The Application of Catalytic Processes on the Production of Algae-based Biofuels: a Review

Antonio Zuorro 1*, Janet B. García-Martínez 2 and Andrés F. Barajas-Solano 2

1 Department of Chemical Engineering, Materials and Environment, Sapienza University, Via Eudossiana 18, 00184 Roma, Italy
2 Department of Environmental Sciences, Universidad Francisco de Paula Santander, Av. Gran Colombia No. 12E-96, 540003 Cucuta, Colombia; janetbibianagm@ufps.edu.co (J.B.-G.M.); andresfernandobs@ufps.edu.co (A.F.B.-S.)

* Correspondence: antonio.zuorro@uniroma1.it

Abstract: Over the last decades, microalgal biomass has gained a significant role in the development of different high-end (nutraceuticals, colorants, food supplements, and pharmaceuticals) and low-end products (biodiesel, bioethanol, and biogas) due to rapid growth and high carbon fixing efficiency. Therefore, microalgae are considered a useful and sustainable resource to attain energy security while reducing our current reliance on fossil fuels. From the technologies available for obtaining biofuels using microalgae biomass, thermochemical processes (pyrolysis, HTL, gasification) have proven to be processed with higher viability, because they use all biomass. However, the biocrudes obtained from direct thermochemical conversion have substantial quantities of heteroatoms (oxygen, nitrogen, and sulfur) due to the complexity of the biomass’s content of chemical components (lipids, carbohydrates, and proteins). As a solution, catalyst-based processes have emerged as a sustainable solution for the increase in biocrude production. This paper’s objective is to present a comprehensive review of recent developments on catalyst mediated conversion of algal biomass. Special attention will be given to operating conditions, strains evaluated, and challenges for the optimal yield of algal-based biofuels through pyrolysis and HTL.

Keywords: microalgae; thermochemical processing; biofuel and bioenergy; torrefaction; liquefaction; pyrolysis; gasification

1. Introduction

Fossil fuels have been a critical commodity for the economic and social development of the modern world. However, their consumption has inevitably increased the levels of anthropogenic carbon dioxide (CO2) emissions to concentrations that exceed the earth’s absorption capacity through the natural carbon cycle [1]. In the age of renewable energy revolution, a solution for the removal of excess CO2, different biomass-based fuels (or biofuels) are considered as one of the prospective replacements to the conventional fossil fuels [2] for both developed and non-developed countries due to its abundance and distribution [3].

Over the last years, several biomass resources such as grass, wood, crops and residues, animal waste, municipal solid waste, and even aquatic plants have been studied to produce biofuels [4]. However, up to date, microalgae is considered one of the most attractive sources of renewable energy and raw materials, It diversifies the scope of different industries in the elaboration of food and feed, pharmaceuticals, pigments, and colorants, bioplastics, and protein hydrolysates [5].

Microalgae and cyanobacteria are a diverse group of photosynthetic microorganisms that naturally grow in lakes, rivers, and oceans. Microalgae offer several advantages over plant-based biofuels such as (i), high growth rate, (ii) use of non-arable lands, (iii) can be grown in wastewater, (iv) high consumption of CO2, and (v) their production can be directed toward the synthesis of several compounds of commercial interest [6].

To obtain biomass with a high concentration of specific metabolites is one the cornerstones of microalgae biotechnology. Several authors have proved that specific culturing conditions such as
nutrient concentrations in the medium, photobioreactor configuration, environmental conditions (temperature and illuminance), agitation and pH directly influence the cellular composition, resulting in the final concentration and productivity of the strain, as well as the variation in the content of specific metabolites (lipids, carbohydrates, proteins and of other components) [7].

The transformation of algal biomass into biofuels is not new. Several studies have covered different areas on the strain selection, culture method, and transformation into biofuel, which is the critical link in the production chain towards obtaining sustainable biofuels from microalgae.

The algal biomass produced under specific conditions can be transformed into energy by applying thermochemical and biochemical methods. Biofuel such as Bio-oil, biochar, synthesis gas (syngas), and heat are obtained through thermochemical conversion. On the other side, biodiesel, biohydrogen, biomethane, and bioethanol can be produced via the biochemical conversion of algal biomass [1]. Although different forms of cultivation and production have been developed in recent years, it is still necessary to find an effective and sustainable production mechanism to reach the full potential of microalgae-based biofuels, especially in large scale industrial applications.

One possible solution to achieve the potential of algae as a feedstock for biofuels is the application of catalytic-based processes such as torrefaction and Hydrothermal Liquefaction (HTL), pyrolysis, and gasification. Through thermochemical conversion, the biomass is decomposed under oxygen/air or steam under deficient conditions to produce synthetic gas or syngas which primarily consist of hydrogen (H) and carbon monoxide (CO) [8], the quantity and quality of the final product depends upon the process, reaction temperature, heating rate, and oxygen supply [9]. In comparison to the biochemical conversion of algal biomass, the thermochemical approach is a more straightforward route to produce biofuels due to several factors: (i) employ the entire biomass as feedstock, (ii) the process times is shorter, and (iii) their final yield can be improved by the addition of chemical catalyst [10].

The present study is intended to give a comprehensive overview of the state-of-the-art usage of catalysts on the thermochemical conversion of algal biomass into solids, liquids, and gas biofuels. Special attention will be given to operating conditions, strains evaluated, and challenges for the optimal yield of algal-based biofuels through pyrolysis and HTL.

