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Abstract: We consider mixture experiments in which the proportions of the components must 
be non-negative and their sum must equal one. Thus, the experimental region for a mixture of 
components is a simplex. Li and Zhang (2017) made the conjecture that the pseudo component 
transformation of the lattice points in the simplex has a special property. In this paper, we show that 
this conjecture is not true in general. Furthermore, we refine this conjecture and prove the refined 
conjecture.
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1. Introduction8

Mixture experiments are performed in many areas of product development and improvement
(see, for example, [2,7]). In a mixture experiment, two or more ingredients (or components) are mixed
or blended together in varying proportions to form an end product. In this experiment, the response is
a function of the proportions of the components, i.e., the response depends only on the proportion of
the components in the mixture and not on the total amount of the mixture. These proportions must be
non-negative and their sum must equal one. The experimental region of a mixture experiment can
usually be expressed as

X =
{
(x1, . . . , xq) :

q

∑
i=1

xi = 1, xi ≥ 0, i = 1, . . . , q, C’s
}

,

where there are q components involved in the experiment, xi represents the proportion of the ith9

component in the total amount of the mixture, i = 1, . . . , q, and C’s are some other constraints for10

x1, . . . , xq (see Liu and Liu [6]). Note that the conditions ∑
q
i=1 xi = 1 and xi ≥ 0, i = 1, . . . , q are the11

necessary conditions for a mixture experiment, but the conditions C’s are not necessary and can have12

any form according to the practical situation.13

We will focus on the case when the mixture components are subject to the only constraint that14

they must sum to one. In this case, i.e., if X is without constraints C’s, we will represent X as15

Sq−1, which is called a (q− 1)-dimensional simplex. The design of mixture experiments has been16

investigated by many authors. For the construction of mixture designs on Sq−1, Scheffé [8] introduced17

the so-called simplex lattice design, which gives a uniformly spaced distribution of points (called18

{q, m} lattice points) over the simplex. Let L{q, m} be the {q, m} simplex lattice, which consists of19

{q, m} lattice points in Sq−1. Based on the method of Scheffé type design, Li and Zhang [5] extended20
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it and defined a kind of design, named pseudo component transformation design. For λ ≥ 0 and21

x0 = ( 1
q , . . . , 1

q ) ∈ Sq−1, letZ(L{q, m}, x0, λ) be a pseudo component transformation ofL{q, m}. Li and22

Zhang [5] made the conjecture about MD(L{q, m}) and MD(Z(L{q, m}, x0, λ)), where MD denotes23

the maximum (squared) distance. The formal definitions of L{q, m}, Z(L{q, m}, x0, λ), MD(L{q, m})24

and MD(Z(L{q, m}, x0, λ)) will be given in Section 2.25

The maximum distance is one of the criteria proposed for measuring the uniformity of designs in26

experimental regions. In general, it is difficult to calculate the maximum distance in most practical27

problems. In this paper, we calculate MD(L{q, m}) and MD(Z(L{q, m}, x0, λ)). By using the formulas28

for MD(L{q, m}) and MD(Z(L{q, m}, x0, λ)), we prove that the conjecture of Li and Zhang [5] is not29

true in general. Furthermore, we refine this conjecture and prove the refined conjecture.30

The simplex lattice designs have natural symmetric properties and are the most natural designs31

for mixture experiments. This paper investigates the uniformity of the design in experimental regions32

in relation to the pseudo component transformation of the simplex lattice design. The symmetric33

properties inherent in the simplex lattice designs and the pseudo component transformations of the34

designs are used in the proof of our results.35

The paper is organized as follows. In Section 2, we describe the conjecture of Li and Zhang [5]36

in detail. In Sections 3 and 4, we derive the formulas for MD(L{q, m}) and MD(Z(L{q, m}, x0, λ)),37

respectively. By using these formulas, we refine the conjecture of Li and Zhang [5] in Section 5.38

Conclusions are given in Section 6.39

2. Conjecture on the pseudo component transformation40

Recall that the (q− 1)-dimensional simplex, Sq−1, is given by

Sq−1 =
{

x = (x1, . . . , xq) ∈ Rq :
q

∑
i=1

xi = 1, xi ≥ 0, i = 1, . . . , q
}

.

As mentioned in the Introduction, Scheffé [8] introduced the simplex lattice design (for applications
and extensions see Gorman and Hinman [4]). The {q, m} simplex lattice, denoted by L{q, m}, is
defined by

L{q, m} =
{

x ∈ Rq : x =
( k1

m
, . . . ,

kq

m
)
,

q

∑
i=1

ki = m, ki ∈ Z+, i = 1, . . . , q
}

.

The number of points in L{q, m} is (m+q−1
m ). Some {q, m} simplex lattices for q = 3 and 4 are depicted41

in Scheffé [8] and Cornell [2].42

Let A ⊂ Sq−1 and λ ∈ [0, ∞) be the transform parameter. For a given reference point x0 =

(x01, . . . , x0q) ∈ Sq−1, a pseudo component transformation of the experimental region A is defined by

Z(A, x0, λ) =
λ

λ + 1
A +

1
λ + 1

x0 =
{ λ

λ + 1
x +

1
λ + 1

x0 : x ∈ A
}

,

refer to Li and Zhang [5]. Many criteria have been proposed for measuring the uniformity of designs in
experimental regions; for example, the mean squared error proposed by Fang and Wang [3], root mean
squared distance, maximum distance, and average distance discrepancies proposed by Borkowski and
Piepel [1]. We will focus on the maximum distance, which is defined below. Suppose P = {y1, . . . , yn}
denotes a design composed of n points in the simplex Sq−1, where yi = (yi1, . . . , yiq), 1 ≤ i ≤ n. The
distance between a point x = (x1, . . . , xq) ∈ Sq−1 and the design P is defined as

d(x,P) = min
1≤i≤n

d(x, yi),
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where d(x, yi) =‖x− yi ‖=
√

∑
q
j=1(xj − yij)2. Then the maximum (squared) distance is defined as

MD(P) = sup
x∈Sq−1

d2(x,P).

In general, for B ⊂ Sq−1, the maximum distance is defined as

MD(B) = sup
x∈Sq−1

d2(x, B),

where d2(x, B) = inf
y∈B

d2(x, y) with d2(x, y) =‖x− y‖2. Specifically,

MD(L{q, m}) = sup
x∈Sq−1

d2(x,L{q, m}),

MD(Z(L{q, m}, x0, λ)) = sup
x∈Sq−1

d2(x,Z(L{q, m}, x0, λ)).

