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Abstract: In this work, the recently proposed cracking elements method (CEM) is used for simulating 
the damaging processes of structures with initial imperfections. CEM is built in the framework of 
conventional FEM which is formally like a special type of finite element. The disconnected piecewise 
cracks are used for representing crack paths. Taking the advantages of CEM that both the initiations 
and propagations of cracks can be naturally captured, we numerically study the uni-axial compression 
tests of specimens with multiple joints and fissures, where the cracks may propagate from the tips, or 
from some other unexpected positions. Though uni-axial compression tests are considered, mainly 
tensile damage criteria are used in the numerical model. On one hand, the results demonstrate the 
robustness and effectiveness of the CEM while on the other hand, some drawbacks of the present 
model are demonstrated, showing the future work.
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1. Introduction12

Great engineering practices refer to prediction and prevention of propagation and initiation of13

cracks in the structures with complex initial imperfection, such as rock mass with joints and concrete14

structures with early age cracks. When these structures are subjected to complex loading conditions,15

the existed cracks does not certainly further propagate and the undamaged parts are not naturally safe.16

For these structures, analytical and empirical analysis are not enough for assuring their safety and17

durability. Numerical tools with robustness and great efficiency are highly preferable.18

With the understanding of continuum-discontinuous theory and developments of computing19

power, many sophisticated numerical methods are proposed in last decades. These methods can be20

built in the continuum or discrete framework [1–3], introducing damage degrees [4,5] or crack openings21

(crack widths) [6,7] as the new freedom degrees. They can localize the damage [8,9] or consider the22

nonlocal effects [10,11], or even assume the long range forces [12,13]. The crack can be explicitly23

represented by moving boundaries [14–17] or implicitly embedded for avoiding remeshing [18–21].24

The cracked domain can be discretized with elements [6,22,23] or particles [24–26]. In summary, these25

methods show advantages as well as disadvantages for different problems. Hence, a problem oriented26

selection procedure would be helpful.27

Back to our problem, for analyzing the damaging processes of structures with initial imperfection28

we need a method capable of capturing initiation as well as propagation of cracks. Since we do29
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not focus on the stress state such as stress intensity factor around specific crack tips, numerical30

methods using remeshing [15,27,28], nodal enrichment such as eXtended Finite Element Method31

(XFEM) [18,29–31] and Numerical Manifold Method (NMM) [32–35] are not considered for simplicity.32

Furthermore, the crack openings are very important for analyzing the durability of structures and33

the quasi-static loading conditions are considered. Hence, we did not use the damage degree based34

methods such as phase field method [36–39], mixed mode model [40–43], equivalent lattice models35

[44–47] and peridynamic based methods [48–51]. Finally, we hope multiple cracks can be efficiently36

and simultaneously tracked and complicated crack tracking strategies [52,53] can be avoided. The37

Cracking Elements Method (CEM) [54–57] is the chosen numerical tool.38

The CEM is a novel numerical approach belonging to the family of the Strong Discontinuity39

embedded Approach (SDA) [58–62]. Different from the other SDAs, it introduces disconnected40

piecewise cracking segments appearing in the center point of each cracked element for representing41

crack paths, similar to the Cracking Particle Method (CPM) [63–66]. Hence, it does not need to42

distinguish crack tip element and crack passing element, which naturally captures initiation as well as43

propagation of cracks. The crack orientation is determined locally, greatly reducing the computing44

efforts. Moreover, [56] shows that the cracking elements can be treated as a special type of finite45

element, which is formally like the 9-node quadrilateral element (or 7-node triangular element). Hence,46

it can be easily implemented in the conventional FEM framework.47

In this work, CEM is used for simulating the damaging processes of brittle structures with joints48

and fissures. The numerically-obtained results are compared the experimental results, where the cracks49

do not alway propagate from the tips of joints. Especially, uni-axial compression tests are considered50

while we only use tensile damage criteria in our numerical model. On one hand, agreeable results are51

obtained in most cases, demonstrating the robustness and applicability of CEM. On the other hand, the52

differences between the numerical and experimental results will guide us to do our future researches.53

