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9 Abstract: This paper discusses the potential and limitations of the Normalized Difference
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11 Very often the NDVI is correlated with socioeconomic and/or sociodemographic data to
12 demonstrate the inequality in environmental settings that themselves influence individual health
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20 1. Introduction

21 Earth observation is a discipline that monitors the earth and the condition of the earth’s surfaces
22 for more than 50 years now. Special earth observation satellites are able to acquire timely data in
23 frequent intervals from the earth surface [1, 2, 3]. One of the most prominent land surfaces is the
24 vegetation cover that has a large extension on the land surfaces. In urban contexts vegetation surfaces
25  are very important for the well-being and health of the urban population. Due to the material
26  composition of urban areas it is helpful to use very high resolution satellite images with decimeter
27  ground resolution. According to [4] “High resolution data are a valuable source for urban and
28  suburban areas and can deliver information in high geometric and semantic quality for various cities
29  and urban agglomerations around the world. Due to accelerating urban sprawl and increasing urban
30  population more and more topics arise where remote sensing is able to support planning and other
31  public duties.” The benefit of earth observation data is the ability to keep pace with the development
32 and to keep track of the changes and additions within urban areas in terms of relevant land cover
33 types (e.g. vegetation).

34 To be able to monitor the vegetation and to judge the condition of photosynthetic active plants
35  one developed vegetation indices. Based on the spectral characteristics of vegetation a comparison
36  between the reflectance in the red (R) and near infrared (nIR) parts of the electromagnetic spectrum
37 s calculated. The selection of these wavelengths results from the absorption and reflection
38  characteristics of vegetation. Due to absorption processes in the visible light, especially in the red part
39 of the electromagnetic spectrum, associated to chlorophyll content of the leaves, one can observe low
40  reflectance values for healthy vegetation. In contrast to that, in the near infrared part of the
41  electromagnetic spectrum one can observe a very strong reflection which corresponds to multiple
42 reflections in the inner cell structure of leaves due to the water content in the cells (see Figure 1).
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44 Figure 1. Reflectance curve of photosynthetic active vegetation (modified after [5])
45 Based on these characteristics [6] calculated the simple ratio vegetation index (RVI) by dividing
46  the red (R) by the near infrared (nIR):
47
48 RVI=R/nIR
49
50 “The RVI is widely used for green biomass estimations and monitoring, specifically, at high

51  density vegetation coverage, since this index is very sensitive to vegetation and has a good correlation
52 with plant biomass. However, when the vegetation cover is sparse (less than 50% cover), RVI is
53 sensitive to atmospheric effects, and their representation of biomass is weak.” [7].

54 The most widely used Normalized Difference Vegetation Index (NDVI) was proposed by [8]
55  andis defined as:

56

57 NDVI = (nIR - R) / (nIR + R)

58

59 Due to the normalization in the formula the NDVI values appear in the range of -1 to +1. Values

60  below 0 are not related to healthy green vegetation, rather to water, bare soil or abiotic urban surfaces
61 like roofs and road materials. The more the NDVI value tends to +1, the more it is related to vegetation
62  cover and its vigour.