Li and Zhang [5] made the following conjecture on the pseudo component transformation of the43

lattice points in the simplex.44

Conjecture 1. Let x0 = ( 1
q , . . . , 1

q ) be the reference point in the simplex Sq−1. Then,45

(i) arg minλ∈[0,∞)MD(Z(L{q, m}, x0, λ)) = m;46

(ii) MD(Z(L{q, m}, x0, m)) = MD(L{q, m + 1}) = q−1
q(m+1)2 .47

As mentioned before, it is difficult in general to calculate the maximum distance in most48

practical problems. In the following two sections, we derive the formulas for MD(L{q, m}) and49

MD(Z(L{q, m}, x0, λ)), respectively. We prove that Conjecture 1 is true for some special cases.50

Furthermore, we refine this conjecture and prove the refined conjecture.51

Remark 1. The original statement of the first part of Conjecture 1 in Li and Zhang [5] is

arg minλ∈[0,∞)MD(Z(L{q, m + 1}, x0, λ)) = m. (1)

However, this seems to be a printing error. The correct equation should be

arg minλ∈[0,∞)MD(Z(L{q, m}, x0, λ)) = m, (2)

as described in Conjecture 1(i). We can see by using Euclidean geometry in the plane that (2) is true52

when q ≤ 3. However, (1) is not true for any q ≤ 3.53

3. Derivation of the formula for MD(L{q, m})54

In this section, we derive the formula for MD(L{q, m}), the maximum distance between any55

point x in Sq−1 and the design point of L{q, m} nearest to x, as shown below in Theorem 1. The proof56

is given at the end of this section.57

Theorem 1. MD(L{q, m}) is given by

MD(L{q, m}) =
pq,m(q− pq,m)

qm2 ,

where pq,m = min{m, b q
2c}.58
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Before proving Theorem 1, we define a dense subset Hq−1
m of Sq−1 and a function φ(m) : Hq−1

m →
L{q, m}. Let

Hq−1
m = {x ∈ Sq−1 : mxi − bmxic, i = 1, . . . , q are all distinct}.

Note that Hq−1
m is a dense subset of Sq−1 and can also be expressed as

Hq−1
m =

{
x ∈ Rq

+ : x =
( k1

m
, . . . ,

kq

m
)
,

q

∑
i=1

ki = m, k1, . . . , kq have all different fractional parts
}

.

For x ∈ Hq−1
m and 0 ≤ r ≤ 1

m , let

s(m)
r (x) =

q

∑
i=1

bm(xi + r)c
m

.

Then s(m)
r (x) is nondecreasing in r, piecewise constant in r with jump sizes being all 1

m , and
right-continuous in r. Also,

s(m)
0 (x) =

∑
q
i=1bmxic

m
≤

q

∑
i=1

xi ≤
∑

q
i=1bmxi + 1c

m
= s(m)

1
m

(x).

Since s(m)
0 (x) ≤ 1 ≤ s(m)

1
m

(x), there exists r∗ ∈ [0, 1
m ] such that s(m)

r∗ (x) = 1. For x ∈ Hq−1
m , define

φ
(m)
i (x) =

bm(xi + r∗)c
m

, i = 1, . . . , q,

and φ(m)(x) = (φ
(m)
1 (x), . . . , φ

(m)
q (x)). Note that φ

(m)
i (x), i = 1, . . . , q, is well-defined. This can be

verified as follows: If s(m)
r1 (x) = s(m)

r2 (x) = 1 and 0 ≤ r1 ≤ r2 ≤ 1
m , then bm(xi+r1)c

m ≤ bm(xi+r2)c
m , and

q

∑
i=1

bm(xi + r1)c
m

= s(m)
r1 (x) = 1 = s(m)

r2 (x) =
q

∑
i=1

bm(xi + r2)c
m

.

Therefore, bm(xi+r1)c
m = bm(xi+r2)c

m , i = 1, . . . , q.59

The following lemma shows that for x ∈ Hq−1
m , φ(m)(x) is the nearest point in Sq−1 from x.60

Although this lemma is not directly used in the proof of Theorem 1, it is included for completeness.61

Lemma 1. For x ∈ Hq−1
m ,

d(x, φ(m)(x)) = d(x,L{q, m}).

Proof. Let y be a point in L{q, m} such that d(x, y) = d(x,L{q, m}). First, we show

xi −
bmxic

m
< xj −

bmxjc
m

if xi > yi and xj < yj. (3)

Suppose xi > yi, xj < yj and xi − bmxic
m > xj −

bmxjc
m . Let

ỹk =


yi +

1
m if k = i,

yj − 1
m if k = j,

yk if k 6= i, k 6= j.

Then, ỹ ∈ L{q, m} and d(x, y) > d(x, ỹ), which is a contradiction. Hence, (3) is proved.62
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Next, we show

|xi − yi| <
1
m

, i = 1, . . . , q. (4)

If xi ≤ yi − 1
m for some i, then we can choose j such that xj > yj. Let

y′k =


yi − 1

m if k = i,
yj +

1
m if k = j,

yk if k 6= i, k 6= j.

Then, y′ ∈ L{q, m} and d(x, y) > d(x, y′), which is a contradiction. Hence, we have xi > yi − 1
m for63

all i. Similarly, we can show xi < yi +
1
m for all i. Therefore, (4) is proved. By (3) and (4), there exists64

r ∈ [0, 1
m ] such that y = s(m)

r (x). Since φ(m)(x) is well-defined, we have y = φ(m)(x).65

To prove Theorem 1, we need the following two lemmas. The first lemma is used in the proof of66

the second lemma. The second lemma is used in the proof of Theorem 1.67

Lemma 2. For l = 1, . . . , q− 1, let

Dl = {x ∈ Rq : x1 ≥ 0, . . . , xl ≥ 0, xl+1 ≤ 0, . . . , xq ≤ 0,
q

∑
i=1

xi = 0, max
1≤i≤q

xi − min
1≤i≤q

xi ≤ 1}.

Then maxx∈Dl ‖x‖2= l(q−l)
q .68

Proof. Note that Dl is convex and compact. Since ‖ x ‖2 is a convex function of x, there exists an
extreme point x∗ of Dl such that maxx∈Dl ‖x‖2=‖x∗ ‖2. If y = (y1, . . . , yq) is a nonzero extreme point
of Dl , then (i) yi = 0 or max

1≤j≤l
yj for all i = 1, . . . , l, (ii) yi = 0 or min

l+1≤j≤q
yj for all i = l + 1, . . . , q, and

(iii) max1≤i≤q xi −min1≤i≤q xi = 1. Suppose that y is a nonzero extreme point of Dl . Let l1 be the
number of positive components of y and let l2 be the number of negative components of y. Then
max
1≤j≤q

yj =
l2

l1+l2
and min

1≤j≤q
yj =

−l1
l1+l2

. Hence,

‖y‖2=
l1l2

l1 + l2
≤ l(q− l)

q
.

