Patients have mild pneumonia and other few respiratory infection manifestations like cough and 388 

shortness of breath. No severe conditions are reported yet. 389 

4.2.3. Severe infection 390 

Besides having mild or moderate clinical symptoms, patients are shown to have rapid breathing, 391 

lack of consciousness, dehydration, raised the level of liver enzymes, and other injuries related to 392 

the dysfunctioning of vital organs.  Overall, 13.8% of the reported cases are severely infected. 393 
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4.2.4. Critical infection 394 

In addition to severe clinical indications, respiratory failure where mechanical ventilation becomes 395 

mandatory for survival e.g., Acute Respiratory Distress Syndrome (ARDS), sepsis, and collapsing 396 

of organs where patients’ condition is monitored in ICU, are observed. 4.7% of the total are critical 397 

cases and the mortality rate for critical patients is 49%. Patients with other underlying diseases like 398 

cardiovascular, diabetes, chronic respiratory diseases, hypertension, cancer have higher mortality 399 

rates i.e., 10.5%, 7.3%, 6.5%, 6%, and 5.6% respectively as compared to others with no such 400 

previously mentioned diseases [111]. 401 

4.2.5. Acute Respiratory Distress Syndrome (ARDS) 402 

ARDS is a preliminary step leading to respiratory failure. The degree of hypoxia, considering 403 

PaO2/FiO2 as standard, determines various forms of ARDS. The value of PaO2/FiO2 ranging in 404 

between 200mmHg and 300mmHg indicates mild ARDS while those between 100mmHg and 405 

200mmHg are the indicator of moderate ARDS. PaO2/FiO2 of less than 100mmHg refers to severe 406 

ARDS [112]. 30% of the patients have had ARDS. 407 

Chest imaging like chest radiograph, computed tomography scan, and lung ultrasound can also be 408 

utilized for confirmation of infection. CT scan of the reported cases is found to have ground-glass 409 

opacity(56%), consolidation(29%), lobes (71%), and bilateral involvement (76%) [113]. 410 

4.2.6. Sepsis 411 

Sepsis is the body’s ultimate riposte to infection, leading to the dysfunctioning of organs and 412 

becoming life-threatening.  Patients suffering from COVID-19 and having sepsis as well, exhibit 413 

a broad range of manifestations involving multi organs deterioration. Severe dyspnea, hypoxemia, 414 

reduced urine output, changed mental response and renal impairment are the typical symptoms 415 

[114]. 416 

4.2.7. Clinical Outcomes 417 

Patients with older age are more prone to COVID-19. And among these, the most favorite victims 418 

of this malady are the ones with weaker immune systems and other cerebrovascular diseases. 419 

Patients with severe illness involve Acute Respiratory Distress Syndrome, liver dysfunctioning, 420 

arrhythmia, acute cardiac damage, and kidney impairment [115]. 421 

5. Diagnosis of COVID-19 422 

For diagnosis, nasal secretions, sputum, blood, and bronchoalveolar lavage (BAL) are collected 423 

from patients and suspected people. The samples and specimens are then subjected to some 424 

specific serological and molecular tests that are COVID-19 specific. Computed tomography 425 

technique (CT) and X-Ray could prove helpful in the detection of severely infected patients [116]. 426 
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Chest CT can also be considered a standard method for COVID-19 but it has limitations in the 427 

identification of the specific virus and discrimination between viruses [35, 38, 117-121]. Detection 428 

of viral nucleic acid can help in the diagnosis of asymptomatic carriers. And for that purpose 429 

pharyngeal swab can be utilized. Real-time polymerase chain reaction (rRT-qPCR) for effective 430 

diagnosis of SARS-CoV-2, is performed over respiratory secretions. In a short period, viral RNA 431 

can be detected while Serological tests employ Enzyme-Linked Immunosorbent Assay (ELISA) 432 

