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Abstract: This paper discusses the potential and limitations of the Normalized Difference 9 
Vegetation Index (NDVI) in environmental justice, health and inequality studies in urban areas. 10 
Very often the NDVI is correlated with socioeconomic and/or sociodemographic data to 11 
demonstrate the inequality in environmental settings that themselves influence individual health 12 
and questions of environmental justice. This paper addresses the limits of the NDVI for such 13 
applications and as well its potential, if applied properly. The overall goal is to make people of 14 
disciplines other than those that are geo-related aware of the characteristics, limits and potentials of 15 
satellite image-based information layers such as NDVI. 16 
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1. Introduction 20 
Earth observation is a discipline that monitors the earth and the condition of the earth´s surfaces 21 

for more than 50 years now. Special earth observation satellites are able to acquire timely data in 22 
frequent intervals from the earth surface [1, 2, 3]. One of the most prominent land surfaces is the 23 
vegetation cover that has a large extension on the land surfaces. In urban contexts vegetation surfaces 24 
are very important for the well-being and health of the urban population. Due to the material 25 
composition of urban areas it is helpful to use very high resolution satellite images with decimeter 26 
ground resolution. According to [4] “High resolution data are a valuable source for urban and 27 
suburban areas and can deliver information in high geometric and semantic quality for various cities 28 
and urban agglomerations around the world. Due to accelerating urban sprawl and increasing urban 29 
population more and more topics arise where remote sensing is able to support planning and other 30 
public duties.” The benefit of earth observation data is the ability to keep pace with the development 31 
and to keep track of the changes and additions within urban areas in terms of relevant land cover 32 
types (e.g. vegetation). 33 

To be able to monitor the vegetation and to judge the condition of photosynthetic active plants 34 
one developed vegetation indices. Based on the spectral characteristics of vegetation a comparison 35 
between the reflectance in the red (R) and near infrared (nIR) parts of the electromagnetic spectrum 36 
is calculated. The selection of these wavelengths results from the absorption and reflection 37 
characteristics of vegetation. Due to absorption processes in the visible light, especially in the red part 38 
of the electromagnetic spectrum, associated to chlorophyll content of the leaves, one can observe low 39 
reflectance values for healthy vegetation. In contrast to that, in the near infrared part of the 40 
electromagnetic spectrum one can observe a very strong reflection which corresponds to multiple 41 
reflections in the inner cell structure of leaves due to the water content in the cells (see Figure 1). 42 
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 43 

Figure 1. Reflectance curve of photosynthetic active vegetation (modified after [5]) 44 

Based on these characteristics [6] calculated the simple ratio vegetation index (RVI) by dividing 45 
the red (R) by the near infrared (nIR): 46 

 47 
   RVI = R / nIR 48 
 49 
“The RVI is widely used for green biomass estimations and monitoring, specifically, at high 50 

density vegetation coverage, since this index is very sensitive to vegetation and has a good correlation 51 
with plant biomass. However, when the vegetation cover is sparse (less than 50% cover), RVI is 52 
sensitive to atmospheric effects, and their representation of biomass is weak.” [7]. 53 

The most widely used Normalized Difference Vegetation Index (NDVI) was proposed by [8] 54 
and is defined as: 55 

 56 
   NDVI = (nIR – R) / (nIR + R) 57 
 58 
Due to the normalization in the formula the NDVI values appear in the range of -1 to +1. Values 59 

below 0 are not related to healthy green vegetation, rather to water, bare soil or abiotic urban surfaces 60 
like roofs and road materials. The more the NDVI value tends to +1, the more it is related to vegetation 61 
cover and its vigour. 62 

Due to specific needs many other vegetation indices have been developed. For environments 63 
with sparse vegetation covers [9] introduced the Soil-Adjusted Vegetation Index (SAVI) which was 64 
improved later by the Optimized Soil-Adjusted Vegetation Index (OSAVI) developed by [10]. Many 65 
vegetation indices are addressing specific needs, like the modified Normalized Difference Vegetation 66 
Index (mNDVI) [11] which is used to estimate frost damages in agriculture based on Landsat data. 67 

Despite all the more sophisticated vegetation indices and the more specific problem-oriented 68 
vegetation indices, the NDVI is probably the most used vegetation index today, due to its simple 69 
formula and ease of use. NDVI “is often used in research related to regional and global vegetation 70 
assessments and was shown to be related not only to canopy structure and LAI but also to canopy 71 
photosynthesis” [7] (p. 3). It allows quantitative evaluations and comparisons of different vegetation 72 
covers as well as the analysis of vigor and growth dynamics [7]. Consequentially, vegetation indices 73 
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in general, and the NDVI in particular, are a widely accepted and applied means to assess and 74 
monitor spatio-temporal vegetation changes. 75 

