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Abstract: We consider mixture experiments in which the proportions of the components must
be non-negative and their sum must equal one. Thus, the experimental region for a mixture of
components is a simplex. Li and Zhang (2017) made the conjecture that the pseudo component
transformation of the lattice points in the simplex has a special property. In this paper, we show that
this conjecture is not true in general. Furthermore, we refine this conjecture and prove the refined
conjecture.
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1. Introduction

Mixture experiments are performed in many areas of product development and improvement
(see, for example, [2,7]). In a mixture experiment, two or more ingredients (or components) are mixed
or blended together in varying proportions to form an end product. In this experiment, the response is
a function of the proportions of the components, i.e., the response depends only on the proportion of
the components in the mixture and not on the total amount of the mixture. These proportions must be
non-negative and their sum must equal one. The experimental region of a mixture experiment can
usually be expressed as

q
X = {(xl,...,xq) (Y xi=1x>0i= 1,...,q,C’s},
i=1

where there are g components involved in the experiment, x; represents the proportion of the ith
component in the total amount of the mixture, i = 1,...,q, and C’s are some other constraints for
X1,.-.,Xq (see Liu and Liu [6]). Note that the conditions Z?:l xp=1landx; > 0,i =1,...,q are the
necessary conditions for a mixture experiment, but the conditions C’s are not necessary and can have
any form according to the practical situation.

We will focus on the case when the mixture components are subject to the only constraint that
they must sum to one. In this case, ie., if X' is without constraints C’s, we will represent X" as
S9~1, which is called a (g — 1)-dimensional simplex. The design of mixture experiments has been
investigated by many authors. For the construction of mixture designs on S7-1, Scheffé [8] introduced
the so-called simplex lattice design, which gives a uniformly spaced distribution of points (called
{q, m} lattice points) over the simplex. Let £L{g,m} be the {g, m} simplex lattice, which consists of
{g, m} lattice points in S7-!. Based on the method of Scheffé type design, Li and Zhang [5] extended

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.


http://www.mdpi.com
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/sym12091427

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 20 August 2020

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

it and defined a kind of design, named pseudo component transformation design. For A > 0 and
xo=(,..., %) € S771,let Z(L£{q, m},xo, \) be a pseudo component transformation of £{g, m}. Li and
Zhang [5] made the conjecture about MD(L{q,m}) and MD(Z(L{q,m},xo,A)), where MD denotes
the maximum (squared) distance. The formal definitions of £{g,m}, Z(L{q,m},xo,A), MD(L{q, m})
and MD(Z(L{q,m},xo, A)) will be given in Section 2.

The maximum distance is one of the criteria proposed for measuring the uniformity of designs in
experimental regions. In general, it is difficult to calculate the maximum distance in most practical
problems. In this paper, we calculate MD(L{q,m}) and MD(Z(L{q,m},xo, A)). By using the formulas
for MD(L{q,m}) and MD(Z(L{q,m},xp,A)), we prove that the conjecture of Li and Zhang [5] is not
true in general. Furthermore, we refine this conjecture and prove the refined conjecture.

The simplex lattice designs have natural symmetric properties and are the most natural designs
for mixture experiments. This paper investigates the uniformity of the design in experimental regions
in relation to the pseudo component transformation of the simplex lattice design. The symmetric
properties inherent in the simplex lattice designs and the pseudo component transformations of the
designs are used in the proof of our results.

The paper is organized as follows. In Section 2, we describe the conjecture of Li and Zhang [5]
in detail. In Sections 3 and 4, we derive the formulas for MD(L{q,m}) and MD(Z(L{q,m},xo,A)),
respectively. By using these formulas, we refine the conjecture of Li and Zhang [5] in Section 5.
Conclusions are given in Section 6.

2. Conjecture on the pseudo component transformation

Recall that the (g — 1)-dimensional simplex, S7-1, is given by
9
g1 = {x = (x1,...,%5) €RT: le- =1,x>0,i= 1,...,q}.
i=1

As mentioned in the Introduction, Scheffé [8] introduced the simplex lattice design (for applications
and extensions see Gorman and Hinman [4]). The {g,m} simplex lattice, denoted by L{g,m}, is
defined by

k ky. & ,
L{gm} = {xeRq:x: (é,...,%),i;ki —mk; € Ly,i= 1,...,q}.
m+q—1

The number of points in £{g,m} is (
in Scheffé [8] and Cornell [2].