63 Due to specific needs many other vegetation indices have been developed. For environments
64  with sparse vegetation covers [9] introduced the Soil-Adjusted Vegetation Index (SAVI) which was
65  improved later by the Optimized Soil-Adjusted Vegetation Index (OSAVI) developed by [10]. Many
66  vegetation indices are addressing specific needs, like the modified Normalized Difference Vegetation
67 Index (mNDVI) [11] which is used to estimate frost damages in agriculture based on Landsat data.
68 Despite all the more sophisticated vegetation indices and the more specific problem-oriented
69  vegetation indices, the NDVI is probably the most used vegetation index today, due to its simple
70 formula and ease of use. NDVI “is often used in research related to regional and global vegetation
71  assessments and was shown to be related not only to canopy structure and LAI but also to canopy
72 photosynthesis” [7] (p. 3). It allows quantitative evaluations and comparisons of different vegetation
73 covers as well as the analysis of vigor and growth dynamics [7]. Consequentially, vegetation indices
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74  in general, and the NDVI in particular, are a widely accepted and applied means to assess and
75  monitor spatio-temporal vegetation changes.
76 Nowadays the NDVI is widely used in environmental justice, health and inequality studies in
77  urban and sub-urban contexts. The application of vegetation indices like NDVI implies that there is
78  vegetation in the investigated urban environment. Vegetation in cities mainly consist of trees, bushes,
79 agricultural fields and meadows/pastures that comprise recreational (e.g. parks, forest), natural (e.g.
80  forests) and agricultural (e.g. fields and pastures) land uses. In general, vegetation is thought to
81  improve our well-being, our health and our quality of life. According to that, one could believe that
82  a high degree of vegetation correlates positively with better quality of life and better individual
83  health. This rather broad perspective does not account for different quality of vegetation, related to
84  the height and its visibility/individual perception or the time period the vegetation appears green
85  (e.g. fields are a rather temporary land use and meadows/pastures are cut and change their
86  appearance). In addition to that, one neglects other influencing environmental factors that could
87  stress individuals and their perception and health situation, like environmental pollution, noise etc.
88 Vegetation cover in most regions is associated with seasonality aspects which stem from the
89  different seasons during a year. For regional or continental studies one can identify the start of the
90  growing season for large regions by calculating the NDVI [12]. In addition to that during one year
91  one can observe the regional differences in the NDVI values which correspond to vegetation
92  dynamics.
93 For investigations at larger scales, e.g. for cities one has to use high resolution images to be able
94 to identify as much vegetation details as possible. This is necessary due to the fact that one finds a
95 high number of different surface materials in the city. The smaller the image pixels the higher is the
96  chance to get pure vegetation pixels. If the geometric resolution of the sensor is rather coarse, then
97  one will get many so-called mixed pixels consisting of different materials in one pixel. Then it is
98 almost impossible to isolate the vegetation information. [13] for instance use high resolution satellite
99  images for an urban vegetation phenology analysis in the city of Nanjing, China. Urban vegetation
100  serves a multitude of urban ecosystem functions [14]. “As a main characteristic which is the
101  expression of the seasonal cycles of plant processes and their connections to climate change
102 (temperature and precipitation), vegetation phenology is increasingly significant for a variety of
103 scientific applications nowadays. The timing of phenological events can be used to document and
104 evaluate the effects of climate change on both individual plant species and vegetation communities
105  [15]. To study the features of urban vegetation phenology can better understand the ecological status
106  of the city, the occurrence time of urban vegetation phenology can reflect the response of urban
107 vegetation ecosystem to urban temperature change and precipitation” [13] (p. 43).
108 Besides phenology driven studies, other authors use urban green indicators for environmental
109 justice/inequality research. [16] for instance use the Spatial Urban Health Equity Indicator
110 Framework (SUHEI) (see also [17]) to relate urban green to other factors in the city with social context,
111 such as air pollution or noise, to estimate the health inequalities for different neighborhoods in the
112 city of Dortmund, Germany. Unfortunately, they did not use the urban green area information
113 mapped to the exact location but calculated the percentage of green area (each area > lha) in an
114  administrative unit. Instead, satellite derived NDVI's could deliver up-to-date information on the
115 current quality of green spaces and help to adapt the SUHEI-results to the true situation and location,
116  e.g.in dry weeks or months of a year, where the green lawn is no longer green.
117 In contrast to [16], [18] stated that the social sciences increasingly recognize the meaning of
118  georeferenced and geo-spatial data, including remote sensing imagery. He also asserts that more and
119 more social scientists are able to link their data with remote sensing data. A quick literature survey
120 uncovers good and also poor examples. For instance, [19] unfortunately use NDVI data calculated
121 from a Landsat satellite image of 2003 together with Urban Atlas data from 2012. Since high resolution
122 satellite images like Landsat are free of charge and available on a routine basis (revisit time 16 days),
123 one is wondering why they did not use a scene closer to the timeliness of the Urban Atlas data.
124 Besides the gap of nine years, the acquisition date in mid-April seems quite early compared to the
125  vegetation dynamics in their study area. Due to these frame conditions the findings related to green
126  spaces, well-being, health and socio-economic status could be affected from the old base data set and
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127  the decision on the season. [20] investigated spatiotemporal contextual uncertainties with MODIS
128 satellite data for the Netherlands and one of his results is: “To mitigate contextual uncertainties, it is
129 advised to integrate temporally well-aligned green space data” (no page numbering). Also, [21] use
130  MODIS satellite data in Taiwan to investigate a linkage between greenness and mortality for a time
131  series of data. They found out that NDVI and mortality causes are negatively correlated.

132 Another ill-conceived example of NDVI-integration is from [22], who investigate the potential
133 of satellite image-based information for planning authorities to improve the inhabitants’ quality of
134 life. In their publication they do not give any information on the image acquisition dates and the
135 results related to the vegetation's influence on the urban climate is rather generalized. In this form,
136  the presented results are almost useless, since there is no information on the height of vegetation
137  types, length of green period (e.g. for trees, meadows or fields) or other seasonal effects. And of
138 course, according to [23], [24], [25] or [26] these parameters affect the local climate.