2. algae-based biofuels

Biofuels are broadly classified by generations. First-generation (1st gen) is produced from food feedstock (corn, sugarcane, soybean, potato, beet, soybeans, coconut, sunflower, rapeseed, palm oil, switchgrass, Jatropha, Camelina, Cassava). Although 1st gen is considered a sustainable source of energy due to the reduction on greenhouse gas (GHG) emissions, specific details such as their competition with food supply, high requirement of government subsidies, large amounts of non-sustainable fertilizers, and environmental concerns due to the loss biodiversity linked to the promotion of deforestation for large monoculture areas [11], hinder their true impact as a cleaner and more sustainable option over fossil fuels.

Second-generation (2nd gen) was conceived as a partial solution of several drawbacks of 1st gen biofuels. This generation relies on nonfood items such as cellulosic biomass, straw, manure, used cooking oil and other non-conventional sources, which usually finish in landfills once their useful portion has been removed [8]. However, 2nd gen is still not industrially profitable due to biomass complexity and problems associated with its production, storage, and transportation [2].

Third-generation (3rd gen) focuses on the upgrade of aquatic feedstock, such as microalgal and cyanobacterial biomass, into different fuels. Microalgae have been praised as a better solution for the energy problem due to specific qualities of algal production: (i) do not compete with human and animal food stock, (ii) its harvesting can be done through the year, (iii) can employ saline and wastewater, (iv) have better growth rate than higher plants, (v) can convert 183 G tons of CO₂ to produce 100 G tons of biomass [12], and (vi) the concentration of transformable metabolites (lipids and carbohydrates) is stable on the biomass.

The production of sustainable biofuels from microalgae was considered a “simple” process (figure 1). First, the selected strain had to be cultured until it reaches the largest possible biomass
concentration in the photobioreactor; once reached, the biomass is removed from the culture media (centrifugation, flocculation, filtration, and other techniques) and dried. The dried biomass is then ready to be used as feedstock for several biofuels (biodiesel, bioethanol, biogas, and so on). These different sections have been the main topic of research over the last 20 years, attracting the attention of different universities, research centers, and energy companies worldwide like Ecopetrol (Colombia), Exxon Mobile, Shell (US), Petrobras (Brazil), Total (France).

2.1. How the “fuzz” for algae-based biofuels changed over time

The large “green-boom” for algae-based energy helps create different algae-based companies with the promise to produce millions of gallons within a short period. Companies like Solix biofuels, Corbion. (previously known as Terravia or Solazyme), Cellana, Sapphire Energy, Seambiotic, Oil Fox, Synthetic genomics, Euglena, and others attracted over 200 million dollars from private and public sectors. However, after years of research, several problems start emerging.

First, the microalgal biodiversity is so vast that after ten years of research, we are far from identifying the total diversity of algae and cyanobacteria (Table 1). Another problem related to the strains is the stability of their growth on industrial photobioreactors and the synthesis of the target metabolites.

Table 1. Different strains studied for biodiesel production.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Lipids</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arthrospira platensis</td>
<td>30.2 (mg/L/day)</td>
<td>[13]</td>
</tr>
<tr>
<td>Auxenochlorella protothecoides</td>
<td>43 (mg/L/day)</td>
<td>[14]</td>
</tr>
<tr>
<td>Botryococcus braunii</td>
<td>62 (mg/L/day)</td>
<td>[15]</td>
</tr>
<tr>
<td>Chlamydomonas reinhardtii</td>
<td>25.25% (w/w)</td>
<td>[17]</td>
</tr>
<tr>
<td>Ch. reinhardtii CC-400</td>
<td>28.5% (w/w)</td>
<td>[18]</td>
</tr>
<tr>
<td>Ch. Reinhardtii CC-4349</td>
<td>64.25% (w/w)</td>
<td>[19]</td>
</tr>
<tr>
<td>Chlorella sp</td>
<td>490 – 1100 (mg/L/day)</td>
<td>[20]</td>
</tr>
<tr>
<td>Chlorella sp G-9</td>
<td>32.6 – 34.2 (mg/L/day)</td>
<td>[21]</td>
</tr>
<tr>
<td>C. kessleri</td>
<td>68 (mg/L/day)</td>
<td>[22]</td>
</tr>
<tr>
<td>C. pyrenoidosa</td>
<td>19.3% (w/w)</td>
<td>[23]</td>
</tr>
<tr>
<td>C. protothecoides</td>
<td>105 (mg/L/day)</td>
<td>[23]</td>
</tr>
<tr>
<td></td>
<td>204 (mg/L/day)</td>
<td>[24]</td>
</tr>
<tr>
<td>C. vulgaris</td>
<td>160 (mg/L)</td>
<td>[25]</td>
</tr>
<tr>
<td></td>
<td>46.4 (mg/L/day)</td>
<td>[26]</td>
</tr>
<tr>
<td>C. vulgaris JSC-6</td>
<td>1030 (mg/L/day)</td>
<td>[27]</td>
</tr>
<tr>
<td>C. vulgaris LBL3-M</td>
<td>10% (w/w)</td>
<td>[28]</td>
</tr>
<tr>
<td>C. vulgaris UTEX 1803</td>
<td>9% (w/w)</td>
<td>[29]</td>
</tr>
<tr>
<td>C. vulgaris Mutant (UV715)</td>
<td>67% (w/w)</td>
<td>[30]</td>
</tr>
<tr>
<td>Chlorococcum oleofaciens</td>
<td>0.74 (g/L)</td>
<td>[31]</td>
</tr>
<tr>
<td>Coccomyxa sp strain Obi</td>
<td>65.4% (w/w)</td>
<td>[32]</td>
</tr>
<tr>
<td></td>
<td>15% (w/w)</td>
<td>[33]</td>
</tr>
<tr>
<td>Dunaliella tertiolecta</td>
<td>23.4% (w/w)</td>
<td>[34]</td>
</tr>
<tr>
<td>Nannochloropsis gaditana</td>
<td>26.3 % (w/w)</td>
<td>[35]</td>
</tr>
<tr>
<td>N. oculata</td>
<td>24% (w/w)</td>
<td>[36]</td>
</tr>
<tr>
<td>Phaeodactylum tricornutum</td>
<td>55.7% (w/w)</td>
<td>[37]</td>
</tr>
<tr>
<td>Scenedesmus almeriensis</td>
<td>24.6% (w/w)</td>
<td>[38]</td>
</tr>
<tr>
<td>S. dimorphus</td>
<td>18% (w/w)</td>
<td>[39]</td>
</tr>
<tr>
<td></td>
<td>27.5 (mg/L/day)</td>
<td>[40]</td>
</tr>
<tr>
<td></td>
<td>38 (mg/L/day)</td>
<td>[41]</td>
</tr>
<tr>
<td>S. obliquus</td>
<td>25.2 (mg/L/day)</td>
<td>[42]</td>
</tr>
<tr>
<td></td>
<td>16.8% (w/w)</td>
<td>[23]</td>
</tr>
<tr>
<td></td>
<td>66% (w/w)</td>
<td>[43]</td>
</tr>
</tbody>
</table>
Microalgae can be produced under autotrophic, mixotrophic, or heterotrophic conditions. Different systems for the production of algae are available for their culture under the three conditions, as mentioned earlier. Autotrophic systems are the most common since the algae only require light as an energy source and dissolved CO$_2$ as a source of carbon. Usually, algae growth under autotrophic systems can be produced in open or closed photobioreactors. Open ponds are the simplest of all systems for algal production, and it requires low energy inputs. It has easy maintenance; however, it is severely affected by seasonal variations and is prone to contamination by other microbes [44].

