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Abstract:  

A theoretical nonlocal thermoelastic model for studying the effects of the thermal conductivity variability on a 

rotating nanobeam has been described in the present article. The theory of thermal stress is employed using the 

Euler–Bernoulli beam model and generalized heat conduction with phase lags. It is believed that the thermal 

conductivity of the current model varies linearly according to temperature. Due to variable harmonic heat, the 

considered nanobeam excited and was subjected to a time‐varying exponential decay load. Using the Laplace 

transform process, the analytical solutions for displacement, deflection, thermodynamic temperature and 

bending moment of rotating nanobeams are provided in final forms and a numerical example has been taken to 

address the problem. A comparison of the stated results was displayed and additionally, the influences of non‐

local parameter and varying load were analyzed and examined. We also investigate how the linear changes in 

the temperature of physical properties can influence both the static and dynamic responses to the rotating 

nanobeam.  

Keywords: Nonlocal nanobeam; rotation; thermoelasticity; temperature‐dependent; varying load 

----------------------------------------------------------------------------------------------------------------------------------- 

1. Introduction  

Mechanical thermal influences resulting from the interaction of temperature and deformation fields 

are of particular significance in various modern designs like high‐speed aircraft, jets, gas and steam 

turbines, nuclear reactors and missiles. Theoretical and the study of many practical issues, including 

rapid heat energy supply, has gained growing attention. The conventional theory of heat conduction, 
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based on the law of Fourier, takes an instant reaction to the temperature gradient and tends to a 

distinctive parabolic equation for temperature development.  

To solve the infinite speed thermal propagation phenomena predicted by the classical 

thermoelasticity theory, modified generalized theories of thermoelasticity have been established. 

Lord and Shulman [1] suggested one of the modified generalized thermoelasticity theories that 

contained one relaxation time by introducing a novel law of thermal conductivity to exchange the 

classic Fourier law. This revised law includes the flux of heat and its partial derivative with respect 

to time. Among the models that have recently been very popular, the Tzou [2‐4] model. In this model, 

Tzou introduced the dual‐delay thermal heat conduction model (DPL) to include the effects of 

microscopic reactions into the rapid transit of the heat transfer mechanism into a microscopic 

formula. In the constitutive relationship between the heat flux and the temperature gradient, two 

different phase‐lags have been introduced. There are many other suggestions that have been made 

to overcome the problem of unlimited speeds of heat waves predicted by the classical 

thermoelasticity theory can be found in [5‐8]. 

Thermal conductivity is significant, especially when high operating temperatures are reached, in 

materials sciences, research and electronics, building insulation, and associated fields. The 

temperature has a distinctive impact on the thermal conductivity for metals and non‐metals 

materials. The thermal conductivity of metal materials is the electric conductivity compared to 

absolute temperature times. With the expanding temperature, the electrical conductivity in pure 

metals decreases. The result, the thermal conductivity, is approximately constant along these lines. 

In alloys, the electric conductance change is generally smaller, so the temperature rises thermal 

conductivity, always relative to the temperature [9].  

The smallest Electromechanical Systems area (MEMS) is quickly divided into different resistors 

and applications. In order to satisfy the industry requirements, new technologies have been used to 

produce a range of MEMS products. MEMS structures include mechanical components, e.g. small 

cantilevers, extensions and films that have been frequently filled with a variety of geometrical 

estimates and arrangements [10]. The influences of very small‐scale interactions between the 

neighboring material particles or constituents must be taken into account for these micro / nano‐

structures, such as actuators, sensors, microscopes, micro / nano‐electronic systems (MEMS / NEMS). 

It is important for MEMS planners to understand the mechanical properties of adaptable smaller 

scales in order to remember the true aim of providing for the measure of diversion from associated 

loads to forestall cracks, improve the execution and produce the lifetime of MEMS devices [11]. 

From the discussion above, the principle of vibration is well‐known and well‐studied in dual beam 

systems. Nevertheless, the scale‐dependent vibration of beam systems makes few contribution.  The 

structures of scale‐dependent nanobeams are constructed from nano‐materials. These nanomaterials 

have special properties because of their dimensions of the nanoscale. Nanoparticles, nanowires and 

nanotubes are common examples of the materials with attractive features on the nanoscale [12].  