[121]. Still, Real-time polymerase chain reaction (RT-PCR) remains the primary means for the 433 

diagnosis of new emerging virus strain of COVID-19  [119, 122-128].  434 

5.1. Differential Diagnosis  435 

There is a need to distinguish COVID-19 from SARS CoV, MERS CoV, influenza virus, 436 

parainfluenza virus, and adenovirus. The current studies of 2020 are summarized to diagnose 2019-437 

nCoV through RT-PCR and gene assays. Apart from the molecular test that is RT-PCR, serological 438 

test methods (i.e. ELISA) are also described to compare these diagnostic techniques (Table 2). The 439 

recent studies of MERS-CoV are also included in Table 2 to enhance the understanding regarding 440 

different types of infectious classes of viruses.  Therefore, a comparative study of diagnosis is 441 

made to differentiate COVID-19, SARS-CoV-2, and MER-CoV as shown in Table 2. It reveals 442 

that the molecular test is more sensitive and selective than other methods. Studies also described 443 

that nested PCR has an additional step of pre-amplification or incorporating the N gene to enhance 444 

sensitivity.445 

Table 2: Systematic search outcomes of COVID-19, SARS-CoV-2 and MERS-CoV diagnosis 446 

COVID-19 

sr. 

no 

Author 

Year 

Test Samples/Population Findings Ref 

1 Shirato et al. 

(Japan) 

2020 

Nested RT–PCR 

Real-time RT–PCR 

Different specimens from the 

same patient were taken and 

primers detected the COVID-

19 sequence for the spike (S) 

protein (S set). 

 

Specificity was evaluated by 

comparing the tests with six 

other human coronavirus 

sequences. The results were 

satisfactory. Sufficient 

sensitivity (~5– 50 copies for 

the control RNA) was 

achieved by both sets. No 

cross-reactivity with other 

respiratory viruses was 

found. 

[129] 
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2 Corman et 

al. 

(Germany) 

2020 

Real-time RT–

PCRNxTAG 

respiratory pathogen 

panel 

gene assay 

29 original samples with 

human respiratory viruses were 

collected from the Charité,  

RijksinstituutvoorVolksgezon

dheiden Milieu (RIVM), 

Bilthoven, Erasmus University 

Medical Center, Rotterdam, 

Public Health England (PHE), 

London, and the University of 

Hong Kong. 

The RdRP gene, E gene, and 

N gene assays exhibited high 

sensitivity while the E gene 

and RdRP gene revealed the 

best results (5.2 and 3.8 

copies per reaction) with 95% 

detection ability. COVID-19 

was successfully 

discriminated from SARS-

CoV making use of artificial 

nucleic acid technology. 

Synthetic nucleic acid 

technology was used to 

differentiate COVID-19 from 

SARS-CoV. 

 

[130] 

3 Chu et al. 

(China) 

2020 

1-step Quantitative 

Real-time RT-PCR 

 

The specimens were collected 

from the two suspected 

COVID-19 patients (Beijing). 

Sputum samples were collected 

from the patient 1 after 5 days 

of corona symptoms while the 

throat swab sample was 

collected from the patient 2 for 

RNA extraction.  

Serially diluted RNA 

samples revealed the 10 times 

high sensitivity for N gene 

assay than the ORF-1b gene 

assay. These assays could not 

test qualitatively to these 

samples at the testing site and 

also exact viral copy statistics 

cannot be measured. 

 

[131] 

4 Chan et al. 

(China) 

2020 

RT-PCR 

Sanger sequencing 

Phylogenetic 

analysis 

In this study, phylogenetic 

analysis of gene sequencing of 

five patients (family cluster) 

was performed who returned 

from Wuhan to Shenzhen 

(China) and also a family 

member who didn’t have a 

travel history. 

The throat swabs of all the 

patients were negative by 

point-of-care 

multiplex RT-PCR. While 

RT-PCR of the five patients 

was positive for gene 

encoding for the internal 

RDRP (RNA-dependent 

RNA polymerase) and Spike 

protein of COVID-19. 