139 Besides those case studies one can imagine that a closer collaboration between social science and
140  geomatics experts could improve the understanding of socio-spatial phenomena. [27] (p. 262)
141  indicates the potential to “socialize the pixels”. This could assist to analyze socio-spatial indicators
142 together with earth observation image data. [28] created the new term “socio-geomatics” to underline
143 the scientific potential which can be gained by the common use of socio-demographic and socio-
144  economic data together with earth observation and other geo data-related to environmental justice
145  questions. Undoubtedly the interdisciplinary approach will help to come to new insights. However,
146 it is essential, that all used data sets are used properly. As shown in a few examples above, and
147  pointed out by [29], one has to be literate to adequately select and use earth observation and other
148  geo data.

149 2. Materials and Methods

150 This section presents the geospatial data used and the respective geospatial Analysis. The study
151  area (Figure 2) is a part of the city of Dortmund in North Rhine-Westphalia in Germany. In this study
152 area one finds all relevant land-cover/land-use types of the region.

153
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155 Figure 2. Study area (data source: [30], [31])
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156 The land-cover/land-use in the study area was mapped in 2017 by the Regionalverband Ruhr
157 (RVR) [32]. It is a very detailed map product that needed to be simplified for the purpose of this
158  study, to comply with the vegetation cover. Originally the land-cover/land-use map consists of 151
159  individual categories, from which 57 were meaningful for this study. Those were reduced to 7 main
160  classes of this investigation (Table 1).

161 For different administrative reasons, the land-cover/land-use map does not cover the whole
162 study area. Therefore, those following maps that are based on this data set have a different extent
163 than those of other geospatial data used in this study.

164 Table 1. Land-cover/land-use class reduction for this study (base data from [32])
Original land-cover/land-use category (code_akt) il Lane vl
use category
10, 20, 30, 40, 51, 52, 54, 72, 75, 83, 84, 85, 87, 91, 93, 140, 151, 152, 171, Sealed
174, 211, 221, 281, 381
370 Field
361, 362 Grassland
291, 292, 293, 382 Open Space
400, 410, 420, 431, 432, 441 Forest
233, 271, 273, 282, 305, 321, 451, 471, 472 Other Vegetation
53, 223, 301, 302, 303, 306, 308, 309, 331, 383, 452 Other
165
166 Further we used freely available cloud-free high resolution Sentinel-2 satellite images [33] (see
167  Table 2) to investigate the study area during the vegetation period 2019.
168 Table 2. Sentinel-2 satellite images [33] used for the vegetation period April 1 to August 31, 2019
Acquisition date | Used Bands Pixel size
2019-04-20 2,348 10m x 10m
2019-05-15 2,348 10
2019-06-29 2,348 10
2019-07-24 2,348 10
2019-08-26 2,348 10
169
170 Due to phenology the reflectance characteristics of vegetation covers vary during the vegetation

171  period between trees (forests, parks), bushes, meadows and agricultural fields with different crops.
172 Other surfaces like roads or buildings are more or less invariant with time. this is illustrated for a few

173 typical locations in Figure 3.
174


https://doi.org/10.20944/preprints202008.0499.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 August 2020 d0i:10.20944/preprints202008.0499.v1

175
176

177
178
179
180
181

NDVI-Values of selected typical land cover types 2019

1
0.9
.8 .—-":"-'*""" —_— e = =
/..- L = = 4~\
A W -

.7 77 \ e —H

/ .. .... ..... ....Q l‘. ...'
e T a2 T A '

. ..o .. .. ..o'\ / \ . /

.4 ¢ \.\ LA

... .'. ’ -~ ':. . . -~
0.2 ’..0. Coes, .y :::'.‘.-....”.-....'. ...®
Mlecececcecncaey RS
0.1

- =t —— - - -

2019-04-20 2019-05-15 2019-06-29 2019-07-24 2019-08-26

== [@== Decidious Forest e=[@== Coniferous Forest = @== Buildings/Roads
eediee Agricultural Field 1 <« «@-<« Agricultural Field 2 <« @+« Agricultural Field 3
e=gfe «[eadow/Pasture 1 ===ge «Meadow/Pasture 2 ===gfe Meadow/Pasture 3

Figure 3. Seasonal NDVI values of selected land cover types from Sentinel-2 images

