Quantification of atmospheric ammonia concentrations: A review of its measurement and modeling

Arshad Arjunan Nair and Fangqun Yu

Atmospheric Sciences Research Center, State University of New York at Albany
251 Fuller Road, Albany, NY 12203, USA
* Correspondence: aanair@albany.edu and fyu@albany.edu

Abstract: Ammonia (NH₃), the most prevalent alkaline gas in the atmosphere, plays a significant role in PM₂.₅ formation, atmospheric chemistry, and new particle formation. This paper reviews quantification of [NH₃] through measurements, satellite-remote-sensing, and modeling reported in over 500 publications towards synthesizing current knowledge of [NH₃], focusing on spatiotemporal variations, controlling processes, and quantification issues. Most measurements are through regional passive sampler networks. [NH₃] hotspots are typically over agricultural regions like the Midwest US and North China Plain, with elevated concentrations reaching monthly averages of 20 and 74 ppbv, respectively. Topographical effects dramatically increase [NH₃] over the Indo-Gangetic Plains, North India and San Joaquin Valley, US. Measurements are sparse over oceans, where [NH₃] ≈ few tens of ppbv, variations of which can affect aerosol formation. Satellite-remote-sensing (AIRS, CrIS, IASI, TANSO-FTS, TES) provides global [NH₃] quantification in the column and at surface since 2002. Modeling is crucial for improving understanding of NH₃ chemistry and transport, its spatiotemporal variations, source apportionment, exploring physicochemical mechanisms, and predicting future scenarios. GEOS-Chem (global) and FRAME (UK) models are commonly applied for this. A synergistic approach of measurements↔satellite-inference↔modeling is needed towards improved understanding of atmospheric ammonia, of concern from the standpoint of human health and the ecosystem.

Keywords: review; ammonia; modeling; measurement; atmospheric chemistry; particle formation and PM₂.₅

1. Introduction

Atmospheric ammonia (NH₃), mainly from agriculture with additional sources in industrial and vehicular emissions, plays a key role in many aspects of our environment by virtue of its alkalinity, reactivity, solubility, and abundance. In the recent years, there has been an increase in its concentration ([NH₃]) mainly due to increased land use for agriculture [1–3] to support our burgeoning population. This has generated concern about its negative impacts on the climate and human health. This is especially so due to the role of NH₃ in the formation of PM₂.₅ through its neutralization of acidic species in the atmosphere. NH₃ has been receiving increasing attention recently due to its potential enhancement of atmospheric new particle formation [4,5]. The impacts of NH₃ as well as the resultant particulate matter on human health [6], the ecosystem, and climate deem understanding its concentration in the atmosphere important.

NH₃ has the following major impacts on the environment. Firstly, NH₃ is the greatest contributor to reactive nitrogen deposition [7–10] in several regions across the globe. Such deposition can contribute...
to eutrophication of aquatic and terrestrial exosystems [11,12], which may be enhanced due to the greater bioavailability of NH$_3$ or ammonium (NH$_4^+$) compared to other reactive nitrogen species [13–15]. Acidification via nitrification, the conversion of NH$_3$ to nitrite (NO$_2^−$) and then to nitrate (NO$_3^−$), can also occur [11,12,16–21]. For instance, 1 mol of ammonium sulfate ((NH$_4$)$_2$SO$_4$) can potentially release 4 mols of acidity, i.e. H$^+$ ions. Secondly, NH$_3$ has direct negative impacts on the ecosystem, which are expected above a critical threshold of 4 ppbv of [NH$_3$] [22], which is frequently the case in several countries. They may directly affect vegetation [12,23] or livestock [24–26] or humans [27,28]. Thirdly, NH$_3$ plays a role in determining the total particle mass and number concentrations, apart from the extent of neutralization of atmospheric particles [4,29–31]. The contribution of NH$_4^+$ to particulate matter is comparable to that of other inorganic species such as NO$_3^−$ and sulfate (SO$_4^{2−}$) as seen from modeling [32–34] and measurements [9,35,36]. Further, Tsigaridis et al. [33] indicate that the increase in NH$_4^+$ absolute (0.13 → 0.37 Tg) and relative (0.5% → 1.3%) contribution to aerosol burden from pre-industrial to present-day times, which is supported by observations from ice core studies [37–39]. NH$_3$ also affects hygroscopicity of particles, an important physicochemical property determining particles’ water carrying capacity. Finally, NH$_3$ can significantly enhance the nucleation rate of aerosol particles through sulfuric acid vapor condensation [4,5,40–42], with implications to aerosol indirect radiative forcing. Further, gas-particle partitioning of NH$_3$ to form NH$_4^+$ salts can contribute to the continued growth of these newly-formed aerosol particles. Although NH$_3$ shows thermodynamic preference for neutralization of H$_2$SO$_4$ to form solid (NH$_4$)$_2$SO$_4$, formation of the semi-volatile NH$_4$NO$_3$ when there is small supersaturation of NH$_3$ and HNO$_3$ can contribute to rapid particle growth [43]. Additionally, NH$_3$ that remains in the gas-phase can dissolve into the aerosol water and increase its pH, thereby increasing the solubility of HNO$_3$ and other acidic species. Considering the largest uncertainties in climate modeling come from aerosols [44], the role of NH$_3$ in aerosol nucleation, growth, and characteristics are especially important. Further, the relatively shorter atmospheric lifetimes of its particulate forms implies that there may be more significant regional climate impacts [45].

Due to its importance, quantification of atmospheric [NH$_3$], mostly through in-situ measurements, satellite remote sensing, and modeling, has been reported in hundreds of publications. Here we review these previous studies, with the following aims: (1) aggregating current knowledge from the varied measurement techniques for the estimation of NH$_3$ in the atmosphere (2) identifying the variability and trends in [NH$_3$] (3) understanding these features in context of the processes that govern the concentration of ambient atmospheric NH$_3$ (4) examining the issues with these quantification approaches and the current and required attempts at resolving these. To the best of our knowledge, there has been no comprehensive review of previous studies of quantification of atmospheric NH$_3$ concentrations.

In the present section, we have provided the motivation for this review and a survey of literature examining atmospheric NH$_3$ and its effects. Figure 1 outlines this review: Section 2 details the various measurement techniques of atmospheric NH$_3$. Some key studies and their results are discussed here. Section 3 is on the modeling of NH$_3$ and the processes that affect its concentration in the atmosphere. This section also examines the validation of modeling studies with observations and some insights that this provides. Section 4 paints a picture of the spatial distribution on the global and regional scales. Section 5 examines the temporal trends in [NH$_3$] on varying scales from several studies that quantify NH$_3$. Issues with the various approaches of quantifying [NH$_3$] are discussed in each corresponding section and summarized in Section 6, which also concludes with the future steps and challenges in the quantification of atmospheric NH$_3$.

2. Measurement of $[\text{NH}_3]$

2.1. In situ measurements

It is natural that the first measurements of NH_3 in the gas-phase were made through ground-based instrumentation. The earliest detailed measurements of atmospheric NH_3 were made by Egner and Eriksson [46] over Scandinavia. “Ammonia and nitrate are determined in one aliquot of the sample by successive distillations in all-glass stills with excess of sodium hydroxide, and Devarda’s alloy. The final estimate of ammonia is made with a special Nessler technique, using a photoelectric colorimeter.” However, their approach did not distinguish the gas-phase NH_3 and the aerosol NH_4^+. The first measurements of $[\text{NH}_3]$ solely in the gas-phase was by Junge [47] over locations in Florida and Hawaii, with an important realization that the NH_4^+ aerosol was formed from atmospheric NH_3. Over the next six decades, there have been advancements in measurement methods, initially aiming at distinguishing gas/aerosol phases and the later goal of realizing continuous measurement of $[\text{NH}_3]$.

Towards the first goal, the first major development was the filter pack method [48], which filtered out aerosol particles on a Teflon pre-filter before collection of NH_3 on an acid-coated filter. However, there were issues with volatility of the aerosol NH_4^+ causing positive error, and humidity causing NH_3 deposition in the pre-filter and consequently a negative error in NH_3 measurement [49]. In 1979, Martin Ferm discussed a “method for determination of atmospheric ammonia” based on the differential diffusion rates to a surface for gas molecules and aerosols [50]. Using an oxalic acid-coated tube, separation of NH_3 (trapped onto the tube walls) and NH_4^+ aerosols is achieved. Many of the later refinements into NH_3 detection instruments have been based on this simple denuder technique. Continuous measurement of NH_3 was achieved by Wyers et al. [51], where a fully automated continuous flow rotating wet denuder was developed.