Phylogenetic analysis also 

confirmed the 2019-nCoV 

which is adjacent to SARS. 

[132] 
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5 Corman et 

al. 

(Germany) 

(2020) 

RT-PCR 

gene assays 

Respiratory samples were 

collected from the Charite 

medical center and a total of 75 

clinical samples were tested. 

 

All the essays were sensitive 

to COVID-19. The lowest 

detection limit (LOD) was 

recorded 5.2 RNA copies/ 

reaction, at a 95% hit rate; 

95% CI: 3.7-9.6 RNA for E 

gene assay. RdRP gene assay 

exhibited the LOD of 3.8 

RNA copies/reaction, at 95% 

hit rate; 95% CI: 2.7-7.6 

RNA copies/reaction. The 

obtained signals of 2019-

nCoV were compared with 

the signal probe of SARS-

CoV. The use of PCR-

generated targets leads to the 

generation of fluorescent 

signals in these assays. 

[130] 

SARS-COV-2 

6 Li et al. 

(China) 

2020 

Rapid IgM-IgG 

Combined Antibody 

Test 

525 blood samples were 

collected from 8 various 

clinical sites. PCR confirmed 

that 397 patients were COVID-

19 positive and 128 patients 

were negative. 

It was found that IgM-IgG 

combined antibody 

sensitivity was 88.66% and 

specificity was 90.63%. 

Additionally, fingerstick 

blood, serum, and plasma of 

venous blood were also used 

for the diagnosis of SARS-

CoV-2. 

[133] 

7 Li et al. 

(USA) 

2020 

Multiplex PCR and 

a Multiplex-PCR-

based Metagenomic 

Method 

 

The universal human 

reference RNA from Agilent 

Technologies, Inc. 

(Cat#74000); 

The plasmids containing 

SARS-CoV-2 from 

SangonBiotech, Shanghai 

(China); 

PCR primer was designed by 

Paragon Genomics, Inc. 

The target peaks were 

achieved with good 

characteristics after exposing 

the positives with the assay. 

Additionally, SARS-CoV-2 

and novel pathogens at low 

sequencing depth were also 

diagnosed by the multiplex-

PCR-based metagenomic 

method. 

 

[134] 
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8 Bordi et al. 

(Italy) 

2020 

QIAstat-Dx 

Respiratory Panel 

(QIAGEN, Milan, 

Italy) 

 

A total of 126 suspected cases 

were found and 

nasopharyngeal swab samples 

of 54 patients were taken from 

the INMI (Italy) and 9 cases 

were shifted to Lazio Region 

while other cases were referred 

to the INMI Laboratory of 

Virology. 

The only 3 patients had 

positive SARS-CoV-2 which 

was confirmed by the INMI 

laboratory.  The rest of the 

patients were suffering from 

the respiratory pathogens 

other than SARS-CoV-2.  

 

[135] 

9 Wang et al. 

(China) 

2020 

Real-Time RT-PCR 

 

1070 specimens were collected 

from 205 patients with 

COVID-19. All the specimens 

were taken from three hospitals 

in Beijing, Shandong, and 

Hubei. 

SARS-COV-2 was identified 

in the specimens of the 

patients. The live virus was 

also detected in the feces of 

the patients. The COVID-19 

was positive with lower 

respiratory tract samples. 

 

[136] 

10 Amanat et 

al. 

(USA) 

2020 

Enzyme-Linked 

Immunosorbent 

Assays (ELISA) 

 

59 banked human serums were 

collected with confirmed prior 

viral infections. 

 

Serological assays have high 

sensitivity and selectivity for 

the detection of COVID-19 

seroconverters in human 

serum. Scaling can be 

adjusted in these assays to 

detect various antibodies. 