The five satellite images from which the information in Figure A was extracted are displayed in
Figure 4 in natural colors and in Figure 5 in false colours. The images clearly reveal seasonal
differences between the different land cover/land use categories. The false colours better pronounce
vegetation in red colors. The seasonal effects are also evident in the NDVI-images of the respective
dates (Figure 6).
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182
183 Figure 4. Study area as seen from Sentinel-2 satellite [33] in natural colors (R,G,B=4,3,2) with land use
184 polygons (yellow) on 2019-04-20 (a), 2019-05-15 (b), 2019-06-29 (c), 2019-07-24 (d), 2019-08-26 (e), and

185 as a land use map (data source [32]) (f)
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187 Figure 5. Study area as seen from Sentinel-2 satellite [33] in false colors (R,G,B=8,4,3) with land use
188 polygons (yellow) on 2019-04-20 (a), 2019-05-15 (b), 2019-06-29 (c), 2019-07-24 (d), 2019-08-26 (e), and
189 as a land use map (data source [32]) (f)
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191 Figure 6. NDVI values (data source [33]) with land use polygons (yellow) for the study area on 2019-

192 04-20 (a), 2019-05-15 (b), 2019-06-29 (c), 2019-07-24 (d), 2019-08-26 (e), and as a land use map (data

193 source [32]) (f)

194 Besides the calculation of individual NDVI values per image acquisition date, or the calculation

195  of NDVI differences between adjacent image dates, another reasonable approach to calculate mean
196  NDVI values is to do that over time from different images, but always for the same pixel locations.
197  This allows to gain insight into a seasonal average NDVIL. Consequently, a mean NDVI across the
198  time period of the five satellite images (temporal mean per pixel) was calculated (Figure 7). In
199  addition to that also the maximum NDVI (temporal maximum per pixel) for the period of observation
200  (April-August 2019) (Figure 8) was extracted.
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202 Figure 7. Mean NDVI (data source [33]) for the vegetation period 2019 (data source polygon overlay:
203 [32])

Max NDVI 2019
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204
205 Figure 8. Maximum NDVI (data source [33]) for the vegetation period 2019 (data source polygon
206 overlay: [32])
207 From the calculated maximum NDVI values one could also extract the month per pixel that

208  corresponds to the respective pixel. This provides the information in which month the greeness is
209  most intense (Figure 9). In a further step one calculated the modus of these pixels with the maximum
210  NDVI-month per polygon of each land-cover/land-use class. This helps to understand the temporal
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variability of slightly generalized maximum NDVI values (Figure 10). Having those calculations with
maximum NDVI and the modus of the maximum NDVI per polygon, one can identify the maximum
intensity of the NDVI (or greeness) per vegetation period and the month with the maximum greeness.
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Figure 10. Date of maximum NDVI (data source [33]) per polygon (data source polygon overlay: [32])

Besides the calculation of spatially mean NDVI's (e.g. for administrative units or fields) another
reasonable approach to calculate mean NDVI values is to do that over time from different images,
but always for the same location. This allows to gain insight into an annual or seasonal average NDVL
[28] did that for the vegetation period (April-September) for the city of Dortmund in Germany. Due


https://doi.org/10.20944/preprints202008.0499.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 August 2020

223
224
225
226
227
228
229

230

231
232

233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

to his intention to study the mean NDVI for a complete study area, he combined the multi-temporal
mean NDVI calculation with the regional mean NDVI calculation. The disadvantage is, that land
surfaces with no or little vegetation are included in the calculation and consequently lower the
resulting mean NDVI value. Advantageously he could have calculated the mean NDVI on a field or
parcel basis. This could give a much better representation of greenness in the urban environment
(Figure 11).

Mean of Mean NDVI 2019

0
[ B

Figure 11. Mean temporal NDVI (data source [33]) calculated as mean NDVI per land cover/land use
polygon (data source polygon overlay: [32])

The temporal mean NDVI could be used to generally evaluate the vegetation configuration
without consideration of seasonal differences. A high mean value indicates green vegetation for a
long period. Lower values could be caused due to less intense green intervals during the vegetation
period (e.g. harvested fields). A comparison of the temporal mean NDVI and plant height could give
insights into the perception of green within a city. For planning purposes a high degree of vertical
green infrastructure could be necessary to reach goals like good quality of life, well-being and health.

For health studies the appearance of urban green could be of great importance. For that kind of
investigation one should differentiate different heights of vegetation, due to the fact that human
beings perceive vegetation depending on their size. Green meadows probably have another
individual perception than a green forest. Since the NDVI does not account for the height of
vegetation covers, it would make sense to create a limited number of height classes for studies on
urban green and urban health or environmental inequality aspects.