Nowadays the NDVI is widely used in environmental justice, health and inequality studies in 76 
urban and sub-urban contexts. The application of vegetation indices like NDVI implies that there is 77 
vegetation in the investigated urban environment. Vegetation in cities mainly consist of trees, bushes, 78 
agricultural fields and meadows/pastures that comprise recreational (e.g. parks, forest), natural (e.g. 79 
forests) and agricultural (e.g. fields and pastures) land uses. In general, vegetation is thought to 80 
improve our well-being, our health and our quality of life. According to that, one could believe that 81 
a high degree of vegetation correlates positively with better quality of life and better individual 82 
health. This rather broad perspective does not account for different quality of vegetation, related to 83 
the height and its visibility/individual perception or the time period the vegetation appears green 84 
(e.g. fields are a rather temporary land use and meadows/pastures are cut and change their 85 
appearance). In addition to that, one neglects other influencing environmental factors that could 86 
stress individuals and their perception and health situation, like environmental pollution, noise etc. 87 

Vegetation cover in most regions is associated with seasonality aspects which stem from the 88 
different seasons during a year. For regional or continental studies one can identify the start of the 89 
growing season for large regions by calculating the NDVI [12]. In addition to that during one year 90 
one can observe the regional differences in the NDVI values which correspond to vegetation 91 
dynamics. 92 

For investigations at larger scales, e.g. for cities one has to use high resolution images to be able 93 
to identify as much vegetation details as possible. This is necessary due to the fact that one finds a 94 
high number of different surface materials in the city. The smaller the image pixels the higher is the 95 
chance to get pure vegetation pixels. If the geometric resolution of the sensor is rather coarse, then 96 
one will get many so-called mixed pixels consisting of different materials in one pixel. Then it is 97 
almost impossible to isolate the vegetation information. [13] for instance use high resolution satellite 98 
images for an urban vegetation phenology analysis in the city of Nanjing, China. Urban vegetation 99 
serves a multitude of urban ecosystem functions [14]. “As a main characteristic which is the 100 
expression of the seasonal cycles of plant processes and their connections to climate change 101 
(temperature and precipitation), vegetation phenology is increasingly significant for a variety of 102 
scientific applications nowadays. The timing of phenological events can be used to document and 103 
evaluate the effects of climate change on both individual plant species and vegetation communities 104 
[15]. To study the features of urban vegetation phenology can better understand the ecological status 105 
of the city, the occurrence time of urban vegetation phenology can reflect the response of urban 106 
vegetation ecosystem to urban temperature change and precipitation” [13] (p. 43). 107 

Besides phenology driven studies, other authors use urban green indicators for environmental 108 
justice/inequality research. [16] for instance use the Spatial Urban Health Equity Indicator 109 
Framework (SUHEI) (see also [17]) to relate urban green to other factors in the city with social context, 110 
such as air pollution or noise, to estimate the health inequalities for different neighborhoods in the 111 
city of Dortmund, Germany. Unfortunately, they did not use the urban green area information 112 
mapped to the exact location but calculated the percentage of green area (each area > 1ha) in an 113 
administrative unit. Instead, satellite derived NDVI´s could deliver up-to-date information on the 114 
current quality of green spaces and help to adapt the SUHEI-results to the true situation and location, 115 
e.g. in dry weeks or months of a year, where the green lawn is no longer green. 116 

In contrast to [16], [18] stated that the social sciences increasingly recognize the meaning of 117 
georeferenced and geo-spatial data, including remote sensing imagery. He also asserts that more and 118 
more social scientists are able to link their data with remote sensing data. A quick literature survey 119 
uncovers good and also poor examples. For instance, [19] unfortunately use NDVI data calculated 120 
from a Landsat satellite image of 2003 together with Urban Atlas data from 2012. Since high resolution 121 
satellite images like Landsat are free of charge and available on a routine basis (revisit time 16 days), 122 
one is wondering why they did not use a scene closer to the timeliness of the Urban Atlas data. 123 
Besides the gap of nine years, the acquisition date in mid-April seems quite early compared to the 124 
vegetation dynamics in their study area. Due to these frame conditions the findings related to green 125 
spaces, well-being, health and socio-economic status could be affected from the old base data set and 126 
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the decision on the season. [20] investigated spatiotemporal contextual uncertainties with MODIS 127 
satellite data for the Netherlands and one of his results is: “To mitigate contextual uncertainties, it is 128 
advised to integrate temporally well-aligned green space data” (no page numbering). Also, [21] use 129 
MODIS satellite data in Taiwan to investigate a linkage between greenness and mortality for a time 130 
series of data. They found out that NDVI and mortality causes are negatively correlated. 131 