Nanomaterials are technological products for the next century and have intensified the interest of the 

scientific community in physics, chemistry, biomedicine and technology. In the mechanical 

properties, the scale of these structures was very small, and both research and atomic reproduction 

measurements showed a considerable impact. In this sense, the effect of size plays a vital role in the 

dynamic and static conduct of micro and nanoscale structures and cannot be undermined. It is 
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understood that the conventional process of the continuum in small and nanoscale systems does not 

have these dimensional influences. Nanomaterials are used as complex electromechanical 

nanostructures (NEMS) and complex nanocomposites due to some attractive properties. Nanoscale 

beams are referred to as structural beams constructed from nanomaterials and nanometer 

measurements. 

The small‐scale impact in the non‐local elastics theory is defined by the assumption that stress at 

one point depends at all points on strains in the field (Eringen, [13]). It is distinct from the classical 

theory of elasticity. Non‐local theory takes into account interatomic interaction over a long time and 

findings are dependent on the body size. The non‐local theory includes knowledge about the long‐

range forces between iota along these lines, and the internal length scale is essentially used as a 

material parameter to detect the small scale effect. Any inconveniences of classical continuum theory 

can be easily eschew and the non‐local elasticity theory may describe the size‐dependent phenomena 

fairly. The use of conventional theory in studying nanostructures is inappropriate in this particular 

situation because classical theories are not responsible for the small‐scale effects of the size. 

Recent nanotechnology consideration has been given to the application of nonlocal elasticity in 

smaller scales and nanomaterials, and the written text indicates that the non‐local elasticity principle 

is typically used progressively to analyze the nanostructures in a consistent and rapid manner. The 

fundamental contrast of conventional local theory of elasticity to Eringen's nonlocal theory of 

elasticity [13–15] depends on the context of the stress field. The non‐local elasticity theory, however, 

has been applied in various material science areas, including elastic wave dispersion, mechanical 

decomposition, etc.  

The Eringen theory of non‐local elasticity has demonstrated clear theory studies of the free Vibratory 

of nanoparticles and nanobeams  (ENET) taking into account the theories of Euler‐Bernoulli (EBT) 

and Timoshenko beams (TBT) [16‐23]. 

Another area of research that is emerging due to its current and future applications of various MEMS 

and NEMS systems is theoretical research into the behavior of rotating micro/nanobeams. 

Nanostructures undergoing rotation include nanostructures, nano‐turbines, molecular bearings, waft 

and cord, and multiplicity of gear systems.  

Taking into account the number of published studies of the viability of rotating nanoscale structures, 

this idea is expected to be given significant attention in the near future; existing samples include the 

analysis of molecular carbon nanotubes and gears [24, 25]. The rotational dynamics of carbon 

nanotubes and gears have been explained by Srivastava [26] under a single imposed laser beam. The 

mathematical modeling for the rotating nanomotor was carried out by Lohrasebi and Rafii‐Tabar 

[27]. Nanoelectromechanical (NEMS) devices emerge as the next technology, which is capable of 

making a significant difference in people's lives.  

 

Considering that rotating devices and rotating motors are particularly important for advancing 

technology, nanobeams under rotation are examined to determine their vibrational characteristics in 

present research. The analysis of free vibration computability of rotating beams based on classical 

theory, because of huge practical applications of rotating beams‐like structures, has been for years an 
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interesting and challenging question. Some of these important studies are conducted with 

homogenous rotating beam materials [28–36]. 

The purpose of this work is to investigate the vibration behavior of rotating isotropic nanobeams in 

a mathematical model using Eringen's nonlocal theory of elasticity. Since the rotating devices and 

rotary engines are of particular importance to such advanced technology, the vibration characteristics 

of rotating nanobeams are investigated in current work. The model can study rotatory nanobeam's 

axial vibration. The model is based on the beam theory of Euler‐Bernoulli, generalized dual phase‐

lag heat conduction and incorporates spin‐smoothing and Coriolis influences. The Hamilton’s 

principle is used to derive system equations including virtual displacements. For the first time ever 

the current advanced nano‐rotating model is reported. This study would contribute to a complete 

understanding of the dynamics of rotating nanobeams. The effects due to the non‐local parameter, 

point load, rotational and angular frequency of the thermal vibration will be taken into account. 

