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Abstract: Technologies around the world produce and interact with geospatial data 11 
instantaneously, from mobile web applications to satellite imagery that is collected and processed 12 
across the globe daily. Big raster data allows researchers to integrate and uncover new knowledge 13 
about geospatial patterns and processes. However, we are also at a critical moment, as we have an 14 
ever-growing number of big data platforms that are being co-opted to support spatial analysis. A 15 
gap in the literature is the lack of a robust framework to assess the capabilities of geospatial analysis 16 
on big data platforms. This research begins to address this issue by establishing a geospatial 17 
benchmark that employs freely accessible datasets to provide a comprehensive comparison across 18 
big data platforms. The benchmark is a critical for evaluating the performance of spatial operations 19 
on big data platforms. It provides a common framework to compare existing platforms as well as 20 
evaluate new platforms. The benchmark is applied to three big data platforms and reports 21 
computing times and performance bottlenecks so that GIScientists can make informed choices 22 
regarding the performance of each platform. Each platform is evaluated for five raster operations: 23 
pixel count, reclassification, raster add, focal averaging, and zonal statistics using three different 24 
datasets. 25 
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1. Introduction 28 
We are in the era of big raster data. Planet, formerly Plant Labs, has a constellation of over 200 29 

satellites that collect 1.4 million images each day.1 Satellite imagery or earth observation data 30 
produces petabytes of data yearly and organizations like the Intergovernmental Panel on Climate 31 
Change (IPCC) produce simulated raster datasets that are multiple petabytes.2  32 

The volume of data available for geospatial researchers is growing and, yet we do not have a 33 
standardized set of tools and best practices for accessing, manipulating, and performing analyses on 34 
big geospatial data. Currently, researchers develop novel ways for downloading data onto their 35 
workstations to perform their analyses. The reliance on this workflow reduces the ability to scale 36 
geospatial analyses on large datasets. However, it is necessary because geospatial data is different. 37 
Geospatial data is different because it has relationships and those relationships need to be considered 38 
when analyzing the data. Our research examines if big data platforms that support geospatial occur 39 
differential computational performance costs for preserving those relationships. 40 

1.1. Big Geospatial Data 41 
GIScience has co-opted new technology for geospatial problem-solving. In particular, the rise of 42 

distributed platforms has facilitated parallel spatial computation. Generally speaking, there are three 43 
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types of big data architectures currently supporting big geospatial data: parallel databases, No-SQL 44 
databases, and the family of Hadoop based platforms which implement map-reduce either in 45 
memory (Spark) or to disk (Hadoop). Haynes3 provides a complete description of platform 46 
architectures that support raster data including PostgreSQL, SciDB, RasDaMan, Hadoop-GIS, 47 
SparkArray, and GeoTrellis. 48 

While there are a number of platforms that support raster data, there is little evidence describing 49 
capabilities and performance of spatial analysis operators on big data platforms. This is problematic 50 
as there is a need for the GIScience community to be able to use these platforms to process big raster 51 
data. The performance of raster operations has not been adequately addressed within the big data 52 
community. Instead, the literature surrounding big raster data platforms has three themes 1) novel 53 
implementations, 2) domain-science implementations, and 3) meta-reviews. 54 

1.2. Novel Implementations 55 
Novel implementations are characterized by the extension of a new platform to support 56 

geospatial data and methods. Examples of this are Palamuttam4 and Wang5 who developed a multi-57 
dimensional array libraries for Apache Spark. Li and colleagues6 developed, FASTDB, a distributed 58 
array database. Other research groups have extended SciDB to support spatial analysis.7–9 These 59 
papers focus on specific problems, have small use cases, and are implemented on specific datasets. 60 
In comparison, with a benchmark their implementations are too specific and cannot be translated or 61 
adopted by the broader community.  62 

1.3. Domain Science Implementations 63 
Domain-science implementations focus on the development of a spatial workflow on a big data 64 

platform. This work fills a critical need in the literature as it demonstrates the general usability of the 65 
platform.10–13 While these papers, are widely helpful for understanding the capability of a particular 66 
platform, they limited in their ability to compare workflows across platforms when compared with a 67 
benchmark. 68 

1.4. Meta Reviews 69 
Meta-reviews discuss the platforms and their capabilities.14–18 These papers are orientated 70 

towards the broadest communities and focus on the platform capabilities not platform performance. 71 
They describe the directions and trends that are on the horizon and indicate how their adoption can 72 
fulfill larger goals within the broader community. Yet these too are limited in when compared to a 73 
benchmark as they offer no results to compare different systems. 74 

1.5. Need for a Geospatial Benchmark 75 
A gap within the geospatial high-performance computing community is the lack of a 76 

benchmark, which allows for the evaluation of spatial operators across platforms. Ray and 77 
colleagues19 implemented Jackpine as a benchmarking framework for vector data. Jackpine 78 
implemented nine spatial analysis operations and five topological relationships on three vector data 79 
types: point, lines, and polygons. Rabl and colleagues20 implemented benchmarking for array 80 
databases but only tested data loading and array subsetting operators. Therefore, a spatial benchmark 81 
that tests raster operators is needed. This benchmark will aid the geospatial community by providing 82 
publicly available reference datasets and methods that scholars could use for comparisons. 83 

This research will establish a benchmarking framework that provides a means to accurately 84 
compare the performance of raster spatial analysis on big data. Our framework examines the 85 
performance of local, focal, and zonal operations on each platform. While it is impossible to test every 86 
potential operation, our framework examines five operators that have broad use cases. In addition, 87 
the benchmark evaluates system performance with both volume and variety characteristics.  88 

The geospatial benchmark will provide insights into the complexity of performing big data 89 
spatial analysis. The benchmark is needed to 1) identify operator performance issues, 2) determine if 90 
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the underlying causes are related to the architecture or implementation, 3) identify areas where 91 
research is needed.   92 