Another ill-conceived example of NDVI-integration is from [22], who investigate the potential 132 
of satellite image-based information for planning authorities to improve the inhabitants´ quality of 133 
life. In their publication they do not give any information on the image acquisition dates and the 134 
results related to the vegetation`s influence on the urban climate is rather generalized. In this form, 135 
the presented results are almost useless, since there is no information on the height of vegetation 136 
types, length of green period (e.g. for trees, meadows or fields) or other seasonal effects. And of 137 
course, according to [23], [24], [25] or [26] these parameters affect the local climate. 138 

Besides those case studies one can imagine that a closer collaboration between social science and 139 
geomatics experts could improve the understanding of socio-spatial phenomena. [27] (p. 262) 140 
indicates the potential to “socialize the pixels”. This could assist to analyze socio-spatial indicators 141 
together with earth observation image data. [28] created the new term “socio-geomatics” to underline 142 
the scientific potential which can be gained by the common use of socio-demographic and socio-143 
economic data together with earth observation and other geo data-related to environmental justice 144 
questions. Undoubtedly the interdisciplinary approach will help to come to new insights. However, 145 
it is essential, that all used data sets are used properly. As shown in a few examples above, and 146 
pointed out by [29], one has to be literate to adequately select and use earth observation and other 147 
geo data. 148 

2. Materials and Methods  149 
This section presents the geospatial data used and the respective geospatial Analysis. The study 150 

area (Figure 2) is a part of the city of Dortmund in North Rhine-Westphalia in Germany. In this study 151 
area one finds all relevant land-cover/land-use types of the region. 152 

 153 

 154 
Figure 2. Study area (data source: [30], [31]) 155 
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The land-cover/land-use in the study area was mapped in 2017 by the Regionalverband Ruhr 156 
(RVR) [32]. It is a very detailed map product that needed to be simplified for the purpose of this 157 
study, to comply with the vegetation cover. Originally the land-cover/land-use map consists of 151 158 
individual categories, from which 57 were meaningful for this study. Those were reduced to 7 main 159 
classes of this investigation (Table 1). 160 

For different administrative reasons, the land-cover/land-use map does not cover the whole 161 
study area. Therefore, those following maps that are based on this data set have a different extent 162 
than those of other geospatial data used in this study. 163 

Table 1. Land-cover/land-use class reduction for this study (base data from [32]) 164 

Original land-cover/land-use category (code_akt) 
Main land-cover/land-
use category 

10, 20, 30, 40, 51, 52, 54, 72, 75, 83, 84, 85, 87, 91, 93, 140, 151, 152, 171, 
174, 211, 221, 281, 381 

Sealed 

370 Field 
361, 362 Grassland 
291, 292, 293, 382 Open Space 
400, 410, 420, 431, 432, 441 Forest 
233, 271, 273, 282, 305, 321, 451, 471, 472 Other Vegetation 
53, 223, 301, 302, 303, 306, 308, 309, 331, 383, 452 Other 

 165 
Further we used freely available cloud-free high resolution Sentinel-2 satellite images [33] (see 166 

Table 2) to investigate the study area during the vegetation period 2019.  167 

Table 2. Sentinel-2 satellite images [33] used for the vegetation period April 1 to August 31, 2019 168 
Acquisition date Used Bands Pixel size 
2019-04-20 2,3,4,8 10m x 10m 
2019-05-15 2,3,4,8 10 
2019-06-29 2,3,4,8 10 
2019-07-24 2,3,4,8 10 
2019-08-26 2,3,4,8 10 

 169 
Due to phenology the reflectance characteristics of vegetation covers vary during the vegetation 170 

period between trees (forests, parks), bushes, meadows and agricultural fields with different crops. 171 
Other surfaces like roads or buildings are more or less invariant with time. this is illustrated for a few 172 
typical locations in Figure 3. 173 
 174 
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 175 
Figure 3. Seasonal NDVI values of selected land cover types from Sentinel-2 images 176 

The five satellite images from which the information in Figure A was extracted are displayed in 177 
Figure 4 in natural colors and in Figure 5 in false colours. The images clearly reveal seasonal 178 
differences between the different land cover/land use categories. The false colours better pronounce 179 
vegetation in red colors. The seasonal effects are also evident in the NDVI-images of the respective 180 
dates (Figure 6). 181 
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 182 
Figure 4. Study area as seen from Sentinel-2 satellite [33] in natural colors (R,G,B=4,3,2) with land use 183 
polygons (yellow) on 2019-04-20 (a), 2019-05-15 (b), 2019-06-29 (c), 2019-07-24 (d), 2019-08-26 (e), and 184 
as a land use map (data source [32]) (f)  185 
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 186 
Figure 5. Study area as seen from Sentinel-2 satellite [33] in false colors (R,G,B=8,4,3) with land use 187 
polygons (yellow) on 2019-04-20 (a), 2019-05-15 (b), 2019-06-29 (c), 2019-07-24 (d), 2019-08-26 (e), and 188 
as a land use map (data source [32]) (f) 189 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 24 August 2020                   doi:10.20944/preprints202008.0499.v1

https://doi.org/10.20944/preprints202008.0499.v1


 