Mixotrophic and heterotrophic production of algae requires the addition of organic carbon sources (glucose, acetate, and others), which can lead to contamination by the presence of bacteria and fungi; therefore, these systems require closed photobioreactors (PBR). Closed PBR offers several advantages over open systems: (i) aseptic growth conditions, (ii) increased cell concentration due to better light distribution, (iii) improved pH control, and (iv) reduced water loss due to evaporation. However, their operation cost, maintenance, and energy inputs are considerably higher than in open ponds [45].

After culturing comes the harvesting and removal of the biomass from the liquid media. Due to their nature, microalgal cells have a small size, low specific gravity, and are highly diluted on the culture media; therefore, their concentration is labor, energy, and time-intensive step [46]. Several techniques are available at industrial scale such as centrifugation, filtration, flocculation, flotation, electroflotation, and so on. However, the method’s selection and application lie on the technical and economic analysis since some of them can be extremely expensive and energy-intensive for the production of algal-based biofuels. Once the biomass is removed from the media, most of their water content must be removed via spray drying, drum drying, freeze-drying, or solar drying to avoid any interference with the extraction [47].

So far, we have covered the different steps on algal production; however, the crucial step that inhibits the industrial-scale production of algae-based biofuels is the effective extraction of lipids and carbohydrates [48]. The Microalgal cell wall is made of polysaccharides and cellulose synthesized from silicic acid [49], and must be broken in order to release, both lipids and carbohydrates; in consequence, only a fraction of the biomass is used in biofuel process production. Therefore, biodiesel and ethanol production are not economically feasible due to the high cost and energy inputs in almost all stages [44]. The R+D on algal-based biofuels is a field that, in recent years, has been maintained with a considerable number of publications. According to SCOPUS (figure 1a), the publication of different peer-reviewed documents has growth exponentially between 2003 and 2014, from 17 to over 3045 in 10 years. Since 2015, the number of documents has remained almost constant up to a final number of 7953 in 2020. The countries with the largest publication of documents related to algal biofuels are (figure 1b) United States (2011), China (1235), India (988), South Korea (490), and United Kingdom (365).

S. quadriricauda	46 (mg/L/day)	[44]
Tetraselmis suecica	23.1% (w/w)	[45]
	19.5% (w/w)	[46]
3. Thermochemical conversion of algal biomass

Thermochemical methods can be grouped into four classes, hydrothermal liquefaction, pyrolysis, gasification, and torrefaction [53]. In thermochemical process, the algal biomass is thermally decomposed in solid, liquid, and gas biofuels such as heat, steam, syngas, bio-liquid and biochar (figure 2). These different methods, since there is no need to extract or purify neither lipids nor carbohydrates; therefore, the entire biomass can be used. Finally, the reaction time is short; providing a simpler route for the biofuel production [10].
Figure 2. Thermochemical conversion of microalgal biomass.

3.1. Pyrolysis of microalgae

Pyrolysis is the thermal decomposition of biomass at high temperature (400-600°C), in an atmospheric-pressure inert environment. Compared to other conversion technologies, pyrolysis of algal biomass has achieved reliable and promising outcomes that could lead to commercial exploitation [54]. The bio-oils obtained from the pyrolytic reaction of algal biomass had a higher heating value, higher aromatics, and lower acidity, with various types and concentrations of linear hydrocarbons and nitrogenous species, resulting from the lipidic and protic content of the biomass [55]; while bio-oils derived from wood holds solids with chemically dissolved oxygen concentrations [8]; implying that better quality algae-based bio-oil could be produced from catalytic pyrolysis.