2. Geospatial Big Data Benchmark  93 
Benchmarks are defined as a dataset, a platform(s), and a series of operations. The definition of 94 

a geospatial benchmark is similar. First, we define dataset by a consistent spatial extent. As there are 95 
no previous existing datasets that could be employed as the benchmark, we employ multiple datasets 96 
with increasing spatial resolutions to determine performance of each platform. We employ three 97 
different platforms in this analysis, and employ three of the major spatial operations used in raster 98 
analyses. 99 

2.1. Data 100 
We use three different datasets in our analysis (Table 1). Each of these publicly available datasets 101 

has been clipped to the spatial extent of the continental United States. Each dataset used in this 102 
analysis is classified satellite imagery. They have been chosen due to their widespread availability 103 
and use within geospatial applications. We have chosen three different datasets that represent 104 
increased levels of spatial granularity. Table 1 reports the number of pixels that are present in each 105 
dataset. Table 1 should be used by geospatial researchers as a guide to compare their project and 106 
determine the performance levels they should expect based upon the platform that they have chosen. 107 

 108 
Table 1. Raster Dataset Description. 109 

Dataset Name Spatial Resolution Pixel Size in Meters Total Pixels 

GLC .0089 decimal degrees 1KM^2 18 Million 
MERIS .0027 decimal degrees 300M^2 186 Million 
NLCD 30 meters 30M^2 1.69 Billion 

 110 
To benchmark zonal operations, we also include three vector datasets of the continental United 111 

States. We used state, country, and census tract cartographic boundaries from the US (Table 2). All 112 
datasets have the same spatial extent, and the only difference is the number of features present in the 113 
dataset. As neither GeoTrellis or SciDB read shapefiles, the datasets were converted into Geographic 114 
JavaScript Object Notation (GeoJSON). 115 

 116 
Table 2. Vector Dataset Description. 117 

Dataset Name Shapefile (mb) JSON (mb) Number of Features 

States 3 megabytes 5 megabytes 49 
Counties 15 megabytes 24 megabytes 3,108 
Census Tracts 700 megabytes 1.7 gigabytes 64,882 

2.2. Spatial Partitioning 118 
As with all big data platforms partitioning the data is an important and necessary step. Data 119 

partitioning, in particular, is critical to big data platforms as it is one way to tune the platform to 120 
hardware and the data. In this research, we tuned the platforms by using a defined set of data 121 
partition sizes. The term tile size is used to designate the raster partitioning scheme. A tile size of 50 122 
means that there are 2,500 pixels (50x50) within a single partition of the data. Tile sizes have been 123 
standardized across platforms for maximum comparability of performance. Each platform is 124 
evaluated across a series of tile sizes that will be optimal or sub-optimal. Not all platforms are 125 
compared with all tile sizes, and the decision to limit these is due to the minutes changes in 126 
performance on the platforms based on tile sizes. For example, SciDB shows minor performance 127 
differences unless the tile size varies by 1 million pixels. 128 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 August 2020                   doi:10.20944/preprints202008.0504.v1

https://doi.org/10.20944/preprints202008.0504.v1


 

2.3. Spatial Operations 129 
Our analysis focuses on three classes of raster operations: local, focal, and zonal. Table 3 provides 130 

a simple matrix of how each of the platforms and how spatial operators are translated and performed 131 
on the given dataset. There are two types of evaluation: lazy and eager. Eager evaluation, which has 132 
historically been more common, is an operator that once called performs the analysis on the dataset. 133 
The age of big data platforms has resulted in the rise of lazy evaluation, which only operates on the 134 
data when the result of that operation is needed. However, this makes a comparison between 135 
platforms with different evaluations complex. Therefore, when a platform lazy evaluates, we include 136 
an additional step that forces the evaluation to complete. The eager method is used to ensure 137 
consistency between data platforms. 138 

 139 
Table 3. Description of Raster Operations by Platform with Evaluation Type 140 

Function Class Description PostgreSQL GeoTrellis SciDB 
Count Pixels Local Counts all pixels in the 

raster of a given value 
Eager  Eager  Eager  

Reclassify Local Changes all occurrences 
of a value in a raster to a 
new value 

Eager  Lazy  Lazy  

Raster Add Local Adds two rasters together Eager  Lazy  Lazy  
Focal Mean Focal Calculates the focal mean 

of a 3x3 neighborhood 
Eager  Lazy 

 
Lazy  

Polygonal 
Summary 

Zonal Calculates statistics for 
each polygon or 
multipolygon of a vector 
layer overlaid on a raster 
layer 

Eager  Lazy  Eager  

2.4. Local Operations 141 
The class of local raster operations operates on each cell individually without reference to the 142 

surrounding cells. This type of operation lends itself to parallelization because the dataset once 143 
partitioned can be operated on independently. In our benchmarking framework, we use: pixel count, 144 
reclassification, and raster add. While local operations act on a cell individually, they operate on the 145 
entire dataset. 146 

2.5. Pixel Count 147 
The pixel count operation returns the number of occurrences of a given pixel value within a 148 

raster. This function is the basis for any histogram like function, in which the dataset must be 149 
traversed and information gathered regarding the cell values that have been defined. Identification 150 
of pixels by value is of particular importance for land cover change analyses. Additionally, we utilize 151 
this method because it allows us a standardized method for forcing lazily evaluated operations to 152 
become eager across platforms.  153 

In this application, each pixel value represents a land cover type, and the operation will return 154 
the number of times this value occurs. As the function must traverse the entire dataset, there is no 155 
performance gain or loss when a pixel value is frequent or rare within the dataset. 156 

2.6. Reclassifcation 157 
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Reclassification identifies pixels of a given value and changes them to a new value specified by 158 
the user. Reclassification is a specific case of map algebra, in which a pixel value is evaluated and 159 
then replaced with a new value. There are two possibilities for reclassification operators in PostGIS 160 
1) map algebra operator and 2) reclassification operator. We empirical compared the ST_Reclassify 161 
and ST_MapAlgebra operators and determined that ST_Reclassify is the faster operator. Both 162 
GeoTrellis and SciDB are agnostic about the difference between reclassification and map algebra. Our 163 
implementation of reclassification on GeoTrellis utilizes the “local if” function. SciDB’s 164 
implementation of reclassification is an “if-then-else” statement. The pixel count operator was called 165 
post-reclassification for SciDB and GeoTrellis.   166 