Note that x∗ =
(

1− l
q

, . . . , 1− l
q︸ ︷︷ ︸

l-tuple

,
l
q

, . . . ,
l
q︸ ︷︷ ︸

(q−l)-tuple

)
is an extreme point with ‖x∗ ‖2= l(q−l)

q . Therefore,69

maxx∈Dl ‖x‖2=‖x∗ ‖2= l(q−l)
q , which completes the proof.70

Lemma 3. For x ∈ Hq−1
m ,

d2(x, φ(m)(x)) ≤
pq,m(q− pq,m)

qm2 .

Proof. For x ∈ Hq−1
m , let y = m(x− φ(m)(x)). Since ∑

q
i=1 yi = 0 and max

1≤i≤q
yi − min

1≤i≤q
yi ≤ 1, there exists

a permutation π = (π1, . . . , πq) on {1, . . . , q} such that (yπ1 , . . . , yπq) ∈ Dl , where l is the number of
i’s with yi > 0. By Lemma 2,

d2(x, φ(m)(x)) =
1

m2 ‖y‖2≤ l(q− l)
qm2 . (5)
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Note that φ
(m)
i (x) = bm(xi+r∗)c

m for some r∗ ∈ [0, 1
m ]. Since ∑

q
i=1bm(xi + r∗)c = m, we have l =71

∑
q
i=1(bm(xi + r∗)c − bmxic) ≤ m. Hence, l(q− l) ≤ pq,m(q− pq,m). Therefore, (5) implies the assertion72

of the lemma.73

Now, we can prove Theorem 1.74

Proof of Theorem 1. By Lemma 3, if x ∈ Hq−1
m , then

d2(x,L{q, m}) ≤ d2(x, φ(m)(x)) ≤
pq,m(q− pq,m)

qm2 .

Since Hq−1
m is dense in Sq−1 and d2(x,L{q, m}) is continuous in x on Sq−1,

MD(L{q, m}) = sup
x∈Sq−1

d2(x,L{q, m}) = sup
x∈Hq−1

m

d2(x,L{q, m}) ≤
pq,m(q− pq,m)

qm2 .

For simplicity, we will write pq,m as p for the remainder of this proof. Let x0 = ( 1
q , . . . , 1

q ). Then there

exists (k1, . . . , kq) ∈ Zq
+ with ∑

q
i=1 ki = m such that

d2
(m− p

m
e1 +

p
m

x0,L{q, m}
)
= d2

(m− p
m

e1 +
p
m

x0,
( k1

m
, . . . ,

kq

m
))

.

Here and subsequently, ei is the q-dimensional vector whose ith element is one and all the other75

elements are zero.76

Let z = (z1, . . . , zq) = ( k1
m , . . . , kq

m )− m−p
m e1. We will show

0 ≤ zi ≤
1
m

for all i = 1, . . . , q. (6)

Since zi ≥ 0 for all i = 2, . . . , q, we first show z1 ≥ 0. If z1 < 0, then k1 < m− p. Hence, ∑
q
l=2 kl =

m− k1 > p. Thus, there exists j such that k j ≥ 1, i.e., zj ≥ 1
m . Then,

d2
(m− p

m
e1 +

p
m

x0,
( k1

m
, . . . ,

kq

m
))
− d2

(m− p
m

e1 +
p
m

x0,
( k1 + 1

m
,

k2

m
, . . . ,

k j − 1
m

, . . . ,
kq

m
))

=
(

z1 −
p

mq

)2
+
(

zj −
p

mq

)2
−
[(

z1 +
1
m
− p

mq

)2
+
(

zj −
1
m
− p

mq

)2]
=

2
m

(
zj − z1 −

1
m

)
> 0,

which is a contradiction. Therefore, z1 ≥ 0. Next, we show zi ≤ 1
m for all i = 1, . . . , q. If zj ≥ 1

m for
all j, then ∑

q
l=1 zl ≥ 1

m q > 1
m p, which is a contradiction to ∑

q
l=1 zl =

p
m . Therefore, zj <

1
m for some j.

Suppose zi >
1
m for some i. Then

d2
(m− p

m
e1 +

p
m

x0,
( k1

m
, . . . ,

kq

m
))
− d2

(m− p
m

e1 +
p
m

x0,
( k1

m
, . . . ,

ki − 1
m

, . . . ,
k j + 1

m
, . . . ,

kq

m
))

=
(

zi −
p

mq

)2
+
(

zj −
p

mq

)2
−
[(

zi −
1
m
− p

mq

)2
+
(

zj +
1
m
− p

mq

)2]
=

2
m

(
zi − zj −

1
m

)
. (7)

Since zi >
1
m , zj <

1
m and mzi and mzj are integers, we have zi ≥ 2

m and zj ≤ 0. Thus, the right-hand77

side of (7) is strictly positive, which is a contradiction. Hence, zi ≤ 1
m for all i = 1, . . . , q. Therefore, (6)78

is proved.79
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Since mzi, i = 1, . . . , q are integers, (6) implies that zi = 0 or 1
m for all i = 1, . . . , q. Since

∑
q
i=1 zi =

p
m , zi = 0 for q− p i’s and zi =

1
m for p i’s. Thus,

d2
(m− p

m
e1 +

p
m

x0,L{q, m}
)
=

q

∑
i=1

(
zi −

p
mq

)2

= p
( 1

m
− p

mq

)2
+ (q− p)

( p
mq

)2

=
p(q− p)

qm2 .

Therefore, MD(L{q, m}) = p(q−p)
qm2 .80

4. Derivation for the formula of MD(Z(L{q, m}, x0, λ))81

In this section, we derive the formula for MD(Z(L{q, m}, x0, λ)), the maximum distance between
any point x in Sq−1 and the design point of Z(L{q, m}, x0, λ) nearest to x. Note that

MD(Z(L{q, m}, x0, λ)) = max{gλ(q, m), hλ(q, m)}, (8)

where

gλ(q, m) = sup
x∈Z(Sq−1,x0,λ)

d2(x,Z(L{q, m}, x0, λ)),

hλ(q, m) = sup
x∈Sq−1\Z(Sq−1,x0,λ)

d2(x,Z(L{q, m}, x0, λ)).

Hence, in order to obtain the formula for MD(Z(L{q, m}, x0, λ)), we have to find the expressions for82

gλ(q, m) and hλ(q, m). To do this, we need the following three lemmas. The first lemma is for gλ(q, m),83

while the other two lemmas are for hλ(q, m).84

Lemma 4. We have

gλ(q, m) =
( λ

1 + λ

)2 pq,m(q− pq,m)

qm2 , m ≥ 1, q ≥ 1.

Proof. Note that

gλ(q, m) = sup
x∈Z(Sq−1,x0,λ)

d2(x,Z(L{q, m}, x0, λ)) =
( λ

1 + λ

)2
sup

x∈Sq−1
d2(x,L{q, m}).