The remaining parts of this paper are organized as follows. In Section 2 the constitutive54

relationship, the formulation of the CEM are presented. The elemental stiffness matrix and residual55

vector are provided, showing that CEM is very similar to the conventional finite element. The56

numerical studies are provided in Section 3, comparing to the experimental results. This paper closes57

with concluding remarks in Section 4.58

2. Methods59

Since the details of CEM were proposed before in [56,57] with the matrix form, only brief60

introductions will be provided in this section. By providing the elemental stiffness matrix and residual61

vector of un-cracked and cracked elements, we will demonstrate the ease of implementing CEM into62

the FEM framework.63

2.1. Traction-separation law64

Mixed-mode traction-separation law [67–71] is used in the CEM. Under 2D conditions, the
equivalent crack opening is defined as

ζeq =
√

ζ2
n + ζ2

t , (1)

where ζn and ζt are the crack openings (as unknowns) along the normal and parallel directions,
respectively, of the crack path and the corresponding unit vectors are denoted as n =

[
nx, ny

]T and
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t =
[
tx, ty

]T . Obviously nx tx + ny ty = 0. The traction components along n and t, namely, Tn and Tt,
respectively, are obtained as

Tn = Teq
ζn

ζeq
, Tt = Teq

ζt

ζeq

with

Teq
(
ζeq
)
=


TL
(
ζeq
)
= ft exp

(
−

ft

G f
ζeq

)
, loading,

TU
(
ζeq
)
=

Tmx

ζmx
ζeq, unloading/reloading,

(2)

where ft is the uni-axial tensile strength, G f is the fracture energy, ζmx is the maximum opening the65

crack has ever experienced, and Tmx = TL (ζmx) is the corresponding traction. The traction-separation66

law indicates that CEM is consistent with the conventional cohesive zone model, as a crack67

opening-based model but not a damge degree-based model.68

Correspondingly, the relationship between the traction differentials dTn and dTt and the crack69

openings ζn and ζt are described by70

D

[
dζn

dζt

]
=

[
dTn

dTt

]
, (3)

with

D = −
Teq

ζeq


ζ2

n

ζ2
eq
+

ft ζ2
n

G f ζeq
− 1

ζn ζt

ζ2
eq

+
ft ζn ζt

G f ζeq

ζn ζt

ζ2
eq

+
ft ζn ζt

G f ζeq

ζ2
t

ζ2
eq
+

ft ζ2
t

G f ζeq
− 1

 for loading,

and

D =
Tmx

ζmx

[
1 0
0 1

]
for unloading/reloading,

(4)

in which D obviously remains symmetric.71

On the other hand, some other types of the traction-separation law, such as linear, bilinear and72

hyperbolic, can also be applied but have not yet been attempted. We prefer the exponential law because73

i) it only needs two parameters: ft and G f both of which have strong physical meanings and can be74

experimentally obtained in the standard tests; ii) it has C∞ continuity, make D very simple.75

2.2. Elemental formulation76

In our early work such as [54,55], we focused on the deduction processes of CEM framework77

by introducing the strain localization [72,73] and Enhanced Assumed Strains (EAS) [74–76] in which78

process many complicated tensors are assumed. This on one hand paved the basis of this method79

which on the other hand reduced the readability. In this work, only 2D condition is considered. We80

use Voigt notation for representing all second- and fourth-order tensors with corresponding vector81

and matrix forms [77]. Moreover, from a practical point of view we will directly provide the elemental82

formulation of un-cracked and cracking element for comparisons.83

Firstly, for nonlinear analysis the standard Newton-Raphson (N-R) iteration procedure is used.
The global vector of freedom degrees are represented with symbol U =

⋃
U(e), where

⋃
(·) denotes the

assemblage of elemental matrix or vector to the global form. Considering the load step i in iteration
step j, the following equation is introduced:

Ui,j = Ui−1 + ∆Uj−1︸ ︷︷ ︸ + ∆∆U︸ ︷︷ ︸
known unknown

, (5)
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Then, the linearized balance equation is represented as

Kj−1 ∆∆U = Rj−1, (6)

where Kj−1 is the global stiffness matrix, with K =
⋃

K(e). Rj−1 is the residual vector, with R =
⋃

R(e).84

Rj−1 is a function of
(
Ui−1 + ∆Uj−1

)
. Then for the elemental stiffness matrix K(e) and the residual85

vector R(e) of un-cracked element and cracking element, we have86

2.2.1. Un-cracked element87

For an un-cracked element e, its unknown vector U(e) = [u1 · · · un]
T in which n is the node number.