2.7. Raster Add 167 
Raster add is a map algebra operation. It takes two rasters as inputs and adds the values of each 168 

cell and returning a new raster. In our study, datasets were single band rasters, and we used the same 169 
dataset as the first and second raster. Raster add is lazily evaluated in GeoTrellis and SciDB, so the 170 
count pixel function was called to force evaluation. 171 

The raster add function is used for methods such as the Normalized Difference Vegetation Index 172 
(NDVI). Calculation of NDVI requires two different bands, near-infrared and red, which go through 173 
a local mathematical process to return the actual value. The raster add function tests the ability for 174 
each platform to join these large datasets and return a value. 175 

2.8. Focal Operations 176 
Focal functions differ from local functions in that the output values are influenced by 177 

surrounding cells. A kernel or window is used to specify the size of the analysis or how many adjacent 178 
pixels are needed to determine the output value. A focal analysis is a vital tool when performing 179 
geospatial analyses. They are predominantly used in computations that involve smoothing or 180 
interpolation. For example, removing vegetation pixels from a bare earth Digital Elevation Model.21 181 
Additionally, focal operators are complex because if the dataset is distributed the operator must 182 
employ a systematic approach for locating adjacent tiles and pixels. 183 

2.9. Zonal Operations 184 
Zonal functions, specifically polygonal summaries, are a complex analysis as they involve both 185 

raster and vector datasets. Spatially irregular zones (i.e., Hawaiian islands) lead to increased 186 
complexity. Therefore, when a calculation is applied to a specific zone only a subset of the dataset 187 
must be processed. Ding and Desham22 define this problem as loosely-synchronous.  188 
For the benchmarking framework, we tested the concept of polygonal summaries of raster datasets. 189 
Each vector dataset contained both polygons and multipolygons at decreasing scales (e.g., states, 190 
counties, and tracts). The operators calculated the minimum, maximum, and average value within 191 
each zone. Polygonal summary statistics are applied in a wide variety of analyses such as 192 
phytoplankton blooms and determining the effect of vegetation cover on soil loss.23,24 In many cases, 193 
polygonal summaries are used to focus our knowledge on the spatial process and report relevant 194 
information to decision-makers. 195 

3. Big Data Platform Comparison 196 

3.1. Platform Descriptions 197 
Much of the literature that develops improvements in big data platforms use customization, 198 

such as the development of additional methods or tuning of the software to support specific 199 
hardware. Our approach differs in that we focus on the development of a geospatial benchmark for 200 
spatial analysis. Then we apply the benchmark to platforms and evaluate their ability to perform 201 
spatial analyses. 202 

3.1.1. PostGIS 2.4 (PostgreSQL 9.6) 203 
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PostgreSQL is a relational database that has supported spatial data types since its initial release 204 
of PostGIS in 2001. The raster datatype was added as an official datatype of PostGIS in 2012. A raster 205 
dataset, once loaded into PostgreSQL, assumes a table representation consisting of two columns: RID 206 
and Raster. The RID column is a primary key and the raster column contains the binary pixel value 207 
data, which is stored in Binary Large Object (BLOB) and can only be accessed by using PostGIS raster 208 
functions. 209 

3.1.2. SciDB 16.9 210 
SciDB is an open-source multi-dimensional array database designed by Dr. Michael 211 

Stonebraker.10,25 Its development was spurred by the concept that many scientific datasets have array-212 
like structures, and there are costs to restructuring the datasets to persist as arrays within a relational 213 
database. SciDB’s platform uses arrays as the primary data structure and has been co-opted by the 214 
geospatial community.9,17,26,27 SciDB’s massively parallel processing (shared-nothing parallel 215 
database) architecture allows it to process multi-dimensional arrays or geospatial imagery that are 216 
multiple petabytes. 10,25 217 

SciDB is not the only array database platform. RasDaMan, developed by Dr. Peter Bauman, is 218 
specifically designed to work with raster datasets.28 We have chosen SciDB because SciDB’s 219 
community edition can be extended to multiple instances or nodes, whereas only the enterprise 220 
version of RasDaMan supports this. 221 

Loading large raster datasets into SciDB can be a monumental task, as the primary data structure 222 
of SciDB is a one-dimensional array with one or more attributes. However, satellite imagery is two 223 
dimensional with at least one attribute. Currently, SciDB does not have built-in capabilities for 224 
reading in geo-referenced imagery. Community efforts to add geospatial functionality into SciDB 225 
have occurred, but nothing has been formally.7,29 226 

3.1.3. GeoTrellis 1.2 (Apache Spark 2.1) 227 
Apache Spark is an open-source high-performance distributed computing environment that 228 

began in 2009 in the UC Berkeley RDAD lab. Apache Spark is a component of the Hadoop ecosystem 229 
and has been shown in some operations to be 20x faster than Hadoop.30 This improved performance 230 
is due to Apache Spark holding data in memory and conducting operations in memory instead of 231 
writing to disk as Hadoop does.  232 

There is a growing literature examining multi-dimensional arrays on Apache Spark. Wang and 233 
colleagues5 implemented a new array datatype, SparkArray, to load and process raster data. Doan 234 
and colleagues15 compared the performance of loading and subsetting operations between SciDB and 235 
Apache Spark. The GeoTrellis library is one of the first libraries to go beyond simple array datatypes, 236 
as it has been developed for processing, visualization, and analysis of geospatial data.  237 