Numerous ground-based measurements of atmospheric NH_3 are listed in Table S1. The observations made in the reviewed literature are synthesized into Figure 2, with a global map of the average surface $[\text{NH}_3]$ measurements ranging from < 1 ppbv in remote continental and oceanic areas to > 24 ppbv, typically over regions of intensive agriculture. Longer detailed measurements have been made over the United States, Europe, and China. Some of the important results and inferences from these studies are discussed in detail in subsequent sections. From Table S1 and Figure 2 we note that most in situ measurements of $[\text{NH}_3]$ are over land. Most surface-based measurements over land are made in North America and Europe. Systematic measurements have been made through NH_3 monitoring networks, which have been established after identifying increasing NH_4^+
Figure 2. Global in situ measurements reviewed in this paper aggregated to a $1^\circ \times 1^\circ$ resolution.
and NH$_3$ trends and their effects on PM$_{2.5}$ formation. In the US, the Ammonia Monitoring Network (AMoN; 52,53) provides biweekly integrated surface measurements of [NH$_3$] from a network of 123 sites, with the longest measurement period from October 2007 to present and average measurement duration of 7 years. NH$_3$ is collected using a passive diffusion sampler and subsequently its laboratory measurement is conducted by sonic dislodgment of NH$_4^+$ ions from the phosphoric acid sorbent and subsequent Flow Injection Analysis (FIA). In the UK, the National Ammonia Monitoring Network (NAMN) was established in September 1996 and provides monthly integrated surface [NH$_3$] from a network of 72 active sites. The NAMN uses a combination of an active diffusion denuder method (DELTA samplers: DEnuder for Long Term Atmospheric, 54) and passive samplers (ALPHA: Adapted Low-cost Passive High-Absorption sampler, 55). In the Netherlands, the Dutch National Air Quality Monitoring Network (LML: Landelijk Meetnet Luchtkwaliteit) and the Measuring Ammonia in Nature Network (MAN) have been making measurements of [NH$_3$] across the Netherlands since 1993 and 2005, respectively. The LML reports hourly [NH$_3$] since 1993 at 8 sites and since 2014 at 6 sites using continuous-flow denuders (AMORs: Amanda for MOnitoring RIVM; 51) and currently miniDOAS [56], and in two sites, triplets of passive samplers [57] for monthly mean values. While the LML provides high temporal resolution, its low spatial distribution is compensated by over 300 sites of MAN which provide monthly passive sampling measurements of [NH$_3$]. Apart from these NH$_3$ monitoring networks, observations of [NH$_3$] have been made over the ocean in certain campaigns. However, such in situ measurements are significantly fewer compared to those over land. While this has been justified by their distance from human settlements and the order of magnitude less NH$_3$ over oceans compared to land, recent evidence from Yu et al. [5] suggests that NH$_3$ even in pptv levels can have a significant effect on atmospheric new particle formation.

In the recent years, there have been new methods of instrumentation developed for measurement of [NH$_3$] with a finer temporal resolution. As seen above, most instrumentation deployed in NH$_3$ monitoring network has poor temporal resolution, to the extent of biweekly sampling for reduced costs. Additionally, offline analysis may introduce errors due to revolatilization of NH$_3$ and human errors. Some recent advances that are being implemented or have scope of implementation include: Chemical ionization mass spectrometers (CIMS), QC-TILDAS, Differential optical absorption spectroscopy (DOAS), Monitor for AeRosols and GAses in ambient air (MARGA). Chemical ionization mass spectrometers (CIMS) have been developed for fast time resolution measurement of NH$_3$ [58–64]. Compared to other emerging instrumentation, the CIMS technique is highly advantageous due to its fast time response (<1 min). However, Nowak et al. [60] note that the absolute level and the variability in the instrumental background are a limitation. The Quantum Cascade Tunable Infrared Laser Differential Absorption Spectrometer (QC-TILDAS) determines the mixing ratio of NH$_3$ by monitoring the molecule’s absorption of radiation at 967 cm$^{-1}$ [65]. Differential optical absorption spectroscopy (DOAS) works on the linearization of Lambert-Beer law. With open-path arrangement, DOAS provides a contact-free technique for in situ measurement of [NH$_3$], within the 203.7–227.8 nm UV wavelength range over path lengths up to 100 m [66–69]. To overcome the issues with instrument performance [70,71], significant improvements have been made over the recent years, mainly by Volten et al. [72] and Sintermann et al. [73], which improve the reliability as well as reduce the cost of this instrument. The Monitor for AeRosols and GAses in ambient air (MARGA; 74,75) is an online instrument that provides hourly time-resolved measurement of water-soluble gases and aerosols using a dual-channel ion chromatograph. These new developments of in situ [NH$_3$] measurement techniques are exciting for the insights that can come from continuous and high-resolution data, especially from model–observation comparisons.

For further reading, the reader is directed to some literature on the inter-comparison of these varied techniques [63,64,76–78].
2.2. Satellite remote sensing

Table 1. Some satellite remote sensing studies of atmospheric [NH₃].

<table>
<thead>
<tr>
<th>Reference</th>
<th>Region</th>
<th>Instrument</th>
<th>Period</th>
<th>Typical concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>[79]</td>
<td>Beijing</td>
<td>TES</td>
<td>10 Jul 2007</td>
<td>5 to 25 ppbv</td>
</tr>
<tr>
<td>[81]</td>
<td>Mediterranean basin</td>
<td>IASI</td>
<td>25 Aug 2007</td>
<td>5.7±0.1×10^{16} molecules cm^{-2}</td>
</tr>
<tr>
<td>[82]</td>
<td>Global</td>
<td>IASI</td>
<td>2006 to 2009 (Various)</td>
<td></td>
</tr>
<tr>
<td>[83]</td>
<td>California</td>
<td>IASI</td>
<td>2008</td>
<td>3 to 10 ppbv</td>
</tr>
<tr>
<td>[84]</td>
<td>North Carolina</td>
<td>TES</td>
<td>2002</td>
<td>1 to 6 ppbv</td>
</tr>
<tr>
<td>[85]</td>
<td>Global</td>
<td>IASI</td>
<td>Apr 2009 to Mar 2010</td>
<td></td>
</tr>
<tr>
<td>[86]</td>
<td>Central Russia</td>
<td>IASI</td>
<td>Jul and Sept 2010</td>
<td><8×10^{17} molecules cm^{-2}</td>
</tr>
<tr>
<td>[88]</td>
<td>Global</td>
<td>IASI</td>
<td>1 Nov 2007 to 31 Oct 2012</td>
<td><10^{17} molecules cm^{-2}</td>
</tr>
<tr>
<td>[89]</td>
<td>California</td>
<td>TES</td>
<td>16 Jan to 6 Feb 2013</td>
<td><7×10^{16} molecules cm^{-2}</td>
</tr>
<tr>
<td>[91]</td>
<td>Canadian Oil Sands</td>
<td>TES</td>
<td>August to Sept 2013</td>
<td></td>
</tr>
<tr>
<td>[92]</td>
<td>Central US</td>
<td>CrIS</td>
<td>Jul 2005</td>
<td></td>
</tr>
<tr>
<td>[93]</td>
<td>Global</td>
<td>IASI</td>
<td>2008 to 2013</td>
<td></td>
</tr>
<tr>
<td>[94]</td>
<td>FTIR Stations</td>
<td>IASI</td>
<td>2008 to 2014</td>
<td></td>
</tr>
<tr>
<td>[95]</td>
<td>Global</td>
<td>MIPAS</td>
<td>2003 to 2011</td>
<td></td>
</tr>
<tr>
<td>[97]</td>
<td>Regional</td>
<td>AIRS</td>
<td>2002 to 2016</td>
<td></td>
</tr>
<tr>
<td>[98]</td>
<td>California</td>
<td>TES</td>
<td>7 May to 3 Jun 2010</td>
<td>21±17 ppbv</td>
</tr>
<tr>
<td>[99]</td>
<td>North Africa</td>
<td>IASI</td>
<td>7 May to 3 Jun 2010</td>
<td>≈10^{16} molecules cm^{-2}</td>
</tr>
<tr>
<td>[100]</td>
<td>Global</td>
<td>IASI</td>
<td>2008 to 2017</td>
<td></td>
</tr>
<tr>
<td>[101]</td>
<td>Canada</td>
<td>IASI & CrIS</td>
<td>May 2016</td>
<td></td>
</tr>
<tr>
<td>[102]</td>
<td>Tanzania</td>
<td>IASI</td>
<td>2008 to 2017</td>
<td><4×10^{16} molecules cm^{-2}</td>
</tr>
<tr>
<td>[103]</td>
<td>Global</td>
<td>IASI</td>
<td>2008 to 2017</td>
<td></td>
</tr>
<tr>
<td>[104]</td>
<td>Global</td>
<td>CrIS</td>
<td>2013 to 2017</td>
<td>2 to 10 ppbv</td>
</tr>
<tr>
<td>[105]</td>
<td>Global</td>
<td>TANSO-FTS</td>
<td>2009 to 2014</td>
<td>≈10^{16} molecules cm^{-2}</td>
</tr>
</tbody>
</table>