To determine the vegetation height, one downloaded laser scan data of 2018 [30]. To be able to
determine the object height, one extracted a digital terrain model (DTM) from the last pulse signal,
and a digital surface model (DSM) from the first pulse signal, to be able to subtract the DTM from the
DSM to receive the resulting object height of trees, buildings and other rather vertical objects in the
area of investigation. The resulting individual object heights with 1m resolution can be seen in Figure
12 and classified into a few height classes in Figure 13 For consistency reasons, one resampled the Im
raster cells to 10m raster cells to do analysis with the 10m NDVI raster cells (Figure 14).
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255 Figure 13. Averaged height classes per land cover/land use parcel (height data source: [30], data

256 source polygon overlay: [32])


https://doi.org/10.20944/preprints202008.0499.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 24 August 2020 d0i:10.20944/preprints202008.0499.v1

257 e

258 Figure 14. Digital object heights of the study area resampled to 10m resolution (height data source:
259 [30])
260 The height measurements were then reduced into three meaningful categories: smaller 2m, 2-

261  5m and above 5m height. This height categorization helps to distinguish vegetation categories as is
262  demonstrated in Figure 15.
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265 Figure 15. Distribution of land cover/land use categories for three height classes
266 The major observations regarding the height of the different land cover/land use categories can

267  be summarized as follows. All agricultural fields are in the lowest height category, while the forest
268  areas are completely in the highest height category. About 76% of the sealed surfaces are in the range
269  of 2-5m. Sealed surfaces below 2m are very likely to be streets; higher sealed surfaces than 5m are
270  very likely higher buildings. 89% of the grassland is lower than 2m. The remaining grassland
271  probably is partly covered by trees and bushes. For the remaining classes (Open Space, Other & Other
272 Vegetation) one finds out that their maximum ground coverage ranges between 2-5m (ca. 62%, ca.
273 59%, ca. 50%). The remaining areas are probably partly covered by trees and bushes as well.
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274 Also the combination of spatial data sets in a bivariate choropleth map ([34], [28]) is a means to
275  gain additional information from the used data sets. [28] applied three NDVI classes for the
276 characterization of green urban infrastructure: <0.3; 0.3-0.6 and >0.6. The higher the value, the better
277  is the amount of green infrastructure and its condition. This classification scheme with three
278  categories was adopted here according to its practicability and the easy readability of the resulting
279  map. Figure 16 shows the combination of mean object height and mean spatial and temporal NDVI
280  (each per polygon) to evaluate if the vegetation height is of importance for the well-being and health
281  aspects of the nearby population.

282
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283
284 Figure 16. Bivariate choropleth map showing the mean spatial and temporal NDVI (data source [33])
285 per land cover/land use polygon against the mean object height per land cover/land use polygon
286 One can identify forested areas with the darkest map color due to their high height and due to

287  their high NDVI values. On the opposite flat areas with low NDVI values represent sealed surfaces
288  and fields. Many residential areas have intermediate NDVI values and a height between 2 and 5m
289 (central raster cell of the legend). This could mean that residents have houses with similar height as
290  the surrounding green area (which is represented by another polygon). So one could assume that if
291  residents look out of their windows they mostly have some green vegetation in their view. This
292  situation probably is advantageous for the residents’ perception of green vegetation and related
293 health aspects. In the upper left corner one can identify a few high-rise buildings (>5m) and a NDVI
294 class surrounding those buildings with vegetation heights less than 5m. This means that residents in
295  the upper stories most likely do not see the vegetation from their windows. As the perception of
296  green vegetation has positive effects on human health, the analysis of building heights and vegetation
297  heights could be of value to identify areas with positive effects and other areas with deficits.

298 In addition to the bivariate choropleth map one was interested to learn how the land cover/land
299  use categories correspond to the nine object height/NDVI-classes. For this analysis the bivariate
300  choropleth map was calculated on a raster cell basis instead of parcel polygons (Figure 17). A simple
301  frequency analysis of each of the nine classes reveals the class composition. To be able to address the
302  individual combinations of object height and NDVI the nine fields were labelled as follows in Figure

303 18
304
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306 Figure 17. Bivariate choropleth map showing the mean spatial and temporal NDVI (data source [33])
307 per raster cell against the object height per raster cell
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309 Figure 18. Labels of the legend of the bivariate choropleth map of Figure 16 and Figure 17

310 The frequency analysis of individual raster cells shows that the land cover/land use categories
311  are distributed as follows (compare Figure 19):

312 Field 1A is composed mainly by sealed flat surfaces (71.07%) like parking areas or streets and
313 agricultural fields (21.88%).