GeoTrellis began as a research project of Azavea in 2006, however in 2013, the GeoTrellis project 238 
became a member of the Eclipse Foundation, and was redeveloped in Scale and used Apache Spark 239 
as its distribution and processing engine. The GeoTrellis library implements Paired Resilient 240 
Distributed Datasets (RDD) for spatial datasets, in which each Paired RDD is represented as a key 241 
and value pair. The key refers to a specific geographic location of the raster data a tile and the value 242 
is a multi-dimensional matrix. 243 

3.2. Hardware 244 
We use the Extreme Science and Engineering Discovery Environment (XSEDE) 245 

cyberinfrastructure to provide computation resources for our computation environment.31 XSEDE is 246 
a National Science Foundation investment that allows for requests of high-performance computation 247 
allocations. Supercomputer Wrangler fulfilled our request at the University of Indiana, which 248 
allocated three compute nodes and installed our software (TG-SES160012).    249 

Each node was a Dell PowerEdge R630, equipped with two Intel(R) Xeon(R) CPU E5-2680 v3 @ 250 
2.50GHz processors, with 12 cores for each Xeon. Additionally, each node has 128 Gigabytes of 2133 251 
MHz DDR4 RAM. While each node had 24 cores, all performance times utilized 12 cores for SciDB 252 
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and Apache Spark. PostgreSQL at this time has a one to one relationship between queries and cores. 253 
All platforms utilized a Lustre backend for large data storage. The Lustre version was Lustre 2.5.5, 254 
and the Lustre client was 2.10.3. There was a small discrepancy in operating systems, as SciDB 16.9 255 
at the time of this was not properly configured to run CentOS 7. Therefore, SciDB was built on CentOS 256 
6 OS, while both Apache Spark and PostgreSQL were configured to run in a CentOS7 environment. 257 

4. Results 258 
The results represent a selection of the analyses we performed for demonstrating our 259 

benchmarking framework. The results depict broad characterizations that users should expect when 260 
performing spatial operations on the platforms.  261 

In order to effectively assess the effect of tuning into the results, each operator is performed on 262 
each dataset with various tile sizes. By varying the tile size at regularly defined intervals, we can 263 
determine when the optimal performance of a particular platform occurs on a particular dataset. The 264 
full range of tile sizes was not be applied across each platform due marginal changes in performance. 265 
However, we have identified a selection of tile sizes that allows for a fair comparison across platforms 266 
and characterize optimal performances of raster analyses on big data platforms. 267 

We report the averaged time, which determined from three consecutive tests. Speed-up is 268 
determined by taking the best performing time for PostGIS and comparing it with the best 269 
performance time for SciDB and GeoTrellis. The best performance time is used as this represents the 270 
optimally tuned performance for each platform for each dataset. Since all queries for PostGIS are 271 
single-core, speed-up per-core is determined by dividing speed-up by the number of processors or 272 
instances used. For all analyses, this value was 12.his section may be divided by subheadings. It 273 
should provide a concise and precise description of the experimental results, their interpretation as 274 
well as the experimental conclusions that can be drawn. 275 

4.1. Local Operations 276 

4.1.1. Pixel Count 277 
Figure 1 reports a common issue when analyzing raster data on various platforms without a 278 

sensitivity test. Raster tile tuning is specific to the platform. Figure 1 shows that the tile size that 279 
works well on one platform should not be applied to another platform as it will result is likely to have 280 
suboptimal performance. For example, in Figure 1, a tile size of 1000 (1,000,000 pixels per tile) depicts 281 
some of the worst performance times for PostGIS and GeoTrellis, whereas for SciDB the performance 282 
is quite good. As tile sizes decrease, both PostGIS and GeoTrellis performances improve, whereas 283 
SciDB’s performance degrades. 284 
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 285 
Figure 1. Performance of Pixel Count on dataset GLC on all Platforms. 286 
 287 
The results of the Pixel Count operator are further shown in Table 4. Table 4 depicts the results 288 

from the smallest and largest datasets (i.e., GLC and NLCD), full results reported (Appendix Table 289 
1). The results in Table 4 indicate that the dataset GLC (18 million pixels) is not big data. For big data 290 
platforms like GeoTrellis or SciDB, this is a small dataset, and there is minimal performance. 291 
However, as the volume of data increases there are notable performance gains with big data 292 
platforms (Table 4). Table 5, reports that speed-up per-core (2.49) is first achieved by SciDB on the 293 
Meris dataset (186 million pixels). SciDB’s per-core improvement increases up to 5.7 times per core. 294 
The best GeoTrellis performances occur with the Cached reads, in which the data has been read once 295 
and is cached in memory. 296 

 297 
Table 4. Pixel Count Performance Times in Seconds on all Platforms on Raster Datasets: GLC, 298 

NLCD 299 

 GLC NLCD 
Partition 
size 

PostGIS GeoTrellis 
GeoTrellis 
Cached 

SciDB PostGIS GeoTrellis 
GeoTrellis 
Cached 

SciDB 

25   1.50 0.08     97.05 10.92   
50 2.61 1.23 0.05   1184.82 84.96 6.11   
100 2.01 1.18 0.04   1039.69 86.42 5.10   
200 1.89 1.32 0.03   1000.76 100.16 5.30   
300 1.88 1.49 0.05   994.96 119.04 5.77   
400 1.82 1.75 0.05   990.35 137.89 6.28   
500 1.84 1.97 0.04 0.33 991.59 167.46 6.94 17.60 
600 2.03 2.22 0.04   996.43 196.55 7.45   
700 1.85 2.60 0.04   991.93 231.50 7.96   
800 2.08 2.97 0.04   999.22 258.02 8.46   
900 2.02 3.53 0.05   1005.01 309.73 9.12   
1000 2.21 3.71 0.05 0.20 1005.13 355.63 9.85 14.36 
1500 1.85     0.19 1002.52     21.94 
2000 2.44     0.19 1032.11     19.50 
2500       0.24       19.86 
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3000       0.21       20.79 
3500       0.24       21.87 
4000       0.24       20.96 

