
Weak deflection angle of black-bounce traversable wormholes using Gauss-Bonnet

theorem in the dark matter medium
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Abstract: In this paper, first we use the optical metrics of black-bounce traversable wormholes to calculate the Gaussian

curvature. Then we use the Gauss-Bonnet theorem to obtain the weak deflection angle of light from the black-bounce

traversable wormholes. Then we investigate the effect of dark matter medium on weak deflection angle using the Gauss-

Bonnet theorem. We show how weak deflection angle of wormhole is affected by the bounce parameter a . Using the

Gauss-bonnet theorem for calculating weak deflection angle shows us that light bending can be thought as a global and

topological effect.
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1. Introduction

Root of gravitational lensing is the deflection of light by gravitational fields such as a planet, a black hole, or

dark matter predicted by Einstein’s general relativity, in the weak-field limit [1, 2]. Weak deflection is used to

detect dark matter filaments, and it is important topic because it helps to understand the large-scale structure

of the universe [1, 3].

One of the important method to calculate the weak deflection angle is proposed by Gibbons and Werner

(GW), which is known as Gauss-Bonnet theorem (GBT), using optical geometry [4, 5]. In this method of GW,

deflection angle is considered as a partially topological effect and can be found integrating the Gaussian optical

curvature of the black hole space outside from the light rays using: [4]

α̂ = −
∫ ∫

D∞

KdS, (1.1)

Since the GW method provides a unique perspective, it has been applied in various cases [6]-[55].

In this paper, our main motivation is to explore weak deflection angle of black-bounce traversable

wormholes [56, 57] using the GBT and then extend our motivation of this research is to shed light on the

effect of dark matter medium on the weak deflection angle of black-bounce traversable wormhole using the

GBT. Note that the refractive index of the medium is supposed that it is spatially non-uniform but one can

consider it uniform at large distances [58]-[66]. To do so, the photons are thought that may be deflected through
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dark matter due to the dispersive effects, where the index of refractive n(ω) which is for the scattering amplitude

of the light and dark-matter in the forward.

2. Calculation of weak deflection angle from black-bounce traversable wormholes using the Gauss-

Bonnet Theorem

The “black-bounce form” for the spacetime metric of traversable wormhole is: [56]

ds2 = −
(

1− 2M√
r2 + a2

)
dt2 +

(
1− 2M√

r2 + a2

)−1
dr2 +

(
r2 + a2

) (
dθ2 + sin2 θdϕ2

)
. (2.1)

It is noted that the parameter a stands for the bounce length scale and when a = 0, it reduces to the

Schwarzschild solution.

We restrict ourselves to the equatorial coordinate plane (θ = π
2 ), so that the black-bounce traversable

wormhole spacetime becomes

ds2 = −
(

1− 2M√
r2 + a2

)
dt2 + +

(
1− 2M√

r2 + a2

)−1
dr2 +

(
r2 + a2

)
dϕ2. (2.2)

Then the optical geometry of the black-bounce traversable wormhole spacetime is found by using

goptαβ =
gαβ
−g00

(2.3)

dt2 =
dr2(

1− 2M√
r2+a2

)2 +
(r2 + a2)dϕ2(
1− 2M√

r2+a2

) . (2.4)

The Gaussian optical curvature K for the black-bounce traversable wormhole optical space is calculated as

follows:

K ' 3
m2

r4
− 2

m

r3
− 15

a2m2

r6
+ 10

a2m

r5
− a2

r4
. (2.5)

Then we should use the Gaussian optical curvature in GBT to find deflection angle because the GBT

is a theory which links the intrinsic geometry of the 2 dimensional space with its topology ( DR in M , with

boundary ∂DR = γg̃ ∪ CR ) [4]:

∫
DR

K dS +

∮
∂DR

κdt+
∑
i

εi = 2πχ(DR), (2.6)

in which κ is defined as the geodesic curvature ( κ = g̃ (∇γ̇ γ̇, γ̈)), so that g̃(γ̇, γ̇) = 1. It is noted that γ̈ is

unit acceleration vector, and εi is to the exterior angle at the ith vertex. Jump angles is obtained as π/2 for

r →∞ . Then we find that θO + θS → π . If DR is non-singular, the Euler characteristic becomes χ(DR) = 1,

hence GBT becomes ∫∫
DR

K dS +

∮
∂DR

κdt+ θi = 2πχ(DR). (2.7)
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The Euler characteristic number χ is 1, then the remaining part yields κ(CR) = |∇ĊRĊR| as r → ∞ .