Moreover, numerical results are shown to indicate the slight effect of the nanobeam on the resonator.  

 

 

2. Nonlocal model of thermoelasticity  

Eringen [13] proposed a non‐local continuum mechanics theory to study the structural problems at a 

micro‐scale. For nano‐scale beams the general equations of nonlocal constituent relations can be 

described as follows [14].  

 [1 − (���)
�∇�]��� = ���, (1) 

where ��� denotes the nonlocal tensor stress, ��� denotes to the classical stress tensor, ��  refers to the 

Laplacian, �  is the internal trademark length, � is the external trademark length and ��  is a constant 

suitable to every material. The classical elasticity equation would be reached if the parameter � is supposed to 

be zero (��� = �).  

The constitutive equation is expressed as 

 ��� = 2����+ [���� − �(� − ��)]���, (2) 

Where � and � are the Lame' constants and ��� refers to the function of Kronecker’s delta. If � =

� − �� is the temperature increment over the uniform reference temperature �� and � = div ��⃗ is the 

volumetric strain. 

The modified heat conduction equation that includes two phase delay will be follows [2‐4] 

 �1 + ��
�

��
� ���,��,� = �1 + ��

�

��
+ �

�
 ��
� ��

���
� ����

��

��
+ ���

��

��
− ���, (3) 

Where �  is the heat source � = ���/(1 − 2�), where �� is the thermal expansion coefficient, � is 

the module of Young and � is the ratio of Poisson, � implies the thermal conductivity, �� denotes 

the specific heat for each unit mass and � is the material density.  

The theory of classical thermoelasticity, the Lord and Shulman model [1], and dual‐phase‐delay 

model [2‐4] can be derived from Eq. (3) for the selection of different phase lag parameters �� and ��. 
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 By putting �� = �� = 0  in Eq. (3), we get the nonlocal theory of the coupled 

thermoelasticity (CTE). 

 The generalized theory of nonlocal thermoelasticity (LS theory) can be gotten after placing 

�� = 0 and �� = �� (�� is the relaxation time). 

 The nonlocal dual‐phase‐lag model (DPL) can be obtained by setting 0 < �� ≤ ��. 

When one of the thermo‐physical characteristics (�, �� and �) is based on temperature, Eq. (3) is 

converted to a nonlinear partial differential equation. 

 � =
��

(���)(����)
,     � =

�

�(���)
. (4) 

3. Problem formulation 

 

Figure 1 displays a schematic diagram of a thermoelastic rotating nanoscale beam. The length  �, 

width � and thickness  ℎ are the geometric dimensions of the nanoscale beam. The �‐axis is taken 

around the pivot of the nanobeam and its width and thickness are the �‐ and �‐axes. Initially, we 

assume that the nanobeam is unrestricted and uncompressed and the temperature is tentatively at 

��. Under the Euler‐Bernoulli principle, every plane cross‐section perpendicular to the nanobeam 

pivot, in the beginning, is plane and perpendicular to the unbiased surface. The displacements can, 

therefore, be expressed as  

 

 � = −�
��

��
,     � = 0,     � = �(�,�), (5) 

where � denotes the nanobeam deflection. 

 

 

Fig. 1: Schematic chart for the nanobeam. 

Equation (5) can be used to simplify the one dimension constitutive relationship (1) as  

 �� − �
����

���
= −� ��

���

���
+ ����, (6) 

where �� indicates the nonlocal axial thermal stress, �� = ��/(1 − 2�) and � = (���)
�. The bending 

moment of the nanobeam may be found from the following integration: 

 �(�,�)= ∫ ���d�
�/�

��/�
. (7) 
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We can get the following partial differential equation satisfied by the bending moment after 

substituting Eq. (6) in Eq. (7)  

 �(�,�)− �
���

���
= −���

���

���
+ �����, (8) 

where �� and �= �ℎ�/12 respectively represent the bending rigidity of the nanobeam and the 

inertia moment of the cross‐section. In Eq. (8) �� indicates the thermal moment of nanobeam which 

is given by 

 �� =
��

��
∫ �(�,�,�)�d�
�/�

��/�
. (9) 

It is assumed that the nanoscale beam distributed by a transversely varying load �(�,�), then the 

transverse motion equation can be written as [37] 

 
���

���
= −�(�,�)+ ��ℎ

���

���
, (10) 

We suppose that the nanobeam rotates about an axis parallel to the �‐axis with an angular velocity 

Ω  centered at a small distance � from the first edge of the nanobeam. The centrifugal tensional force 

�(�) is introduced as a result of rotation. In this case, the equation of transverse motion (10) can be 

expressed as [37] 

 
���

���
+

�

��
��(�)

��

��
� + �(�,�)= ��ℎ

���

���
 (18) 

If Ω = 0; i.e., there is no rotation and therefore the centrifugal tension force �  disappears.  