[137] 

MERS-CoV 

11 Shirato et al. 

(Japan) 

2019 

Two real-time RT-

PCR assays 

i. TRIzol reagent was 

purchased from Thermo 

Fisher Scientific, 

Waltham, MA, USA; 

ii. QIAamp Viral RNA 

Mini Kit was obtained 

from Qiagen, Hilden, 

Germany; 

iii. SimplePrep reagent 

DNA was obtained from 

TaKaRa Bio Inc., Shiga, 

Japan. 

MERS-CoV was successfully 

detected by a multiplex 

Corman assay connected to a 

mobile PCR device, the 

PicoGene PCR1100. These 

assay identified MERS-CoV 

with high sensitivity and 

selectivity compatible with 

clinical specimens. 

 

[138] 

12 Hecht et al. 

(Germany) 

RT-PCR kit 

 

The sample was collected from 

33 patients of Riyadh (Saudi 

MERS-CoV was diagnosed 

in the two steps according to 

[139] 
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2019 Arabia) and pre-characterized 

via  RT-PCR. 

 

WHO recommendation. 

Among 33 samples, 54.55% 

of patient's tests were 

positive, 33% of patient’s 

tests were negative, and 6% 

of patient's tests were 

unclear. It was concluded that 

the combination of RealStar 

MERS-CoV RT-PCR kit 1.0 

with the RealStar® MERS-

CoV (N gene) RT-PCR kit 

1.0 can be the suitable and a 

confirmatory assay for 

MERS-CoV diagnosis. 

13 Okba et al. 

(Netherland) 

2019 

S1 ELISA 

Protein Microarray 

 

Serum samples were collected 

from South Korea after the 

collected 6, 9, and 12 months of 

the disease.   

 

It was confirmed that iELISA 

was 100% specific and 

92.3% sensitive. The 

performance of iELISA was 

according to that of the 

MERS-CoV S1 protein 

microarray. The same pattern 

of specificity showed in the 

S1 microarray. 

[140] 

14 Kim et al. 

(Korea) 

2016 

6 Commercial 

MERS-CoV RNA 

diagnosis 

kits:(i)UltraFast kits  

detect upE and 

ORF1a 

simultaneously 

(Nanobiosys, 

Korea); (ii) 

LightMix (Roche 

Molecular 

Diagnostics, 

Switzerland); (iii) 

AccuPower 

(Bioneer, Korea); 

(iv) Anyplex 

56 Nasopharyngeal Swabs 

were taken out of which 28 

were positive for other 

respiratory viruses. The 

specificity and clinical 

sensitivity were further 

measured from the other 18 

lower respiratory specimens. 

 

All the kits identified all the 

positive specimens (100%). 

The comparative analysis of 

the kits revealed that 

AccuPower and PowerChek 

exhibit the least sensitivity in 

the presence of PCR 

inhibition. 

 

[141] 
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Screening: envelope 

gene (upE) 

Confirmation: 

ORF1a (Seegene, 

Korea); (v) 

DiaPlexQ (SolGent, 

Korea); (vi) 

PowerChek 

(Kogene Biotech, 

Korea) 

447 

Several FDA approved diagnostic kits are also available for commercial use. Recently, FDA has 448 

given clearance to diagnostic kits of Abbot Laboratories and Navacyt which detect COVID-19 in 449 

minutes [142, 143]. Some of the new FDA approved COVID-19 diagnostic kits are shown in Table 450 

3 [144].451 

Table 3: New FDA approved commercial rapid diagnostic kits for COVID-19. 452 

Sr/no Product Name Manufacturer (Country) 

1 Real-time fluorescent RT-PCR kit  BGI Biotechnology (Wuhan) Co., Ltd 

(China). 

2 TaqPath COVID-19 COMBO KIT Thermo Fisher Scientific, Inc (USA). 

3 abTES™ COVID‐19 Real-time qPCR I 

Kit 

AITbiotech Pte Ltd (Singapore). 