The production of algal bio-oils from pyrolysis is not a new field, with peer-reviewed papers since 1968. However, in the last 20 years, this technology has gained momentum on the scientific community. According to SCOPUS (figure 3), the thermochemical conversion of algal biomass into usable fuels has been growing stronger since 2003 with 1194 peer-reviewed documents. In this area, China overcomes as the main source of scientific documents.
Pyrolysis can be categorized in four modes (i) slow, (ii) intermediate (iii) fast, (iv) flash, and (v) microwave pyrolysis; each one possesses a differential heating rate, the presence and/or heating route [9]. Slow pyrolysis is characterized by the heating of biomass under a “slow” heating rate (0.1-1°C/s), with a moderate temperature (550–950°C) and long retention times (> 5 min) [56]. Their main product is biochar with by-products such as bio-oil and syngas [57]. Under slow pyrolysis different particle sizes can be processed, therefore both macro and microalgae can be used without mechanical pretreatment. Intermediate pyrolysis is carried out using the intermediate conditions between slow and fast pyrolysis [58]. Normally intermediate pyrolysis is carried out at 500°C, 30–1500s of pyrolysis time and 2-4s of vapor residence time [59]. The main product from intermediate pyrolysis is bio-oil (40–60%) followed by non-condensable syngas (20-30%) and biochar (15-25%) [60]. The bio-oil obtained is characterized by reduced viscosity and low tar content with small concentration of tar [61].

Fast pyrolysis is considered as the preferred method for the maximization of bio-oil production. The process is carried out at high temperatures (850–1250 °C), fast heating rate (> 60°C/min) and short pyrolysis time (0.5–10s) [62], this conditions reduce secondary reactions (secondary cracking, condensation, and polymerization of intermediates) which contribute to the production of a bio-oil with enhanced qualities. Flash pyrolysis use high temperatures (850–1250 °C), high heating rates (1.000-10,000 °C/s) and short pyrolysis time (0.5–10s). due to the fast reaction, bio-oil is the main product of the reaction (90%wt) [63]. Finally, Microwave-Assisted Pyrolysis (MAP) is a gentle and medium speed process, with a heating rate between conventional pyrolysis and fast pyrolysis [64]. This process has gained large attention in the recent years because is considered as a more energy-efficient method in comparison with other pyrolysis-related systems [65] and there is no requirement of mechanical pretreatment of biomass, resulting in substantial energy savings.

From pyrolysis it can be obtained bio-oils, chars, and non-condensable gases; however, the final content and amounts will depend directly form the operation conditions and microalgae properties and reaction type. Under lower temperatures chars are the mayor product; at moderate temperatures (400 – 550°C) with short residence times (2–3s) liquid production if favored. Finally, the gas product increases when the temperature is increased [9].

Over the last years, several studies have been conducted to increase the efficiency of pyrolysis process using microalgae Species such as Chlorella sp, C. vulgaris [66,73], Chaetoceros muellera [67] Chlamydomonas debaryana [4], Chlamydomonas reinhardttii [74], Dunaliella tertiolecta [67], Haematococcus pluvialis [76], Isochrysis sp [76,77], Microcystis aeruginosa [69], Namochloropsis [78,79], Tetraselmis, Tetraselmis Chuii [67,80], Spirulina sp, Spirulina platensis [81-84], and Synechococcus sp [67]. A comprehensive list of species studied can be found on table 2.
In order to exploit the potential of pyrolysis in microalgal conversion, the process has to be improved towards a higher bio-oil yield [63] with less oxygenic compounds to prevent polymerization and condensation. Suitable catalyst could lead to in situ upgrading of generated bio-oil [85,86]. Another advantage of catalytic pyrolysis is that catalysts used for pyrolysis can be recycled to the reactor [85]. The most common catalysts used for microalgal pyrolysis include Na2CO3, metallic based catalyst such as Ni, Mo and ceria-based catalysts (NieCe/Al2O3 and NieCe/ZrO2) [87] have shown great catalytic efficiency. On the other hand, other metal catalysts including Ce, Ti, Co, Mg, and Al did not show obvious catalytic effect [88]. ZSM-5-based zeolites such as H-ZSM-5, Fe-ZSM-5 Cu-ZSM-5 and Ni-ZSM-5 are considered as the most effective catalyst for the pyrolysis of algal biomass. Other zeolites such as ITQ-2 and MCM-22 had a similar but less effective function [89].[87] were able to significantly reduce the oxygen content (from 30 to 19wt %) and a higher calorific value (from 24.6 to 32.5MJkg) through the catalytic pyrolysis of Nanochloropsis sp. Other studies such as [90-92] proved the hability of catalytic-mediated pyrolysis to increase the yield of bio-oil. [92] used HZSM-5 and found that an increase in catalyst-to-biomass ratio from 1:1 to 5:1 significantly improved the aromatic yields. [93] studied pyrolysis of cyanobacteria over Mg-Al layered double oxide/ZSM-5 composites, and the pyrolytic bio-oil contained less nitrogenated compounds; On another study, [88] improved the yield and quality of bio-oil from Tetraselmis sp. and Isochrysis sp in a fixed bed reactor with the addition of NieCe/Al2O3 and NieCe/ZrO2. Finally, [94] investigated the efficiency of five different zeolite-based catalyst (H+, Fe+, Cu+, and Ni-ZSM-5) in the bio-oil production from Chlorella biomass, they found that HZSM-5 increased the yield of the hydrocarbon fraction in the organic phase from 21 to 43 wt%.