Let A C S7!and A € [0,00) be the transform parameter. For a given reference point xg =
(x01,- -+, %05) € S1 ~1, a pseudo component transformation of the experimental region A is defined by

). Some {gq, m} simplex lattices for g = 3 and 4 are depicted

m

2(Ax ) = T A+ e = {1

1
_7A+1A+7A+1x0 7/\+1x+7A+1x0.xeA},

refer to Li and Zhang [5]. Many criteria have been proposed for measuring the uniformity of designs in
experimental regions; for example, the mean squared error proposed by Fang and Wang [3], root mean
squared distance, maximum distance, and average distance discrepancies proposed by Borkowski and
Piepel [1]. We will focus on the maximum distance, which is defined below. Suppose P = {y1,...,yx}
denotes a design composed of n points in the simplex S7~!, where y; = (y;1, ..., Yig), 1 <i < n.The
distance between a point x = (x1,...,x,) € S7"! and the design P is defined as

d(x,P) = min d(xy;),

1<i<n
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where d(x,y;) =||x—y;i||= 2;7:1 (xj — yij)?. Then the maximum (squared) distance is defined as

MD(P) = sup d*(x,P).

xe81-1

In general, for B C $7-1 the maximum distance is defined as

MD(B) = sup d*(x,B),

xe§1-1

where d?(x, B) = in{3 d?(x,y) with d?(x,y) =||x — y |?. Specifically,
ye

MD(L{g,m}) = sup d*(x, L{q,m}),
x€89-1
MD(Z(L{q,m},x0,A)) = sup d*(x, Z(L{q,m},x0,A)).

xe81-1

Li and Zhang [5] made the following conjecture on the pseudo component transformation of the
lattice points in the simplex.

Conjecture 1. Let xp = (%, ceey %) be the reference point in the simplex S1-1. Then,

(i) argminAe[O’w)MD(Z(E{q,m},xo, A)) =m;

(i) MD(Z(£{q,m},xo,m)) = MD(L{g,m+1}) = 120,

As mentioned before, it is difficult in general to calculate the maximum distance in most
practical problems. In the following two sections, we derive the formulas for MD(L{g,m}) and
MD(Z(L{q,m},xp,A)), respectively. We prove that Conjecture 1 is true for some special cases.
Furthermore, we refine this conjecture and prove the refined conjecture.

Remark 1. The original statement of the first part of Conjecture 1 in Li and Zhang [5] is

argmin, ¢ o) MD(Z(L{q,m +1},x0,A)) = m. 1)
However, this seems to be a printing error. The correct equation should be
argmin/\e[o,oo)MD(Z(L{q,m},xo,)\)) =m, )

as described in Conjecture 1(i). We can see by using Euclidean geometry in the plane that (2) is true
when g < 3. However, (1) is not true for any g < 3.

3. Derivation of the formula for MD(L{q, m})

In this section, we derive the formula for MD(L{g, m}), the maximum distance between any
point x in S7-! and the design point of £{g, m} nearest to x, as shown below in Theorem 1. The proof
is given at the end of this section.

Theorem 1. MD(L{q,m}) is given by

_ Pgm(q— pgm)
MD(L{q,m}) = T

where pgm = min{m, | $]}.
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Before proving Theorem 1, we define a dense subset HZ;l of $7-1 and a function ¢(™) : H,‘L_l

L{q,m}. Let
Hi = {x € 8171 mx; — |mx;],i=1,...,q are all distinct}.
Note that H,'Zfl is a dense subset of S7~! and can also be expressed as

_ k
H - {x € R‘i X = —1 .. Z ki =m,ky,...,k; have all different fractional parts}.

ForxGan and0<r< , let

Then sﬁm) (x) is nondecreasing in r, piecewise constant in r with jump sizes being all %, and
right-continuous in r. Also,

(m) (x) Zq L Lmxi] melJ i Z?:l mei + 1J

s
0 m

=" (x).
Since s(()m) (x) <1< stm) (x), there exists r* € [0, 2] such that sgin) (x) =1.Forx € HY !, define

4)1(7”) (x) = [m(x; +1")] i=1,.

m 7 "/q/

and ¢ (x) = (" (x),..., 4" (x)). Note that ¢{")(x),i = 1,...,q, is well-defined. This can be
verified as follows: If sgﬂ )(x) = sgn )( J=land0<r <1< %, then Lm(x,’;rm < Lm(x;;rrz” ,and

i |m(xi +r)] s(m)(x) — 1= s(m)(x) _ i [m(x; +12)] ‘
; m

= Spy

Therefore, Lm(x;jrl” = Lm(x;:rZ)J i=1,...,4.

The following lemma shows that for x € HY Y ¢™(x) is the nearest point in S7-! from x.
Although this lemma is not directly used in the proof of Theorem 1, it is included for completeness.

Lemma 1. Forx € H,?fl,

d(x, ¢ (x)) = d(x, L{q,m}).
Proof. Lety be a pointin £{g, m} such thatd(x,y) = d(x, £L{gq, m}). First, we show

; mx;
X; — LmTZIJ <Xj— L m]J if x; > Yi and X <Y 3)

Suppose x; > y;, x; < yjand x; — % > xj— Lmrj,'J . Let
yi+ L ifk=i,
Ge=1q ¥i—w ifk=j,
Y if k # ik # j.

