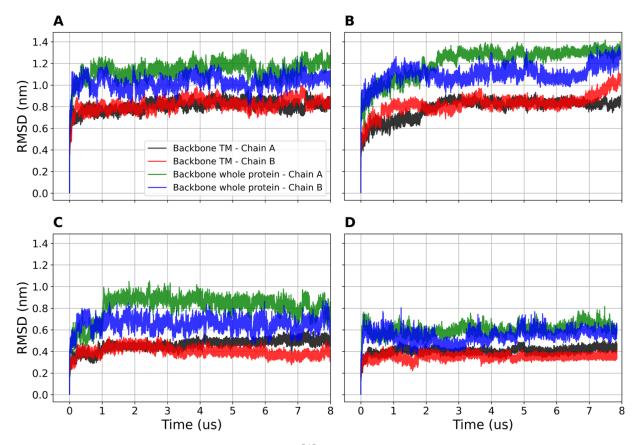
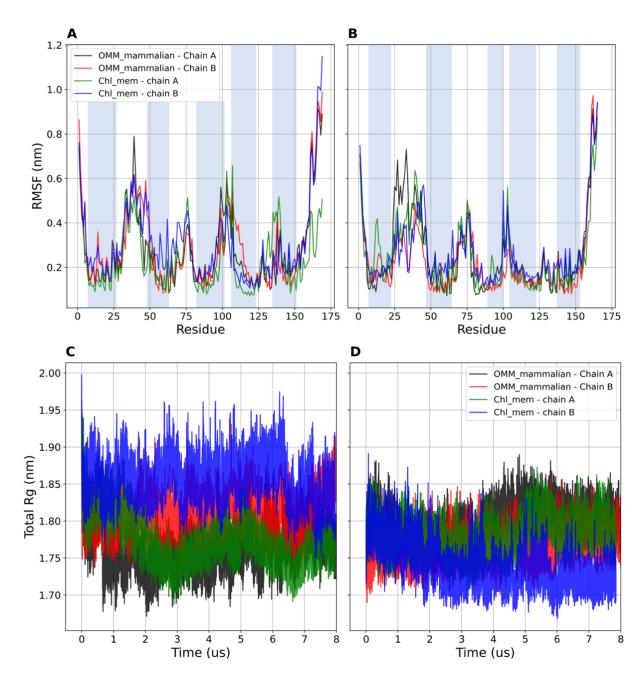
Impact of cholesterol on the stability of monomeric and dimeric forms of the translocator protein TSPO: a molecular simulation study

Zeineb Si Chaib^{1,2,*}, Alessandro Marchetto^{3,*}, Klevia Dishnica³, Paolo Carloni^{1,2,4}, Alejandro Giorgetti^{1,3,‡}, Giulia Rossetti^{1,5,6‡}


- ¹ Institute for Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations (IAS-5) "Computational biomedicine", Forschungszentrum Jülich, 52425 Jülich, Germany.
- ² Faculty of Mathematics, Computer Science and Natural Sciences, RWTH Aachen, 52425 Aachen, Germany
- ³ Department of Biotechnology, University of Verona, 37134 Verona, Italy
- Institute for Neuroscience and Medicine (INM-11)"Molecular Neuroscience and Neuroimaging", Forschungszentrum Jülich, 52425 Jülich
- ⁵ Jülich Supercomputing Center (JSC), Forschungszentrum Jülich, 52425 Jülich, Germany
- ⁶ Department of Oncology, Hematology, Oncology, Hemostaseology, and Stem Cell Transplantation University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany.
- # Correspondence: g.rossetti@fz-juelich.de (G.R), a.giorgetti@fz-juelich.de (A.G.)

Supporting Information


Table S1: Overview of the simulated systems.