 190 
Figure 6. NDVI values (data source [33]) with land use polygons (yellow) for the study area on 2019-191 
04-20 (a), 2019-05-15 (b), 2019-06-29 (c), 2019-07-24 (d), 2019-08-26 (e), and as a land use map (data 192 
source [32]) (f) 193 

Besides the calculation of individual NDVI values per image acquisition date, or the calculation 194 
of NDVI differences between adjacent image dates, another reasonable approach to calculate mean 195 
NDVI values is to do that over time from different images, but always for the same pixel locations. 196 
This allows to gain insight into a seasonal average NDVI. Consequently, a mean NDVI across the 197 
time period of the five satellite images (temporal mean per pixel) was calculated (Figure 7). In 198 
addition to that also the maximum NDVI (temporal maximum per pixel) for the period of observation 199 
(April-August 2019) (Figure 8) was extracted. 200 
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      201 
Figure 7. Mean NDVI (data source [33]) for the vegetation period 2019 (data source polygon overlay: 202 
[32]) 203 

 204 
Figure 8. Maximum NDVI (data source [33]) for the vegetation period 2019 (data source polygon 205 
overlay: [32]) 206 

From the calculated maximum NDVI values one could also extract the month per pixel that 207 
corresponds to the respective pixel. This provides the information in which month the greeness is 208 
most intense (Figure 9). In a further step one calculated the modus of these pixels with the maximum 209 
NDVI-month per polygon of each land-cover/land-use class. This helps to understand the temporal 210 
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variability of slightly generalized maximum NDVI values (Figure 10). Having those calculations with 211 
maximum NDVI and the modus of the maximum NDVI per polygon, one can identify the maximum 212 
intensity of the NDVI (or greeness) per vegetation period and the month with the maximum greeness. 213 

 214 

 215 
Figure 9. Date of maximum NDVI (data source [33]) per pixel (data source polygon overlay: [32]) 216 

 217 
Figure 10. Date of maximum NDVI (data source [33]) per polygon (data source polygon overlay: [32]) 218 

Besides the calculation of spatially mean NDVI´s (e.g. for administrative units or fields) another 219 
reasonable approach to calculate mean NDVI values is to do that over time from different images, 220 
but always for the same location. This allows to gain insight into an annual or seasonal average NDVI. 221 
[28] did that for the vegetation period (April-September) for the city of Dortmund in Germany. Due 222 
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to his intention to study the mean NDVI for a complete study area, he combined the multi-temporal 223 
mean NDVI calculation with the regional mean NDVI calculation. The disadvantage is, that land 224 
surfaces with no or little vegetation are included in the calculation and consequently lower the 225 
resulting mean NDVI value. Advantageously he could have calculated the mean NDVI on a field or 226 
parcel basis. This could give a much better representation of greenness in the urban environment 227 
(Figure 11). 228 

 229 

 230 
Figure 11. Mean temporal NDVI (data source [33]) calculated as mean NDVI per land cover/land use 231 
polygon (data source polygon overlay: [32]) 232 

The temporal mean NDVI could be used to generally evaluate the vegetation configuration 233 
without consideration of seasonal differences. A high mean value indicates green vegetation for a 234 
long period. Lower values could be caused due to less intense green intervals during the vegetation 235 
period (e.g. harvested fields). A comparison of the temporal mean NDVI and plant height could give 236 
insights into the perception of green within a city. For planning purposes a high degree of vertical 237 
green infrastructure could be necessary to reach goals like good quality of life, well-being and health. 238 

For health studies the appearance of urban green could be of great importance. For that kind of 239 
investigation one should differentiate different heights of vegetation, due to the fact that human 240 
beings perceive vegetation depending on their size. Green meadows probably have another 241 
individual perception than a green forest. Since the NDVI does not account for the height of 242 
vegetation covers, it would make sense to create a limited number of height classes for studies on 243 
urban green and urban health or environmental inequality aspects. 244 

To determine the vegetation height, one downloaded laser scan data of 2018 [30]. To be able to 245 
determine the object height, one extracted a digital terrain model (DTM) from the last pulse signal, 246 
and a digital surface model (DSM) from the first pulse signal, to be able to subtract the DTM from the 247 
DSM to receive the resulting object height of trees, buildings and other rather vertical objects in the 248 
area of investigation. The resulting individual object heights with 1m resolution can be seen in Figure 249 
12 and classified into a few height classes in Figure 13 For consistency reasons, one resampled the 1m 250 
raster cells to 10m raster cells to do analysis with the 10m NDVI raster cells (Figure 14). 251 
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 252 
Figure 12. Digital object height model (1m raster cells) of the study area (height data source: [30]) 253 