Since sup
x∈Sq−1

d2(x,L{q, m}) = MD(L{q, m}), we obtain the lemma by Theorem 1.85

Lemma 5. Let Sq−1
0 = {x ∈ Sq−1 : xq = 0}. Then,

hλ(q, m) = sup
x∈Sq−1

0

d2(x,Z(L{q, m}, x0, λ)).

Proof. Let x ∈ Sq−1 \ Z(Sq−1, x0, λ). We will show that there exists x̃ ∈ Sq−1
0 such that

d(x,Z(L(q, m), x0, λ)) ≤ d(x̃,Z(L(q, m), x0, λ)). (9)
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Since x ∈ Sq−1 \ Z(Sq−1, x0, λ), xi <
1

1+λ
1
q for some i. Without loss of generality, we may assume

xq < 1
1+λ

1
q . Let

x̃ = x +
qxq

q− 1
(x0 − eq).

Then, x̃ ∈ Sq−1
0 . For any y ∈ Z(L(q, m), x0, λ),

‖ x̃− y‖2=‖x− y‖2 +
2qxq

q− 1
(x− y) · (x0 − eq) +

( qxq

q− 1

)2
‖x0 − eq ‖2 . (10)

Since the qth component of x− y +
q(xq−yq)

q−1 (x0 − eq) is zero and the sum of all components is also zero,
we have

(x− y +
q(xq − yq)

q− 1
(x0 − eq)) · (x0 − eq) = 0.

Therefore,

(x− y) · (x0 − eq) =
−q(xq − yq)

q− 1
‖x0 − eq ‖2 .

Since y ∈ Z(L(q, m), x0, λ), yq ≥ 1
1+λ

1
q . Thus, yq > xq and so (x− y) · (x0 − eq) > 0. Hence, (10)86

yields ‖ x̃− y‖2≥‖x− y‖2, and (9) is obtained.87

Lemma 6. We have

hλ(q, m) = max
1≤l≤q−1

{( λ

1 + λ

)2 1
m2

pl,m(l − pl,m)

l
+

q− l
(1 + λ)2ql

}
, m ≥ 1, q ≥ 2.

Proof. First, we prove by induction on q that

hλ(q, m) ≤ max
1≤l≤q−1

{( λ

1 + λ

)2 1
m2

pl,m(l − pl,m)

l
+

q− l
(1 + λ)2ql

}
, m ≥ 1, q ≥ 2. (11)

For q = 2,

hλ(2, m) = min
0≤k≤m

{∣∣∣∣∣∣(1, 0)−
( λ

λ + 1
( k

m
,

m− k
m

)
+

1
λ + 1

(1
2

,
1
2
))∣∣∣∣∣∣2}

=
∣∣∣∣∣∣(1, 0)−

( λ

λ + 1
+

1
2

1
λ + 1

,
1
2

1
λ + 1

)∣∣∣∣∣∣2
=

1
2(λ + 1)2 .

Since the right-hand side of (11) for q = 2 is 1
2(λ+1)2 , (11) holds for q = 2. Consider q ≥ 3. Suppose that

hλ(q′, m) ≤ max
1≤l≤q′−1

{( λ

1 + λ

)2 1
m2

pl,m(l − pl,m)

l
+

q′ − l
(1 + λ)2q′l

}

holds for q′ < q. Let x ∈ Sq−1
0 be arbitrary. The proof of (11) is complete if we show

d2(x,Z(L{q, m}, x0, λ)) ≤ max
1≤l≤q−1

{( λ

1 + λ

)2 1
m2

pl,m(l − pl,m)

l
+

q− l
(1 + λ)2ql

}
, (12)
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by Lemma 5. Let l be the number of j’s such that xj >
1

1+λ
1
q . If l = 0, then ∑

q
j=1 xj ≤ ∑

q
j=1

1
1+λ

1
q < 1,

which is a contradiction. Hence, l ≥ 1. Also, l ≤ q− 1, since xq = 0. Hence, 1 ≤ l ≤ q− 1. Without
loss of generality, we assume

xj >
1

1 + λ

1
q

, j = 1, . . . , l,

xj ≤
1

1 + λ

1
q

, j = l + 1, . . . , q.

Let Ll{q, m} = {y ∈ L{q, m} : yl+1 = · · · = yq = 0}. Note that if y ∈ Ll{q, m}, then
y = (y1, . . . , yl , 0q−l), where (y1, . . . , yl) ∈ L{l, m}. Here and subsequently, 0k and 1k denote the
k-dimensional vectors with all components equal to 0 and 1, respectively. Then,

d2(x,Z(L{q, m}, x0, λ)) = min
y∈L{q,m}

d2
(

x,
λ

λ + 1
y +

1
λ + 1

x0

)
≤ min

y∈Ll{q,m}
d2
(

x,
λ

λ + 1
y +

1
λ + 1

x0

)
= min

z∈L{l,m}
d2
(

x,
λ

λ + 1
(z, 0q−l) +

1
λ + 1

x0

)
= min

z∈L{l,m}

{
l

∑
j=1

((
xj −

1
λ + 1

1
q
)
− λ

λ + 1
zj

)2
+

q

∑
j=l+1

(
xj −

1
λ + 1

1
q

)2
}

=
q

∑
j=l+1

(
xj −

1
λ + 1

1
q

)2
+ min

z∈L{l,m}

∣∣∣∣∣∣x′ − λ

λ + 1
z
∣∣∣∣∣∣2, (13)

where x′ = (x1, . . . , xl)− 1
λ+1

1
q 1l . Note that x′ ≥ 0l , where the inequality between the vectors must be

interpreted componentwise. Let

l

∑
j=1

x′j = 1−
q

∑
j=l+1

xj −
1

λ + 1
l
q
≡ a. (14)

Then, (13) becomes

d2(x,Z(L{q, m}, x0, λ)) ≤
q

∑
j=l+1

(
xj −

1
λ + 1

1
q

)2
+ a2 min

z∈L{l,m}

∣∣∣∣∣∣1
a

x′ − λ

a(λ + 1)
z
∣∣∣∣∣∣2. (15)

Note that a > λ
λ+1 , ∑l

j=1
1
a x′j = 1 and ∑l

j=1
λ

a(λ+1) zj =
λ

a(λ+1) < 1. We investigate
∣∣∣∣∣∣ 1

a x′ − λ
a(λ+1)z

∣∣∣∣∣∣2 in

(15). If xl
0 = ( 1

l , . . . , 1
l ), then

∣∣∣∣∣∣1
a

x′ − λ

a(λ + 1)
z
∣∣∣∣∣∣2 =

∣∣∣∣∣∣1
a

x′ −
( λ

a(λ + 1)
z +

a(λ + 1)− λ

a(λ + 1)
xl

0

)
+

a(λ + 1)− λ

a(λ + 1)
xl

0

∣∣∣∣∣∣2
=
∣∣∣∣∣∣1

a
x′ −

( λ

a(λ + 1)
z +

a(λ + 1)− λ

a(λ + 1)
xl

0

)∣∣∣∣∣∣2 + ( a(λ + 1)− λ

a(λ + 1)