Then, § € £L{q,m} and d(x,y) > d(x,¥), which is a contradiction. Hence, (3) is proved.
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Next, we show
1 .
|xi—yi|<%, i=1,...,4q (4)

Ifx; <y — % for some i, then we can choose j such that x; > y;. Let
yi—~ ifk=i,
Ve=19 yjtw ifk=j,

Then,y' € £{g,m} and d(x,y) > d(x,y"), which is a contradiction. Hence, we have x; > y; — L for
all i. Similarly, we can show x; < y; + % for all i. Therefore, (4) is proved. By (3) and (4), there exists

r € [0, 1] such thaty = st )( x). Since ¢(" (x) is well-defined, we have y = ¢(") (x). [

To prove Theorem 1, we need the following two lemmas. The first lemma is used in the proof of
the second lemma. The second lemma is used in the proof of Theorem 1.

Lemma?2. Forl=1,...,9—1,let

q
Di={xeRT:x1>0,...,x;>0,x1.1 <0,...,x;, <0, ; =0, max x; — min x; < 1}.
=1 1> 12>0,x41 < g < 1; , nax x; 199’1_}

Then maxyep, || x||*= @.
Proof. Note that D; is convex and compact. Since || x ||? is a convex function of x, there exists an
extreme point x* of D; such that maxyep, || x[[?=[/x* . If y = (y1,...,,) is a nonzero extreme point

of Dy, then (i) y; = O or max y; foralli =1,...,[,(ii))y; =0or min y;foralli=1+1,...,9,and
1<j<I I+1<j<q

(iii) maxi<j<4 X; — minj<j<, X; = 1. Suppose that y is a nonzero extreme point of D;. Let /1 be the

number of positive components of y and let I; be the number of negative components of y. Then

max y; = d min y; =

2
an Hence,
1<j<q L+, 1<j<q hh:

” ”2: lllZ <l(q_l)‘

Lh+1, — q
I I 1 I . . . 2_ 1l(g-D)
Note that x* = (1— s R PP ) is an extreme point with || x*||?= e Therefore,
—_—— ——
I-tuple (g-1)-tuple
maxyep, ||x|?=(x*||>= @, which completes the proof. [

Lemma 3. Forx € an_l,

Pam(q — Pgm)
d(x, 9" (x)) < g2

Proof. Forx € HZ1_1, lety = m(x — (" (x)). Since Z _,yi=0and max y — 11212 yi <1, there exists
1=q

a permutation 77 = (711,...,74) on {1,...,q} such that (v, .. ,ynq) e Dl, where [ is the number of
i’'s with y; > 0. By Lemma 2,

g —1)

qm?

(x, ¢ (x) = — = lyle< ®)
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7 Note that gbl.(m) (x) = Lm(x;ni*” for some r* € [0,1]. Since Y | |m(x; +1*)] = m, we have | =

2 Yo ([m(x;+r*)] — [mx;]) < m. Hence,1(g — 1) < pgm(q — pgm)- Therefore, (5) implies the assertion
s of thelemma. O

74 Now, we can prove Theorem 1.

Proof of Theorem 1. By Lemma 3, if x € HZfl, then

a2 (x, £{q,m}) < d(x, ") (x)) < ’W

Since HY, ' is dense in S9! and d?(x, L{q,m}) is continuous in x on 771,

Pam(q — Pgm) _

MD(L{g,m}) = sup dz(x,ﬁ{q,m}) = sup gl2(x,£{q,m}) < poe

xesi-1 xEH,Zfl

For simplicity, we will write p, », as p for the remainder of this proof. Let xo = (%, e %) Then there
exists (ki,...,kg) € Zi with Z?:l k; = m such that
2(M=P, P _p(MmP, Pk K
d ( e mxo,ﬁ{q,m}) =d ( e+ mxo,(m,..., m))
7 Here and subsequently, e; is the g-dimensional vector whose ith element is one and all the other

7 elements are zero.
k - .
Letz = (z1,...,25) = (k—1 o 3k) = 2-Ley. We will show

0<z < foralli=1,...,q. 6)

SN

Since z; > O foralli = 2,...,q, we first show z; > 0. If z; < 0, then k; < m — p. Hence, Z?:z k =
m — ki > p. Thus, there exists j such that kj >1,ie,zj > % Then,

- k k - ki +1 k ki—1 k
dz(%el—i—%xo,(al,...,%))—dz(%el—i—%xo,( 1r- 2 .,2 . aq))

DR CNE R RACRE S Y

Il
—~
N
2
|
3|
Q‘“
~—
N
—
J
|
3|
B

foralli=1,...,q. Ifzj > % for
L. Therefore, z; < - for some j.

which is a contradiction. Therefore, z; > 0. Next, we show z; <
all j, then Z?:l z; > %q > %p, which is a contradiction to Z?zl Z]
Suppose z; > % for some i. Then

| 3=

G e L R e Y L. R A .
2 2 2 2
=) o) () )

7z Since z; > %, zj < % and mz; and mz; are integers, we have z; > % and z; < 0. Thus, the right-hand
e side of (7) is strictly positive, which is a contradiction. Hence, z; < % foralli =1,...,q. Therefore, (6)
7 is proved.
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Since mz;, i = 1,...,q are integers, (6) implies that z; = 0 or % foralli = 1,...,q. Since
Z?:l zi=L,z;=0forq—pi'sandz = % for p i’s. Thus,
2" ey + Py £ }>_f< - P)2
m el axo, q,m —1:1 Zl qu
(L PN (Y
_p(m mq) (g p)(mq)
p(g—p)
qm?