NH₃ has a remarkable microwave spectrum due to the characteristic “ammonia inversion” [106]. The molecule has a trigonal pyramidal shape with protons on the three points on the base and nitrogen on the top/bottom. This and the fortuitous distance (crossable tunneling barrier) between the protons on the base, allows for nitrogen to pass through the base and change the orientation of the molecule. This causes a strong absorption when microwave/IR photons cause the rapid flipping between the upward pyramidal and downward pyramidal states. Another outcome of the inversion is an inversion doubling, where the infrared spectrum undergoes doubling due to the two possible positions of the nitrogen atoms. Now this opens a whole new avenue for satellite remote sensing of NH₃ in the gas-phase. The unique IR spectrum of NH₃ can make it distinguishable from other chemical species and background noise. With the plethora of infrared spectrometers available in orbit around Earth, providing the possibility of continuous, real-time, global measurement, it was inevitable that this feature of the NH₃ molecule would be tapped into.

The first attempt was when Beer et al. [79] used infrared radiances measured by the Tropospheric Emission Spectrometer (TES) onboard the EOS Aura satellite to infer [NH₃] from the spectral residual differences (calculated as per 107) in the region of 960–972 cm⁻¹. This was a demonstration of the possibility of detecting NH₃ from nadir viewing remote sensing instruments. Due to the limitations of the TES — its small geographic coverage and consequent inability to provide daily coverage — attention was shifted to the Infrared Atmospheric Sounding Interferometer (IASI) onboard the MetOp-A satellite. Although this had a poorer spectral resolution than the TES, it provided a broader spatial coverage. Clarisse et al. [80] made the first annual “global NH₃ integrated concentrations
retrieved from satellite measurements”. Expectedly, there has been a subsequent flurry of activity (see Table 1) in using satellite remote sensing to measure ambient NH$_3$ in the atmosphere.

Satellite remote sensing is capable of capturing spatiotemporal variations in columns as well as surface NH$_3$ concentrations [80,84,92,96,105]. For instance, Heald et al. [108] found underestimation of NH$_3$ emissions in the Midwest during spring and in California using IASI data. This was followed by demonstration of potentially constraining NH$_3$ emissions using TES [NH$_3$] data [87], with improved modeling of [NH$_3$] over the US. Thus satellite remote sensing of [NH$_3$] can also provide constraints towards improvement of NH$_3$ emission inventory used in chemical transport models.

While satellite-based inference can fill the gaps in observations of [NH$_3$] and additionally provide its vertical profile, there are limitations associated with this technique as noted in several studies listed in Table 1. Currently deployed instrumentation is not onboard geostationary satellites, and result in a discontinuous temporal measurement. The requirement of a strong thermal contrast reduces reliability of nighttime measurements. The presence of clouds also affects the retrievals. Further, there are issues in the inference of [NH$_3$] from the radiances measured by the satellite instrument, with a priori assumptions on the [NH$_3$] profile and shape for conversion of radiances into a concentration. This is further compounded by the small signal of NH$_3$ in comparison to the background.

To overcome and understand the above issues, validation studies have been carried out. For the TES, NH$_3$ retrievals were able to capture spatiotemporal patterns observed on the surface by an ammonia monitoring network (CAMNet) in North Carolina [84] and with aircraft measurements [89]. Damme et al. [93] demonstrated consistency of IASI NH$_3$ retrievals with surface NH$_3$ monitoring networks and aircraft campaigns.

3. Modeling [NH$_3$]

Atmospheric modeling provides another approach to quantify [NH$_3$] in the atmosphere. Considering NH$_3$, models can (1) evaluate the environmental impacts of their emissions and depositions, (2) help project the impact of future scenarios, (3) aid in developing our understanding of the processes controlling atmospheric [NH$_3$], (4) examine the role of NH$_3$ in affecting atmospheric chemical and physical processes, and (5) study aerosol formation (both mass and number concentrations) dependent on [NH$_3$].

The first modeled global distributions of [NH$_3$] were derived by Dentener and Crutzen [169] with their development of an NH$_3$ emission inventory incorporated into a climatological three-dimensional global tropospheric transport model (MOCUNTIA; [170]). This was a first attempt at understanding the fate of reduced nitrogen species in the atmosphere. A 106\times106NH$_3$ emission inventory was used in this initial modeling study. Subsequently, there has been vigorous development in the modeling of [NH$_3$], with two approaches: Eulerian (Table 2) and Lagrangian (Table 3). The more typical implementation is the Eulerian approach (in GEOS-Chem, CMAQ, and EMEP among others), where the properties of reference grid cells are monitored. The Lagrangian approach, which “follows” the air parcel, is applied in models such as FRAME, TREND, and STILT-CHEM.

GEOS-Chem (www.geos-chem.org) is one of the most widely used (see Table 2) three-dimensional chemical transport models (3-D CTM) in the study of NH$_3$ in the atmosphere. Due to the environmental policies in Europe, there are several implementations for the region – TM5 [132], EMEP model [115,116,171], Danish Ammonia Modeling System (DAMOS)/Danish Eulerian Hemispheric Model (DEHM) [113,114,134], CHIMERE [109], MATCH [126] and LOTUS-EUROS [172]. The Community Multiscale Air Quality Modeling System (CMAQ) [173] while commonly used for air quality studies, especially over North America, is not widely [111] used to understand [NH$_3$]. Particulate Matter Comprehensive Air Quality Model with Extensions (PMCAMx) [128–130] has also been utilized for modeling NH$_3$ over the US [127] and Europe [131]. Unlike these Eulerian CTMs, the Lagrangian approach in modeling atmospheric NH$_3$ is used in the following – TERN [166], TREND model [167,168], ACDEP [133–139], Fine Resolution AMmonia Exchange (FRAME) [153,155,156], NAME model [158], and A Unified Regional Air-quality Modeling System (AURAMS) [141], Operational Priority Substances (OPS) [161–
Table 2. Some modeling studies of atmospheric [NH₃] using Eulerian chemical transport models.

<table>
<thead>
<tr>
<th>CTM</th>
<th>Equilibrium Model</th>
<th>Reference</th>
<th>Region</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHIMERE</td>
<td>ISORROPIA</td>
<td>De Meij et al. [109]</td>
<td>Northern Italy</td>
<td>2005</td>
</tr>
<tr>
<td>CMAQ</td>
<td>MARS-A</td>
<td>Gilliland et al. [111]</td>
<td>US</td>
<td>2001</td>
</tr>
<tr>
<td>GEOS-Chem</td>
<td>ISORROPIA II</td>
<td>Heald et al. [108]</td>
<td>US</td>
<td>May 2009 to April 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Walker et al. [117]</td>
<td>California</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zhang et al. [118]</td>
<td>US</td>
<td>2006 to 2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schiferl et al. [34]</td>
<td>California</td>
<td>May and Jun 2010</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Luo et al. [90]</td>
<td>Global</td>
<td>2007</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zhu et al. [120]</td>
<td>Global and US</td>
<td>2008</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Schiferl et al. [121]</td>
<td>US</td>
<td>2008–2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nair et al. [123]</td>
<td>US</td>
<td>2001–2017</td>
</tr>
<tr>
<td>MATCH</td>
<td>CBM-IV</td>
<td>van Damme et al. [125]</td>
<td>Europe</td>
<td>2008–2011</td>
</tr>
<tr>
<td>PMCAMs</td>
<td>ISORROPIA</td>
<td>Pinder et al. [127]</td>
<td>USA</td>
<td>Jul and Oct 2001, Jan and Apr 2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tsimpidi et al. [129]</td>
<td>Mexico City</td>
<td>Apr 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Karydis et al. [130]</td>
<td>Mexico City</td>
<td>Apr 2003</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fountoukis et al. [131]</td>
<td>Europe</td>
<td>May 2008</td>
</tr>
<tr>
<td>TM5</td>
<td>EQSAM</td>
<td>de Meij et al. [132]</td>
<td>Europe</td>
<td>2000</td>
</tr>
</tbody>
</table>

Table 3. Some modeling studies of atmospheric [NH$_3$] using Lagrangian chemical transport models.