<table>
<thead>
<tr>
<th>Strain</th>
<th>Catalyst</th>
<th>Yield</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlamydomonas reinhardtii</td>
<td>Hydrotalcite</td>
<td>bio-oil: 75 wt%</td>
<td>[74]</td>
</tr>
<tr>
<td>Ch. debaryana</td>
<td>β-zelite</td>
<td>bio-oil: 23.5wt%</td>
<td>[4]</td>
</tr>
<tr>
<td></td>
<td>Activated charcoal</td>
<td>bio-oil: 43.8 wt%</td>
<td></td>
</tr>
<tr>
<td>Chlorella vulgaris</td>
<td>Ni/zeolite-Y</td>
<td>bio-oil: 10 wt%</td>
<td>[70]</td>
</tr>
<tr>
<td></td>
<td>H-ZSM-5</td>
<td>yield of aromatics: 25 wt.%</td>
<td>[71]</td>
</tr>
<tr>
<td></td>
<td>H-ZSM-5</td>
<td>bio-oil: 52.7 wt%</td>
<td>[72]</td>
</tr>
<tr>
<td>Chlorella sp</td>
<td>Magnetite</td>
<td>bio-oil: 53.8 wt%</td>
<td>[73]</td>
</tr>
<tr>
<td></td>
<td>Activated carbon</td>
<td>bio-oil: 48.4 wt%</td>
<td></td>
</tr>
<tr>
<td>Haematococcus pluvialis</td>
<td>Microalgae Char</td>
<td>bio-oil: 15.3 wt%</td>
<td>[75]</td>
</tr>
<tr>
<td>Isochrysis sp.</td>
<td>Li-LSX-zeolite</td>
<td>bio-oil: 29 wt%</td>
<td>[77]</td>
</tr>
<tr>
<td>Pavlova sp.</td>
<td>Ni/TiO2</td>
<td>bio-oil: 22.6 wt%</td>
<td>[87]</td>
</tr>
<tr>
<td>Spirulina sp</td>
<td>Magnetite</td>
<td>bio-oil: 49.4 wt%</td>
<td>[73]</td>
</tr>
<tr>
<td></td>
<td>Activated carbon</td>
<td>bio-oil: 46.4 wt%</td>
<td></td>
</tr>
<tr>
<td>Spirulina plantensis</td>
<td>Fe/HMS-ZSM5</td>
<td>bio-oil: 37.7 wt%</td>
<td>[83]</td>
</tr>
<tr>
<td></td>
<td>Ce(II)/HZSM-5</td>
<td>bio-oil: 49.7 wt%</td>
<td>[84]</td>
</tr>
</tbody>
</table>

3.2. Hydrothermal liquefaction of algal biomass

One of the problems with algal biomass is the necessity to remove the high-water content prior to the production of biofuels. In this case Hydrothermal liquefaction (HTL) stands out as a promising technology for the thermochemical conversion of biomass into more useful liquid fuels [95]. Unlike pyrolysis, HTL can convert high-moisture biomass to biocrude in water medium and thus does not require preliminary drying processes [96].

Hydrothermal liquefaction is performed in the presence of water under high pressure (5-25 MPa), subcritical water temperature (280-370°C). Under this conditions, algal macromolecules (including lipid, protein, and carbohydrate) undergoes depolymerization reactions (fragmentation, hydrolysis, dehydration, deoxygenation, aromatization and repolymerization) [97] for the production of several products such as bio-oil, gas, solid residue and aqueous phase-by-products [98]. HTL is considered a more robust thermochemical technology, not only for the usage of wet
biomass, but also due to their high biocrude yield (24 -64 wt%) [99], some essential nutrients (N, P, Mg, and K) can be recycled for microalgal culture [100]. Additionally, up to 50% of oxygen can be removed, resulting in a biocrude with a Higher Heating Value (HHV) ranging from 30 to 40 MJ/kg [101,102]. However, the algae-derived biocrude possess some disadvantages such as a high-water content, high viscosity, and high heteroatom content, which impede its upgrade into usable fuels [99]. Several studies underline that biomass load/ratio, reaction temperature, residence time, pressure, catalyst (including homogenous and heterogenous catalyst), reaction medium, influence the yield, composition and physico-chemical properties of biocrude obtained under HTL [103].

The application of catalysts on HTL reaction is an interesting opportunity to improve the process in several aspects such as the yield and quality of biocrude [104,105], inhibition of side reactions, decrease of reaction temperature, pressure, reduce its viscosity, and reduction in the processing time [106]. The catalysts employed can be separated into homogeneous (water soluble) and heterogeneous (non-water soluble) [95], Table 3 presents a list of catalyst and the strains evaluated.

Unlike pyrolysis, HTL is a technique relatively new on the production of algal-based bio-oils. The first document is reported from 2004 (figure 4), and in the last 16 years the number of peer-reviewed documents is 624 In this area, United states is the main source with 253 peer-reviewed documents

![Graph showing the number of publications on HTL from algal biomass and their country of origin.](image)
3.2.1. Homogeneous catalysis.

Homogeneous catalysts are water-soluble at room temperature. During its reaction the formation of char/tar is inhibited while enhancing product yield by expediting water-gas shift reaction [106].