Its shape function is denoted as N(e) with u(x) = N(e)(x) U(e) and its B matrix is corresponding
denoted as B(e) = ∇N(e). When ignoring the material nonlinear effects, its elemental stiffness matrix
K(e) is obtained as

K(e)
j−1 = K(e) =

∫ (
B(e)

)T
C(e) B(e) d(e), (7)

where C(e) is the matrix form of the elastic tensor. Its residual vector at iteration step j− 1, R(e)
j−1 is

obtained as
R(e)

j−1 = F(e) −K(e) (Ui−1 + ∆Uj−1
)

, (8)

where F(e) is the loading forces on corresponding nodes. Because K(e) will not change during the88

iteration, only one iteration step is needed for convergence.89

2.2.2. Cracking element90

On the other hand, for cracking element, its unknown vector is defined as U(e) =

[u1 · · · un, ζn, ζt]
T . Its B matrix is extended to

B(e) =
[
∇N(e), Bζ

]
, (9)

where N(e) is the original shape function and

B(e)
ζ = −

(
l(e)c

)−1

 n(e)
x · n

(e)
x n(e)

x · t
(e)
x

n(e)
y · n

(e)
y n(e)

y · t
(e)
y

2 n(e)
x · n

(e)
y nx · t(e)y + n(e)

y · t
(e)
x

 , (10)

where the element-dependent parameter l(e)c is obtained as l(e)c = V(e) / A(e), where V(e) denotes the
volume of element e and A(e) stands for the surface area of an equivalent crack parallel to the real
crack. Actually lc corresponds to the classic characteristic length [78,79]. Here, the determination of
A(e) for 8-node quadrilateral (Q8) and 6-node triangular (T6) element is slightly different insofar as the
equivalent crack passes through the center point of Q8 but through the midpoint of one edge of T6; see
Figure 1. More details can be found in [56,57]. Its elemental stiffness matrix K(e) can be obtained as

K(e)
j−1 =

∫ (
B(e)

)T
C(e) B(e) d(e) +

[
0 0
0 A(e) D(e)

]
. (11)

Because the crack orientation (n) and crack openings will change during the iteration. K(e)
j−1 of cracking

element is not constant. Its residual vector at iteration step j− 1, R(e)
j−1 is obtained as

R(e)
j−1 =

[
F(e)

−A(e) T(e)

]
− S(e)

j−1

(
Ui−1 + ∆Uj−1

)
. (12)
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Figure 1. Relationships between lc, V(e) and A(e) of Q8 and T6

where T(e) =
[

T(e)
n , T(e)

t

]T
(see Eq. 2) and Sj−1 is a designed unsymmetrical matrix as

Sj−1 =

 ∫
(
∇N(e)

)T
C(e)

(
∇̂N(e)

)
d(e)

∫ (
∇N(e)

)T
C(e) B(e)

ζ d(e)

V(e)
(

B(e)
ζ

)T
C(e)

(
∇̂N(e)

)
V(e)

(
B(e)

ζ

)T
C(e) B(e)

ζ

 , (13)

where ∇̂N(e) is value of ∇N(e) at the center point of element e.91

In summary, the elemental formulations of un-cracked element and cracking element are very92

similar. Once an un-crack element becomes cracking element, by replacing its elemental stiffness93

matrix and residual vector provided in Eqs. 7 and 8 into the new form provided in Eqs. 11 and 12, the94

cracks can be captured. Formally, the quadrilateral cracking element is similar to 9-node quadrilateral95

element (transformed from Q8) and the triangular cracking element is similar to 7-node triangular96

element (transformed from T6). The displacement freedom degrees of the center point is now used for97

representing the normal and shear crack openings.98

2.3. Determination of n, crack propagation and initiation99

A local criterion is firstly proposed in [54] for determining n, that n is assumed to be the first

eigenvector of the total strain ε̂(e), which is determined by

ε̂(e) =

 ε̂
(e)
x

ε̂
(e)
y

γ̂
(e)
xy

 = ∇̂N(e)

 u1
...

un

 , (14)
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which is independent of ζn and ζt. After solving the eigenvalue and eigenvector, we obtain[
n(e)

x

n(e)
y

]
=

[
a /
√

a2 + b2

b /
√

a2 + b2

]
where

a =
γ̂
(e)
xy

2

b =
ε̂
(e)
y − ε̂

(e)
x +

√(
ε̂
(e)
x − ε̂

(e)
y

)2
+
(

γ̂
(e)
xy

)2

2
.