)2 1
l

.
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If we substitute this into (15), then we obtain

d2(x,Z(L{q, m}, x0, λ))

≤
q

∑
j=l+1

(
xj −

1
λ + 1

1
q

)2
+
( a(λ + 1)− λ

λ + 1

)2 1
l
+ a2 min

w∈Z(L{l,m},xl
0,λ′)

∣∣∣∣∣∣1
a

x′ −w
∣∣∣∣∣∣2

≤
q

∑
j=l+1

(
xj −

1
λ + 1

1
q

)2
+
( a(λ + 1)− λ

λ + 1

)2 1
l
+ a2 max{gλ′(l, m), hλ′(l, m)}, (16)

where λ′ satisfies a(λ+1)−λ
a(λ+1) = 1

λ′+1 , i.e., λ′ = λ
a(λ+1)−λ

and the last inequality follows from (8).

Now, we get an upper bound of the right-hand side of (16). Note that a ≤ 1− 1
λ+1

l
q by (14) and

0 ≤ 1
λ+1

1
q − xj ≤ 1

λ+1
1
q for j = l + 1, . . . , q. Hence,

q

∑
j=l+1

(
xj −

1
λ + 1

1
q

)2
+
( a(λ + 1)− λ

λ + 1

)2 1
l
+ a2gλ′(l, m)

=
q

∑
j=l+1

(
xj −

1
λ + 1

1
q

)2
+
( a(λ + 1)− λ

λ + 1

)2 1
l
+
( aλ′

1 + λ′

)2 pl,m(l − pl,m)

m2l

=
q

∑
j=l+1

(
xj −

1
λ + 1

1
q

)2
+
( a(λ + 1)− λ

λ + 1

)2 1
l
+
( λ

λ + 1

)2 pl,m(l − pl,m)

m2l

≤ q− l
(λ + 1)2q2 +

( q− l
q(λ + 1)

)2 1
l
+
( λ

λ + 1

)2 pl,m(l − pl,m)

lm2

=
q− l

(λ + 1)2ql
+
( λ

λ + 1

)2 pl,m(l − pl,m)

lm2 . (17)

On the other hand,

q

∑
j=l+1

(
xj −

1
λ + 1

1
q

)2
+
( a(λ + 1)− λ

λ + 1

)2 1
l
+ a2hλ′(l, m)

=
q

∑
j=l+1

(
xj −

1
λ + 1

1
q

)2
+
( a(λ + 1)− λ

λ + 1

)2 1
l

+ a2 max
1≤l′≤l−1

{( λ′

1 + λ′

)2 1
m2

pl′ ,m(l′ − pl′ ,m)

l′
+

1
(λ′ + 1)2

l − l′

ll′

}

=
q

∑
j=l+1

(
xj −

1
λ + 1

1
q

)2
+
( a(λ + 1)− λ

λ + 1

)2 1
l

+ max
1≤l′≤l−1

{( λ

λ + 1

)2 1
m2

pl′ ,m(l′ − pl′ ,m)

l′
+
( a(λ + 1)− λ

λ + 1

)2 l − l′

ll′

}
,
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where the first equality follows from the induction hypothesis. Since a ≤ 1− 1
λ+1

l
q and 0 ≤ 1

λ+1
1
q −

xj ≤ 1
λ+1

1
q for j = l + 1, . . . , q, we obtain

q

∑
j=l+1

(
xj −

1
λ + 1

1
q

)2
+
( a(λ + 1)− λ

λ + 1

)2 1
l
+ a2hλ′(l, m)

≤ q− l
(λ + 1)2q2 +

( q− l
q(λ + 1)

)2 1
l
+ max

1≤l′≤l−1

{( λ

λ + 1

)2 1
m2

pl′ ,m(l′ − pl′ ,m)

l′
+
( q− l

q(λ + 1)

)2 l − l′

ll′

}

=
q− l

(λ + 1)2ql
+ max

1≤l′≤l−1

{( λ

λ + 1

)2 1
m2

pl′ ,m(l′ − pl′ ,m)

l′
+
( q− l

q(λ + 1)

)2 l − l′

ll′

}

= max
1≤l′≤l−1

{( λ

λ + 1

)2 1
m2

pl′ ,m(l′ − pl′ ,m)

l′
+

q− l
(λ + 1)2ql

+
(q− l)2(l − l′)
q2(λ + 1)2ll′

}
. (18)

It can be easily checked that

q− l
(λ + 1)2ql

+
(q− l)2(l − l′)
q2(λ + 1)2ll′

<
q− l′

(1 + λ)2ql′
.

Hence, (18) becomes

q

∑
j=l+1

(
xj −

1
λ + 1

1
q

)2
+
( a(λ + 1)− λ

λ + 1

)2 1
l
+ a2hλ′(l, m)

< max
1≤l′≤l−1

{( λ

λ + 1

)2 1
m2

pl′ ,m(l′ − pl′ ,m)

l′
+

q− l′

(1 + λ)2ql′

}
. (19)

By (17) and (19), (16) becomes

d2(x,Z(L{q, m}, x0, λ)) ≤ max
1≤l′≤l

{( λ

λ + 1

)2 1
m2

pl′ ,m(l′ − pl′ ,m)

l′
+

q− l′

(1 + λ)2ql′

}
.

Therefore, (12) holds and so (11) is proved.88

Next, we prove

hλ(q, m) ≥ max
1≤l≤q−1

{( λ

1 + λ

)2 1
m2

pl,m(l − pl,m)

l
+

q− l
(1 + λ)2ql

}
, m ≥ 1, q ≥ 2. (20)

Suppose m ≥ 1 and q ≥ 2. For l = 1, 2, . . . , q− 1, we will show

hλ(q, m) ≥
( λ

1 + λ

)2 1
m2

pl,m(l − pl,m)

l
+

q− l
(1 + λ)2ql

.

Let x = (x1, . . . , xq), where

xi =


λ

1+λ

(m−pl,m
m +

pl,m
m

1
l
)
+ 1

1+λ
1
l if i = 1,

λ
1+λ

pl,m
m

1
l +

1
1+λ

1
l if i = 2, . . . , l,

0 if i = l + 1, . . . , q.
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If y ∈ L{q, m} and yj > 0 for some j ∈ {l + 1, . . . , q}, then there exists i ∈ {1, . . . , l} such that xi > yi.
Let

y′k =


yi +

1
m if k = i,

yj − 1
m if k = j,

yk if k 6= i, k 6= j.