The most common forms include alkali salts (Na₂CO₃ and KOH), mineral and organic acids (CH₃COOH and HCOOH), metallic cations (Zn²⁺ and Co³⁺) [105,106]. Na₂CO₃ is the most common catalyst employed, and can enhance the production of BTEX (benzene, toluene, ethylbenzenes and xylenes) and C₅ to C₁₈ aliphatic hydrocarbons, which are critical elements of gasoline and diesel fuels [95],[107] observed that Na₂CO₃ enhanced the yield of bio-crude from Nanochloropsis sp at 250 °C. However, at higher temperatures (300–350 °C) other species studied such as Pavlova and Isochrysis sp, have higher bio-oil yields (50–60%). The difference between results can explained by the difference on biomass composition, since Pavlova and Isochrysis sp has high lipid and carbohydrate contents. These results are consistent with those reported by [108], who observed that algae with high carbohydrate content was efficiently liquefied. In other study, [109] found that Na₂CO₃ increased the bio-oil yield up to 52% (29% higher than for the uncatalysed process) on Spirulina platensis, and Ca₃(PO₄)₂ and NiO produced a negative effect on bio-oil yield. On the other hand, [110] found that Na₂CO₃ does not improve the formation of bio-oil on a strain of C. vulgaris. KOH has been reported as an interesting catalyst; according to [111], in the catalytic HTL of Cyanidioschyzon merolae, KOH can increase the bio-oil yield in range of 5–10% of bio-oil (from 16.9 to 22.7%) than for the non-catalytic process under similar reaction conditions. The performance of alkali catalyst is significantly affected by the temperature of the process, irrespective of the species evaluated [108,112]. For example, the formation of aliphatics and cycles are directly affected with an increment of temperature (300 °C); however, at higher temperatures their concentrations declined due to subsequent cracking [95].

Apart from alkaline catalysts, both organic (HCOOH and CH₃COOH) and inorganic acid (H₂SO₄) catalysts have been used [110,113]. According to [114], a concentration of 6% of H₂SO₄ increased up to 70% the bio-oil production from macroalga Ulva prolifera sp; However, GC-MS data revealed oxygenates as the dominant products in the bio-oil. [113] found that 2.4% H₂SO₄ had a positive effect on the bio-cruide oil production from Dunaliella tertiolecta; it can be highlighted that the bio-oil obtained is composed mainly of esters, carboxylic acids and ketones. In another study, [114] applied HCOOH and CH₃COOH in a reaction with C. vulgaris at 300 °C and 350 °C for 1 h. Their results demonstrate that acid catalyst produced a higher bio-cruide oil yield with a better flowability of oil product. [115] obtained a maximum yield of 28% of bio-oil using H₂SO₄ and CH₃COOH in the catalytic HTL of Enteromorpha sp.

There are certain challenges that hinder the prospect of industrial application of homogeneous catalyst on HTL. Alkali and acidic catalyst negative affects the pH of the reaction, leading to corrosion on the reaction equipment [116]. Catalysts based on carbonates (hydroxides or simple carboxylic acids) have a low efficiency on the decarboxylation, isomerization and aromatization of fatty acids [96]. Formic acid and acetic acid can induce the formation of gas fractions (30 wt% and 16–22 wt%, respectively) [112] and are consumed through the reaction stage; therefore this type of catalyst must be removed and disposed [106].

<table>
<thead>
<tr>
<th>Strain</th>
<th>Catalyst</th>
<th>Catalyst type</th>
<th>Bio-oil Yield (wt%)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorella sp</td>
<td>Na₂CO₃</td>
<td></td>
<td>28</td>
<td>[108]</td>
</tr>
<tr>
<td></td>
<td>Formic acid</td>
<td></td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CH₃COOH</td>
<td>homogeneous catalyst</td>
<td>15.7</td>
<td>[113]</td>
</tr>
<tr>
<td></td>
<td>KOH</td>
<td></td>
<td>13.6</td>
<td></td>
</tr>
<tr>
<td>C. pyrenoidosa</td>
<td>Na₂CO₃</td>
<td></td>
<td>41.78</td>
<td>[117]</td>
</tr>
<tr>
<td>Cyanidioschyzon merolae</td>
<td>CH₃COOH</td>
<td></td>
<td>21.23</td>
<td>[111]</td>
</tr>
<tr>
<td></td>
<td>NaOH</td>
<td></td>
<td>21.78</td>
<td></td>
</tr>
<tr>
<td>Organism</td>
<td>Na$_2$CO$_3$</td>
<td>KOH</td>
<td>Reference</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------</td>
<td>-----</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>Dunaliella tertiolecta</td>
<td>42.0</td>
<td>22.67</td>
<td>[118]</td>
<td></td>
</tr>
<tr>
<td>Enteromorpha prolifera</td>
<td>23.0</td>
<td>228.0</td>
<td>[120]</td>
<td></td>
</tr>
<tr>
<td>Isochrysis sp</td>
<td>50</td>
<td>42.0</td>
<td>[107]</td>
<td></td>
</tr>
<tr>
<td>Laminaria saccharina</td>
<td>67.0</td>
<td>42.0</td>
<td>[120]</td>
<td></td>
</tr>
<tr>
<td>Microcystis viridis</td>
<td>33.0</td>
<td>42.0</td>
<td>[121]</td>
<td></td>
</tr>
<tr>
<td>Nannochloropsis sp</td>
<td>28</td>
<td>42.0</td>
<td>[108]</td>
<td></td>
</tr>
<tr>
<td>Pavlova sp</td>
<td>28</td>
<td>42.0</td>
<td>[122]</td>
<td></td>
</tr>
<tr>
<td>Porphyridium</td>
<td>27.1</td>
<td>42.0</td>
<td>[108]</td>
<td></td>
</tr>
<tr>
<td>S. platensis</td>
<td>51.6</td>
<td>42.0</td>
<td>[109]</td>
<td></td>
</tr>
<tr>
<td>Tetraselmis sp.</td>
<td>40</td>
<td>42.0</td>
<td>[123]</td>
<td></td>
</tr>
<tr>
<td>Ulva prolifera</td>
<td>26.7</td>
<td>42.0</td>
<td>[124]</td>
<td></td>
</tr>
<tr>
<td>Green macroalgal blooms</td>
<td>20.1</td>
<td>42.0</td>
<td>[125]</td>
<td></td>
</tr>
<tr>
<td>Chlorella sp</td>
<td>65.7</td>
<td>42.0</td>
<td>[126]</td>
<td></td>
</tr>
<tr>
<td>C. pyrenoidosa</td>
<td>49.87</td>
<td>42.0</td>
<td>[127]</td>
<td></td>
</tr>
<tr>
<td>C. vulgaris</td>
<td>38.7</td>
<td>42.0</td>
<td>[128]</td>
<td></td>
</tr>
<tr>
<td>D. tertiolecta</td>
<td>49.09</td>
<td>42.0</td>
<td>[119]</td>
<td></td>
</tr>
<tr>
<td>N. oculata</td>
<td>18.1</td>
<td>42.0</td>
<td>[136]</td>
<td></td>
</tr>
<tr>
<td>Nannochloropsis sp.</td>
<td>55</td>
<td>42.0</td>
<td>[137]</td>
<td></td>
</tr>
<tr>
<td>Spirulina sp</td>
<td>48</td>
<td>42.0</td>
<td>[129]</td>
<td></td>
</tr>
<tr>
<td>S. platensis</td>
<td>34</td>
<td>42.0</td>
<td>[132]</td>
<td></td>
</tr>
<tr>
<td>Ulva prolifera</td>
<td>29.3</td>
<td>42.0</td>
<td>[134]</td>
<td></td>
</tr>
</tbody>
</table>
3.2.1. Heterogeneous catalysis.