 254 
Figure 13. Averaged height classes per land cover/land use parcel (height data source: [30], data 255 
source polygon overlay: [32]) 256 
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 257 
Figure 14. Digital object heights of the study area resampled to 10m resolution (height data source: 258 
[30]) 259 

The height measurements were then reduced into three meaningful categories: smaller 2m, 2-260 
5m and above 5m height. This height categorization helps to distinguish vegetation categories as is 261 
demonstrated in Figure 15. 262 

 263 

 264 
Figure 15. Distribution of land cover/land use categories for three height classes 265 

The major observations regarding the height of the different land cover/land use categories can 266 
be summarized as follows. All agricultural fields are in the lowest height category, while the forest 267 
areas are completely in the highest height category. About 76% of the sealed surfaces are in the range 268 
of 2-5m. Sealed surfaces below 2m are very likely to be streets; higher sealed surfaces than 5m are 269 
very likely higher buildings. 89% of the grassland is lower than 2m. The remaining grassland 270 
probably is partly covered by trees and bushes. For the remaining classes (Open Space, Other & Other 271 
Vegetation) one finds out that their maximum ground coverage ranges between 2-5m (ca. 62%, ca. 272 
59%, ca. 50%). The remaining areas are probably partly covered by trees and bushes as well. 273 
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Also the combination of spatial data sets in a bivariate choropleth map ([34], [28]) is a means to 274 
gain additional information from the used data sets. [28] applied three NDVI classes for the 275 
characterization of green urban infrastructure: <0.3; 0.3-0.6 and >0.6. The higher the value, the better 276 
is the amount of green infrastructure and its condition. This classification scheme with three 277 
categories was adopted here according to its practicability and the easy readability of the resulting 278 
map. Figure 16 shows the combination of mean object height and mean spatial and temporal NDVI 279 
(each per polygon) to evaluate if the vegetation height is of importance for the well-being and health 280 
aspects of the nearby population. 281 

 282 

 283 
Figure 16. Bivariate choropleth map showing the mean spatial and temporal NDVI (data source [33]) 284 
per land cover/land use polygon against the mean object height per land cover/land use polygon 285 

One can identify forested areas with the darkest map color due to their high height and due to 286 
their high NDVI values. On the opposite flat areas with low NDVI values represent sealed surfaces 287 
and fields. Many residential areas have intermediate NDVI values and a height between 2 and 5m 288 
(central raster cell of the legend). This could mean that residents have houses with similar height as 289 
the surrounding green area (which is represented by another polygon). So one could assume that if 290 
residents look out of their windows they mostly have some green vegetation in their view. This 291 
situation probably is advantageous for the residents´ perception of green vegetation and related 292 
health aspects. In the upper left corner one can identify a few high-rise buildings (>5m) and a NDVI 293 
class surrounding those buildings with vegetation heights less than 5m. This means that residents in 294 
the upper stories most likely do not see the vegetation from their windows. As the perception of 295 
green vegetation has positive effects on human health, the analysis of building heights and vegetation 296 
heights could be of value to identify areas with positive effects and other areas with deficits. 297 

In addition to the bivariate choropleth map one was interested to learn how the land cover/land 298 
use categories correspond to the nine object height/NDVI-classes. For this analysis the bivariate 299 
choropleth map was calculated on a raster cell basis instead of parcel polygons (Figure 17). A simple 300 
frequency analysis of each of the nine classes reveals the class composition. To be able to address the 301 
individual combinations of object height and NDVI the nine fields were labelled as follows in Figure 302 
18. 303 

 304 
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 305 
Figure 17. Bivariate choropleth map showing the mean spatial and temporal NDVI (data source [33]) 306 
per raster cell against the object height per raster cell 307 

 308 
Figure 18. Labels of the legend of the bivariate choropleth map of Figure 16 and Figure 17 309 

The frequency analysis of individual raster cells shows that the land cover/land use categories 310 
are distributed as follows (compare Figure 19): 311 

Field 1A is composed mainly by sealed flat surfaces (71.07%) like parking areas or streets and 312 
agricultural fields (21.88%). 313 

Field 1B is composed predominantly by sealed surfaces (97.26%) like small buildings. 314 
Field 1C is composed predominantly by sealed surfaces (98.73%) like taller buildings. 315 
Field 2A is composed similar like 1A with sealed flat surfaces like parking areas or streets 316 

(40.92%), agricultural fields (13.03%) and additional areas of grassland (23.22%), other vegetation 317 
(6.15%) and open space (15.18%). 318 