Simulation	Protein Structure	Bilayer composition	Duration of the MD
mTSPO and mTSPO_mon	2MGY	OMM: 40% POPC, 38.9% SDPE, 14.2% SDPS, 5.9% SAPI, 0.8% CDL2, and CHOL, 10% of total phospholipids	8 μs
		Chl_memb: 31% POPC, 41% POPE and 28% CHOL.	8 μs
mTSPO(Rs) and mTSPO(Rs)_mon	Homology model based on 4UC1	OMM: 40% POPC, 38.9% SDPE, 14.2% SDPS, 5.9%, SAPI, 0.8% CDL2, and CHOL, 10% of total phospholipids)	8 μs
		Chl_memb: 31% POPC, 41% POPE and 28% CHOL.	8 μs
RsTSPO	4UC3	Rs_memb: 20% POPC, 50% POPE, 24% POPG, 6% CDL2	2 μs
		Chl_memb: 31% POPC, 41% POPE and 28% CHOL.	2 μs
<i>Bc</i> TSPO	4RYI	Bc_memb: 43%POPE, 40%POPG, 17% CDL2	2 μs
		Chl_memb: 31% POPC, 41% POPE and 28% CHOL.	2 μs

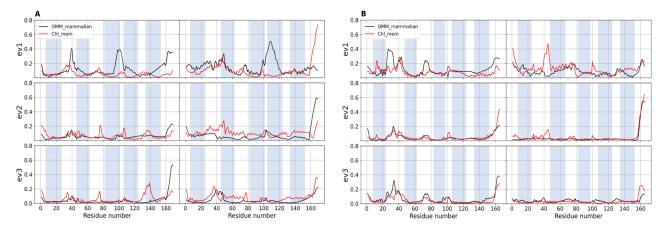
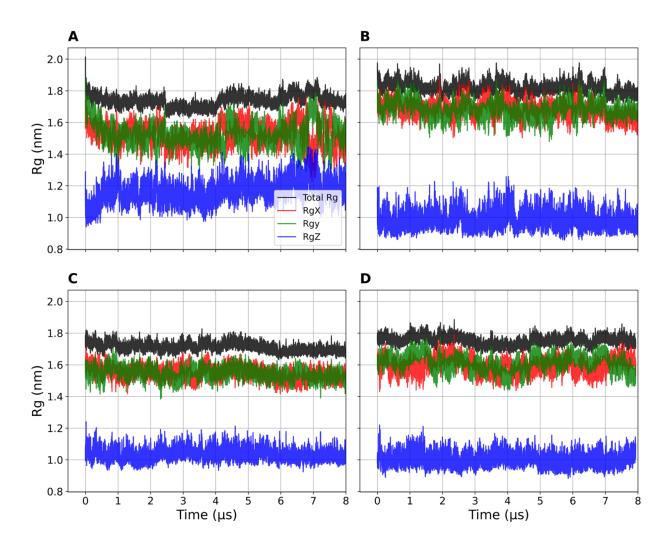
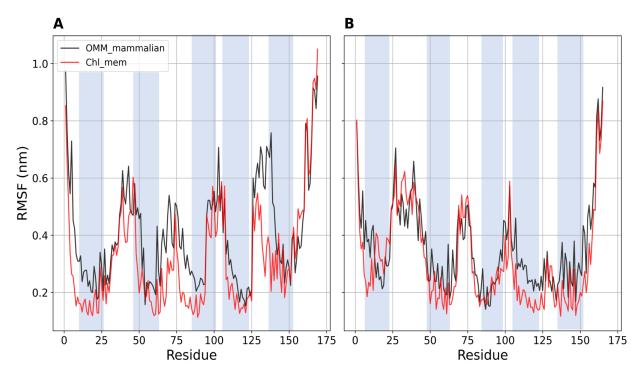
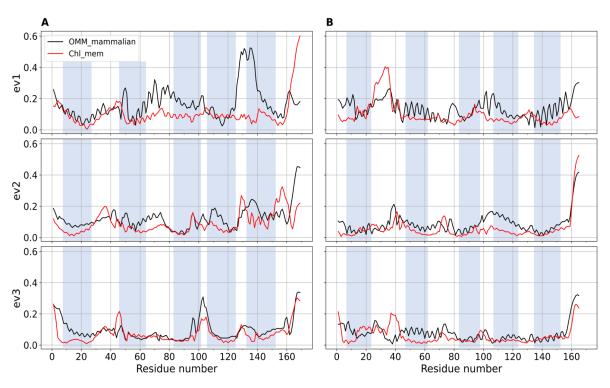