314 Field 1B is composed predominantly by sealed surfaces (97.26%) like small buildings.

315 Field 1C is composed predominantly by sealed surfaces (98.73%) like taller buildings.

316 Field 2A is composed similar like 1A with sealed flat surfaces like parking areas or streets

317  (40.92%), agricultural fields (13.03%) and additional areas of grassland (23.22%), other vegetation
318  (6.15%) and open space (15.18%).

319 Field 2B is composed mainly by sealed surfaces (73.42%) like small houses or open space
320 (17.96%).

321 Field 2C is composed mainly by sealed surfaces (68.47%) like taller houses, other vegetation
322 (6.11%) and open space (13.33%).

323 Field 3A is dominated by grassland (26.09%), open space (32.87%) and other vegetation (16.56%),

324  intotal rather flat vegetated surfaces. Also 12.38% sealed surfaces are present in this category. This is
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probably due to overhanging effects of vegetation (e.g. bushes) (as seen from the satellite) over sealed
materials listed in the land cover/land use map.

Field 3B is composed by open space (33.22%), forest (21.22%), other vegetation (16.88%)
grassland (26.09%) and sealed surfaces (16.26%). The sealed surfaces are represented in this category
probably due to the same overhanging effects of vegetation (e.g. bushes) over sealed materials listed
in the land cover/land use map.

Field 3C is composed predominantly by forest (72.23%)
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Figure 19. Frequency analysis of the land cover/land use composition of the classes of the bivariate

choropleth map

Grassland is a typical flat land cover/land use type but one wonders why it is present in
categories above 2m height. For this study we joined two originally separately mapped grassland
types to keep things simple. Meadows and pastures were one category and the other was meadows
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339  and pastures with scattered fruit trees. In Figure 20 one can see the individual trees at 1m resolution.
340  These individual trees integrated in the grassland class are the reason why grassland is represented
341  inheight classes above 2m.

342

343 Figure 20. Object height at Im resolution for a grassland parcel. Individual fruit trees are clearly

344 visible (height data source: [30])

345 Other land cover/land use classes that mostly appear flat like grassland, have the same

346  phenomenon that bushes and trees are integrated in the class. This results in the appearance of these
347  rather flat land cover/land use classes in categories higher than 2m and also in higher NDVI values.
348  Even fields have high NDVI values with corresponding tall height information. This is because often
349  trees are along field borders and so they were integrated in the analysis.

350 Most residential areas are characterized by category 2B, due to the fact that this is a mixture of
351  small houses and garden vegetation mostly without very high trees. However, sometimes trees
352 obscure the buildings and/or the sealed surface like roads with their branches and leaves overhanging
353  the sealed material (see Figure 21). Some larger properties are characterized by solitary trees and
354  meadows with bushes and fall into 3B.

355
356 Figure 21. Tall vegetation obscuring sealed surfaces (height data source: [30])
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357 The examples show that the explanation of the height inconsistencies can be performed by visual
358  inspection of the relevant parcels. Scattered tall vegetation is present in almost all land cover/land
359  use categories. The calculated relationships between NDVI and object height are valid and one can
360  conclude that high mean NDVI values in the two-dimensional choropleth map correspond mostly to
361  trees scattered in other categories. For an analysis interested in the value of green vegetation it is a
362  benefit to know that even on rather flat green surfaces one can find tall vertical green structures that
363 increase the value for recreation and health aspects.

364  3.Results

365 As described in [35] and [36], urban greenspace has to be considered as an environmental
366  resource having positive health effects. This statement invites for further investigations regarding the
367  green vegetation in urban areas. In this study we focussed on the NDVI as a widely used indicator of
368  urban green vegetation and demonstrated a range of applications.

369 The results show the importance of NDVI calculations based on high resolution satellite images.
370  Such images are of high timeliness and provide up-to-date information on vegetation surfaces. Due
371  to the high repetition rate of earth observation satellites like Sentinel-2 with five days, one can also
372 consider vegetation monitoring approaches to track vegetation changes within one vegetation period
373 as well as between different years of observation. While Sentinel satellite images are freely available
374  there seems to be no longer the necessity to laboriously extract greenspace information from existing
375  map products with disadvantageous up-to-dateness and possibly questionable land cover/land use
376  class definitions.

377 Using satellite images requires some geospatial data literacy for proper data selection and
378  analysis. One requirement refers to the selection of satellite images. This implies to consider an image
379  acquisition date with relevance to the intended vegetation analysis. That refers to phenological
380  development stages of vegetation as well as to an acquisition date close to other (geo) data to be used
381  together with the image(s). Fortunately, satellite images are available quite frequently. Optical images
382  can suffer from clouds, but high revisit frequencies offer good chances for cloud-free images on a
383  later date.