Field 2B is composed mainly by sealed surfaces (73.42%) like small houses or open space 319 
(17.96%). 320 

Field 2C is composed mainly by sealed surfaces (68.47%) like taller houses, other vegetation 321 
(6.11%) and open space (13.33%). 322 

Field 3A is dominated by grassland (26.09%), open space (32.87%) and other vegetation (16.56%), 323 
in total rather flat vegetated surfaces. Also 12.38% sealed surfaces are present in this category. This is 324 
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probably due to overhanging effects of vegetation (e.g. bushes) (as seen from the satellite) over sealed 325 
materials listed in the land cover/land use map. 326 

Field 3B is composed by open space (33.22%), forest (21.22%), other vegetation (16.88%) 327 
grassland (26.09%) and sealed surfaces (16.26%). The sealed surfaces are represented in this category 328 
probably due to the same overhanging effects of vegetation (e.g. bushes) over sealed materials listed 329 
in the land cover/land use map. 330 

Field 3C is composed predominantly by forest (72.23%) 331 
 332 

 333 
Figure 19. Frequency analysis of the land cover/land use composition of the classes of the bivariate 334 
choropleth map 335 

Grassland is a typical flat land cover/land use type but one wonders why it is present in 336 
categories above 2m height. For this study we joined two originally separately mapped grassland 337 
types to keep things simple. Meadows and pastures were one category and the other was meadows 338 
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and pastures with scattered fruit trees. In Figure 20 one can see the individual trees at 1m resolution. 339 
These individual trees integrated in the grassland class are the reason why grassland is represented 340 
in height classes above 2m. 341 

 342 
Figure 20. Object height at 1m resolution for a grassland parcel. Individual fruit trees are clearly 343 
visible (height data source: [30]) 344 

Other land cover/land use classes that mostly appear flat like grassland, have the same 345 
phenomenon that bushes and trees are integrated in the class. This results in the appearance of these 346 
rather flat land cover/land use classes in categories higher than 2m and also in higher NDVI values. 347 
Even fields have high NDVI values with corresponding tall height information. This is because often 348 
trees are along field borders and so they were integrated in the analysis. 349 

Most residential areas are characterized by category 2B, due to the fact that this is a mixture of 350 
small houses and garden vegetation mostly without very high trees. However, sometimes trees 351 
obscure the buildings and/or the sealed surface like roads with their branches and leaves overhanging 352 
the sealed material (see Figure 21). Some larger properties are characterized by solitary trees and 353 
meadows with bushes and fall into 3B. 354 

 355 
Figure 21. Tall vegetation obscuring sealed surfaces (height data source: [30]) 356 
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The examples show that the explanation of the height inconsistencies can be performed by visual 357 
inspection of the relevant parcels. Scattered tall vegetation is present in almost all land cover/land 358 
use categories. The calculated relationships between NDVI and object height are valid and one can 359 
conclude that high mean NDVI values in the two-dimensional choropleth map correspond mostly to 360 
trees scattered in other categories. For an analysis interested in the value of green vegetation it is a 361 
benefit to know that even on rather flat green surfaces one can find tall vertical green structures that 362 
increase the value for recreation and health aspects. 363 

3. Results 364 
As described in [35] and [36], urban greenspace has to be considered as an environmental 365 

resource having positive health effects. This statement invites for further investigations regarding the 366 
green vegetation in urban areas. In this study we focussed on the NDVI as a widely used indicator of 367 
urban green vegetation and demonstrated a range of applications. 368 

The results show the importance of NDVI calculations based on high resolution satellite images. 369 
Such images are of high timeliness and provide up-to-date information on vegetation surfaces. Due 370 
to the high repetition rate of earth observation satellites like Sentinel-2 with five days, one can also 371 
consider vegetation monitoring approaches to track vegetation changes within one vegetation period 372 
as well as between different years of observation. While Sentinel satellite images are freely available 373 
there seems to be no longer the necessity to laboriously extract greenspace information from existing 374 
map products with disadvantageous up-to-dateness and possibly questionable land cover/land use 375 
class definitions. 376 

Using satellite images requires some geospatial data literacy for proper data selection and 377 
analysis. One requirement refers to the selection of satellite images. This implies to consider an image 378 
acquisition date with relevance to the intended vegetation analysis. That refers to phenological 379 
development stages of vegetation as well as to an acquisition date close to other (geo) data to be used 380 
together with the image(s). Fortunately, satellite images are available quite frequently. Optical images 381 
can suffer from clouds, but high revisit frequencies offer good chances for cloud-free images on a 382 
later date. 383 