Heterogenous catalyst, or water-insoluble catalyst, exists in the different phases with liquefaction medium, therefore they can be recovered and recycled [103]. Another mayor advantage over homogeneous catalyst is their low corrosion rate and high catalytic activity under severe reaction conditions that often damage the homogeneous catalysts [95].

Several catalysts have been studied for HTL of algal biomass (table 3) including supported metal catalysts (such as Pd, Pt, Ni, Ru), metal oxide catalyst, and metals supported on Al2O3, SiO2 and zeolites. However, the influence of metal catalysts in the biocrude yield is complex, and not all of the evaluated metals can positively improve the yield, even some of them can significantly reduce the overall performance of HTL. According to the results obtained by [136], the catalytic activity of Pt, Ni and CoMo supported in Al2SO3 had a positive influence on the yield in the HTL obtained from Chlorella vulgaris and Nannochloropsis occulata. Results proved that the intrinsic characteristics of each strain (carbohydrates, lipids, protein and ash content) and the catalyst composition play a crucial role on the yield of bio-oil. In this scenario, bio-oil from C. vulgaris was positively affected by Pt/Al2O3 and CoMo/Al2O3 (from 34 to 39%wt); on the other hand, the biocrude yield of N. occulata was reduced with each of the three heterogeneous catalysts. Results from strains of the same genera can be completely different. [137] evaluated the performance of several metal catalyst (Pd/C, Pt/C, Ru/C, Ni/SiO2–Al2O3, CoMo/γ-Al2O3 (sulfided), and zeolite) for the conversion of Nannochloropsis sp biomass. Their results show a similar of those obtained by [136], since the yield of biocrude obtained with Ni/SiO2-Al2O3 was lower than without catalyst, the reduced oil yield could be due to the promoted gas formation by gasification reactions [103]. However, Pd/C effectively increased the bio-oil yield (from 35 to 57%wt). In another study, [116] evaluated the efficiency of REHY and Ni/REHY in the conversion of Dunaliella salina. Results shown an interesting increase of bio-oil yield from 35%, up to 52 and 72% for REHY and Ni/REHY respectively. The authors found that Ni/REHY catalyst favored the deoxygenation and desulfurization, since the bio-oils were composed mainly of hydrocarbons whereas the content O- and S bearing compounds was negligible; therefore Ni-based catalyst may improve the overall biomass conversion by catalyzing bond cleavages and depolymerization process.

Raney-Ni and HZSM-5 type zeolite (ethanol rather than water as solvent) were evaluated on the catalytic efficiency over Chlorella pyrenoidosa biomass [138]. Results show that either catalysts do not improve the yield of bio-oil for the different conditions evaluated. However, the catalyst employed did improve the concentration of different reaction products such as light fuel-range (gasoline range) hydrocarbons. Other zeolite-based catalyst such as H-ZSM-5 and Ce/H-ZSM-5 has been reported for the conversion of C. pyrenoidosa biomass [139], their results highlight the efficiency of zeolite-based catalyst, due to a raise in the yield of bio-oil from 32% to 38% and 52% for H-ZSM-5 and Ce/H-ZSM-5 respectively.

Even after all the different research highlighted in the present review, there is no clarity on the underlying mechanism of heterogenous catalyst in the liquefaction process of algal biomass. According to literature, heterogeneous catalyst is considered superior to their counterpart; however, there are some conditions that hamper their efficiency. [140] found that biomass impurities such ash and excess of media nutrients can produce catalyst deactivation after a certain period in a continuous operation. [137,141] found that high concentration of S, N and O derivatives can accelerate the deactivation of heterogeneous catalyst.