so Therefore, MD(L{q,m}) = p(qq,;zp)- 0

s1 4. Derivation for the formula of MD(Z(L{q,m},xp,A))

In this section, we derive the formula for MD(Z(L{g,m},xo, A)), the maximum distance between
any point x in S9! and the design point of Z(L£{g,m},xo, A) nearest to x. Note that

MD(Z(L{g,m},xo,A)) = max{g(q,m), hr(q,m)}, ®)
where
galgm) = sup  d(x Z(L{gm},x0N)),
x€Z(891,x9,A)
hy(g,m) = sup d*(x, Z(L{q,m},x0,A)).

x€S97 1\ Z(87-1 x,A)

s2 Hence, in order to obtain the formula for MD(Z(L{q,m},xo, A)), we have to find the expressions for
ss gr(g,m)and hy(q,m). To do this, we need the following three lemmas. The first lemma is for g, (g, m),
s« while the other two lemmas are for h, (g, m).

Lemma 4. We have

A )2 qu(q - Pq,m)

g/\(q/m):(1+/\ prem m=1,q21.

Proof. Note that

A 2
pam) = sup P Z(L{gm)x0N) = (757) sup d(x Ligm)).
x€Z(871,x9,A)

s Since sup d?(x,L{q,m}) = MD(L{q, m}), we obtain the lemma by Theorem 1. [J

x€87-1
Lemma 5. Let Sg_l ={x €S9t : x; = 0}. Then,

hy(q,m) = sup d*(x, Z(L{g,m},xo,A)).

xesgf1
Proof. Letx € S171\ Z(S771,xg, A). We will show that there exists X € ngl such that

d(x, Z(L(q,m),xo,A)) < d(%, Z(L(q,m), X0, A)). ©)
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Since x € S171\ Z(8171,xp, M), x; < 1%\% for some i. Without loss of generality, we may assume

11
Xq < ma Let

X
X=x+ qq_ql (xo —eg).
Then, X € ngl. Foranyy € Z(L(g,m),xg,\),
< 2_ 2 quq qxq 2 2 10
5=y P=lx =y P+ T y) - (o —eq) + () o — e (10)
Since the gth component of x —y + w (xo — ;) is zero and the sum of all components is also zero,
we have ( )
(X — Yy
(x—y+ %(XO —eg)) - (%0 —eq) =0.
Therefore,
—(Xg — ¥q)
(X_Y)'(Xo_eq> = # HXO_eqHZ'
q
ss Sincey € Z(L(g,m),xo,A), yg > 14%\% Thus, y; > x5 and so (x —y) - (xo — e;) > 0. Hence, (10)

s7 yields || X — y|>>|/x — y ||, and (9) is obtained. [

Lemma 6. We have

_ A ZL pl,m(l_pl,m)
iala,m) = 1<r?i,xl{<1 +A) m? I 1+ A2l

Proof. First, we prove by induction on g that

hﬂ%m)Slggfl{(liAf;;mma;pMJ+(111;W}'rnquzz' (11)
Forg =2,
m@m = min {00~ (356 "5 + 1) )
2
=00~ (1 + s areo)l
1
T2 + )2

Since the right-hand side of (11) for g = 2 is m, (11) holds for g = 2. Consider g > 3. Suppose that

A N2 1 prw(l=pim) q—1
/ < L Pim ,m
i gm) < 1<rzrlaq3‘1{(1+A> mE MRCEVErT]

holds for 4’ < g. Letx € ngl be arbitrary. The proof of (11) is complete if we show

A N2 1 prw(l = pim) q—1
2 < m ,
(0 Z(L{g,m} %0, 1)) < 15@‘_1 { (1 + /\) m?2 I + (1+A)2%ql [’ (12)
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by Lemma 5. Let [ be the number of j’s such that x; > 1+/\1 Ifl=0, thenZ] 1 ]<Z? 1141rA; <1,

which is a contradiction. Hence, I > 1. Also, | < g —1, since x; = 0. Hence, 1 < < g — 1. Without
loss of generality, we assume

1 1
x]>m§, ]—1,...,[,
1 1
i< — j = ceesq.
VS Tyag ST
Let £'{qm} = {y € £{gm} : yjy1 = -+ = y, = 0}. Note that if y € £!{g,m}, then

= (y1,. ..,yl,Oq,l), where (y1,...,y;) € L£{l,m}. Here and subsequently, 0; and 1; denote the
k-dimensional vectors with all components equal to 0 and 1, respectively. Then,