Besides the date of image acquisition, technical characteristics of the sensor system are also 384 
relevant. Here, one should think about the size of the image pixels. Smaller pixels offer more details 385 
and less mixed information. Especially in urban areas one can observe a large variety of surface 386 
materials that compose the image. Due to frequent surface material change, one can expect more than 387 
one surface material in a single pixel, if the pixel is too coarse. Smaller pixels offer a better chance to 388 
get more „pure“ pixels of one surface material. This means that high or very high resolution satellite 389 
images are advantageous for most studies. 390 

In the Figures 3, 4, 5, and 6 one can identify seasonality in the individual seasonal images as well 391 
as in the NDVI images across the vegetation period. Some land-cover/land-use classes are very stable 392 
and others are highly variable. For vegetation especially forests are very stable, while fields and 393 
meadows are affected by harvest operations. As long as the crop/grass is not harvested, it appears in 394 
most cases as a green surface. Depending on the individual crop calendar, during a season one will 395 
find different stages of green vegetation. 396 

Having the effects of seasonality in mind, one is interested to characterize the vegetation with 397 
respect to individual perception and health aspects. Having more than one image for NDVI 398 
calculation, one could generate a temporal mean NDVI. In case of forests one can observe relatively 399 
high NDVI values, which is caused by the stable green appearance of forests. In the case of fields or 400 
pastures the harvest leads to points in time with no or less green. The related low NDVI for those 401 
moments has a lowering effect on the temporal mean NDVI. In short, the temporal mean helps to 402 
judge the intensity and duration of green appearance. 403 

The extraction of the temporal maximum NDVI provides a time stamp that identifies the 404 
moment with the highest green appearance. This could help to temporally arrange green vegetation 405 
areas for a well-balanced mixture of land covers/land uses for recreational and well-being aspects. 406 
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Due to the seasonality aspects, which offer additional analytical options, one can conclude, that 407 
the examination of the vegetation or greenspace via NDVI based on only one observation could not 408 
be sufficient for questions related to environmental justice, health or inequality. 409 

Another aspect relates to vegetation height, since the perception of high vegetation covers like 410 
forest are more beneficial to the individual and the resulting positive health aspects. Depending on 411 
the land cover/land use class, varying typical heights could be identified. 412 

The combination of height and NDVI revealed the spatial distribution of potential areas of high 413 
recreational and health value, as well as poor areas. Higher green areas are believed to have more 414 
positive effects on human health than lower green areas. For instance, areas with high NDVI and tall 415 
objects represent most likely forested areas. These represent relatively cool areas during summer 416 
months, which results in healthier life conditions. Analyzing the bivariate choropleth map could also 417 
assist in optimizing the urban land cover/land use mixture with respect to environmental health 418 
aspects. The frequency analysis of the land cover/land use classes related to the nine height/NDVI-419 
complexes revealed which land cover/land use areals could be improved for a beneficial and healthy 420 
environment. 421 

4. Discussion 422 
To clearly structure the following observations/findings, we structure the discussion to address 423 

limitations as well as potentials of NDVI application in environmental justice, health and inequality 424 
studies.  425 

4.1. Limitations 426 
The application of NDVI values in urban environments is limited due to various reasons. First 427 

of all, the growing seasons of plants are different from plant species to plant species. This includes 428 
times when some areas are not covered with photosynthetic active vegetation. This is very clear for 429 
agricultural fields, e.g. there is no biomass after harvest. Also, deciduous trees lose their leaves and 430 
look different in winter and fall compared to spring and summer. However, this phenomenon of 431 
seasonality is quite normal and it could question other studies, which (directly or indirectly) assume 432 
a constant green situation throughout the year. 433 

Another aspect is the degree of vegetation cover. In sparsely vegetated areas image pixels are 434 
composed of reflectance coming from vegetation and the soil, due to the fact that remote sensing 435 
systems have the vertical view on the earth´s surface. To describe the vegetation coverage one 436 
developed the leaf area index (LAI), which describes the amount of green leaves. All values above 437 
1.0 describe plants (like trees) with more than 100% ground covered by vegetation due to the fact that 438 
the plant has more than one level of leaves. Values below 1.0 describe sparse vegetation covers with 439 
soil and vegetation associated in one pixel. 440 

The pixel size affects the NDVI values as well. The smaller the pixel size, the higher is the chance 441 
that 100% of the pixel area is covered by vegetation. Larger pixels might have less vegetation cover 442 
and in addition to that also soil cover. So, larger pixels tend to result in mixed pixels, compared to 443 
smaller pixels. Such mixed pixels reduce the pure information content since they are composed from 444 
more than one land cover type [29]. This means that they do not represent one specific land cover 445 
type or class, but a mixture of at least two, with unknown spatial composition. One could try to get 446 
VHR images with small pixels to reduce the mixed spectral information. However, mixed pixels are 447 
present in any image. One can only try to reduce the area they represent by reducing the pixel size. 448 
As a rule of thumb one can say that the smaller the pixel size is, the smaller is the area 449 
affected/represented by mixed pixels. 450 