(15)

In the framework of CEM, the element will experience cracking one after another. Crack propagation100

is always checked first; then, crack initiation is considered. This procedure is based on an idea that101

when the extensions of the existed cracks cannot fully release the extra stresses, new cracks will appear.102

This procedure was used for capture the dynamic crack propagation in [55], showing robustness as103

well.104

Firstly an index φ
(e)
RK is introduced as

φ
(e)
RK =

 n(e)
x · n

(e)
x

n(e)
y · n

(e)
y

2 n(e)
x · n

(e)
y


T

C(e)

 ε̂
(e)
x

ε̂
(e)
y

γ̂
(e)
xy

− f (e)t (16)

Then, following computing procedure is conducted105

1. The un-cracked domain is divided into two sub-domains as i) propagation domain, ii) crack106

root domain, base on a simple rule: when the elements share at least one edge with the cracking107

elements, they belong to the propagation domain, otherwise they are in the crack root domain.108

Obviously in the beginning the whole domain is crack root domain;109

2. Find
{

max
{

φ
(e)
RK

}}
in the propagation domain. If

{
max

{
φ
(e)
RK

}}
> 0, the element becomes110

cracking element, then two sub-domains will be updated, the N-R iteration will be run and this111

step will be conducted again. If
{

max
{

φ
(e)
RK

}}
≤ 0, do the next step;112

3. Find
{

max
{

φ
(e)
RK

}}
in the crack root domain. If

{
max

{
φ
(e)
RK

}}
> 0, the element becomes113

cracking element, then two sub-domains will be updated, the N-R iteration will be run and step114

2 will be conducted again. If
{

max
{

φ
(e)
RK

}}
≤ 0, this loading step is considered to converge.115

A detained flowchart can be found in [56].116

3. Numerical investigations117

The plane stress condition is considered for all the examples provided in this section.118

3.1. Sandstone containing three pre-existing fissures119

The first example is the uni-axial compression tests of sandstone specimens with three fissures,120

which was experimentally studied in [80]. This example was numerically studied by bond-based121

peridynamic model in [81], as a damage degree based model. To the best of our knowledge, this122

example has not been numerically studied by a crack-opening based model in published literatures.123

The model, material, and discretization are shown in Figure 2. The meshes will slightly change with124

different setup of the fissures. Although the specimens are subjected to compression loading, they125

experience mainly tensile damages.126

The force-displacement curves and the maximum vertical loads comparing to the experimental127

results are show in Figure 3. In the force-displacement curves, oscillations correspond to the connecting128

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 August 2020                   doi:10.20944/preprints202008.0505.v1

https://doi.org/10.20944/preprints202008.0505.v1


of different fissures by propagating cracks. Furthermore, considering the maximum vertical loads,129

similar to the experimental results, we found the position of the fissure No.3 has limited influences130

on the maximum σy. The crack openings plots comparing to the experimental results are shown in131

Figures 4 to 7, indicating that CEM is capable of simulating multiple crack propagations and the132

connections of different fissures.133

Figure 2. Sandstone containing three pre-existing fissures: model, material, and discretization
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Figure 3. Sandstone containing three pre-existing fissures: (a) force-displacement curves, (b) maximum
vertical loads comparing to the experimental results provided in [80]

3.2. 3D-printed materials with two intermittent fissures134

The second example is the uni-axial compression tests of 3D-printed materials with two135

intermittent fissures, which was experimentally studied in [82]. The model, material, and discretization136

are shown in Figure 8, with width of fissures: 0.3 mm. It can be found that only elastic modulus,137

Poisson’s ratio, fracture energy, and uni-axial tensile strength are needed in our model.138

The force-displacement curves and the maximum vertical loads comparing to the experimental139

results are show in Figure 9. Generally the numerically-obtained results are agreeable. Parts of the crack140

openings plots comparing to the experimental results are shown in Figures 10 to 13. It can be found that141

in most cases of the simulations, the two fissures are not connected by the propagating cracks, which142

is not very agreeable to the experimental results. We attribute the differences to two reasons: i) the143

shearing damage is not accounted in the present model and ii) the free horizontal boundary conditions144

on the top and bottom sides of the specimens cannot be assured in the experimental investigations.145
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Experimentε = 6.25·10
�3

ε = 3.125·10
�3

ε = 4.6875·10
�3

Figure 4. Sandstone containing three pre-existing fissures (Case 1): crack openings plots (deformation
scale 1:1) comparing to the experimental results provided in [80]