384 Besides the date of image acquisition, technical characteristics of the sensor system are also
385  relevant. Here, one should think about the size of the image pixels. Smaller pixels offer more details
386  and less mixed information. Especially in urban areas one can observe a large variety of surface
387  materials that compose the image. Due to frequent surface material change, one can expect more than
388  one surface material in a single pixel, if the pixel is too coarse. Smaller pixels offer a better chance to
389  get more ,pure” pixels of one surface material. This means that high or very high resolution satellite
390  images are advantageous for most studies.

391 In the Figures 3, 4, 5, and 6 one can identify seasonality in the individual seasonal images as well
392 asinthe NDVIimages across the vegetation period. Some land-cover/land-use classes are very stable
393 and others are highly variable. For vegetation especially forests are very stable, while fields and
394  meadows are affected by harvest operations. As long as the crop/grass is not harvested, it appears in
395  most cases as a green surface. Depending on the individual crop calendar, during a season one will
396  find different stages of green vegetation.

397 Having the effects of seasonality in mind, one is interested to characterize the vegetation with
398  respect to individual perception and health aspects. Having more than one image for NDVI
399  calculation, one could generate a temporal mean NDVI. In case of forests one can observe relatively
400  high NDVI values, which is caused by the stable green appearance of forests. In the case of fields or
401  pastures the harvest leads to points in time with no or less green. The related low NDVI for those
402  moments has a lowering effect on the temporal mean NDVL In short, the temporal mean helps to
403  judge the intensity and duration of green appearance.

404 The extraction of the temporal maximum NDVI provides a time stamp that identifies the
405  moment with the highest green appearance. This could help to temporally arrange green vegetation
406  areas for a well-balanced mixture of land covers/land uses for recreational and well-being aspects.
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Due to the seasonality aspects, which offer additional analytical options, one can conclude, that
the examination of the vegetation or greenspace via NDVI based on only one observation could not
be sufficient for questions related to environmental justice, health or inequality.

Another aspect relates to vegetation height, since the perception of high vegetation covers like
forest are more beneficial to the individual and the resulting positive health aspects. Depending on
the land cover/land use class, varying typical heights could be identified.

The combination of height and NDVI revealed the spatial distribution of potential areas of high
recreational and health value, as well as poor areas. Higher green areas are believed to have more
positive effects on human health than lower green areas. For instance, areas with high NDVI and tall
objects represent most likely forested areas. These represent relatively cool areas during summer
months, which results in healthier life conditions. Analyzing the bivariate choropleth map could also
assist in optimizing the urban land cover/land use mixture with respect to environmental health
aspects. The frequency analysis of the land cover/land use classes related to the nine height/NDVI-
complexes revealed which land cover/land use areals could be improved for a beneficial and healthy
environment.

4. Discussion

To clearly structure the following observations/findings, we structure the discussion to address
limitations as well as potentials of NDVI application in environmental justice, health and inequality
studies.

4.1. Limitations

The application of NDVI values in urban environments is limited due to various reasons. First
of all, the growing seasons of plants are different from plant species to plant species. This includes
times when some areas are not covered with photosynthetic active vegetation. This is very clear for
agricultural fields, e.g. there is no biomass after harvest. Also, deciduous trees lose their leaves and
look different in winter and fall compared to spring and summer. However, this phenomenon of
seasonality is quite normal and it could question other studies, which (directly or indirectly) assume
a constant green situation throughout the year.

Another aspect is the degree of vegetation cover. In sparsely vegetated areas image pixels are
composed of reflectance coming from vegetation and the soil, due to the fact that remote sensing
systems have the vertical view on the earth’s surface. To describe the vegetation coverage one
developed the leaf area index (LAI), which describes the amount of green leaves. All values above
1.0 describe plants (like trees) with more than 100% ground covered by vegetation due to the fact that
the plant has more than one level of leaves. Values below 1.0 describe sparse vegetation covers with
soil and vegetation associated in one pixel.

The pixel size affects the NDVI values as well. The smaller the pixel size, the higher is the chance
that 100% of the pixel area is covered by vegetation. Larger pixels might have less vegetation cover
and in addition to that also soil cover. So, larger pixels tend to result in mixed pixels, compared to
smaller pixels. Such mixed pixels reduce the pure information content since they are composed from
more than one land cover type [29]. This means that they do not represent one specific land cover
type or class, but a mixture of at least two, with unknown spatial composition. One could try to get
VHR images with small pixels to reduce the mixed spectral information. However, mixed pixels are
present in any image. One can only try to reduce the area they represent by reducing the pixel size.
As a rule of thumb one can say that the smaller the pixel size is, the smaller is the area
affected/represented by mixed pixels.