<table>
<thead>
<tr>
<th>CTM</th>
<th>Equilibrium Model</th>
<th>Reference</th>
<th>Region</th>
<th>Period</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACDEP</td>
<td>Modified CBM-IV</td>
<td>Hertel et al. [133]</td>
<td>Denmark</td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hertel et al. [134]</td>
<td>Baltic Sea</td>
<td>1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>de Leeuw et al. [136]</td>
<td>North Sea</td>
<td>1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skjøth et al. [137]</td>
<td>Denmark</td>
<td>1998 and 1998</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skjøth et al. [138]</td>
<td>Denmark</td>
<td>1999 to 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Skjøth et al. [139]</td>
<td>Europe</td>
<td>2007</td>
</tr>
<tr>
<td>AURAMS</td>
<td></td>
<td>Makar et al. [140]</td>
<td>North America</td>
<td>2002</td>
</tr>
<tr>
<td>FRAME</td>
<td></td>
<td>Barrett et al. [142]</td>
<td>British Isles</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fournier et al. [143]</td>
<td>British Isles</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fournier et al. [144]</td>
<td>UK</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dore et al. [146]</td>
<td>UK</td>
<td>2002</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sutton et al. [147]</td>
<td>UK</td>
<td>2002–2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tang et al. [148]</td>
<td>UK</td>
<td>2012</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vieno [149]</td>
<td>UK</td>
<td>1999</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sutton et al. [150]</td>
<td>UK</td>
<td>Sep 1996 to Nov 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sutton et al. [151]</td>
<td>UK</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hellsten et al. [152]</td>
<td>UK</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Singles et al. [153]</td>
<td>Great Britain</td>
<td>1987 to 1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hallsworth et al. [154]</td>
<td>UK</td>
<td>2002–2004</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kryza et al. [155]</td>
<td>Poland</td>
<td>2002–2005</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Zhang et al. [156]</td>
<td>North China Plain</td>
<td>2008</td>
</tr>
<tr>
<td>NAME</td>
<td></td>
<td>Meng and Seinfeld [157]</td>
<td>UK</td>
<td>1996</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Redington and Derwent [158]</td>
<td>Netherlands</td>
<td>Sep 2000 to 2001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>van Pul et al. [159]</td>
<td>Netherlands</td>
<td>Jan 1998 to Dec 2000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kruit et al. [163]</td>
<td>Netherlands</td>
<td>1990–2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td>van der Swaluw et al. [164]</td>
<td>Netherlands</td>
<td>1998–2002</td>
</tr>
<tr>
<td>OPS</td>
<td></td>
<td>Wen et al. [165]</td>
<td>Canada</td>
<td>Jun to Nov 2006</td>
</tr>
<tr>
<td>STILT-Chem</td>
<td></td>
<td>ApSimon et al. [166]</td>
<td>UK</td>
<td>1983</td>
</tr>
<tr>
<td>TERN</td>
<td></td>
<td>Asman and van Jaarsveld [167]</td>
<td>Europe</td>
<td>1990</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Asman [168]</td>
<td>Denmark</td>
<td>1996</td>
</tr>
</tbody>
</table>

3.1. Emission

Emission inventories are required for representation in chemical transport models (CTMs), in addition to utility for assessment of air quality policies. They have been developed on scales ranging from global to regional to local for use in CTMs. Global NH₃ emission inventories include the Community Emissions Data System (CEDS; 174), the Emissions Database for Global Atmospheric Research (EDGAR; 175), MASAGE_NH₃ [124], and the Global Emissions Inventory Activity (GEIA; 18). Examples of regional NH₃ emission inventories are the US EPA/NEI (National Emission Inventory; https://www.epa.gov/air-emissions-inventories), Canada’s APEI (Air Pollutant Emissions Inventory; 176), EMEP (European Monitoring and Evaluation Programme) WebDab (https://www.ceip.at/webdab-emission-database/reported-emissiondata), NAEI (National Atmospheric Emission Inventory) for the UK [177], NEMA (National Emission Model for Ammonia; 178) for Netherlands, Asian MIX inventory [179], Regional Emission inventory in ASia (REAS) [180–185], and DICE-Africa (Diffuse and Inefficient Combustion Emissions in Africa; 186). There are inventories developed with higher spatial resolution for the Eastern United States [110], North Carolina and the San Joaquin Valley [187], and the Pearl River Delta [188] and Yangtze River Delta [189] in China.

NH₃ emissions are primarily anthropogenic, coming mainly from agriculture through excreta from domestic animals and use of synthetic fertilizers [190–196]. Approximately 60% of total NH₃ emissions are from anthropogenic sources [18,197], of which 80–90% are from agricultural activity (fertilizers and livestock wastes) [18,187,190,198]. Other sources of NH₃ include fuel combustion from vehicles and industries, biomass burning, and human wastes. Emission inventories are, therefore, generally based on emission factors from a particular source type and associated activity rate. Emission factors are based on measurement of NH₃ fluxes from individual source types such as animal houses and storage, fertilizer application, fuel combustion, biomass burning, human wastes, industries, transportation, vegetation, and soil. Activity factors indicate the potential emission from each source for specific locations based on parameters like the amount of livestock, the amount of fertilizer applied, the amount of fuel combusted, etc. based on the source type. Product of the source-specific emission factor with the activity factor generates the estimated spatial distribution of NH₃ emissions, i.e. the emission inventory.

The main issues with the development of reliable NH₃ emissions inventories are the dearth of emission measurements, incomplete identification of all known sources of emissions, the lack of validation with [NH₃] measurements, variability and uncertainty of emissions estimates dependent on free ammonia concentration, and differences in inventory compilation approaches due to assumptions regarding underlying emission factors and activity rates, and source significance influenced by spatial scales [127,177,187]. While the bottom-up approach of emissions inventory is expected to be accurate due to detailed consideration of each source type and their emissions, it requires comprehensive information for activity factors to apply emission factors. This would require detailed measurements to capture the complex spatial variability of emissions across source types as well as temporal variability (as discussed in Section 5). Gilliland et al. [110,111] and Pinder et al. [127] observed erroneous seasonal variations in model simulated ammonium and reduced nitrogen. Zhang et al. [118] determined NH₃ emissions (constrained and scaled by observations) are a factor of 3 lower in winter than summer and in better agreement with US network measurements of NH₃ (NH₃ + NH₄⁺) and NH₄⁺ wet deposition fluxes. Applying the modifications seemed to correct the previous observations. The underestimation of NH₃ emissions in models was confirmed further by Walker et al. [117], with the additional under-prediction of HNO₃ contributing to under-prediction of nitrate over California.
Recently, top–down approaches have been shown to reduce the identified issues with the accuracy of NH₃ emissions inventories by inverse modeling to relate observed [NH₃] to model emissions [87,108,110,111,117,124,127,199]. Although these studies have to grapple with the complexities of other model processes, comparison with bottom–up emission inventories can identify improvements in NH₃ source identification and contribution. Another approach towards improving emissions inventories are using a combination of bottom–up and top–down approaches in a “hybrid” approach [138,200]. Regardless, current emission inventories have enabled high-resolution chemical transport models to generally capture spatial variability of atmospheric NH₃ and NH₄⁺ concentrations and provide a wealth of information that is currently unobtainable from direct observations, while also improving understanding of the effects of various processes and parameters in determining [NH₃].

3.2. Gas-particle partitioning

Another significant aspect of modeling atmospheric [NH₃] is the accurate capture of phase partitioning. This is achieved through either thermodynamic equilibrium schemes or explicit mass transfer dynamical schemes. Thermodynamic equilibrium schemes generally assume aerosols to be internally mixed, i.e. all aerosol particles of certain size range have the same composition. They also generally assume thermodynamic equilibrium in gas-particle partitioning of volatile chemical species. These approaches trade-off accuracy (former) versus computational resources (latter). Some balance can be achieved with assuming the volatile constituents being in equilibrium and shifting to mass transfer schemes when this assumption is not valid in conditions resulting in a longer chemical equilibration time as compared to the gas-aerosol diffusion timescale, typically cooler conditions.