1
2 _ . 2 -
d=(x, Z(L{q,m},xo,A)) = min d (X’A+1Y+ /\+1XO)

yeL{qm}
~ 2 A 1
< min & (x gy %)
_ . 2 A 1
_zerﬁnflr,lm}d< OESLa ’)+A+1 )
l 1 1,\2
1 1 142 A e
fggl(x]__A‘F1q> _+zecganx Az (13)

where X' = (x1,...,x;) — T +1 qll Note that x’ > 0, where the inequality between the vectors must be
interpreted componentwise. Let

ix’—l ix L l*a (14)
= - ]— - =d.
= i Atla
Then, (13) becomes
d 1 1)2 1 A 2
2 < L - 2 ; = )
o2 (g myxo ) € 3 (=) o, min X - 09
2

Note thata > /\11'2 -1 ax] =1and Zl 17 /\+1) zj = (/\+1) < 1. We investigate ﬁz” in

(15). IfxO <l"' ,,) then

a

Hl,_ A ) “2:H1,_(()\ aA+1)—A 6>+a()\+1)—}\lH2

a1’ a/\+1)ZJr a(A+1) TaAtr1) O
_ 2 _ 2
=l - G S ) ()

a/\—l—l)zJr a(A+1) 70 a(A+1

a
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If we substitute this into (15), then we obtain
42(x, Z(L{q, m}, %, 1)

9 1 1\2  /a(A4+1)—A\21
< Xi—7——=) +\———F7F7—) 7 +a min
j_;Fl(] A+1q> ( A—f—l ) I WGZ([,{lm}xl /\/)

d 1 1\2  /a(A+1)—A\21
j:;rl (xj_m5> + ()\7—#1) l—i—a max{gx(I,m), hy(l,m)}, (16)

1

o]

IN

where )\’ satisfies % = A%H, ie, A = m and the last inequality follows from (8).

Now, we get an upper bound of the right-hand side of (16). Note thata < 1 — Ail L by (14) and

O§A+1q x]_)LJrl for]—l+1 ..,q. Hence,
1 1 1\2  /a(A+1)—A\21

L (xf_AHﬁ) (55 ) T
¢ 1 1\2 /a(A+1)—
= L (xff)urlﬁ) +( A+1

%)
= i (xj_il)z_i_( /\+1 )‘>2%+( A ) pl,m(l_Pl,m)

T Atlg A1 A+1 m?l

—1 —1 \2 2 mlf m)
= (Ail)2q2+(q(lz\+1)> 1 (A—l—l) o

q—1 +< A )zpl,m(l_pl,m).

21 ( a)’ )2pl,m(l_Pl,m)
I 1+ A m2]

- 7
+1 + m
ES TR Inr? A7)
On the other hand,
1 1 1\2 /sa(A+1)—A\21
Yo (xj— =) + () S Aty (l,m)
1+1(] /\+1q> ( A+1 )l
9 1 1\2  /a(A+1)—A\21
— Z Xi— — ) (L )
) (Y

A N2 pp (U = prm) 117
2 L Prm m

+a 1§I}5‘2§‘_1{(1+A/) m2 I T
1 1 1\2  /a(A+1)—A\21
= ) <xf*A+1§) ()

j=1+1

A N2 ppw(l"=prm) | a(A+1) —AN21 =T
R (e B e
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where the first equality follows from the induction hypothesis. Sincea < 1 — %—‘rlé and 0 < L.
xj < %H% forj=1+1,...,q9, we obtain

d 1 1\2  /a(A4+1)—A\21
]._;rl(xf_)\Jrlq)Jr( A+1 )7+”h”(l’m)

q—1 q—1 \?1 A N2 prw(l = prm) q—1 \21-1
< Z A T ;
-wA+n%2+(ﬂA+n)l*}£?ﬁ1(A+1)m2 I +<¢A+n> T
_q-1 A zipl’,m(llfpl’,m) g—1 \21-1
‘(A+1y¢+133?1{(A+1)7# L +(ﬂ )

A+1)) I

3 A N2 1 prw( = pum) g—1 (=D -1)
152?_1{(“1) o + -

A1) P+ 12T (18)

It can be easily checked that

q—1 W—JVU—V)< g-=10
A+1)29 @A+ 120 1+ 1)l

Hence, (18) becomes

A+1

A 21 Pl’m(l,_Pl’m) q—l’
— 7 7 . 1
= 15?2;(—1 { ()\ + 1) m? I T (1+ A)2ql' (19)

T (o) (R e

By (17) and (19), (16) becomes

A 21 pp (ll_pl’m) q_l/
) L Pl'm ,
d (X,Z(ﬁ{q,m},xo, /\)) S 11;11?;(1 { ()\ + 1) m2 4 + (1 + A)qu/ .

ss Therefore, (12) holds and so (11) is proved.
Next, we prove

> — LA™ > > 2.
ha(q,m) 133;(1{(1 )\) 5 i ( , m>1,q>2 (20)