4 AllplexTM 2019-nCoV Assay Seegene Inc (South Korea) 

5 TIB MOLBIOL Lightmix® Modular 

Wuhan CoVRdRP-Gene 

TIB MOLBIOL Syntheselabor GmbH- 

Eresburgstraße (Germany) 

6 GENESIG® Real-time PCR (COVID-

19) CE IVD Kit 

Primerdesign Ltd (United Kingdom) 

 

453 

5.2. Diagnostic Challenges of COVID-19 454 

Diagnosis of COVID-19 is still a challenge because laboratory diagnosis and radiology images do 455 

not always fulfill the clinical features and patient's contact histories. The manifestations of the 456 

COVID-19 are assorted and very quickly.  Evaluation for early-stage detection using radiology 457 

images is a tough task. Therefore, the suspected patients with persistent fever and positive result 458 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 August 2020                   doi:10.20944/preprints202008.0516.v1

https://doi.org/10.20944/preprints202008.0516.v1


22 
 

Chest CT test, have to make a fast diagnosis with molecular tests and serological methods [145-459 

148]. 460 

With the emergence of COVID-19 in China, the genomic test was the first test in the identification 461 

of disease-associated pathogens but it was complex and expensive so large scale detection was not 462 

an easy task. Then RT-PCR was introduced which is the primary diagnostic method of COVID-463 

19 but it has also some limitations such as technique complexity, low detection limit, false 464 

sampling, and sample preparation problems. False-positive and false-negative results of the RT-465 

PCR method also caused serious problems. A COVID-19 patient discharged from the hospital after 466 

having negative RT-PCR twice was found with RT-PCR positive later. There are many factors 467 

behind these “false negative” cases including sample contamination, genome mutation, and 468 

deletion [149-153]. 469 

6. Transmission Dynamics 470 

It is important to study the transmission dynamics of epidemic disease in its early stages. We can 471 

get insight into its epidemiological scenario by studying the transmission pattern of respective 472 

diseases with time. Furthermore, it can also be estimated whether the outbreak controlling measure 473 

is showing measurable effects or not [154]. The novel coronavirus is found to be transmitted by 474 

person-to-person with direct contact or through coughing, sneezing by respiratory droplets [155]. 475 

According to a Centre of Disease Control and Prevention report, COVID-19 can spread through 476 

the contaminated things that may be touched by an infected person likes clothes, the handle of 477 

doors, transport vehicles, etc. Mostly, when a person has symptoms of respiratory virus, it becomes 478 

highly contagious. However, it is evident from recent research that COVID-19 is transferred from 479 

human-to-human interaction during the incubation period of 2 to 10 days, in which this virus 480 

remains asymptomatic [156]. Reproductive rate R° proved that the COVID-19 spread as compared 481 

to other pandemics is more severe.  Following the report published by The New England Journal 482 

of Medicine, the reproductive Rate R° of COVID-19 in Wuhan was approximately 2.2. It is 483 

indicative of the fact that on average each infected person is spreading this disease to 2.2 other 484 

people. During the influenza pandemic in 1918, R° was estimated at 1.80. While R° for EBOLA 485 

virus disease (EVD) was estimated in the range of 1.47-1.90 during its outbreak in West Africa, in 486 

2014. In general, when R° is greater than 1 the disease epidemic cannot be controlled. It can be 487 

reduced to 1 by isolation of patients and careful infection control [157]. According to WHO August 488 

16, 2020, a total of 21,294,845 confirmed cases of COVID-19 and 761,779 death cases are 489 

confirmed, all over the world [158,159]. 490 

7. Protective measurements 491 
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Various health organizations including WHO and the US center for disease control and prevention 492 