^{*} Equally contributed to this work

Figure S1. Backbone beads (for a definition of this, see [1]) RMSD of the whole protein and TM regions in **(A)** OMM and **(B)** chl_mem for mTSPO and in. **(C)** OMM and **(D)** chl_mem for mTSPO(Rs). The RMSDs are computed with respect to the initial structures in this and all the other figures presented here.


Figure S2. (**A-B**): RMSF values of each residue in (**A**) mTSPO and (**B**) mTSPO(Rs) embedded in both OMM and chl_mem. The shaded blue regions correspond to the five TMs. The analysis was performed on the equilibrated part of the trajectory, that is for the last 6 μ s. (**C-D**): The radius of gyration (Rg) is plotted as a function of simulated time for (**C**) mTSPO and (**D**) mTSPO(Rs) embedded in both OMM and chl_mem.


Figure S3. Projection of the backbone beads trajectory along the first three eigenvectors for both chains of **(A)** mTSPO and **(B)** mTSPO(Rs) dimeric structures. The shaded blue regions correspond to the five TMs. The analysis was performed on the equilibrated part of the trajectory, that is for the last 6 μ s.


Figure S4. Porcupine plots depicting prominent motions averaged across the second normal mode for: **(A)** mTSPO, **(B)** mTSPO(Rs) in both OMM and chl_mem. The analysis was performed on the equilibrated trajectory, namely for the last 6 μ s.

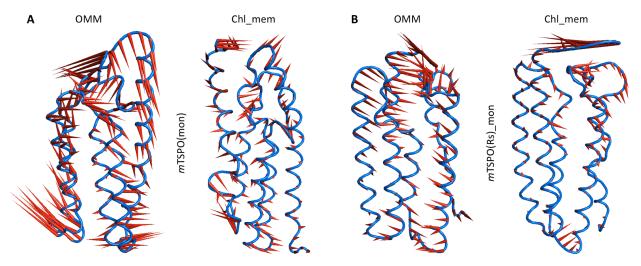

Figure S5. Radius of gyration (Rg) plotted as a function of the simulation time for mTSPO_mon in **(A)** OMM and **(B)** chl_mem, as well as for mTSPO(Rs)_mon in **(C)** OMM and **(D)** Chl_mem.

Figure S6. RMSF plots of **(A)** mTSPO_mon and **(B)** mTSPO(Rs)_mon in OMM and chl_mem. The shadowed blue regions correspond to the TMs. The analysis was performed on the equilibrated trajectory, that is for the last 6 μ s.

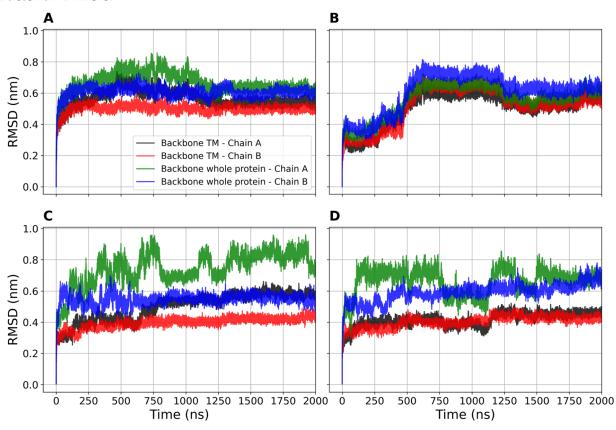


Figure S7. Projection of the backbone beads trajectory along the first three eigenvectors for **(A)** mTSPO_mon and **(B)** mTSPO(Rs)_mon. The shaded blue regions correspond to the five TMs. The analysis was performed on the equilibrated part of the trajectory, that is for the last 6 μ s.