Supposem > land g > 2. Forl =1,2,...,q — 1, we will show

A N2 1 prw(l=pim) q—1
>|l—) &~ z .
Mg m) CL+A) m?2 I RNFEwYe

Letx = (x1,...,%;), where

A M—Pim Pim 1 1 1 _
flyl(g’ i ""171T)+71+/\7 ifi=1,
L m 1 1 LY
X; = T T T AT ifi=2,...,1,
0

ifi=I14+1,...,9.
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Ify € £L{q,m} and y; > 0 forsomej € {I+1,...,q}, then there exists i € {1,...,1} such that x; > y;.
Let

vi+ L ifk=i,
Vi=19 Y- ifk=j

Then d?(x,y) > d?(x,y'). Hence,
Px Z(L{gm)x0N) = min & (x Dyt )
yeL{gm} 1+A 1+A
A 1
= i d%(x,
yellom) (x YT 1+AXO)
!
. A 1 1\2 g1
= min Xi— — i —— 4=
yeﬁl{q,m}]2< J 1+/\y] 1+/\q> (1+A)2%q2
- N GR\SR A S R LS bl
_yengﬁlm} H <1+Ay + 1+Aqll>H + (1+ A2 21)

where x' = (x1,...,x). Let xé = %ll. Then,

min, ¥ (Y g
y eL{l,m} 1+A 1+/\q (1+A)2q2
A 1 1 —1 2 —1
_ : r ! I q q
yeriiom) Hx (1+/\y T TT A g 11)“ P
: A 1 2 (g—1)7? qg—1
_ I 1
= yeLlim} Jx <1+A 1+AXO>H TESNE RN
A . 5 qg—1
= (-2 - L 22
(1+A)yégﬁ4n Y P+ (22)
where x” = (x{,...,x]") with
"_ mrfl +pl7m% ifi =1,
YT el ifi=2,..,1
g =2,...,L
Hence, by (21) and (22), we have
20x Z2(L{am}xoN) = ()" min |Ix —y/ P 410 23)
7 ‘7/ 7 X0/, 1 +/\ y’e[{l,m} y (1 +/\)qu
Ifz e £{I,m} and z; > % for somej=2,...,1, then
min X"~y |2<||x" —z |7 (24)

y'eL{l,m}

This can be proved as follows: Since zj > % for some j = 2,...,], there are two cases to consider: (i)
zj > % forsomej=2,...,land zy = 0 forsomek =2,...,],and (ii)z]- > % forsomej=2,...,/and
Zp > % forallk =2,...,1L In case (i), if we let
zj— 5 ifi=],
Zi=1¢ z+ L ifi=k
Zi ifi #7j,i#k,
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then || x" — z|>>|| X" — 2/ ||?. In case (ii), z1 = 1 — Z£=2 z; <1— % < x{ and if we let
1 e
z1+5 ifi=1,
2l =9 zj— 4 ifi=],
Zj ifi #1,i #j,
then || X" — z||>>[|x" — 2 ||?. Hence, (24) holds if zj > Z for some j = 2,..., 1. Therefore, (23) becomes

2 _ A 2 . " 2 q*l
(%, Z(L{g,m}, %0, 1) = (177) somin X =y P+ (25)

where £*{l,m} = {y € L{l,m} : y; = Oor i forallj = 2,...,1}. Fory € L*{l,m}, let I’ be the
number of j’s such that y; = %,] =2,...,. Theny; =1—- ,ln—/ and

”X//_yHZ: ((m_pl,m +M1) _ (1_ %)>2+ (Pl,m% _ %)211_’_ (pl,m %)2(1_11_1)‘

mo ol n o

Hence,
U+ (3 =D)pim\2 | (prml 12 1\ 2
. "2 . AL SJFLm Piml 1N%y, Pim 1 o

yegg{?m} 1" =yl _Osrlglgllﬂ{( m ) +( m 1 m) l +( m l) (1-1r-1)

_ (Pim 2 Plm 1\2 PLm 2 B B

= () o =) oo () 0= P =)

_ Pl Piw)

m2l ’

where the second equality follows from the fact that the function in the braces takes the minimum at
I = p; . Hence, by (25), we obtain

A )zpl,m(l_Pl,m) + q_l

d*(x, Z(L{q,m},x0, A)) = (1 A m2l (1+A)2ql°

s Therefore, (20) is proved. By (11) and (20), we complete the proof. O

% In summary, (8) together with Lemmas 4 and 6 give the formula for MD(Z(L{q,m},x,A)), as
o1 shown below in Theorem 2.

Theorem 2. MD(Z(L{q,m},xp,A)) is given by

MD(Z(L{g,m},xo,A)) = max{g(q,m), hr(q,m)},

where

2 _
A >pq,m(q Pq,m), m>1,q>1,

sam = (7)™

A N2 1 prwl=pim) q-—1
_ 1p / >1,0>2.
ha(g,m) 132;‘1{(”)\) m2 I a0 2122
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5. Refinement of the conjecture

In this section, we refine Conjecture 1 by using the formulas for MD(L{q,m}) and
MD(Z(L{q,m},xp,A)) given in Theorem 1 and Theorem 2, respectively. For convenience, we repeat
the theorems here:

B qu(‘i - Pq,m)
MD(L{g,m}) = T

MD(Z(L{g,m},xo,A)) = max{g(q,m), hr(q,m)},

7

where

with pgm = min{m, |1]}.