 300 
Table 5. Pixel Count Speed-up on all Platforms all Raster Datasets 301 

Dataset  PostGIS GeoTrellis GeoTrellis Cached SciDB 
GLC Best Time 1.823 1.183 0.034 0.189 
 Speed-up Per-core  0.128 4.425 0.804 
Meris Best Time 12.526 10.010 0.094 0.428 
 Speed-up Per-core  0.104 11.065 2.439 
NLCD Best Time 990.351 84.956 5.101 14.363 
 Speed-up Per-core  0.971 16.178 5.746 

4.1.2. Reclassification 302 
The results of the reclassification operator, differ sharply from the pixel count operator. 303 

PostGIS’s reclassification function works very efficiently and allows it to outperform the big data 304 
platforms (Figure 2). PostGIS reports faster performance times than GeoTrellis and SciDB on GLC 305 
dataset. Table 6 shows that only minimal speed-up per-core performance gains occur when using big 306 
data platforms. When examining the two smaller datasets (GLC and MERIS), GeoTrellis’ compute 307 
time is slower than PostGIS, meaning the platform is penalized for using small data (Table 6). Speed-308 
up occurs big data platforms with the largest dataset NLCD, but no per-core speed-up improvements 309 
overall.  310 

 311 
Figure 2. Performance of Reclassification on Dataset GLC on all Platforms 312 
 313 

Table 6. Reclassification Speed-Up on all Raster Datasets on all Platforms 314 

Dataset  PostGIS GeoTrellis 
GeoTrellis 
Cached 

SciDB 

GLC Best Time 0.873 1.243 0.043 0.426 
 Speed-up Per-core  0.058 1.691 0.171 
Meris Best Time 6.183 10.117 0.140 1.934 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 August 2020                   doi:10.20944/preprints202008.0504.v1

https://doi.org/10.20944/preprints202008.0504.v1


 

 Speed-up Per-core  0.051 3.689 0.266 
NLCD Best Time 532.619 95.230 29.156 137.296 
 Speed-up Per-core  0.466 1.522 0.323 

4.1.3. Raster Add 315 
Table 7 describes the performance of the raster add function across all three platforms. The 316 

results of the raster add function are similar to the results in pixel count. The big data platforms have 317 
a tremendous performance advantage over PostGIS. Table 7 depicts that PostgreSQL’s best 318 
performance occurs when the tile sizes are largest. As tile size increases performance increases, yet 319 
PostGIS was unable to ever successfully join the NLCD dataset at any tile size. The operation ran for 320 
over 24 hours without ever finishing. Both SciDB and GeoTrellis were able to join all raster datasets, 321 
and we found variation in join performance between the platforms. 322 

 323 
Table 7. Raster Add Performance Times in Seconds on all Raster Datasets and all Platforms 324 

 GLC NLCD 
Partition 

size PostGIS GeoTrellis 
GeoTrellis 

Cached SCIDB PostGIS GeoTrellis 
GeoTrellis 

Cached SCIDB 

25  1.62 0.14   209.74 38.79  
50 1160.67 1.15 0.09  * 171.04 19.03  

100 170.67 1.23 0.07  * 174.11 14.42  
200 56.87 1.34 0.08  * 201.12 14.43  
300 42.04 1.50 0.05  * 237.16 15.36  
400 35.43 1.74 0.04  * 273.04 15.87  
500 34.30 1.98 0.05 0.87 * 330.58 16.97 359.37 
600 31.61 2.30 0.05  * 388.62 18.01  
700 31.76 2.73 0.06  * 457.46 19.37  
800 30.45 3.22 0.06  * 510.85 20.00  
900 30.63 3.52 0.07  * 614.18 21.07  

1000 30.28 3.93 0.08 0.83 * 701.00 22.26 370.79 
1500    1.11    372.05 
2000    1.60    377.71 
2500    2.27    398.06 
3000    2.62    395.28 
3500    2.77    383.84 
4000    3.25    400.82 

* Unable to complete analysis 325 

4.2. Focal Analyses 326 
PostGIS performed well on the small and medium datasets (GLC and MERIS). However, it was 327 

unable to finish computations on the NLCD dataset (1.69 billion) pixels for any tile size (Table 8). For 328 
focal operations, the best performance occurred when the tile size is smallest at 50, as the tile size 329 
grew so did the time to complete the query. 330 

 331 
Table 8. Results of Focal Analysis Performance Times in Second on GLC for all Platforms 332 

Partition size PostgreSQL Geotrellis GeoTrellis Cached SCIDB SciDB overlap 
5   1.563 0.135     

50 118.883 1.272 0.124     
100 123.314 1.309 0.114     
200 126.583 1.393 0.109     
300 128.053 1.581 0.138     

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 August 2020                   doi:10.20944/preprints202008.0504.v1

https://doi.org/10.20944/preprints202008.0504.v1


 

400 127.472 1.821 0.146     
500 128.040 2.086 0.156 8.380 4.420 
600 128.084 2.355 0.179     
700 129.083 2.689 0.188     
800 128.354 3.263 0.208     
900 128.390 3.524 0.272     

1000 128.422 3.828 0.275 14.148 8.243 
1500       19.708 7.223 
2000           

 333 
SciDB’s performance on focal operations was challenging, and we provide full performance 334 

values (Appendix Table 3). The irregular performance times occur on large dense datasets with 335 
partition sizes greater than 1500x1500 pixels. Performance times of the overlapped array using the 336 
focal operator are two times faster than the standard array. This decrease in performance is due to 337 
SciDB’s query planner detecting that the array is not structured for parallel implementation and 338 
initiating a redimensioning step, which is computationally expensive. 339 

GeoTrellis’ performance for focal operations is superior to SciDB and PostgreSQL. The 340 
performance improvements are evident with small and large datasets. For example, GeoTrellis 341 
achieves a 7x speed-up per-core on the smallest dataset GLC. GeoTrellis’ performance continued to 342 
improve as it reached 9x speed-up per-core on Meris and finished NLCD. While the performance 343 
gains of GeoTrellis over SciDB are not as large, the ease and overall performance make GeoTrellis the 344 
superior platform. 345 