Then d2(x, y) > d2(x, y′). Hence,

d2(x,Z(L{q, m}, x0, λ)) = min
y∈L{q,m}

d2
(

x,
λ

1 + λ
y +

1
1 + λ

x0

)
= min

y∈Ll{q,m}
d2
(

x,
λ

1 + λ
y +

1
1 + λ

x0

)
= min

y∈Ll{q,m}

l

∑
j=1

(
xj −

λ

1 + λ
yj −

1
1 + λ

1
q

)2
+

q− l
(1 + λ)2q2

= min
y′∈L{l,m}

∣∣∣∣∣∣x′ − ( λ

1 + λ
y′ +

1
1 + λ

1
q

1l

)∣∣∣∣∣∣2 + q− l
(1 + λ)2q2 , (21)

where x′ = (x1, . . . , xl). Let xl
0 = 1

l 1l . Then,

min
y′∈L{l,m}

∣∣∣∣∣∣x′ − ( λ

1 + λ
y′ +

1
1 + λ

1
q

1l

)∣∣∣∣∣∣2 + q− l
(1 + λ)2q2

= min
y′∈L{l,m}

∣∣∣∣∣∣x′ − ( λ

1 + λ
y′ +

1
1 + λ

xl
0 −

1
1 + λ

q− l
lq

1l

)∣∣∣∣∣∣2 + q− l
(1 + λ)2q2

= min
y′∈L{l,m}

∣∣∣∣∣∣x′ − ( λ

1 + λ
y′ +

1
1 + λ

xl
0

)∣∣∣∣∣∣2 + (q− l)2

(1 + λ)2lq2 +
q− l

(1 + λ)2q2

=
( λ

1 + λ

)2
min

y′∈L{l,m}
‖x′′ − y′ ‖2 +

q− l
(1 + λ)2ql

, (22)

where x′′ = (x′′1 , . . . , x′′l ) with

x′′i =

{
m−pl,m

m +
pl,m
m

1
l if i = 1,

pl,m
m

1
l if i = 2, . . . , l.

Hence, by (21) and (22), we have

d2(x,Z(L{q, m}, x0, λ)) =
( λ

1 + λ

)2
min

y′∈L{l,m}
‖x′′ − y′ ‖2 +

q− l
(1 + λ)2ql

. (23)

If z ∈ L{l, m} and zj ≥ 2
m for some j = 2, . . . , l, then

min
y′∈L{l,m}

‖x′′ − y′ ‖2<‖x′′ − z ‖2 . (24)

This can be proved as follows: Since zj ≥ 2
m for some j = 2, . . . , l, there are two cases to consider: (i)

zj ≥ 2
m for some j = 2, . . . , l and zk = 0 for some k = 2, . . . , l, and (ii) zj ≥ 2

m for some j = 2, . . . , l and
zk ≥ 1

m for all k = 2, . . . , l. In case (i), if we let

z′i =


zj − 1

m if i = j,
zk +

1
m if i = k,

zi if i 6= j, i 6= k,
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then ‖x′′ − z‖2>‖x′′ − z′ ‖2. In case (ii), z1 = 1−∑l
i=2 zi ≤ 1− l

m < x′′1 and if we let

z′′i =


z1 +

1
m if i = 1,

zj − 1
m if i = j,

zi if i 6= 1, i 6= j,

then ‖x′′ − z‖2>‖x′′ − z′′ ‖2. Hence, (24) holds if zj ≥ 2
m for some j = 2, . . . , l. Therefore, (23) becomes

d2(x,Z(L{q, m}, x0, λ)) =
( λ

1 + λ

)2
min

y∈L∗{l,m}
‖x′′ − y‖2 +

q− l
(1 + λ)2ql

, (25)

where L∗{l, m} = {y ∈ L{l, m} : yj = 0 or 1
m for all j = 2, . . . , l}. For y ∈ L∗{l, m}, let l′ be the

number of j’s such that yj =
1
m , j = 2, . . . , l. Then y1 = 1− l′

m and

‖x′′ − y‖2=
((m− pl,m

m
+

pl,m

m
1
l
)
−
(
1− l′

m
))2

+
( pl,m

m
1
l
− 1

m

)2
l′ +

( pl,m

m
1
l

)2
(l − l′ − 1).

Hence,

min
y∈L∗{l,m}

‖x′′ − y‖2 = min
0≤l′≤l−1

{( l′ +
( 1

l − 1
)

pl,m

m

)2
+
( pl,m

m
1
l
− 1

m

)2
l′ +

( pl,m

m
1
l

)2
(l − l′ − 1)

}

=
( pl,m

ml

)2
+
( pl,m

ml
− 1

m

)2
pl,m +

( pl,m

ml

)2
(l − pl,m − 1)

=
pl,m(l − pl,m)

m2l
,

where the second equality follows from the fact that the function in the braces takes the minimum at
l′ = pl,m. Hence, by (25), we obtain

d2(x,Z(L{q, m}, x0, λ)) =
( λ

1 + λ

)2 pl,m(l − pl,m)

m2l
+

q− l
(1 + λ)2ql

.

Therefore, (20) is proved. By (11) and (20), we complete the proof.89

In summary, (8) together with Lemmas 4 and 6 give the formula for MD(Z(L{q, m}, x0, λ)), as90

shown below in Theorem 2.91

Theorem 2. MD(Z(L{q, m}, x0, λ)) is given by

MD(Z(L{q, m}, x0, λ)) = max{gλ(q, m), hλ(q, m)},

where

gλ(q, m) =
( λ

1 + λ

)2 pq,m(q− pq,m)

qm2 , m ≥ 1, q ≥ 1,

hλ(q, m) = max
1≤l≤q−1

{( λ

1 + λ

)2 1
m2

pl,m(l − pl,m)

l
+

q− l
(1 + λ)2ql

}
, m ≥ 1, q ≥ 2.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 20 August 2020                   

Peer-reviewed version available at Symmetry 2020, 12, 1427; doi:10.3390/sym12091427

https://doi.org/10.3390/sym12091427


5. Refinement of the conjecture92

In this section, we refine Conjecture 1 by using the formulas for MD(L{q, m}) and
MD(Z(L{q, m}, x0, λ)) given in Theorem 1 and Theorem 2, respectively. For convenience, we repeat
the theorems here:

MD(L{q, m}) =
pq,m(q− pq,m)

qm2 ,

MD(Z(L{q, m}, x0, λ)) = max{gλ(q, m), hλ(q, m)},

where

gλ(q, m) =
( λ

1 + λ

)2 pq,m(q− pq,m)

qm2 , m ≥ 1, q ≥ 1,

hλ(q, m) = max
1≤l≤q−1

{( λ

1 + λ

)2 pl,m(l − pl,m)

m2l
+

1
(1 + λ)2

(1
l
− 1

q

)}
, m ≥ 1, q ≥ 2,

with pq,m = min{m, b q
2c}.93

Let

h(l)λ (q, m) =
( λ

1 + λ

)2 pl,m(l − pl,m)

m2l
+

1
(1 + λ)2

(1
l
− 1

q

)
.