5. Conclusions

This paper critically reviews the experimental aspects of conventional and catalytic thermochemical conversion of microalgal biomass and their product distribution, yields, and quality. Thermochemical conversion of algal biomass is a promising route to obtain alternative fuels for
energy generation; however, several challenges must be overcome to increase the sustainability of algal-based biofuels. Pyrolysis is a well-established technology that shows the right concentration of bio-oil, char and syngas, decent quality, and macroalgal biomass. It can be more interesting for this technology due to the necessity of dried biomass. On the other hand, Hydrothermal liquefaction can convert high-moisture biomass to biocrude in water medium and thus does not require preliminary drying processes, which makes HTL the most promising process an energetic point of view for the conversion of algal-based biofuels. The application of catalyst (both homogeneous and heterogeneous) has increased the overall efficiency of conversion of algal biomass in bio-oil and syngas; however, particular challenges hinder the prospect of industrial application of catalyst, such as possible corrosion on the reaction equipment, low recycling capacity, catalyst deactivation after a certain period in a continuous operation. Therefore, designing novel catalysts for the selective conversion of microalgae into biofuels is a mandatory step to increase the efficiency of the process.

Author Contributions: Conceptualization, A.Z.; Data curation, A.F.B.-S, and J.B.G.-M.; Funding acquisition, A.F.B.-S.; Investigation, A.Z. and A.F.B.-S.; Resources, A.Z.; Software, J.B.G.-M, and A.Z.; Supervision, A.F.B.-S. And A.Z.; Writing—original draft, A.F.B.-S. And A.Z.; Writing—review & editing, J.B.G.-M., And A.Z.

Funding: This review was partially supported by grants from Sapienza University of Rome (Italy), Gen Foundation with the project “Isolation of thermo-tolerant algae as a novel source of food colorants”. UFPS internal Research funding: FINU 27-2019; and Newton Fund Institutional Links, ID 527624805.

Acknowledgments: We would like to express our sincere gratitude to Gen Foundation, Sapienza University of Rome (Italy) and Universidad Francisco de Paula Santander for providing the equipment for this review and the Colombian Ministry of Science Technology and Innovation MINCIENCIAS for the support to national Ph.D. Doctorates through the Francisco José de Caldas scholarship program.

Conflicts of Interest: The authors declare no conflict of interest.

References

https://doi.org/10.1016/j.biortech.2018.06.077.

https://doi.org/10.1016/j.biortech.2017.06.165.

drothermal Liquefaction of a Microalga in a Two

drothermal Liquefaction of

tical

tion.

fluence of Fe/HZSM

–

https://doi.org/10.1007/s12155-014-9471-3.

118. Minowa, T.; Yokoyama, S.; Kishimoto, M.; Okakura, T. Oil Production from Algal Cells of Dunaliella

https://doi.org/https://doi.org/10.1016/0016-2361(95)80001-X.

119. Chen, Y.; Wu, Y.; Ding, R.; Zhang, P.; Liu, J.; Yang, M.; Zhang, P. Catalytic Hydrothermal Liquefaction of
D. Tertiolecta for the Production of Bio-Oil over Different Acid/Base Catalysts. AIChE J. 2015, 61 (4), 1118–

120. Bach, Q.-V.; Sillerø, M. V.; Tran, K.-Q.; Skjermo, J. Fast Hydrothermal Liquefaction of a Norwegian Macro-

121. Yang, Y. F.; Feng, C. P.; Inamori, Y.; Maekawa, T. Analysis of Energy Conversion Characteristics in

https://doi.org/10.1016/j.resconrec.2004.03.003.

https://doi.org/10.1016/j.apenergy.2016.09.017.

Bhaskar, S. Hydrothermal Liquefaction of Freshwater and Marine Algal Biomass: A Novel Approach to
Produce Distillate Fuel Fractions through Blending and Co-Processing of Biocrude with Petrocrude.

125. Kumar, V.; Kumar, S.; Chauhan, P. K.; Verma, M.; Bahuguna, V.; Joshi, H. C.; Ahmad, W.; Negi, P.; Sharma,
N.; Ramola, B.; Rautela, I.; Nanda, M.; Vlaskin, M. S. Low-Temperature Catalyst Based Hydrothermal
Liquefaction of Harmful Macroalgal Blooms, and Aqueous Phase Nutrient Recycling by Microalgae. Sci.

126. Li, J.; Fang, X.; Bian, J.; Guo, Y.; Li, C. Microalgae Hydrothermal Liquefaction and Derived Biocrude

Characteristics of Water-Soluble and Water-Insoluble Biocrudes in Chlorella Hydrothermal Liquefaction.

128. Yang, L.; Ma, R.; Ma, Z.; Li, Y. Catalytic Conversion of Chlorella Pyrenoidosa to Biofuels in Supercritical

https://doi.org/10.1016/j.biortech.2016.03.029.

129. Yang, L.; Li, Y.; Savage, P. E. Catalytic Hydrothermal Liquefaction of a Microalga in a Two-Chamber

130. Liu, Z.; Li, H.; Zeng, J.; Liu, M.; Zhang, Y.; Liu, Z. Influence of Fe/HZSM-5 Catalyst on Elemental

131. Liu, C.; Kong, L.; Wang, Y.; Dai, L. Catalytic Hydrothermal Liquefaction of Spirulina to Bio-Oil in the

https://doi.org/10.1016/j.algal.2018.05.012.

Bhuvanendran, N.; Krishnamoorthi, M. Effect of Low-Temperature Catalytic Hydrothermal Liquefaction

S.; Ashokkumar, V.; Krishnamoorthi, M. Hydrothermal Liquefaction of Microalgae Using FeO4
Nanostructures as Efficient Catalyst for the Production of Bio-Oil: Optimization of Reaction Parameters by