The axial force �(�) due to centrifugal stiffening at a distance � from the origin (Fig. 1) is is given 

as [37, 38] 

 �(�) = ∫ ��Ω�(�+ �)��
�

�
 (19) 

The constant � is the distance from the rotation center to the first edge of the nanobeam (a hub 

radius) ( see Figure 1). After integration, then Eq. (19) can be simplified as 

 
�(�) =

��� �

�
[(� + �)� − (� + �)�]

               =
��� �

�
[(�− �)(2� + �+ �)]

 (20) 

For calculating the bending moment �(�,�), Eqs. (16) and (18) can be used  

 �(�,�)= � ���
���

���
− �(�,�)−

�

��
��(�)

��

��
�� − ���

���

���
+ ����� (21) 

If the moment � is removed from Eqs. (18) and (21), the equation of motion (66) may be written as 

 �
��

���
+

��

��

��

���
�1 − �

��

���
��� −

�

��
�1 − �

��

���
� �� +

�

��
��(�)

��

��
�� + ��

��� �

���
= 0 (22) 

The modified heat conduction equation (11) is given in the absence of heat sources (� = 0) as 

 �1 + ��
�

��
� ∇.(��∇�)= �1 + ��

�

��
+

��
�

�

��

���
�
�

��
����� − ����

���

���
� (23) 
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4. Thermal properties of materials 

The identification and resolution of nonlinear problems will be carried out if the material is 

temperature‐dependent and then the specific heat �� and the thermal conductivity � depends upon 

the temperature distribution [24]. In this work, it can be assumed that other physical parameters are 

constant and not dependent on temperatures, such as the Poisson's ratio and the thermal expansion 

coefficient [39]. The material's thermal conductivity � will be assumed to be a linear function of the 

variation of the temperature � [13] as 

 �� = ��(�)= ��(1 + ���), (13) 

Where the parameter ��  denotes the thermal conductivity at � = ��  and ��  is a factor that 

characterizes thermal conductivity variety.  

By substituting from equation (13) in equation (20), we obtain a partial nonlinear differential equation 

in the form 

 �� �1 + ��
�

��
� ∇.�(1 + ���)∇�� = �1 + ��

�

��
+

��
�

�

��

���
�
�

��
����� − ����

���

���
� (23) 

The previous equation can be converted to a linear equation by defining the mapping [40] 

 ��� = ∫ ��(�)d�
�

�
, (14) 

After inserting Eq. (13) in Eq. (14) and integration, then we have [40] 

 � = ��1 + �

�
 ����. (15) 

Through differentiating relation 5 once with regard to distances and also in terms of time, the 

following relationships can be deduced  

 ∇� =
��(�)

��
∇�, (16) 

 
��

��
=

��(�)

��

��

��
. (17) 

By using Eqs. (16) and (17) then, the heat conduction equation (23) may be reduced to 

 �1 + ��
�

��
� �

��

���
+

��

���
� � = �1 + ��

�

��
+ �

�
 ��
� ��

���
�
�

��
��� −

���

�
�
���

���
�. (19) 

where 1/� = �/��� is the thermal diffusivity. 

5. Sinusoidal solution 

To solve the problem, we take the temperature change solution as (sinusoidal solution). 

 {�,�}(�,�,�)= {Ψ ,Θ}(�,�)sin�
�

�
��. (20) 

Presenting Eq. (20) into Eqs. (11), (12) and (19), leads to 

 �
��

���
+

��

��

��

���
�1 − �

��

���
��� −

�

��
�1 − �

��

���
� � +

����

���

���

���
= 0, (21) 
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 �(�,�)= � ���
���

���
− �� − ���

���

���
+

������

���
Θ�, (22) 

 �1 + ��
�

��
� �

��

���
−

��

��
� Ψ = �1 + ��

�

��
+ �

�
 ��
� ��

���
�
�

��
��Ψ −

����
��

���

���

���
�. (23) 

The following non‐dimensional variables are provided for convenience.  