ε = 6.25·10
�3

ε = 3.125·10
�3

ε = 4.6875·10
�3

Experiment

Figure 5. Sandstone containing three pre-existing fissures (Case 2): crack openings plots (deformation
scale 1:1) comparing to the experimental results provided in [80]

ε = 6.25·10
�3

ε = 3.125·10
�3

ε = 4.6875·10
�3

Experiment

Figure 6. Sandstone containing three pre-existing fissures (Case 3): crack openings plots (deformation
scale 1:1) comparing to the experimental results provided in [80]
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ε = 6.25·10
�3

ε = 3.125·10
�3

ε = 4.6875·10
�3

Experiment

Figure 7. Sandstone containing three pre-existing fissures (Case 4): crack openings plots (deformation
scale 1:1) comparing to the experimental results provided in [80]

Figure 8. 3D-printed materials with two intermittent fissures: model, material and meshes
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Figure 9. 3D-printed materials with two intermittent fissures: (a) force-displacement curves, (b)
maximum vertical loads comparing to the experimental results provided in [82]
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Experimentd = 0.35 (mm) d = 0.45 (mm)

Figure 10. 3D-printed materials with two intermittent fissures (α = 45◦): crack openings plots
(deformation scale 1:1) comparing to the experimental results provided in [82]

Experimentd = 0.325 (mm) d = 0.45 (mm)

Figure 11. 3D-printed materials with two intermittent fissures (α = 90◦): crack openings plots
(deformation scale 1:1) comparing to the experimental results provided in [82]

Experimentd = 0.325 (mm) d = 0.45 (mm)

Figure 12. 3D-printed materials with two intermittent fissures (α = −45◦): crack openings plots
(deformation scale 1:1) comparing to the experimental results provided in [82]
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Experimentd = 0.4 (mm) d = 0.525 (mm)

Figure 13. 3D-printed materials with two intermittent fissures (α = −90◦): crack openings plots
(deformation scale 1:1) comparing to the experimental results provided in [82]

3.3. Rock-like materials with nine parallel fissures146

The third example is the uni-axial compression tests of rock-like brittle materials with nine parallel147

fissures, which was experimentally studied in [83]. The model, material, and discretization are shown148

in Figure 14. Five cases regarding different values of θ are considered as θ = 15◦, θ = 30◦, θ = 45◦,149

θ = 60◦, and θ = 75◦.150

We only compare the numerically and experimentally obtained results of crack opening (crack151

paths). The crack openings plots are shown in Figure 15. Comparing to the experimental results152

shown in Figure 16, it can be found that the tensile induced cracks are successfully captured by CEM,153

including some branching and nucleation of cracks. Especially for the cases with small values of θ, the154

tensile damages are dominate. However, some drawbacks of our model are indicated as155

• When the fissures are explicitly modeled, the contacts between the two surfaces of fissures shall156

be taken into account. When taking advantage of CEM, implicit modeling of fissures shall be157

developed. In other words, fissure shall be treated as embedded cracks, where the closing of158

cracks can be modeled easier.159

• With the increasing of θ, shearing damages become dominant. For shearing damages, orientation160

of the shear bonds depend on the properties of the acoustic tensor [84,85]. Corresponding161

shearing damage criteria and model shall be developed and implemented in the CEM.162

Figure 14. Rock-like materials with nine parallel fissures: model, material and meshes

4. Conclusions and outlooks163

In this work, the damage processes of structures with fissures are analyzed with the Crack164

Elements Method (CEM). Uni-axial compression tests are considered while tensile damage model is165
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ε = 9·10
�3

ε = 8·10
�3

ε = 1·10
�2

ε = 5·10
�3

ε = 5·10
�3

Figure 15. Rock-like materials with nine parallel fissures: numerically-obtained crack openings plots
(deformation scale 1:1)

Figure 16. Rock-like materials with nine parallel fissures: experimentally-obtained crack paths (the
shadows indicate broken surfaces)
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used in the model. For such structures and loading conditions, the crack may propagate from the tips or166

some other positions of the fissures. The cracks will connect several fissures or propagate independently.167

Sometimes, new cracks may initiate from unexpected positions. The results demonstrate the168

advantages of the CEM, which is capable of capturing both initiations and propagations of cracks. On169

the other hands, some drawbacks of the present model are also revealed, indicating our future work170

about the CEM, including the implicit modeling of the fissures and the implementation of shearing171

damage models.172
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