Then, for 1 ≤ l ≤ min{2m, q− 1},

h(l)λ (q, m) =



(
λ

1+λ

)2
l

4m2 +
1

(1+λ)2

(
1
l −

1
q

)
if l is even and l < 2m,(

λ
1+λ

)2
l2−1
4m2l +

1
(1+λ)2

(
1
l −

1
q

)
if l is odd and l < 2m,(

λ
1+λ

)2
l−m
ml + 1

(1+λ)2

(
1
l −

1
q

)
if l ≥ 2m.

Note that hλ(q, m) = max1≤l≤q−1 h(l)λ (q, m). The following lemma gives another expression for94

hλ(q, m), which will be used in the proof of Theorem 3.95

Lemma 7. If q ≥ 3 and m√pq,m
≤ λ ≤ m, then

hλ(q, m) = max{h(1)λ (q, m), h(q−1)
λ (q, m)}.

Proof. We divide the proof into two cases: 2m ≤ q− 1 and 2m > q− 1. First, we consider the case of
2m ≤ q− 1. Note that

max{h(l)λ (q, m) : 1 ≤ l ≤ 2m, l is even} = max{h(2)λ (q, m), h(2m)
λ (q, m)},

max{h(l)λ (q, m) : 1 ≤ l ≤ 2m, l is odd} = max{h(1)λ (q, m), h(2m−1)
λ (q, m)}.

Hence,

max
1≤l≤2m

h(l)λ (q, m) = max{h(1)λ (q, m), h(2)λ (q, m), h(2m−1)
λ (q, m), h(2m)

λ (q, m)}.
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Note that h(1)λ (q, m) = 1
(1+λ)2

(
1− 1

q
)

and h(2)λ (q, m) = 1
(1+λ)2

( 1
2
(

λ
m
)2

+ 1
2 −

1
q
)
. Since λ ≤ m, we have

h(1)λ (q, m) ≥ h(2)λ (q, m). Thus,

max
1≤l≤2m

h(l)λ (q, m) = max{h(1)λ (q, m), h(2m−1)
λ (q, m), h(2m)

λ (q, m)}.

Since pq,m = m, λ ≥
√

m. Then,

h(2m)
λ (q, m)− h(2m−1)

λ (q, m) =
1

(λ + 1)2

(( λ

m

)2(m
2
− m(m− 1)

2m− 1

)
+

1
2m
− 1

2m− 1

)
≥ 1

(λ + 1)2

(1
2
− m− 1

2m− 1
+

1
2m
− 1

2m− 1

)
> 0.

Hence

max
1≤l≤2m

h(l)λ (q, m) = max{h(1)λ (q, m), h(2m)
λ (q, m)}.

Note that for l = 2m, . . . , q− 1,

h(l)λ (q, m) =
( λ

1 + λ

)2 m(l −m)

m2l
+

1
(1 + λ)2

(1
l
− 1

q

)
= − 1

(1 + λ)2 (λ
2 − 1)

1
l
+
( λ

1 + λ

)2 1
m
− 1

(1 + λ)2q

is increasing in l. Hence

max
1≤l≤q−1

h(l)λ (q, m) = max{h(1)λ (q, m), h(q−1)
λ (q, m)},

which is the desired result.96

Next, we consider the case of 2m > q− 1. Note that

max{h(l)λ (q, m) : 1 ≤ l ≤ q− 1, l is even} =
{

max{h(2)λ (q, m), h(q−2)
λ (q, m)} if q is even,

max{h(2)λ (q, m), h(q−1)
λ (q, m)} if q is odd,

max{h(l)λ (q, m) : 1 ≤ l ≤ q− 1, l is odd} =
{

max{h(1)λ (q, m), h(q−1)
λ (q, m)} if q is even,

max{h(1)λ (q, m), h(q−2)
λ (q, m)} if q is odd.

Since h(1)λ (q, m) ≥ h(2)λ (q, m), we have

max
1≤l≤q−1

h(l)λ (q, m) = max{h(1)λ (q, m), h(q−2)
λ (q, m), h(q−1)

λ (q, m)}.

Note that

h(q−1)
λ (q, m)− h(q−2)

λ (q, m) =
1

(λ + 1)2

{( λ

m

)2( pq−1,m(q− 1− pq−1,m)

q− 1
−

pq−2,m(q− 2− pq−2,m)

q− 2

)}
− 1

(λ + 1)2

( 1
q− 1

− 1
q− 2

)
. (26)
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If q is even, then pq−1,m = q−2
2 and pq−2,m = q−2

2 . In this case, (26) becomes

h(q−1)
λ (q, m)− h(q−2)

λ (q, m) =
1

(λ + 1)2

{( λ

m

)2( (q− 2)q
4(q− 1)

− q− 2
4

)
− 1

q− 1
+

1
q− 2

}
≥ 1

(λ + 1)2

( q− 2
2(q− 1)

− q− 2
2q
− 1

q− 1
+

1
q− 2

)
> 0,

where the second inequality follows from λ
m ≥

1√pq,m
≥
√

2
q since λ ≥ m√pq,m

. If q is odd, then

pq−1,m = q−1
2 and pq−2,m = q−3

2 . In this case, (26) becomes

h(q−1)
λ (q, m)− h(q−2)

λ (q, m) =
1

(λ + 1)2

{( λ

m

)2( q− 1
4
− (q− 3)(q− 1)

4(q− 2)

)
− 1

q− 1
+

1
q− 2

}
≥ 1

(λ + 1)2

(1
2
− q− 3

2(q− 2)
− 1

q− 1
+

1
q− 2

)
> 0,

where the second inequality follows from λ
m ≥

1√pq,m
≥
√

2
q−1 since λ ≥ m√pq,m

. Hence

max
1≤l≤q−1

h(l)λ (q, m) = max{h(1)λ (q, m), h(q−1)
λ (q, m)},

which completes the proof.97

Finally, we have the following theorem, which is a refinement of Conjecture 1.98

Theorem 3. MD(Z(L{q, m}, x0, λ)) has a minimum at λ = λ∗, where λ∗ = m
√

q−1
pq,m(q−pq,m)

. Furthermore,

MD(Z(L{q, m}, x0, λ)) > MD(Z(L{q, m}, x0, λ∗)) for all λ ∈ [0, ∞) \ {λ∗}. (27)

Moreover,

min
λ∈[0,∞)

MD(Z(L{q, m}, x0, λ)) =
q− 1

q(1 + λ∗)2 (28)

Proof. When q = 2, gλ(2, m) =
(

λ
1+λ

)2 1
2m2 and hλ(2, m) = 1

2(1+λ)2 . Since gλ(2, m) is strictly increasing99

in λ and hλ(q, m) is strictly decreasing in λ, MD(Z(L{q, m}, x0, λ)) has a minimum at λ = m. Note100

that pq,m = 1 and λ∗ = m when q = 2. Thus, the theorem holds when q = 2.101

Assume q ≥ 3. By Lemma 7, for m√pq,m
≤ λ ≤ m,

MD(Z(L{q, m}, x0, λ)) = max{gλ(q, m), h(1)λ (q, m), h(q−1)
λ (q, m)}.