 
{��,��,��,��,��,ℎ�,��}= ��{�,�,�,�,�,ℎ,�},     ���,��

� ,��
� � = �����,��,���,

�� = �����,     {Θ�,Ψ �}=
�

��
{Θ,Ψ },     �� =

�

����
�,     �� =

�

��
�,     �� =

�

�
.

 (24) 

After introducing dimensionless quantities (24) in Eqs. (21)‐(23), we can obtain 

 �
��

���
+

��

��

��

���
�1 − �

��

���
��� − �1 − �

��

���
� �� +

�

��
��(�)

��

��
�� +

������

���

���

���
= 0 (29) 

 �1 + ��
�

��
� �

��

���
−

��

��
� Ψ = �1 + ��

�

��
+

��
�

�

��

���
�
�

��
�Ψ −

����

����

���

���
� (30) 

 �(�,�)=
���

��

���

���
− � �� +

�

��
��(�)

��

��
�� −

���

���
−

������

���
Θ  (31) 

In Eqs. (29)‐(31), the primes are omitted for convenience 

Special external transverse load type is now taken into account. We consider exponential time of 

decay to vary vertically load operating towards the thickness of the beam [41].  

 �(�,�)= −���1 − �e���� (32) 

where �� is the magnitude of the dimensionless point load and � is the dimensionless decaying 

parameter of the applied load, respectively (� = 0 for the uniformly distributed load). 

In this paper, we assume that the nanobeam rotates at a constant angular speed, and consider the 

centrifugal tension force �(�)  to be the maximum [37] value. The maximum axial force �(�) due 

to centrifugal stiffening at the root (� = 0) takes the form [37] 

 ����  = ∫ ��Ω�(�+ �)�� =
�

�
��Ω��(2�+ �)

�

�
 (33) 

The motion equation (29) is therefore can be described as  

 �
��

���
+

��

��

��

���
�1 − �

��

���
��� − �1 − �

��

���
� �� +

��� �(����)

��

���

���
� +

������

���

���

���
= 0 (34) 

The bending moment in Eq. (31) may also be defined as  

 �(�,�)=
���

��

���

���
− � �� +

��� �(����)

��

���

���
� −

���

���
−

������

���
Θ  (35) 

6. Initial and boundary conditions 

The initial conditions are supposed to be  

 

 Ψ (�,0)=
��(�,�)

��
= 0,    �(�,0)=

��(�,�)

��
= 0. (29) 
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The nanobeam fulfill the following boundary conditions: 

i) Clamped–clamped boundary conditions 

 �(�,�)|���,� = 0,     
��(�,�)

��
�
���,�

= 0. (30) 

ii) The nanobeam is harmonically heated as 

 Θ(0,�)= Θ� cos(��),     � > 0, (31) 

Where Θ� is constant and � is the thermal vibration angular frequency. The problem will thermal 

shock if by taking � = 0. 

Using Eqs. (15) in equation (20), we get 

 Ψ (0,�)= Θ� cos(��)+
�

�
 ��[Θ� cos(��)]

�. (32) 

iii) in the surface � = � 

 
��(�,�)

��
= 0. (33) 

7. Laplace transform strategy 

Using Laplace technique, the equations (30), (34) and (35) are converted to equations.  

 ��1 +
���� �(����)

��
�

��

���
− �

�����

��
+

��� �(����)

��
�

��

���
+

����

��
��� = −

������

���

����

���
− �̅(�) (41) 

 (1 + ���)�
��

���
−

��

��
� Ψ� = ��1 + ��s+ ����

�/2� �Ψ� −
����

����

����

���
� (42) 

 ��(�,�)=
�����

��
�� − �1 +

���� �(����)

��
�
����

���
−

������

���
Θ� − ��̅(�) (43) 

Where  �̅(�)= �� �
�

�
−

�

���
�. 