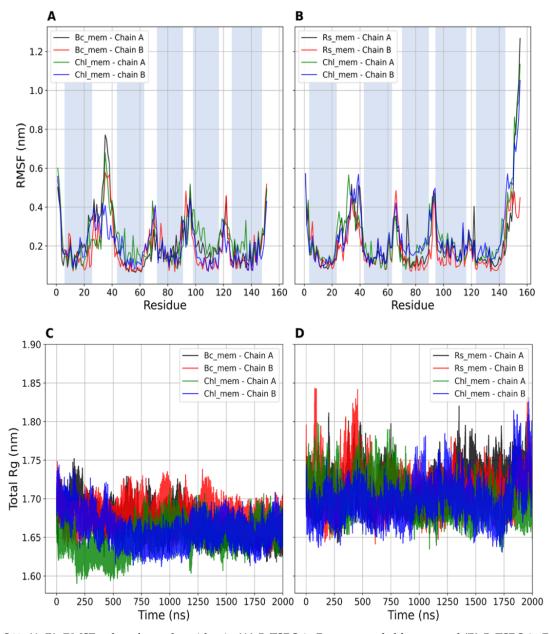
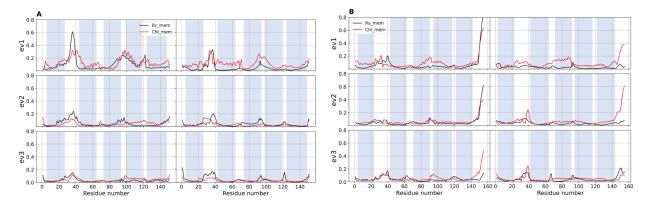
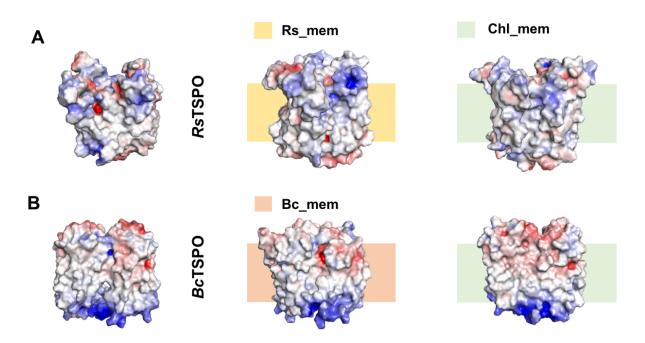


Figure S8. Porcupine plots depicting prominent motions averaged across the second normal mode for **(A)** mTSPO_mon and **(B)** mTSPO(Rs)_mon, in both OMM and chl_mem. The analysis was performed on the equilibrated trajectory, that is for the last 6 μ s.


Bacterial Dimers.


Figure S9. Backbone beads RMSD of the whole protein and TM regions for *Bc*TSPO in **(A)** Bc_mem and **(B)** chl_mem, as well as for *Rs*TSPO in **(C)** Rs_mem and **(D)** in chl_mem, plotted as a function of the simulation time.

