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Weak deflection angle of black-bounce traversable wormholes using Gauss-Bonnet
theorem in the dark matter medium
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Abstract: In this paper, first we use the optical metrics of black-bounce traversable wormholes to calculate the Gaussian
curvature. Then we use the Gauss-Bonnet theorem to obtain the weak deflection angle of light from the black-bounce
traversable wormholes. Then we investigate the effect of dark matter medium on weak deflection angle using the Gauss-
Bonnet theorem. We show how weak deflection angle of wormhole is affected by the bounce parameter a. Using the
Gauss-bonnet theorem for calculating weak deflection angle shows us that light bending can be thought as a global and

topological effect.
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1. Introduction
Root of gravitational lensing is the deflection of light by gravitational fields such as a planet, a black hole, or
dark matter predicted by Einstein’s general relativity, in the weak-field limit [1, 2]. Weak deflection is used to
detect dark matter filaments, and it is important topic because it helps to understand the large-scale structure
of the universe [1, 3].

One of the important method to calculate the weak deflection angle is proposed by Gibbons and Werner
(GW), which is known as Gauss-Bonnet theorem (GBT), using optical geometry [4, 5]. In this method of GW,
deflection angle is considered as a partially topological effect and can be found integrating the Gaussian optical

curvature of the black hole space outside from the light rays using: [4]

& = —/ KdS, (1.1)
Doo

Since the GW method provides a unique perspective, it has been applied in various cases [6]-[55].

In this paper, our main motivation is to explore weak deflection angle of black-bounce traversable
wormholes [56, 57] using the GBT and then extend our motivation of this research is to shed light on the
effect of dark matter medium on the weak deflection angle of black-bounce traversable wormhole using the
GBT. Note that the refractive index of the medium is supposed that it is spatially non-uniform but one can

consider it uniform at large distances [58]-[66]. To do so, the photons are thought that may be deflected through
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dark matter due to the dispersive effects, where the index of refractive n(w) which is for the scattering amplitude
of the light and dark-matter in the forward.

2. Calculation of weak deflection angle from black-bounce traversable wormholes using the Gauss-
Bonnet Theorem

The “black-bounce form” for the spacetime metric of traversable wormhole is: [56]

2M oM\
T a r a

It is noted that the parameter a stands for the bounce length scale and when a = 0, it reduces to the

Schwarzschild solution.
We restrict ourselves to the equatorial coordinate plane (6§ = 7 ), so that the black-bounce traversable

wormbhole spacetime becomes

2M

-1
2 2 2 2

2M
r a

Then the optical geometry of the black-bounce traversable wormhole spacetime is found by using

Govtay = 222 (2.3)
—g00
d 2 2 2 d 2
dt? = ! (r" +a’)dy (2.4)

2 oM\’
e
VrZ+aZ r?+a?
The Gaussian optical curvature K for the black-bounce traversable wormhole optical space is calculated as

follows:

2 2,2 2 2
m m am am a

Then we should use the Gaussian optical curvature in GBT to find deflection angle because the GBT
is a theory which links the intrinsic geometry of the 2 dimensional space with its topology ( Dg in M, with
boundary 0Dg = v; UCRr) [4]:

?f kdt+ e = 2mx(Dr), (2.6)

/ KdS+
Dr 8Dp

in which £ is defined as the geodesic curvature ( K = §(V4%,%)), so that §(%,5) = 1. It is noted that % is
unit acceleration vector, and ¢; is to the exterior angle at the i'" vertex. Jump angles is obtained as 7/2 for

r — 0o. Then we find that 6o 4+ g — 7. If Dg is non-singular, the Euler characteristic becomes x(Dg) =1,
hence GBT becomes

/ KdS + j{ kdt+6; = 2nx(DR). (2.7)
Dr dDg
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The Euler characteristic number y is 1, then the remaining part yields x(Cgr) = |V0RC’R\ as r — 00.

The radial component of the geodesic curvature is given by
. T . . . 2
(VenCr) =CRo.Ch+1r, (CF) - (2.8)
For large limits of R, Cg := r(p) = r = const. we obtain

(Vcﬁcﬁ)r o2 (2.9)

r

so that k(Cg) — r~!. After that it is not hard to see that dt = rdp, where x(Cgr)dt = d . The GBT reduces

to this form

T+&
//KdS—i—j{ndt e //de+ / de. (2.10)
Soo 0

Dr Cr

The light ray follows the straight line so that, we can assume that r, = b/siny at zeroth order. The

weak deflection angle can be calculated using the formula:

d:—//Krdrdtp. (2.11)

0 7y

Using the Gaussian optical curvature (2.5), we calculate the weak deflection angle of black-bounce

traversable wormholes up to second order terms:

m a27r

Note that it is in well agreement with the [57] in leading order terms.

3. Deflection angles of photon through dark matter medium from black-bounce traversable worm-
holes

In this section, we investigate the effect of dark matter medium on the weak deflection angle. To do so, we use

he refractive index for the dark matter medium [58]:

n(w) =1+ BAg + Ayw?. (3.1)

Note that 3 = 2~ and po the mass density of the scattered dark matter particles and Ay =
—2¢2¢2 and Agj > 0.
The terms in O (w?) and higher are related to the polarizability of the dark-matter candidate.

The order of w™? is for the charged dark matter candidate and w? is for a neutral dark matter candidate.

In addition, the linear term in w occurs when parity and charge-parity asymmetries are present.
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The 2 dimensional optical geometry of the wormhole is:

(= )

Vitta?

and

do
de

_ n(rz_’_az> i (3.3)
o "\nany) |

Using the GBT within optical geometry of black-bounce traversable wormhole, we obtain the weak
deflection angle in a dark matter medium:

lim o d—a
R—o0 Jg g d(p

dp =m— lim / KdS. (3.4)
Dgr

Cr R—o00
First we calculate the Gaussian optical curvature at linear order of M :

esgn (r) a*M csgn (r) M a?
K =10 5 5o 2 5 53 5 5, (3.5)
(Agw?2+BAg+1)r (Agw?2+BAg+1)r (Agw?2+BAg+1)r

After that we find
do

lim K,—

Jim g =1, (3.6)

Cr

Then for the limit of R — oo, the deflection angle in dark matter medium can be calculated using the
GBT as follows:

Hence, we obtain the weak deflection angle in dark matter medium as follows:

M a’m
_ 2 4 2 202 2

which agrees with the known expression found using another method. Of course, in the absence of the dark
matter medium (¥ = 0), this expression reduces to the known vacuum formula o ~ 4 5 + ‘fT?;.

We find that the deflected photon through the dark matter around the black-bounce traversable wormhole
has large deflection angle compared to the standard case.

4. Conclusion

In this paper, we have studied weak deflection angle of black-bounce traversable wormholes using the GBT.
Then we have investigated the effect of dark matter medium on the weak deflection angle of black-bounce


https://doi.org/10.20944/preprints202008.0512.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 August 2020 d0i:10.20944/preprints202008.0512.v1

traversable wormholes. Note that refractive index is taken spatially non-uniform, and it is uniform at large

distances.
Hence it is concluded that the deflection angle by black-bounce traversable wormholes increases with

increasing the bounce parameter a, on the other hand the deflection angle decreases in a increasing medium
of dark matter. It is showed how weak deflection angle of wormhole is affected by the bounce parameter a.
Moreover we use the Gauss-bonnet theorem for calculating weak deflection angle which proves us that light

bending can be thought as a global and topological effect.
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