Over the last four decades, there has been steady development in this aspect. EQUIL was developed by Bassett and Seinfeld [201] to calculate the aerosol composition of the NH₄⁺–SO₄²⁻–NO₃⁻–H₂O aerosol system. KEQUIL was their [202] improvement of EQUIL with the incorporation of Kelvin Effect. Saxena et al. [29] developed the MARS scheme for the SO₄²⁻–NO₃⁻–NH₄⁺–H₂O system with reduced computational time through sub-domains based on RH and NH₃:SO₄²⁻ for aerosol species to reduce number of equations. Further improvements were made by Binkowski and Shankar [203] and Binkowski and Roselle [204]. SEQUILIB by Pilinis and Seinfeld [205] considered Na and Cl, heretofore ignored, but important for marine aerosols. Kim et al. [206] developed a computationally efficient gas-aerosol equilibrium model SCAPE (Simulating Composition of Atmospheric Particles at Equilibrium) without limiting assumptions. AIM [207] and AIM2 [208] approached the problem by direct minimization of the Gibbs free energy. The absence of approximations on the equilibrium concentration made AIM computationally intensive. GFEMN [209] was another iterative Gibbs free energy minimization method.

A significant step forward towards improved computational efficiency was achieved by Nenes et al. [210] with the development of ISORROPIA. ISORROPIA examined the Na⁺–NH₄⁺–Cl⁻–SO₄²⁻–NO₃⁻–H₂O aerosol system using pre-calculated lookup tables and a single level of iteration to make this scheme computationally efficient. This was further developed by Fountoukis and Nenes [211] into ISORROPIA II, which treats the K⁺–Ca²⁺–Mg²⁺–NH₄⁺–Na⁺–SO₄²⁻–NO₃⁻–Cl⁻–H₂O aerosol system, i.e. added crustals. ISORROPIA II is currently the most used thermodynamic equilibrium module within GEOS-Chem. A contrasting effort aimed at accuracy over speed is EQUISOLV [212], where direct numerical computation without simplifying assumptions was used to obtain equilibrium concentration. The three levels of nested iteration loops for higher order reactions made this computationally expensive. This was further developed into EQUISOLV II [213] with the replacement of the mass-flux iteration (MFI) method with the analytical equilibrium iteration (AEI) method for solving the set of equilibrium equations. Further, the scheme was expanded to consider the potassium, calcium, magnesium, and carbonate systems. Development of thermodynamic equilibrium schemes has not been stagnant, with recent examples including HETV [140], MESA [214], ADDEM [215], and UHAERO [216]. The multicomponent equilibrium solver for aerosols (MESA) appears most interesting, with the use of a computationally
efficient modified pseudo-transient continuation technique for solving the set of equilibrium reactions while maintaining overall accuracy. For a detailed review and comparison of thermodynamic equilibrium schemes, we direct you to the works of Kim et al. [206], Amundson et al. [216], Pilinis [217], Zhang et al. [218].

The assumption of equilibrium may not be justified under certain conditions, which then require explicit mass transfer dynamical schemes for gas-particle partitioning. While the equilibrium assumptions are not there to affect the accuracy of solution, the computational cost hinders the use of these mass transfer schemes within CTMs. Development in this aspect has been limited compared to thermodynamic equilibrium schemes, with work by Meng and Seinfeld [157], Jacobson et al. [212], Jacobson [219,220], Meng et al. [221], Sun and Wexler [222], Pilinis et al. [223]. Hybrid methods have recently been developed, where the condensation or evaporation of aerosol particles with diameters less than a threshold (≈ 1 μm) are simulated using thermodynamic equilibrium schemes, and the dynamic mass-transfer approach is used for the larger particles [224–227].

3.3. Deposition and Bi-directional exchange

Atmospheric ammonia is deposited to the surface in either the gaseous (NH₃) or aerosol (NH₄⁺) form. Unionized NH₃ is mainly transferred out of the atmosphere to the surface through dry deposition [118,228]. Dry deposition of NH₃ is faster than that of NH₄⁺ by a factor of 10–100, depending on [NH₃], plant/terrain, and diurnal variations with meteorological conditions [229]. This leads to a short atmospheric lifetime for NH₃ leading to significant deposition near its sources due to the fast deposition and higher concentration [230,231].

Representation of deposition of NH₃ in models is difficult due to the dearth of its measurements and because this is a complex process. Dry deposition can be typically separated into that onto soil and that onto vegetation. This process is dependent on [NH₃] above the particular surface, the equilibrium [NH₃] over the surface determining whether emission or deposition occurs, turbulence over the surface, and extent of moisture. Studies, such as Langford and Fehsenfeld [232], show that bi-directional exchange of NH₃ over vegetation is an important process, which still does not find adequate representation in models. Even this process is further complicated in that the mechanism for vegetation as a sink of NH₃ could be either through cuticular or stomatal uptake [229,233]. Sutton et al. [234] identify that accurate model representation of bi-directional exchange of NH₃ is important for models to accurately quantify [NH₃], with implications for its deposition, emission, re-volatilization, and lifetime.

Although Sutton et al. [235] and Nemitz et al. [236] developed the first models for bi-directional surface–atmosphere exchange of NH₃, chemical transport models neglected to incorporate these until over a decade later. These studies [237–240] have shown better model–observation agreements resulting in more accurate quantification of [NH₃]. However, some more recent studies highlight that consideration of bi-directional exchange alone may not be sufficient. While Zhu et al. [120] implemented bidirectional exchange of NH₃ into their GEOS-Chem simulations and observed improved agreement of model simulated [NH₃] with network (AMoN) measurements, the general large underestimates (2–5 times) were not corrected, reiterating the need for accurate representation of emissions. In contrast to the results of Heald et al. [108] for the San Joaquin valley, Zhu et al. [120] also demonstrated that adjustment to HNO₃ does not significantly affect simulated [NH₃] over AMoN sites. This is consistent with Park [241], which suggests nitrate formation is NH₃-limited over most of the United States. Incorporation of bi-directional exchange of NH₃ did not resolve the model overestimation (3–5 times) of nitrate. Recent work by Luo et al. [242,243] shows that applying an improved wet scavenging parameterization in GEOS-Chem reduces the overestimation of nitrate and nitric acid in the model and corrects some of the deviations in atmospheric NH₃ concentrations.
3.4. Model–Observation comparisons

Validation of model simulated [NH$_3$] with real measurements is the most important exercise not merely for the justification of model output, but for further model refinement and development.

Heald et al. [108] examined GEOS-Chem simulated [NH$_3$] with ground (IMPROVE) and satellite (IASI) measurements. The study demonstrated that emissions were underestimated in California and in the Midwest, which was the likely reason for the underestimation of NO$_3^-$ formation in GEOS-Chem. This was further confirmed by Walker et al. [117] with the added possibility of HNO$_3$ underestimate and topography effects on mixed layer depths. Both studies showed that GEOS-Chem underestimated [NH$_3$] compared to satellite and in situ measurements.

Schiferl et al. [121] showed the mean modeled [NH$_3$] was underestimated (2.5 ppbv vs. observed 3.4 ppbv) over the US during summer through comparison with measurements from 2008 to 2012 at 11 AMoN sites. During summer, the range in model-simulated [NH$_3$] was smaller, and its mean was lower (by more than 25%) when compared to AMoN measurement data. Schiferl et al. [121] suggests that this may not be model deficiency, but that the AMoN sites’ location near high NH$_3$ source regions, causes a sampling bias due to inadequate representation of the range of [NH$_3$] across the US. Although modeled [NH$_3$] was underestimated during summer, especially near source regions (including both agricultural and fire emissions), it showed consistency in spatiotemporal variability of [NH$_3$] in the column and at the surface. Inter-annual variability of modeled surface [NH$_3$] was lower than measurements, but the trends and variability are significant considering the fixed NH$_3$ emissions in the model.