We will show that gλ(q, m) ≥ h(q−1)
λ (q, m) for m√pq,m

≤ λ ≤ m. Note that

gλ(q, m)− h(q−1)
λ (q, m) =

( λ

1 + λ

)2( pq,m(q− pq,m)

m2q
−

pq−1,m(q− 1− pq−1,m)

m2(q− 1)

)
+

1
(1 + λ)2

(1
q
− 1

q− 1

)
. (29)
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If m ≤ q−1
2 , then pq−1,m = m. In this case, (29) becomes

gλ(q, m)− h(q−1)
λ (q, m) =

( λ

1 + λ

)2 1
m

( q−m
q
− q− 1−m

q− 1

)
+

1
(1 + λ)2

(1
q
− 1

q− 1

)
=
( λ

1 + λ

)2 1
m

( 1
q− 1

− 1
q

)
− 1

(1 + λ)2

( 1
q− 1

− 1
q

)
≥ 0

since λ ≥ m√pq,m
=
√

m. Next, suppose m > q−1
2 . We divide the proof into two cases, according to

whether q is even or q is odd. If q is even, then pq,m = q
2 and pq−1,m = q−2

2 . In this case, (29) becomes

gλ(q, m)− h(q−1)
λ (q, m) =

1
(λ + 1)2

{( λ

m

)2( q
4
− (q− 2)q

4(q− 1)

)
+

1
q
− 1

q− 1

}
=

1
(λ + 1)2

{( λ

m

)2 q
4(q− 1)

+
1
q
− 1

q− 1

}
≥ 1

(λ + 1)2

( q
4pq,m(q− 1)

+
1
q
− 1

q− 1

)
=

1
(λ + 1)2

( 1
2(q− 1)

+
1
q
− 1

q− 1

)
> 0,

where the third inequality follows from λ
m ≥

1√pq,m
. If q is odd, then pq,m = pq−1,m = q−1

2 . In this case,
(29) becomes

gλ(q, m)− h(q−1)
λ (q, m) =

1
(λ + 1)2

{( λ

m

)2( q2 − 1
4q

− q− 1
4

)
+

1
q
− 1

q− 1

}
≥ 1

(λ + 1)2

( 2
q− 1

( q2 − 1
4q

− q− 1
4

)
+

1
q
− 1

q− 1

)
=

1
(λ + 1)2

( 1
2q

+
1
q
− 1

q− 1

)
> 0,

where the second inequality follows from λ
m ≥

1√pq,m
=
√

2
q−1 . Hence, for m√pq,m

≤ λ ≤ m, gλ(q, m) ≥

h(q−1)
λ (q, m). Therefore, for m√pq,m

≤ λ ≤ m,

MD(Z(L{q, m}, x0, λ)) = max{gλ(q, m), h(1)λ (q, m)}.

Since m√pq,m
≤ λ∗ = m

√
q−1

pq,m(q−pq,m)
and gλ∗(q, m) = h(1)λ∗ (q, m), we have

MD(Z(L{q, m}, x0, λ∗)) = gλ∗(q, m) = h(1)λ∗ (q, m).

Since gλ(q, m) is strictly increasing in λ,

MD(Z(L{q, m}, x0, λ)) ≥ gm(q, m) > gλ∗(q, m) = MD(Z(L{q, m}, x0, λ∗)) for all λ > λ∗.

Since h(1)λ (q, m) is strictly decreasing in λ,

MD(Z(L{q, m}, x0, λ)) ≥ h(1)λ (q, m) > hλ∗(q, m) = MD(Z(L{q, m}, x0, λ∗)) for all λ < λ∗.
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Therefore,

MD(Z(L{q, m}, x0, λ∗)) < MD(Z(L{q, m}, x0, λ)) for all λ 6= λ∗, 

which proves (27). Moreover,

MD(Z(L{q, m}, x0, λ∗)) = gλ∗(q, m) = h(1)λ∗ (q, m) =
q− 1

q(1 + λ∗)2 ,

which is (28).102

Remark 2. Conjecture 1(i) says that MD(Z(L{q, m}, x0, λ)) has a minimum at λ = m. Therefore,
Conjecture 1(i) is true when pq,m = 1, i.e., when either q ≤ 3 or m = 1. Conjecture 1(ii) says that

MD(Z(L{q, m}, x0, m)) = MD(L{q, m + 1}) = q− 1
q(m + 1)2 . (30)

However, note from our results that

MD(L{q, m + 1}) =
pq,m+1(q− pq,m+1)

q(m + 1)2 ,

MD(Z(L{q, m}, x0, m)) =
pq,m(q− pq,m)

q(1 + m)2 .

Hence, MD(Z(L{q, m}, x0, m)) = MD(L{q, m + 1}) if and only if pq,m = pq,m+1. That is, the first103

equality in (30) holds if and only if m ≥ b q
2c, i.e., q ≤ 2m + 1. Also, MD(L{q, m + 1}) = q−1

q(m+1)2 if and104

only if pq,m+1 = 1 if and only if q ≤ 3. Hence, the second equality in (30) holds if and only if q ≤ 3.105

Note that MD(Z(L{q, m}, x0, m)) = q−1
q(m+1)2 if and only if pq,m = 1 if and only if either q ≤ 3 or m = 1.106

Therefore, Conjecture 1(ii) is true only when q ≤ 3.107

6. Conclusions108

This paper is inspired by the conjecture, made by Li and Zhang [5], on the pseudo component109

transformation of the lattice points in the simplex. Specifically, they made the conjecture that the two110

maximum distances MD(L{q, m}) and MD(Z(L{q, m}, x0, λ)) have a special property. In general,111

it is difficult to calculate the maximum distance in most practical problems. We have derived the112

formulas for MD(L{q, m}) and MD(Z(L{q, m}, x0, λ)). By using these formulas, we have shown that113

the conjecture of Li and Zhang [5] is not true in general. Also, we have refined the conjecture of Li and114

Zhang [5] and have proved the refined conjecture.115
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