Let
0 _ A 2plm<l — pl,m) 1 1 1
e = (755) “ T+ (; q>'
Then, for 1 <! < min{2m,q — 1},
2
1 .
(ﬁ) w2 T (1+1A)2 (%—%) iflisevenand [ < 2m,
Bgm) =4 () B0+ 1 (1.1} iffisoddand! <2
A gy (m> W+(1+A)2(l_ﬁ) if lisodd and | < 2m,
A

(1+A)21,;—71+ﬁ(% ~1) il 2m

Note that &) (q,m) = maxj<j<4 1 hy) (q,m). The following lemma gives another expression for
h, (g, m), which will be used in the proof of Theorem 3.

m
Lemma 7. If g > 3 and N < A < m, then
-1
iy (q,m) = max{h\" (q,m), 1’7"V (q,m)}.

Proof. We divide the proof into two cases: 2m < g — 1 and 2m > q — 1. First, we consider the case of
2m < g — 1. Note that

max{hf\l)(q,m) :1<1<2m,liseven} = max{hglz) (q,m),h(fm)(q,m)},

max{hf\l)(q,m) :1<1<2m,lisodd} = max{h&l)(q,m),hgszl)(q,m)}.

Hence,

1
max hE\)
1<I<2m

(q,m) = max{n\" (g,m), K (q,m), K"V (q,m), k™ (q,m)}.
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Note that h (q, m) =
Ac )(
hy

1+A) 7(1— %) and h/(\z)(q,m) =1 (%(%)2 + 1 —1).Since A < m, we have

qm)>h &)(q, ). Thus,

max hY (q,m) = max{h{" (q,m),n"" (q,m), K" (q,m)}.

1<1<2m

Since pgm = m, A > y/m. Then,

ne (g, m) =" (g, m) = (A+11)2 (GG~ * 3 3)

#(1_;1+L_ 1 )
“(A+1)2\2 2m—-1 2m 2m—1
> 0.

Hence

(g, m) = max (i (g, m), B> (g, m)}.

max h
1<1<2m

Note that for [ =2m,...,q —1,

ny (g, m) = (1$A>2m(in;lm) a +1?\)2 G - ‘17)

1/ A 21 1
_ = (a2_1\z= I T
- =07+ (1) A+ A2

is increasing in /. Hence

U] _ (1) (g9-1)
1<r§13qx1h (q,m) = max{hy”(q,m),hy" " (q,m)},

which is the desired result.
Next, we consider the case of 2m > g — 1. Note that

(2) (4-2) o
max{hf\l) (gqm):1<1<g—1,liseven} = max{hz\z)(q,m),h/(\ 1) (g,m)} if qis even,
max{h,”’ (q,m), hAq (q,m)} ifgisodd,

(1) (g-1) o
(10 q )1 <1< -1 tisoday = | PGB g m) s even,
max{h}’(q,m),hy "~ (q,m)} ifqisodd.

Since h(Al) (g m) > hgz) (q,m), we have
0] (7-2) (9-1)
max 1! (g, m) = max{if!) (g, m), 1772 g, m), 7 g, m)).
Note that
-1 1 Po-1m(@—=1=Pg-1m) Pg2m(@—2—Psg—2m)
hf\q )(q,m)—hgq )(q’ )= ()\4_1) {(7) ( : g—1 : - qg—2 : )}

_(Ajl)z(qil_in)' (26)
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If g is even, then p; 1, = q2 and pgom = qT In this case, (26) becomes

g = gm) A+1 {( )(q 2)6)] q42)_q11+q12}
2 2 1 1
/\+1 (‘7 ‘7 q—1+q—2>
>0,

where the second inequality follows from 2 o \/PTm [ since A > % If g is odd, then

Pa—im = ‘77 and py_om = T' In this case, (26) becomes

a2 = e { () (5 - ) - 5 )

#(l_q—3_1+1>
~(A+1)2\2 2(g-2) gq-1 g-2

>0,

here th nd inequality follows from ’\ > > 2_ since A > Hence
where the seco equality follows fro \/W— =7 \/W

0 -1)
1<r§13qxlh (q,m) = max{hy"(q,m),h)" " (q,m)},

which completes the proof. O

Finally, we have the following theorem, which is a refinement of Conjecture 1.

Theorem 3. MD(Z(L{q,m},xo,A)) has a minimum at A = A*, where A\* = m pqm(qq;_lpqm). Furthermore,
D(Z(L{q,m},xo,A)) > MD(Z(L{gq,m},xo,A*)) forall A € [0,00) \ {A"}. (27)
Moreover,
min MD(Z(£{g,m},xp,A)) = —1—L 28)
A€[0,00) b 0 g(1+A*)2

Proof. When g =2, g)(2,m) = (1iA)2 L and hy(2,m) = 2(1+/\) . Since ¢ (2, m) is strictly increasing
in A and h) (g, m) is strictly decreasing in A, MD(Z(L{q,m},xp,A)) has a minimum at A = m. Note
that p;» = 1and A* = m when g = 2. Thus, the theorem holds when g = 2.