Paulot et al. [124] optimized simulated seasonality and magnitude of [NH$_3$] in the Northeast and Southwest US using the adjoint of GEOS-Chem by inversion of NH$_4^+$ wet deposition fluxes from NADP network data for the period 2005-2008. They developed a novel bottom-up emission inventory (MASAGE_NH$_3$), which simulated the magnitude and seasonality of [NH$_3$] in better agreement with observations in Northeast and Southeast US, consistent with NH$_3$ emissions overestimate in the US National Emissions Inventory. In Midwest and upper Midwest, spring enhancement in NH$_3$ is captured but not the elevated summer concentrations. Underestimation is still significant in Atlantic and Central regions, especially in winter in the Central US.

US NH$_3$ sources are constrained using TES satellite observations with the GEOS-Chem model and its adjoint by Zhu et al. [87]. There is an improvement in the underestimation of NH$_3$. The range and variability improved in April and October with reduced model underestimates, however with overestimation in July due to the constraints applied. Zhu et al. [120] tries further improvements by incorporating a bi-directional exchange (BIDI) scheme for NH$_3$, which improves the normalized mean bias. Large underestimation (especially in October and April) still exist, which is likely due to the significant errors in NH$_3$ emission inventories.

Yu et al. [122] and Nair et al. [123] comprehensively assessed long-term (last 2 decades) GEOS-Chem simulated [NH$_3$] over United States with empirical measurements. The strong dependence on emissions for seasonality and on acid precursor gases for long-term trend are demonstrated. Potential improvements in the representation of emissions especially over the US Great Plains region are identified. Further, their results indicate that modeled [NH$_3$] is more strongly dependent on NH$_3$ emissions than observations are. Additionally, especially over Southeast US, considerations of changing acid precursor gas concentrations or particle acidity may need to be made in modeling NH$_3$.

4. Spatial distributions

[NH$_3$] is predominantly controlled by emissions due to the short atmospheric lifetime of NH$_3$. Transport, obviously, plays a role especially that of particulate ammonium that re-volatilizes into the gas phase NH$_3$. The main source of NH$_3$ emissions is agricultural land especially in the period after chemical fertilizer application. Consequently, most NH$_3$ hotspots are over these regions of agriculture.
Putting together the vast literature of surface measurements of [NH$_3$] shows their spatial distribution and hotspots (Figure 2). Over the US, highest surface [NH$_3$] is observed in the Midwest and California. This is due to agriculture (including concentrated animal feeding operations) and biomass burning. Similar reasons explain the observed hotspots of NH$_3$ over Europe and the North China Plain. The recent use of satellite remote sensing to quantify [NH$_3$] has the advantage of directly providing a global picture. Clarisse et al. [80] provided the first such global NH$_3$ map using data from the IASI/MetOp satellite for the year 2008. Their results confirm global NH$_3$ hotspots (total column NH$_3$ > 0.5 g m$^{-2}$) over agricultural valleys and regions of biomass burning. Using 5 years of IASI measurements, van Damme M. et al. [244] provided a more detailed global map. Agricultural hotspots were identified over the Indo-Gangetic plain, North China Plain, and other highly irrigated regions in Asia. Over Indonesia, there was the combined effect of intensive fertilizer application in Java and wildfires in Borneo and Sumatra. Over South America, hotspots were mainly due to biomass burning, but new agricultural hotspots over Chile and Colombia-Venezuela were revealed. Over North America, [NH$_3$] was elevated over the Midwest US and the San Joaquin Valley. Anthropogenic NH$_3$ effects were seen in parts of Canada as well. Over Europe, hotspots were over Netherlands and the Po Valley, Italy. The effect of industrial emissions was captured over South Africa. Over these hotspots, measurements would exceed total column NH$_3$ of 3×10^{16} molecules cm$^{-2}$. Using the TES data for the year 2007, Luo et al. [90] showed the enhancement of NH$_3$ over Northern India (up to 14.45 ppbv NH$_3$ in the summer) and North-Central China and spring biomass burning effects in parts of Africa and Asia. Warner et al. [96] provided a 13-year record of global NH$_3$ distribution that confirmed the importance of agriculture and biomass burning in determining the hotspots over these regions.

Agricultural land is often mixed-use, with livestock rearing, which further contributes to NH$_3$ emissions. Xing et al. [245] indicated that NH$_3$ emissions from livestock activities have increased by 11% from 1990 to 2011 in USA. This could have effects on the spatial distribution of [NH$_3$]. Li et al. [246] found large spatial differences in [NH$_3$] over the northeastern plains of Colorado, a region of concentrated agricultural activities and animal feeding operations, with mean NH$_3$ concentrations ranging from 4–60 ppbv from grasslands to feedlots with almost 100k cattle. Over USA, data from measurements and modeling [122,123] indicate spatial heterogeneity based on land-use. The Midwest shows the highest concentrations of NH$_3$ due to the intensive agricultural activities (including livestock rearing) as well as the energy sector. In the eastern part of USA, NH$_3$ in the gas-phase is limited due to the elevated SO$_2$ and NO$_x$ emissions from the coal-fired power plants as well as manufacturing in the Ohio River Valley region. In the western part of USA, [NH$_3$] are elevated over the San Joaquin Valley possibly due to biomass burning and agriculture. Their study indicates that hotspots are highly NH$_3$ emission dependent and cold spots are highly SO$_2$ and NO$_x$ emission dependent.

China is a large agricultural nation contributing approximately 20% of global NH$_3$ emission [180,182,183]. Roughly 20% of the world population is fed by 10% of Earth’s arable land, requiring intensive agriculture and livestock rearing. The concentrated use of fertilizers (30% of global usage; http://www.stats.gov.cn/) as well as livestock wastes contribute significantly to the NH$_3$ emission [247,248]. Meanwhile, chemical fertilizer application in China is less efficient to keep costs down, resulting in a high degree of nitrogen loss (NO$^-$, NH$_3$, N$_2$O, and N$_2$). Further, about 30% of livestock products originate from the North China Plain (NCP), which further increases the NH$_3$ emission in this highly polluted region. Over China, Liu et al. [249] used IASI satellite NH$_3$ NH$_3$ retrievals and vertical NH$_3$ profiles from MOZART to provide a comprehensive estimate of surface [NH$_3$] over the region. The spatial distribution of [NH$_3$] was as expected, aligned with the intensive agricultural areas. The deviations from this distribution were explainable by concentrated animal farming locations, where livestock wastes contributed more than fertilizer use on farms. NH$_3$ emission mitigation was not a focus for the nation until 2015, when an NH$_3$ monitoring network (AMoN-China) was established. Using this network data, Pan et al. [250] identify the NCP having highest [NH$_3$] followed by smaller hotspots over the Tarim basin, Chengdu Plain, and Guanzhong Plain coinciding with intensive agricultural activity.
5. Temporal trends

The concentration of NH₃ in the atmosphere is mainly determined by its emission. Emission is highly human activity and temperature dependent. It is expected then that the temporal trends of NH₃ would be strongly correlated to that of human activity and temperature. We discuss the trends in [NH₃] at the different temporal scales.

5.1. Diurnal

Diurnal variation in ambient [NH₃] has been observed to varying degrees. Variation in temperature is the primary reason for this. It may mainly affect local emissions, which are temperature dependent and may also modulate the boundary layer depth and consequently the concentrations at the surface. Additionally, gas-particle partitioning generally peaks in the afternoon. Thus the NH₃ mixing ratios are typically at a minimum in the early morning, peak near midday, and decrease during the night [e.g., 251]. On the flip side, Alkezweeny et al. [252] were among the earliest to demonstrate lower daytime [NH₃] as nighttime shows shallower boundary layer depth. Erisman et al. [253] lent further evidence of this by observing a strong decrease in [NH₃] with height, which was steeper at night likely due to temperature inversions preventing the upward transport of NH₃.

Delving into this discrepancy, Buijsman et al. [254] were able to identify the expected diurnal variation occurring in low NH₃ emission sites and the atypical elevated nighttime concentrations over high emission areas. The relatively lower daytime [NH₃] in high emission areas was due to higher wind speeds and more favorable mixing conditions, while at night there would be accumulation in a shallow boundary layer. For background stations, the opposite observations was due to transport of NH₃ from emission areas; nighttime removal of NH₃ through dry deposition and conversion exceeded the transport contribution. During daytime, [NH₃] increased as atmospheric conditions permitted vertical transport of tropospheric NH₃. Additionally, the difference in [NH₃] between day and night is larger during spring and summer [255], suggesting the influence of higher emissions during warmer months. No clear diurnal profile of [NH₃] was observed in a study by Parmar et al. [256] for different seasons in an urban area with elevated [NH₃]. Early morning decrease in [NH₃] was attributed to dew formation, which is a significant sink for soluble gases [257].