(CDC) have issued some protective measures to control the novel outbreak of COVID-19. A 493 

distance of a minimum 3ft must be maintained between two persons if either of them is having a 494 

cough or sneeze. Everyone must wash his/her hands as frequently as possible. Respiratory hygiene 495 

must be followed by everyone i.e. cover your nose with a tissue or bent elbow while sneezing or 496 

coughing. Use a face cover while others are around. Practice social distancing. Clean and disinfect 497 

the frequently touched surfaces which include tables, doorknobs, countertops, toilets, sinks, 498 

phones and light switches with EPA approved disinfectants [160, 161].  499 

7.1. Potential interventions 500 

Up till now isolation of the infected person is considered to be the most effective way of treatment 501 

as well as a prerequisite for blocking the source of infections. They are evaluated based on risk as 502 

moderate/high and are encouraged to report their conditions daily. Currently, COVID-19 is treated 503 

primarily via symptomatic treatments and antiviral therapies [162].  504 

Patients with mild symptoms need supportive treatments at the early stage of 505 

infection. For patients with critical conditions, high-flow oxygen therapy, glucocorticoid therapy, 506 

extracorporeal membrane oxygenation, and administration of convalescent plasma are usually 507 

applied [162]. Several anti-viral treatments including lopinavir/ritonavir [163], chloroquine 508 

phosphate [164], and abidor are also suggested with different recommendations and prescriptions. 509 

Recent studies have reported that though CQ and HCQ have already been used to treat corona 510 

affected patients having a severe condition. But some side effects are also associated with their 511 

high dosage like some potential hazards when taken along with azithromycin and oseltamivir. So 512 

both of these should not be recommended for patients with critical conditions [165]. Remdesivir 513 

is also reported to be an effective drug against this disease. But despite its efficacy, the reported 514 

higher mortality rate shows that antiviral drug alone isn’t enough for treatment. So future strategies 515 

should examine other therapeutic measures in combination with antiviral drugs to improve the 516 

treatment and patient outcomes [166]. Moreover, vaccination is highly recommended for the 517 

population acquiring poor immunity, especially for those with comorbidities. The development of 518 

vaccines is under process and many scientists around the globe are currently working on it. 519 

Moreover, it needs to be further tested for human trials. In addition to the stated therapeutic 520 

interventions, psychological interventions are also expected to be effective regarding infection 521 

control [14, 167]. 522 

8. Conclusion  523 
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The pandemic of COVID-19 has largely spread becoming a real menace all over the world. 524 

Characterization of this novel coronavirus has advanced; and therapies and vaccines are 525 

extensively being studied to fight against this virus. The whole knowledge about this novel 526 

coronavirus can be outlined as follows: It extends from asymptomatic to extremely severe health 527 

conditions collapsing the respiratory system and ultimately the deterioration of multi-organ 528 

systems. People with older age and other cerebrovascular diseases are more susceptible to this 529 

deadly virus. Molecular tests (i.e.; RT-PCR which is the primary diagnostic method) and chest X-530 

ray are employed to diagnose the COVID-19. However, to distinguish COVID-19 from SARS 531 

CoV, MERS CoV, and other viruses, serological tests like ELISA are employed along with RT-532 

PCR. SARS-CoV-2; being the causative agent of this COVID-19, manifests greater infectivity in 533 

comparison with other viruses like SARS and MERS considering mortality and morbidity. SARS-534 

CoV-2, emanated from the reservoirs of bats, residing in an unidentified intermediate host, binds 535 

to the ACE2 protein (acts as virus receptor) present on lung epithelial cells with greater affinity 536 

and infects human beings.   537 

Supportive treatments along with anti-viral drugs including lopinavir/ritonavir, chloroquine 538 

phosphate, remdesivir, and abidor are implied to treat the COVID-19 patients.  Nonetheless, many 539 

queries remain unanswered and much research is needed to understand the transference and 540 

pathogenicity mode of this novel coronavirus. To limit its transference to animals or humans, the 541 

evolutionary pathway from its original host to cross-species transmission needs to be traced down. 542 

Besides this, the need of the hour is to implement the infection control strategies to limit the spread 543 

of coronavirus via human-to-human transmission. Public health authorities should keep 544 

monitoring the situation, as the more we learn about this novel virus and its associated outbreaks, 545 

the better we can respond. Moreover, this pandemic has accentuated the significance of evolving 546 

wide-spectrum antiviral factors to fight off the existent and future viruses. 547 
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