4.2. Zonal Analyses 346 
Unlike the other operations, PostGIS provides the best overall performance on zonal operations 347 

across datasets (Table 9). The full results of zonal operations are reported (Appendix Table 4). 348 
PostGIS’s superior performance relies on built-in operations that support both vector and raster data 349 
types. PostGIS’ rasterization process is serial but performs very efficiently. Additionally, the function 350 
employed for conducting zonal statistics with PostGIS, ST_SummaryStatsAgg, is an aggregate 351 
function. Meaning it operates on each geographic feature and raster tile independently. A major item 352 
of concern is the “U” shape performance curve that PostGIS creates (Haynes et al. 2017). We find that 353 
these trends are consistent across all datasets. The optimal performance tile size varies as the number 354 
of features increases and the geographic extent of the features decreases. 355 

Table 9. Zonal Operator Performance Times in Seconds on GLC for all Platforms with State 356 
Boundaries 357 

Partition size PostGIS GeoTrellis  SCIDB - All Operations SCIDB - Join Only 
25  257.761   

50 5.688 69.212   

100 3.886 21.169   

200 3.846 7.773   

300 4.326 5.489   

400 4.698 4.601   
500 4.825 4.314 16.800 1.375 
600 4.993 4.330   

700 4.999 4.391   

800 5.070 4.573   

900 5.187 4.811   
1000 5.429 4.964 16.808 1.597 
1500   16.152 1.951 
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2000   16.659 2.366 

2500   18.404 3.397 

3000   23.526 4.289 

3500   24.544 5.033 

4000   26.491 5.550 
 358 
The performance results for SciDB are mixed. Figure 4 shows the evidence that SciDB is 359 

potentially a good platform for performing zonal statistics. Figure 4A depicts the performance 360 
between SciDB and PostgreSQL on the states dataset, in which the PostgreSQL easily outperforms 361 
SciDB-All Operations. However, Figure 4B shows that as the number of features increases SciDB 362 
becomes the superior platform. Unlike PostGIS or GeoTrellis, with SciDB there is relatively little 363 
change in performance as chunk size increases. 364 

 365 
Figure 4. SciDB and PostGIS Zonal Operator Performance Time on GLC with States and Tracts. 366 
 367 
Figure 4 reports results for SciDB that are both “Join-Only” and “All-Operations.” The join-only, 368 

performance times assume that the masking process has already been performed. This is an unlikely 369 
assumption and full time results are in Appendix Table 5.  370 

The results of GeoTrellis are surprising (Table 10). GeoTrellis 1.2 does not have a feature that 371 
would allow it to take a collection of geometries and perform the operation across all features. 372 
Therefore, the operation is serial, which results in poor performance. Table 10 depicts that better 373 
performance occurs with larger tiles. 374 

 375 
Table 10. GeoTrellis Zonal Operator Performance Time in Seconds on GLC for States and Tracts 376 

Partition size States Tracts 
25 257.761 40685.147 
50 69.212 12982.878 
100 21.169 4897.609 
200 7.773 2205.593 
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300 5.489 1747.577 
400 4.601 1579.983 
500 4.314 1486.745 
600 4.330 1571.242 
700 4.391 1647.180 
800 4.573 1726.475 
900 4.811 1881.314 
1000 4.964 1909.860 

4. Discussion 377 

4.1. Local Operators 378 
Overall, big data platforms are superior when conducting local operations. The big data 379 

platforms specialize in partitioning large datasets and analyzing them in parallel. The data structures 380 
and architectures employed by both platforms are likely to perform well on geospatial computational 381 
work. SciDB’s array-store architecture in many cases outperformed GeoTrellis and PostGIS at 382 
fetching data quickly, which is a primary benefit of the platform. The results of the pixel count 383 
operation depict the computational advantages of using a big data platform. However, the results of 384 
the reclassification operation demonstrate the benefit of having optimized functions instead of 385 
generalized functions. The big data platforms use generic if then else operators, whose performance 386 
are slower on small datasets and did not have much performance gain on larger datasets. 387 

The results of the benchmark for the raster add operation were striking. In comparison to all the 388 
other local operations, the raster add operation depicts the most substantial performance gains when 389 
using a big data platform like SciDB or GeoTrellis. PostGIS cannot process the join between these two 390 
large raster datasets (i.e., NLCD). Table 7 also contains interesting results when comparing the 391 
performance of between SciDB and GeoTrellis. Initially, SciDB performs the best on the GLC and 392 
Meris datasets with 18 million and 186 Million pixels respectively. SciDB’s best performances are 393 
about twice as fast as GeoTrellis for each dataset. However, GeoTrellis’ performance is superior on 394 
the NLCD dataset with 1.69 billion pixels. GeoTrellis’ best performance of 171 seconds being twice as 395 
fast as SciDB’s at 359 seconds. 396 

This change was unexpected. The query that is implemented by SciDB is a series of lazy 397 
operations, whereas GeoTrellis submits a single lazy operation. For SciDB the order of operations is 398 
the following:   399 
1. first a lazily evaluated join operation, 400 
2. followed by a lazily evaluated apply operation, 401 
3. followed by a lazily evaluated filter operation, 402 
4. and ultimately concludes with the eager aggregation. 403 

In GeoTrellis, map algebra operations are reduced to r1 + r2 = outdataset. This simple equation 404 
combines all of these steps and returns a lazy new RDD. To get the results of this RDD, we must force 405 
execution we utilizing the count pixel function we have previously tested. 406 

The reason we observe the small changes in the performance of these platforms lies in the 407 
architecture of the platforms. The observed differences are related to an imperfect ratio between 408 
SciDB instances and the number of data partitions available for each instance of SciDB, which is a 409 
classic load balancing problem. For example, if we have 12 SciDB instances and 24 chunks and the 410 
operation takes 10 seconds to complete for a chunk. It will take SciDB 20 seconds to finish this 411 
operation with 24 chunks and 12 instances. If we have the same dataset partitioned into 26 chunks, it 412 
will take SciDB 30 seconds. 413 