Optical satellite images suffer from clouds. Cloudy situations obscure the view to the earth’s
surface. Consequently, one needs cloud-free satellite images to calculate proper NDVI values. For
time series investigations this could be problematic since data gaps destroy optimal time series
analysis with equal interval image dates. Depending on the type of investigation, one could overcome
this problem by calculation maximal NDVI values per season. Of course, then the seasonality

d0i:10.20944/preprints202008.0499.v1
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456  information is lost. As a compromise one could track the date of the maximum NDVI value for each
457  pixel to identify the exact date of the maximum NDVI (relative to the available cloud-free images).
458 To calculate mean spatial NDVI values it is not wise to do that for a certain administrative area.
459 By doing this, one includes every surface material into the calculation. For instance, water and
460  buildings or streets are included in the calculation of a mean NDVI value. This automatically will
461  reduce the mean NDVI due to the fact that water and artificial surfaces have NDVI values close to 0
462  or below 0. Another problem could be the comparability of mean NDVI values of differently sized
463  administrative areas.

464  4.2. Potential

465 The calculation of NDVI in urban areas has a high potential to identify relatively well-equipped
466  greenspace areas with high potential for well-being and a healthy environment and on the opposite
467  relatively poor-equipped green areas with rather low potential for well-being and a healthy
468  environment. For instance, the high repetition rate of optical satellites like Sentinel-2 (five days)
469  allows to detect changes in the NDVI response of the vegetation cover on a weekly basis. This could
470  be the basis for a monitoring approach. After a certain monitoring period one could try to give advice
471  to planners to improve the green situation for instance to have longer periods of visible green areas,
472 due to height considerations. In this context one could also study the length of the green period of
473  individual land cover types to perhaps find a good mixture of land cover types to have a long green
474  period for a specific neighborhood.

475 The exact assessment of the urban vegetation is beneficial for the assessment of any local climate
476  situation. Under the perspective of environmental justice, one could come to the conclusion that
477  much vegetation (and therefore high NDVI values) corresponds with cooler air temperature in
478  summer and results in healthier life conditions. This means the degree of green vegetation is an
479  environmental indicator/parameter that is related to health risks. On the contrary the degree of

480 5. Conclusions

481 This study was motivated to investigate the limitations and potential of NDVI with other spatial
482  data for application in the field of environmental justice and inequality related to health and
483  recreation in urban environments. It is clear that inequality of environmental settings influence the
484  individual health situation causing health equity or inequity. It was intended to demonstrate a literate
485  approach to use NDVI information and to point out potential problems or drawbacks. From an urban
486  test site in Dortmund, Germany one can draw many conclusions which are summarized hereafter.
487 NDVI calculations from remotely sensed earth observation images is an easy task but needs
488  some degree of data literacy. One should be aware of the later use of generated data and be able to
489  judge which image acquisition date is appropriate. In case of time series data for monitoring purposes
490  one should be aware of clouds, that could obscure the ground and affect the NDVI calculation.

491 For some studies a mean NDVI could be of interest. One should consider two types of mean
492  NDVI calculations. In one case the mean over time for exactly the same location is calculated to have
493  a mean value for e.g. one year at the same location (e.g. land cover type or plant association). In
494 another case one could calculate the mean value for an area (e.g. administrative or statistical unit)
495  and across all land cover types. The resulting mean NDVI would give an idea on how much or how
496  less green is in this area but does not give any spatial differentiation.

497 The calculation of the maximum NDVI makes sense only for a time series like a vegetation
498  period, to identify the date of the maximum chlorophyll activity.
499 The NDVI values per pixel help to determine the plant activity and vice versa allows to identify

500  the environmental burden (e.g. heat). In cases with much vegetation and high NDVI values
501  respectively the environmental burden is rather low.

502 To assist in statements related to environmental burdens, well-being or health issues, maps are
503  helpful to visualize and locate environmental concerns or consternation of the population, e.g. the
504  heat vulnerability due to low quality green vegetation infrastructure. The combination of height and
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505  NDVI revealed the spatial distribution of potential areas of high recreational and health value, as
506  well as poor areas.

507 Earth observation allows to map all green spaces in an urban area and is not limited to public
508  ground like tree cadastres. For instance, this supports the evaluation of urban micro climatic
509  conditions. A high degree of vegetation (e.g. trees) generates cooling effects of the neighborhood and
510  therefore leads to healthier conditions of life in the particular neighborhood.

511
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