Optical satellite images suffer from clouds. Cloudy situations obscure the view to the earth´s 451 
surface. Consequently, one needs cloud-free satellite images to calculate proper NDVI values. For 452 
time series investigations this could be problematic since data gaps destroy optimal time series 453 
analysis with equal interval image dates. Depending on the type of investigation, one could overcome 454 
this problem by calculation maximal NDVI values per season. Of course, then the seasonality 455 
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information is lost. As a compromise one could track the date of the maximum NDVI value for each 456 
pixel to identify the exact date of the maximum NDVI (relative to the available cloud-free images). 457 

To calculate mean spatial NDVI values it is not wise to do that for a certain administrative area. 458 
By doing this, one includes every surface material into the calculation. For instance, water and 459 
buildings or streets are included in the calculation of a mean NDVI value. This automatically will 460 
reduce the mean NDVI due to the fact that water and artificial surfaces have NDVI values close to 0 461 
or below 0. Another problem could be the comparability of mean NDVI values of differently sized 462 
administrative areas. 463 

4.2. Potential 464 
The calculation of NDVI in urban areas has a high potential to identify relatively well-equipped 465 

greenspace areas with high potential for well-being and a healthy environment and on the opposite 466 
relatively poor-equipped green areas with rather low potential for well-being and a healthy 467 
environment. For instance, the high repetition rate of optical satellites like Sentinel-2 (five days) 468 
allows to detect changes in the NDVI response of the vegetation cover on a weekly basis. This could 469 
be the basis for a monitoring approach. After a certain monitoring period one could try to give advice 470 
to planners to improve the green situation for instance to have longer periods of visible green areas, 471 
due to height considerations. In this context one could also study the length of the green period of 472 
individual land cover types to perhaps find a good mixture of land cover types to have a long green 473 
period for a specific neighborhood.  474 

The exact assessment of the urban vegetation is beneficial for the assessment of any local climate 475 
situation. Under the perspective of environmental justice, one could come to the conclusion that 476 
much vegetation (and therefore high NDVI values) corresponds with cooler air temperature in 477 
summer and results in healthier life conditions. This means the degree of green vegetation is an 478 
environmental indicator/parameter that is related to health risks. On the contrary the degree of  479 

5. Conclusions 480 
This study was motivated to investigate the limitations and potential of NDVI with other spatial 481 

data for application in the field of environmental justice and inequality related to health and 482 
recreation in urban environments. It is clear that inequality of environmental settings influence the 483 
individual health situation causing health equity or inequity. It was intended to demonstrate a literate 484 
approach to use NDVI information and to point out potential problems or drawbacks. From an urban 485 
test site in Dortmund, Germany one can draw many conclusions which are summarized hereafter. 486 

NDVI calculations from remotely sensed earth observation images is an easy task but needs 487 
some degree of data literacy. One should be aware of the later use of generated data and be able to 488 
judge which image acquisition date is appropriate. In case of time series data for monitoring purposes 489 
one should be aware of clouds, that could obscure the ground and affect the NDVI calculation. 490 

For some studies a mean NDVI could be of interest. One should consider two types of mean 491 
NDVI calculations. In one case the mean over time for exactly the same location is calculated to have 492 
a mean value for e.g. one year at the same location (e.g. land cover type or plant association). In 493 
another case one could calculate the mean value for an area (e.g. administrative or statistical unit) 494 
and across all land cover types. The resulting mean NDVI would give an idea on how much or how 495 
less green is in this area but does not give any spatial differentiation. 496 

The calculation of the maximum NDVI makes sense only for a time series like a vegetation 497 
period, to identify the date of the maximum chlorophyll activity. 498 

The NDVI values per pixel help to determine the plant activity and vice versa allows to identify 499 
the environmental burden (e.g. heat). In cases with much vegetation and high NDVI values 500 
respectively the environmental burden is rather low. 501 

To assist in statements related to environmental burdens, well-being or health issues, maps are 502 
helpful to visualize and locate environmental concerns or consternation of the population, e.g. the 503 
heat vulnerability due to low quality green vegetation infrastructure. The combination of height and 504 
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NDVI revealed the spatial distribution of potential areas of high recreational and health value, as 505 
well as poor areas. 506 

Earth observation allows to map all green spaces in an urban area and is not limited to public 507 
ground like tree cadastres. For instance, this supports the evaluation of urban micro climatic 508 
conditions. A high degree of vegetation (e.g. trees) generates cooling effects of the neighborhood and 509 
therefore leads to healthier conditions of life in the particular neighborhood. 510 

 511 
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