Perrino et al. [258] noted that NH₃ in an urban location is much higher than a nearby rural location and higher than an urban background station with no vehicular traffic. Also, the concentration and temporal trend of NH₃ and CO are well correlated, indicating NH₃ may originate from vehicular emissions and its concentration is dependent on the mixing in the atmosphere. Measurements by Ianniello et al. [259] in Beijing, China showed no observed diurnal variability for [NH₃] in both summer and winter. Highest [NH₃] were observed in the early morning during summer (∼150 ppbv) when atmospheric conditions were stable. The diurnal trends of [NH₃] were weakly dependent on air temperature and were affected by wind direction, indicating influence of local and regional sources. [NH₃] showed correlation with boundary layer mixing and with [NOₓ], [CO] and PM₂.₅, supporting their hypothesis that vehicular traffic may be a significant NH₃ source in Beijing. Similarly, Gong et al. [260] uncovered the contribution of vehicular emissions to the morning rise in the diurnal profile of NH₃ mixing ratios only in winter over urban and suburban areas of Texas, US. Notable spikes were likely due to transport from a coal power plant and some other possible sources. Large differences in NH₃ diurnal profiles between weekday–weekend were likely due to higher weekday industrial activities. Road traffic was also identified by Pandolfi et al. [261] as a significant source of NH₃, with a typical bimodal-traffic-driven NH₃ diurnal cycle at an urban site. Significant lowering of mixing height during nighttime in an urban area may lead to higher measured [NH₃] during nighttime [262]. Some trends due to daytime increase in transportation were also observed.

Wang et al. [263] observed the diurnal profile of [NH₃] in the urban atmosphere over Shanghai, China to demonstrate a typical bimodal cycle. The two modes occurred during morning and evening traffic emissions and were modulated by atmospheric boundary layer development. On the contrary, atmospheric NH₃ at a rural site showed a single mode (late morning), primarily due to the volatilization
from agricultural emissions as temperatures increased. In an industrial area, the diurnal profile of $[\text{NH}_3]$ was irregular and showed no bimodal or unimodal pattern due to large industrial emission pulses, which were variable and mainly during nighttime.

As evinced by the literature reviewed, the diurnal variation in $[\text{NH}_3]$ is not so straightforward. Conventional wisdom leads to the expectation of a diurnal profile of NH_3 increasing from dawn till afternoon and then decreasing due to the effect of temperature on emissions. There may be many other factors at play such as transport, boundary layer height, deposition, fertilizer application time, traffic emissions and the interplay of all of these that result in unexpected or even opposite diurnal profiles of NH_3.

5.2. Seasonal

The numerous studies in Table S1 show maximum (minimum) $[\text{NH}_3]$ occurring during warm (cold) months. The seasonal cycle in $[\text{NH}_3]$ is predominantly a result of the temperature dependence of: (1) gas-particle partitioning between NH_3 and NH_4^+, (2) NH_3 emissions from vegetation, organic wastes, and fertilizers due to Henry’s law equilibrium between aqueous- and gas-phase NH_3 [190, 264], (3) turbulence, and (4) humidity [265].

Most of the observations listed show the expected maximum of gas-phase $[\text{NH}_3]$ in the warmest summer months. Robarge et al. [266] examined the various meteorological factors that could affect $[\text{NH}_3]$, viz. air temperature, relative humidity, and wind speed and direction. They determined temperature to be the most significant meteorological parameter that determines $[\text{NH}_3]$. Bari et al. [267] also demonstrated that the Manhattan summer to winter ratio was 1.5. Anatolaki and Tsiouridou [268] observed $[\text{NH}_3]$ were slightly higher during the warm months in Greece. Usually, this is explained by the shift of gas-particle partitioning equilibrium from NH_4NO_3 towards HNO_3 and NH_3 at high temperatures [269]. However, in the conditions at their measurement site, particulate NH_4NO_3 was only expected in the cold period. They suggest that photochemistry for nitric acid and local NH_3 emissions from a fertilizer factory or agricultural activities could explain higher $[\text{NH}_3]$. This is indicative of the potential of factors other than temperature, most importantly the presence of local sources, to play a role in determining the apparent seasonal variation of $[\text{NH}_3]$. An important non-meteorological factor is the application of fertilizers for agriculture, especially in the spring. Hoell et al. [270] were among the earliest to identify enhanced NH_3 levels in March possibly due to NH_4NO_3 volatilization from fertilizer. This springtime application of fertilizer may cause deviation from the ammonium nitrate equilibrium constant due to local sources and non-equilibrium conditions caused by high RH and presence of sulfate acid aerosol as observed by Cadle et al. [271].

However, Burkhardt et al. [272], noted that local sources could possibly explain the maximum seasonal arithmetic mean $[\text{NH}_3]$ in spring and autumn, but the seasonal geometric mean $[\text{NH}_3]$ were largest in summer. Measurement of $[\text{NH}_3]$ is generally reported as arithmetic mean, which is affected to a higher degree by spikes associated with local sources, whereas the geometric mean is more effective at representing background $[\text{NH}_3]$. Thus, summertime $[\text{NH}_3]$ is in reality larger than spring and autumn values, where spikes associated with local agricultural emission sources appear to elevate the background $[\text{NH}_3]$.

Alebic-Juretic (2008) showed that in a residential area, within a cultivated garden, the seasonal maxima in $[\text{NH}_3]$ are obtained during the warmer months of spring and summer. However, near industrial sources, higher $[\text{NH}_3]$ is seen in winter and autumn. This is indicative of the role of the boundary layer depth in the highly NH_3 background industrial source region and the role of emissions from the green space in the lower NH_3 background residential region.

These numerous studies and others in Table S1 demonstrate that seasonal variation of NH_3 is as expected along the variation of temperature. It is most concentrated in the summer months and decreases as it gets colder. There may, however, be the effect of boundary layer height: in the winter, lower boundary height for mixing of NH_3 means more concentration. Deviations are also observed usually in spring, where it may be higher than in summer, during the period of manure/fertilizer
application. The dependence on emissions also extends to the type of source. When there is a constant
source of emissions such as an industrial area, maximum [NH₃] may occur in winter due to the
shallower atmospheric boundary layer. A key consideration to make is that the arithmetic seasonal
mean may be affected greatly by outlier NH₃ emission events, deeming the geometric mean as more
representative of background concentrations.

5.3. Long-term Trends

Although the effect of temperature and relative humidity is evident in the temporal trends
discussed thus far, in the long-term, due to the expected smoothing out of meteorological factors,
long-term trends in NH₃, if they exist, are mainly due to other factor(s). There have been observations
of an increasing trend in NH₃ in the atmosphere in the recent years, despite almost constant or reducing
emissions. It is likely that the changing chemical environment due to reducing acidic gases (SO₂ and
NOₓ) means that more NH₃ remains in the gas-phase with reduced available reducible species to form
NH₄⁺ in the particle phase.

There are numerous studies (see Table S1) indicating the long-term trends in [NH₃] over North
America. The concentrations of NH₃ have been increasing across the US despite the nearly constant
emission of NH₃. Butler et al. [53] using AMoN and Yao and Zhang [273] using NAPS, CAPMoN
and AMoN network data provide evidence for this increase. Analysis of satellite (AIRS) derived NH₃
retrievals [97] shows that [NH₃] has increased by 0.056±0.012 ppbv yr⁻¹ (≈2.61 % yr⁻¹) over the US
from 2002–2016. Ground-based measurements in Toronto, Canada show no significant increasing trend
from 2003–2011 [274] and increasing (≈20%) trend [273], however some sites in the United States show
an increasing trend by up to 200%. Over the US, Yu et al. [122] examined long-term model simulated
surface [NH₃], validated with network measurements. Their observation of increasing long-term trend
of [NH₃] was demonstrated to be due to the decreasing emissions of SO₂ and NOₓ contributing to
roughly 2/3 and 1/3 of its increase over the US.

In China, the burgeoning population leads to increasing demand for animal and agricultural
products. To meet this demand, there has been a sharp increase in the use of fertilizers for agriculture
and concentrated animal feeding operations for producing livestock. This has led to the sharp increase
of NH₃ emissions in China, especially in the North China Plain (NCP). A long-term record of [NH₃]
is lacking for the nation. However, analysis of satellite (AIRS) derived long-term NH₃ retrievals [97]
shows that NH₃ concentrations have increased over China by 0.076±0.020 ppbv yr⁻¹ (≈2.27 % yr⁻¹).