The radial component of the geodesic curvature is given by

(
∇ĊRĊR

)r
= ĊϕR ∂ϕĊ

r
R + Γrϕϕ

(
ĊϕR

)2
. (2.8)

For large limits of R , CR := r(ϕ) = r = const. we obtain

(
∇ĊrRĊ

r
R

)r
→ −1

r
, (2.9)

so that κ(CR)→ r−1 . After that it is not hard to see that dt = r dϕ , where κ(CR)dt = dϕ. The GBT reduces

to this form ∫∫
DR

K dS +

∮
CR

κdt
r→∞

=

∫∫
S∞

K dS +

π+α̂∫
0

dϕ. (2.10)

The light ray follows the straight line so that, we can assume that rγ = b/ sinϕ at zeroth order. The

weak deflection angle can be calculated using the formula:

α̂ = −
π∫

0

∞∫
rγ

K r dr dϕ. (2.11)

Using the Gaussian optical curvature (2.5), we calculate the weak deflection angle of black-bounce

traversable wormholes up to second order terms:

α̂ ≈ 4
m

b
+
a2π

4b2
. (2.12)

Note that it is in well agreement with the [57] in leading order terms.

3. Deflection angles of photon through dark matter medium from black-bounce traversable worm-

holes

In this section, we investigate the effect of dark matter medium on the weak deflection angle. To do so, we use

he refractive index for the dark matter medium [58]:

n(ω) = 1 + βA0 +A2ω
2. (3.1)

Note that β = ρ0
4m2ω2 and ρ0 the mass density of the scattered dark matter particles and A0 =

−2ε2e2 and A2j ≥ 0.

The terms in O
(
ω2
)

and higher are related to the polarizability of the dark-matter candidate.

The order of ω−2 is for the charged dark matter candidate and ω2 is for a neutral dark matter candidate.

In addition, the linear term in ω occurs when parity and charge-parity asymmetries are present.
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The 2 dimensional optical geometry of the wormhole is:

dσ2 = n2
(

dr2(
1− 2M√

r2+a2

)2 +
(r2 + a2)(

1− 2M√
r2+a2

)dϕ2

)
. (3.2)

and

dσ

dϕ

∣∣∣∣
CR

= n

(
r2 + a2(

1− 2M√
r2+a2

))1/2

. (3.3)

Using the GBT within optical geometry of black-bounce traversable wormhole, we obtain the weak

deflection angle in a dark matter medium:

lim
R→∞

∫ π+α

0

[
κg
dσ

dϕ

] ∣∣∣∣
CR

dϕ = π − lim
R→∞

∫ ∫
DR

KdS. (3.4)

First we calculate the Gaussian optical curvature at linear order of M :

K ≈ 10
csgn (r) a2M

(A2 ω2 + βA0 + 1)
2
r5
− 2

csgn (r)M

(A2 ω2 + βA0 + 1)
2
r3
− a2

(A2 ω2 + βA0 + 1)
2
r4

(3.5)

After that we find

lim
R→∞

κg
dσ

dϕ

∣∣∣∣
CR

= 1. (3.6)

Then for the limit of R → ∞ , the deflection angle in dark matter medium can be calculated using the

GBT as follows:

α = − lim
R→∞

∫ π

0

∫ R

b
sinϕ

KdS. (3.7)

Hence, we obtain the weak deflection angle in dark matter medium as follows:

α = 4
M

bΨ
+

a2π

4b2Ψ
(3.8)

Ψ = A2
2ω4 + 2A0 A2 β ω

2 + A0
2β2 + 2A2 ω

2 + 2βA0 + 1 (3.9)

which agrees with the known expression found using another method. Of course, in the absence of the dark

matter medium (Ψ = 0), this expression reduces to the known vacuum formula α ≈ 4 m
b + a2π

4b2 .

We find that the deflected photon through the dark matter around the black-bounce traversable wormhole

has large deflection angle compared to the standard case.

4. Conclusion

In this paper, we have studied weak deflection angle of black-bounce traversable wormholes using the GBT.

Then we have investigated the effect of dark matter medium on the weak deflection angle of black-bounce
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traversable wormholes. Note that refractive index is taken spatially non-uniform, and it is uniform at large

distances.

Hence it is concluded that the deflection angle by black-bounce traversable wormholes increases with

increasing the bounce parameter a , on the other hand the deflection angle decreases in a increasing medium

of dark matter. It is showed how weak deflection angle of wormhole is affected by the bounce parameter a .

Moreover we use the Gauss-bonnet theorem for calculating weak deflection angle which proves us that light

bending can be thought as a global and topological effect.
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[48] K. Jusufi and A. Övgün, “Gravitational Lensing by Rotating Wormholes,” Phys. Rev. D 97, no.2, 024042 (2018).
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