The approach used for the Apache Spark framework is different because the platform is agnostic 414 
to the ratio of cores to the number of data partitions because the data is all in memory. The Apache 415 
Spark application defines the number of cores available and assigns data to available cores. Our 416 
results show that while SciDB suffers from an imperfect load balance on all datasets, its ability to 417 
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fetch the data is outstanding and allows it to outperform GeoTrellis on smaller datasets. However, as 418 
the dataset and load imbalance grows, Apache Spark’s framework performs better because it can 419 
avoid load balance issues. 420 

4.2. Focal Operators 421 
Creating comparable methods for the focal analyses was complex, but our results indicate that 422 

there are apparent differences in the platforms.  423 
Focal operations should be avoided when using PostGIS as it provides unsatisfactory results; 424 

due to the resulting dataset from PostGIS not being equivalent to the resulting dataset from SciDB or 425 
GeoTrellis. The PostGIS focal operator is not an aggregate. Instead, it operates on each tile 426 
independently. The focal operation is used in concert with PostGIS’s MapAlgebra function. 427 
Therefore, pixels that are located on the edge of a tile will not have their focal value determined by 428 
cells adjacent to it in the next tile. This has potentially serious implications for large datasets like 429 
NLCD when it has many small tiles. The alternative is to use the ST_Union operator to merge all of 430 
the tiles and then perform the focal operator. Merging tiles is unlikely to be unsuccessful as a raster 431 
dataset size can exceed the PostgreSQL row memory limit. Haynes17 indicates that the ST_Union 432 
operator is computationally intensive and degrades query performance. 433 

SciDB also presented some unexpected challenges. Overlapped arrays are not a unique class of 434 
arrays; they are an additional specification of the array schema. A SciDB array can be defined with 435 
an overlap in any dimension.25 The overlap allows SciDB each array to have data from adjacent tiles. 436 
An array with a defined overlap value will now be able to conduct a focal operation in parallel. 437 

Wide-ranging performances were encountered when using the focal operator, highlighting 438 
architectural issues using large partition sizes (i.e., greater than 1500x1500 pixels) on big arrays. The 439 
window operator, for SciDB, works on a tile sequentially and stores them in memory. This process 440 
exhausted the memory on 128 Gigabyte the node. Queries that used tiles sizes of 2000 or greater 441 
caused the query to hang, even if completed, and sometimes resulted in the SciDB needing to be 442 
rebooted. 443 

While both big data platforms are better alternatives to PostGIS, GeoTrellis is the best performer. 444 
When a focal operation is initiated on the RDD, GeoTrellis is aware of the spatial arrangement of 445 
every tile of the dataset. It then collects all edge pixels that are necessary for each tile and shuffles 446 
them to the neighboring tiles, making the focal operation embarrassingly parallel.  447 

Another implementation advantage of GeoTrellis over SciDB is that it currently caches at the tile 448 
level. The first time the focal operation is initiated on a tile, GeoTrellis knows very little information 449 
about its adjacent pixels. Therefore, it must gather information about the adjacent pixels. When the 450 
operator moves to an adjacent pixel, it already has information about ⅓ of the adjacent cells from the 451 
previous query. GeoTrellis’ implementation allows it, through caching, to reuse data that it has 452 
already read, speeding up the operation. Currently, on SciDB, the focal operator does not cache. 453 
Researchers have written additional operators for SciDB that improved the performance of the focal 454 
operation.8 Unfortunately, the operator is currently depreciated and could not be tested within our 455 
framework. The concept of within tile caching should be applied to any focal operation on a big raster 456 
data platform. 457 

4.3. Zonal Operators 458 
Creating comparable methods for the zonal analyses was the most complex as it involved two 459 

different datasets vector and raster. Both PostGIS and GeoTrellis natively support vector data types. 460 
However, SciDB does not, which is problematic for performing zonal operations.  461 

Zonal operators are an area in which both big data platforms struggled in comparison to 462 
PostGIS. Polygonal summaries are an area in which research is needed for big data platforms. One 463 
potential reason is that polygonal summary or zonal statistics tend to be viewed as a single operation, 464 
when in fact there are a series of steps. 465 
1. rasterize the vector dataset to the same geographic extent as the raster dataset, 466 
2. spatially join the masked raster and original raster dataset, 467 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 August 2020                   doi:10.20944/preprints202008.0504.v1

https://doi.org/10.20944/preprints202008.0504.v1


 

3. conduct an aggregation (i.e., min, max, sum, mean) between the two joined datasets. 468 
Within each platform, polygonal summarization works differently. For PostGIS polygonal 469 

summarization process is serial. It takes each polygon and intersects it with spatially aligned tiles. It 470 
then rasterizes and joins the two datasets together and returns the requested statistics. 471 

GeoTrellis avoids rasterization and uses a scan-line algorithm to identify the pixels of interest it 472 
then creates and returns a new RDD. The primary issue for SciDB is the development of an external 473 
process for creating and loading a masked dataset. Rasterization is a slow process that creates a 474 
second dataset that must be loaded into the platform, decreasing the performance substantially. Why 475 
perform the rasterization process and create a second potentially large dataset? We would argue that 476 
the implementation of a scanline operation would be beneficial for SciDB. Parallel scanline operations 477 
have been widely implemented within the literature.32,33 478 

Solving the polygonal summary issue for GeoTrellis (Apache Spark) is complex. Our 479 
implementation utilized a loop which is used to iterate through all the features of the vector dataset. 480 
A function that performed this analysis for all features within the vector dataset is likely to improve 481 
the performance greatly. 482 