In the European Union, NH₃ emissions fell by 23% between 1990 and 2015 but increased between
2014 and 2015 by 1.8%, mainly because of increases in Germany, Spain, France, and the United
Kingdom. In Germany, there has been a rising trend in NH₃ emissions, especially in the period from
2009. This is attributable mainly to inorganic nitrogen fertilizers. It must be noted that among the main
pollutants in the EU, [NH₃] showed the least reduction (23%).

One of the longest and earliest long-term records of [NH₃] measurements, determined
spectrophotometrically by Nesslerization, were available in Rijeka, Croatia from 1983. Alebic-Juretic
[275] examined this record from 1983-2005 and the long-term trend of gas phase NH₃ showed a weak
decreasing trend in two sites in the vicinity of the city over the period, despite estimated emissions
reduction of >20%. Analysis of the 25-year long-term measured [NH₃] in Hungary by Horvath et al.
[116] showed no decrease even in the period of large NH₃ emission reduction (from 1989), in fact, a
small increase was observed. Over the United Kingdom, similar observations were made by Tang et al.
[276] for the period from September 1996 to December 2005 despite a ≈12% reduction in emissions
from 1990–2004. NH₃ emissions in Sweden decrease in the period (by 20.6% from 1993–2009), yet Fern
and Hellsten [277] observe an increase in [NH₃]. The strict control on NH₃ emissions in Netherlands
saw a decrease in [NH₃] from 1993–2014, but there has been a subsequent increase despite emission
reduction [163]. Analysis of satellite (AIRS) derived NH₃ retrievals [97] shows that NH₃ concentrations
have increased over western Europe by 0.053±0.021 ppbv yr⁻¹ (≈1.83 % yr⁻¹).
Sutton et al. [278] posited interactions with SO₂, which has shown decreasing concentration, mask the expected decrease in [NH₃] due to slower rate of conversion from NH₃ to NH₄⁺ and that reduced acidic species limit the potential for co-deposition and therefore reduce the dry deposition velocity, which leads to increased [NH₃]. This is the strongest reason explaining the various observed temporal variations of [NH₃]. Recent examination of [NH₃] measurements, remote sensing, and modeling data [88,97,121,122,148,163,246] provide evidence for this effect.

The temporal variation in [NH₃] is therefore highly dependent on the sources of emission and its temperature dependence. Warmer periods see elevated [NH₃]. Wetter periods see reduced [NH₃] due to lower temperatures and increased deposition. However, in the long-term, these meteorological effects are smoothed out. Additionally, due to generally reducing emissions, there should be a negative trend in [NH₃]. The studies above investigate the observed opposite trend of NH₃ concentration and emission and substantial evidence is presented for the significance of the changing chemical environment due to pollution control strategies.

6. Conclusions and Research Needs

This paper reviews around 540 publications in the quantification of atmospheric ammonia concentrations in the atmosphere through in situ measurements, satellite remote sensing inference, and model simulations. We summarize key points in line with the aims established at the beginning of this review:

NH₃ has been in the spotlight considering its increasing concentration despite reducing emissions over most regions of the globe. It is important to examine this chemical species due to its role in PM₂.₅ formation, and mainly in the formation of NH₄NO₃. Its role in atmospheric new particle formation is of special interest as well. The main determinant of the concentration of ammonia in the atmosphere is its emissions. Due to the short lifetime of the gas-phase form, NH₃ is concentrated over regions of intensive agriculture and concentrated animal feeding operations such as the North China Plain, The Midwest US, the Indo-Gangetic plains, and pastoral lands of Europe. In some of these regions, [NH₃] can exceed 40 ppbv.

The variations in [NH₃] are expected to be temperature dependent: a virtue of the strong dependence on emission. Typically, at the diurnal scale, [NH₃] varies with the temperature, generally a function of insolation. There may be effects of vehicular emissions in pushing up [NH₃] and creating a bimodal daily cycle. However, many other factors such as transport, boundary layer height, deposition, fertilizer application time, traffic emissions and their interactions may result in unexpected variations of its atmospheric concentration. Seasonal and inter-annual variations are heavily meteorology dependent - warmer periods have higher [NH₃] and wetter/colder periods will have lesser [NH₃]. When examining long-term trends, which have been increasing over the last several years in most regions, there is mounting evidence for the importance of the chemical environment in determining the concentration of NH₃ in the atmosphere. In the long-term, the effect of meteorology is generally smoothed out and these long-term trends are mainly dictated by the chemical environment. Due to stringent regulations for the acid precursor gases (SO₂ and NOₓ) in most parts of the world, as well as the comparatively constant NH₃ emissions, less NH₃ is taken up into the particle phase. Thus, the concentration of NH₃ is increased in the atmosphere. Sutton et al. [278] additionally suggests that dry deposition velocity is reduced due to reduced acidic precursor gases' concentration limiting the potential for co-deposition.

The quantification of [NH₃] through in situ observations, satellite remote sensing, and modeling comes with certain caveats. The main issue with in situ measurement of [NH₃] at the surface is the high cost for a comprehensive spatiotemporal coverage. [NH₃] is highly spatially variable, requiring any monitoring network to have a dense distribution of measurement stations. Online analyzers, while ideal, are not cost effective to implement. Further there may be non-linear negative bias in measured [NH₃] due to its stickiness (polar nature) to instrument surfaces. There is, therefore, a dearth of in situ measurements over remote areas on land, and especially over the oceans. Satellite-based
instruments are currently unable to resolve this gap due to the non-optimal thermal contrasts of the oceans for inference of ammonia mixing ratios from measure spectral radiances. Satellite remote sensing approaches need to be tuned specifically for the measurement of \(\text{NH}_3 \). Inference made from spectral radiances may be erroneous in circumstances such as night-time and times with cloudiness. The assumed fixed vertical \(\text{NH}_3 \) profile for the conversion of radiances to \(\text{NH}_3 \) is problematic as well. There are other issues such as the fact that most remote sensing data is not from a geostationary constellation that provides continuous global coverage. Further, the spatial resolution is on the scale of several kilometers in diameter, a scale over which there can be significant variability in \(\text{NH}_3 \). Successful modeling is highly dependent on the accurate representation of the processes discussed in Section 3. Modeling of \(\text{NH}_3 \) in the atmosphere over oceans is non-optimal due to negligible empirical datasets for validation, uncertain marine emissions, photolysis of dissolved organic nitrogen in the surface water or in the atmosphere \(^{119} \), as well as different chemical environment (more acidic aerosols, more fine mode particles, sea salt alkalinity) affecting partitioning. Heretofore, the ammonia concentration over oceans (pptv levels) and remote areas (low ppbv levels) was considered insignificant. New research Yu et al. \(^{5} \) suggests that nucleation is enhanced in the presence of pptv levels of atmospheric \(\text{NH}_3 \), making it important to understand ammonia over regions of its low concentration. Despite these issues, the three varied approaches compensate for each other’s limitations to a fair degree and continue to keep improving. A synergistic approach of measurements↔satellite-inference↔modeling is the current research need, which will contribute towards improved understanding of ammonia in the atmosphere.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4433/xx/1/5/s1, Table S1: In situ measurements of \(\text{NH}_3 \), Table S2: Gas-Aerosol Equilibrium Models used in Chemical Transport Models.

Funding: This research was funded by NSF grant number AGS-1550816 and NASA grant number NNX17AG35G.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

85. Ginoux, P.; Clarisse, L.; Clerbaux, C.; Coheur, P.F.; Dubovik, O.; Hsu, N.C.; Damme, M.V. Mixing of dust and NH₃ observed globally over anthropogenic dust sources. *Atmospheric Chemistry and Physics* 2012, 12, 7351–7363. doi:10.5194/acp-12-7351-2012.

Techniques

121. Schiferl, L.D.; Heald, C.L.; Damme, M.V.; Clarisse, L.; Clerbaux, C.; Coheur, P.F.; Nowak, J.B.; Neuman, J.A.; Herndon, S.C.; Roscioli, J.R.; Eilerman, S.J. Interannual variability of ammonia concentrations over...

Acidifying Air Pollution: Ten years calculated fields and budgets to the end of the first Sulphur protocol.