Assume g > 3. By Lemma 7, for \/1227 <A<m,

D(Z(L{q,m},x0, M) = max{gx(q,m), 1" (q,m), n\7" (q,m)}.

We will show that g, (q,m) > hf\qfl) (g,m) for \/Z;—m < A < m. Note that

(q-1) A Pan(q = Pgm)  Pg—1m(qd—1—Pg—1,m)
gl m) = g m) = (l—i—/\) ( m2qg  m2(g-1) )

el ) )
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If m < %, then p,_1,, = m. In this case, (29) becomes

o =) = (725) S (5" - )+ )

1+A/ m\ ¢ g—1 1+A)2\g g-1
A N2l /01 1 1 1 1
- (1+A) E(q—l *5) B (1+A)2(q—1 *5)
>0
since A > \/12117 — /m. Next, suppose m > 1. We divide the proof into two cases, according to
whether g is even or g is odd. If 4 is even, then p,,, = 4 and Pg-1m = # In this case, (29) becomes
OV = L (A1 _a=2ay 1 1
gala,m) —hy" (g, m) = (A+1)2{(m) (4 4(q—1)>+q q—l}
B 1 AN2 g 1 1
_(A+1)2{(%) 4(q—1)+§_q—1}
1 q 1 1
‘(A+1V(4nmdq—1)+q —1>
_ 1 ( 1 _'_1_ 1 )
A+ 1D2\20g-1) g g1
>0,

where the third inequality follows from % > \/ﬁ If g is odd, then pg = Pg-1m = % In this case,

(29) becomes
(-1 _# & 2 quliqil lfi
galg,m) —hy (q'm)_(A+1)2{(m)( 4q 4 )+q 61—1}
1 2 (-1 _g-1y 1 1
S _ Lt
_(A+1)2<q—1( 4q 4 )+q 4—1)
1 1 1 1
pUESTA G R)
>0,
where the second inequality follows from % > \/ﬁ = \/g . Hence, for \/Z:ﬁ SA<m, gi(gm) >

(q-1) m
hy" (g, m). Therefore, for T <A<m,

MD(Z(L{q,m},x0,A)) = max{gx(q,m),h{" (q,m)}.

: m * q-1 N — ©)
Since N <A =m PGP and g, (q,m) = h;./(q,m), we have

MD(Z(L{q,m},x0, %)) = ga-(a,m) = i) (g, m).
Since g, (g, m) is strictly increasing in A,
MD(Z(L{q,m},xo,A)) > gm(q,m) > gr«(q,m) = MD(Z(L{g,m},xo,A")) forallA > A"

Since hf\l) (q,m) is strictly decreasing in A,

MD(Z(L{q,m},xp,A)) > hgl) (g, m) > hy-(g,m) = MD(Z(L{q,m},xp,A*)) forall A < A*.
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Therefore,
MD(Z(L{q,m},xo,A")) < MD(Z(L{gq,m},xp,A)) forall A # A%,

which proves (27). Moreover,

* 1 q—- 1
MD(Z(£{g,m},x0 M%) = gae (m) =152 (g,m) = b

which is (28). O

Remark 2. Conjecture 1(i) says that MD(Z(L{q,m},xp,A)) has a minimum at A = m. Therefore,
Conjecture 1(i) is true when p, ,, = 1, i.e., when either ¢ < 3 or m = 1. Conjecture 1(ii) says that

MD(Z(£{q,m},xo,m)) = MD(L{q,m +1}) = — 11

However, note from our results that

_ Pgm+1 (q— Pq,m+1)

MD(£ g m+ 1)) = el e,
MD(Z(L{q,m},Xo,m)) = W

Hence, MD(Z(L{q,m},xo,m)) = MD(L{q,m + 1}) if and only if psm = psm+1. That is, the first

equality in (30) holds if and only if m > | ],ie, g < 2m + 1. Also, MD(L{q,m+1}) = q(l;l

if and
T2t
only if p; 41 = 1if and only if g4 < 3. Hence, the second equality in (30) holds if and only if g < 3.
Note that MD(Z(L{q,m},xg,m)) = ﬁ if and only if pg » = 1if and only if either g <3 orm = 1.
Therefore, Conjecture 1(ii) is true only when g < 3.

6. Conclusions

This paper is inspired by the conjecture, made by Li and Zhang [5], on the pseudo component
transformation of the lattice points in the simplex. Specifically, they made the conjecture that the two
maximum distances MD(L{q,m}) and MD(Z(L{gq,m},xo,A)) have a special property. In general,
it is difficult to calculate the maximum distance in most practical problems. We have derived the
formulas for MD(L{q,m}) and MD(Z(L{q,m},xp,A)). By using these formulas, we have shown that
the conjecture of Li and Zhang [5] is not true in general. Also, we have refined the conjecture of Li and
Zhang [5] and have proved the refined conjecture.
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