However, there may be underlying architectural issues that could potentially reduce the overall 483 
performance of this operation. Zonal Statistics utilizes heterogeneous datasets, which causes issues 484 
for Apache Spark. Its typical way of handling this is to shuffle the data. However, the amount of 485 
shuffling implemented during zonal analysis is of great concern. Shuffling is necessary because 486 
Apache Spark does not join or merge heterogeneous datasets. For example, take a raster dataset with 487 
lots of tiles and scatter them across a series of nodes and then do the same thing with a vector dataset 488 
with lots of features. The resulting analysis incurs greater computational penalties when shuffling 489 
the data. The results in Table 10 support this. The performance increases when using a dataset with 490 
few features like states compared to a dataset like many features such as census tracts. GeoTrellis 491 
spends much of its time shuffling data around so that it can match the vector and raster datasets 492 
together. GeoTrellis’ performance when there are fewer raster tiles and fewer vector features. 493 

Yang34 discusses a potential solution called Map-Reduce-Merge, which is designed to handle 494 
heterogeneous datasets. The implementation of such a feature for geospatial analysis is not without 495 
challenges as Apache Spark works best with small partitions. Currently, GeoTrellis partitions at the 496 
polygon level; this is problematic because polygons can span multiple tiles. To make the data more 497 
homogenous, vector-specific partition needs to be implemented. Partitioning will need to be 498 
implemented at two levels. The first level of partitioning is at the polygon and the second level of 499 
partitioning would be such that it breaks polygons into fragments that align with the raster 500 
partitioning structure. Afrati and Ullman35 build upon this work discussing a similar strategy, map-501 
reduce-join. The map-reduce-join strategy allows for the joining of heterogeneous datasets based 502 
upon star join. In which the smaller dataset (vector) is replicated to all potential matching tiles, and 503 
then joins are performed. GeoSpark implements a similar partitioning strategy when joining vector 504 
datasets in Apache Spark.36  505 

5. Conclusions 506 
This research develops the first Geospatial Big Data Benchmark that can be used for 507 

comprehensively comparing raster analysis on big data platforms. It provides a broad overview of a 508 
selected group of big data platforms and applies them to three classes of spatial operators. The 509 
development of the geospatial benchmark for raster operations is necessary and will aid the 510 
development of big raster data platforms. The benchmark guidelines are a critical piece component 511 
of the spatial infrastructure and the big spatial community and will provide the geospatial 512 
community with a reference tool for evaluating big raster platforms. The utility of the benchmark is 513 
demonstrated in the application of the benchmark to three existing big data platforms and their 514 
potential application to processing big geospatial data. 515 

 516 
Table 11. Evaluation of Platform Performance on Raster Operations. 517 

 Local Focal Zonal 
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PostGIS Moderate Performer Poor Performer Top Performer 

SciDB Top Performer Poor Performer Moderate Performer 

GeoTrellis Top Performer Top Performer Poor Performer 
 518 
Table 11 reports an overall assessment of platform performance on big spatial operations. Both 519 

of the big data platforms SciDB and GeoTrellis exhibited superior performance methods on the local 520 
operations. In particular, map algebra operations are an area where these platforms demonstrate their 521 
superior performance, as PostGIS was unable to finish the computation for the raster add operator as 522 
the data volume grew. GeoTrellis was also the superior platform when performing focal operations. 523 
GeoTrellis has implemented various levels of caching that results in good performances on datasets 524 
of all sizes. Additionally, both big data platforms have the ability to restructure the data into an 525 
embarrassingly parallel format on demand. Lastly, big data platforms need of additional 526 
development work to support zonal operations. Both SciDB and GeoTrellis produced subpar 527 
performances for zonal operations. Of the two platforms, SciDB’s performances were the same or 528 
similar to PostGIS on the medium and small datasets. SciDB’s major bottleneck is the need to rasterize 529 
and load the external dataset, which is problematic for large datasets. While GeoTrellis has 530 
implemented methods to avoid rasterization, the current architecture’s inability to match 531 
heterogeneous datasets without lots of shuffling limits the platform's use on zonal operations that 532 
contain a large number of vector features or have a small tile size. Table 11 highlights a second 533 
significant issue; none of the platforms we analyzed were successful at all of the three classes of raster 534 
operations. GeoTrellis was the top performer in two of the three categories, making it an ideal 535 
platform for developing spatial workflows. 536 

5.1. Limitations 537 
While this study has attempted to be very thorough and robust in its analysis, there are 538 

limitations to this research. The first limitation is that we have not examined every big data platform 539 
that currently analyses raster data. We have examined a selection of platforms that are documented 540 
in the literature and utilize different big data architectures: relational databases, No-SQL array 541 
databases, and Apache Spark (in-memory Hadoop). A second and related limitation is that new 542 
versions of the software will change the performance of these platforms. This is true, however again 543 
we reference the architectural limitations that we have identified. Unless there are major changes 544 
within the architecture, many of these problems will still exist. The last limitation is that we have not 545 
extensively examined the V’s of big data. While this is also true, the benchmark provides the 546 
foundation on which a more extensive benchmark should be built. 547 

5.2. Future Work 548 
This research addresses a significant gap in the literature through the development of a 549 

geospatial benchmark that can be used to evaluate spatial analysis on big data platforms. This 550 
research should progress in several directions. First, we propose to develop a complementary 551 
benchmark for vector datasets. Many platforms provide spatial analysis operators for vector spatial 552 
data, and this benchmark should be extended to encompass the two major spatial data types. 553 
Secondly, work comparing the platforms should be extended into different computation 554 
environments. Our work examined large memory single node high-performance environment, but 555 
results could differ substantially in a distributed computing environment. Lastly, the evaluation 556 
framework should be updated with more platforms, new versions of the existing platforms, larger 557 
multi-spectral datasets, and the integration of spatial workflows. The development of such an 558 
ambitious geospatial benchmark would be beneficial to the entire geospatial community as it would 559 
provide a clear framework that identifies pain-points and successes for high-performance geospatial 560 
computing. 561 
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