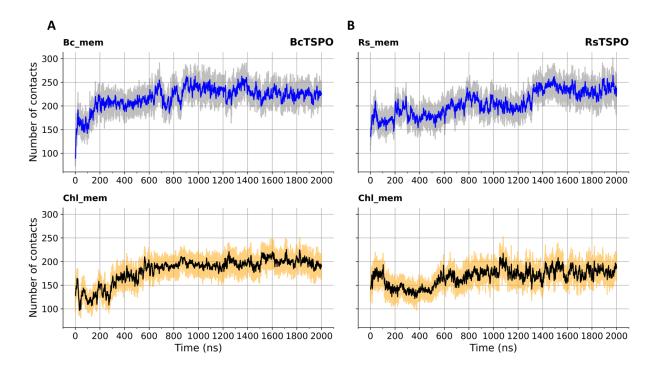

Figure S10. (A-B): RMSF values for each residue in **(A)** BcTSPO in Bc_mem and chl_mem and **(B)** RsTSPO in Rs_mem and chl_mem. **(C-D):** Radius of gyration (Rg) for **(C)** BcTSPO in Bc_mem and chl_mem and **(D)** RsTSPO in Rs_mem and chl_mem, plotted as a function of the simulated time. RMSF calculations were performed on the equilibrated part of the trajectories that is, for the last 1.3 μ s.

Figure S11. Projection of the backbone beads trajectory along the first three eigenvectors for **(A)** BcTSPO and **(B)** RsTSPO. The blue regions indicate the position of the TMs. The analysis was performed on the equilibrated part of the trajectory, that is, the last 1.3 μ s.

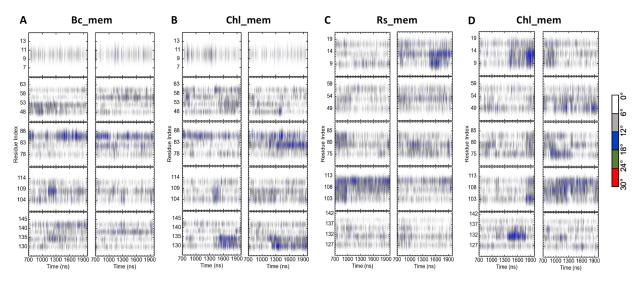

Figure S12. Electrostatic surface potentials in the initial and final MD structures for **(A)** *Rs*TSPO and **(B)** *Bc*TSPO embedded in Rs_mem/Bc_mem respectively and chl_mem. The MD structures were backmapped to all-atom resolution using the backward.py script [2]. The red and blue surfaces represent negative and positive electrostatic potentials, respectively. The maximum values of the potentials are -5 kT/e, +5kT/e, respectively. Red and blue surfaces represent negative and positive electrostatic potentials (-5 kT/e, +5kT/e), respectively.

Figure S13. Number of subunit-subunit contact beads plotted as a function of the simulation time for **(A)** *Bc*TSPO in Bc_mem and chl_mem and **(B)** *Rs*TSPO in Rs_mem and chl_mem. For the definition of the contacts, see Methods Section in the main text.

Figure S14. Porcupine plots depicting large scale motions averaged across the second normal mode for **(A)** *Bc*TSPO embedded in Bc_mem and chl_mem and **(B)** *Rs*TSPO embedded in Rs_mem and chl_mem. The analysis was performed on the equilibrated trajectory, that is for the last 1.3 μs.

Figure S15. Helix bending of *Bc*TSPO embedded in **(A)** Bc_mem, **(B)** chl_mem and for *Rs*TSPO in **(C)** Rs_mem and **(D)** chl_mem, plotted as a function of the simulation time. The analysis was performed on the equilibrated part of the trajectories, that is, the last 1.3 μs.

References

- 1. de Jong, D.H.; Singh, G.; Bennett, W.D.; Arnarez, C.; Wassenaar, T.A.; Schäfer, L.V.; Periole, X.; Tieleman, D.P.; Marrink, S.J. Improved parameters for the martini coarsegrained protein force field. *Journal of chemical theory and computation* **2013**, *9*, 687-697.
- 2. Wassenaar, T.A.; Pluhackova, K.; Böckmann, R.A.; Marrink, S.J.; Tieleman, D.P. Going backward: a flexible geometric approach to reverse transformation from coarse grained to atomistic models. *Journal of chemical theory and computation* **2014**, *10*, 676-690.