The following differential equation can be accomplished once the function Θ� has been extracted from 

the Eqs. (41) and (42)  

 �
��

���
− �

��

���
+ �

��

���
− ���� = ���̅(�)/�� (44) 

where 

 

� =
�

��
(���� + �� + ����),     � =

�

��
(���� + ��),     � =

����

��
,

�� = �1 +
���� �(����)

��
� ,�� = �

�����

��
+

��� �(����)

��
�,   �� =

������

���
,

�� =
����

��
,�� =

��

��
+

���������
���

�/��

�����
,�� =

���������
���

�/��

�����
�
����

����
� .

 (45) 

We achieve the general solution for ��  by solving the differential equation (44) as follows  

 ��(�,�)= ∑ ���e
���� + ����e

���� −
����(�)

���

�
���  (46) 

From the given boundary conditions the undetermined parameters ��,(� = 1,2..,6) , may be 

calculated. The parameters ��
�, ��

� and ��
� also satisfy the following equation  
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 �� − ��� + ��� − � = 0 (47) 

Eq. (46) is incorporated into Eq. (41) and results in  

 Ψ�(�,�)= −
�

����
���

����

���
− (�� + ����)

����

���
+ ���� + �̅(�)� (48) 

With the help of Eq. (46), the solution of Eq. (48) can be simplified as follows  

 Ψ�(�,�)= ∑ �����e
���� + ����e

�����
��� − ��, (49) 

where 

 �� = −
�

����
�����

� − (�� + ����)��
� + ���,     �� =

��(�)(����)

�����
 (50) 

The bending moment �� is determined from (43) using the solutions (46) and (49)  

 ��(�,�)= ∑ �����e
���� + ����e

�����
��� + �� (51) 

where  

 �� = −�����
� + ���� − ���,�� = �̅(�)����� −

����

���
− �� ,�� =

�����

��
 (52) 

The axial displacement u can be calculated by using Eq. (46)  

 �� = −�
���

��
= �∑ �����e

���� − ����e
�����

��� . (53) 

The boundary conditions (37)‐(40) are reduced in the Laplace transform field to 

 ��(�,�)|���,� = 0,     
����(�,�)

���
�
���,�

= 0, (54) 

 Ψ�(�,�)|��� = Θ� �
�

����� +
����

������

��(������)
� = �̅(�), (50) 

 
���

��
�
���

= 0. (56) 

When the above conditions are applied to Eqs. (46) and (49), the following system equations are given.  

 ∑ ��� + ����� =
����(�)

���

�
���  (57) 

 ∑ ���e
���� + ����e

���� =
����(�)

���

�
���  (58) 

 ∑ ��
���� + ����� =

����(�)

���

�
���  (59) 

 ∑ ��
�����

���� + �����
���� =

����(�)

���

�
���  (60) 

 ∑ ����� + �����
�
��� = �� + �̅(�), (61) 

 ∑ ��������
���� − �����

�����
��� = 0, (62) 

The undetermined parameters ��,(� = 1,2..,6) can be calculated in the resolution of the above 

system equations.  

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 August 2020                   doi:10.20944/preprints202008.0405.v1

https://doi.org/10.20944/preprints202008.0405.v1


 

 

We have thus obtained all the analytical solutions for the physical variables within the Laplace 

transform field. It's difficult to get the Laplace transform inversion of the complicated transformed 

field variables expressions. Within the next section, the results will be evaluated numerically using 

an expansion technique of the Fourier series.  

The temperature �̅ can be obtained by solving Eq. (17) after applying the Laplace transform as 

 �̅(�,�)= sin�
�

�
�� �

�����������

��
� (63) 

8. Laplace transform Inversion 

With the aim of getting solutions into the physical domain, at last, we invert the transformation 

of Laplace to the functions that govern. We now follow a numerical overlay strategy based on an 

extension of the Fourier series [42]. Any functions in the domain Laplace �̅(�,�) can be changed to 

the time field �(�,�) in this procedure by using the relation.  

 �(�,�)=
���

�
��
�
 �̅(�,�)+ Re �∑ (−1)��

��� �̅ ��,� +
���

�
�� �, (59) 

Various numerical studies have shown that the parameter � satisfies the relation �� ≈ 4.7 for speedier 

convergence [43]. 

9. Results and Discussion 

Throughout this section, we provide some discussions and numerical results to illustrate the 

general solution behavior of the theoretical outcomes. In addition, numerical results are provided to 

determine the effects on the physical fields analyzed with three appropriate parameters. We have 

taken specific physical parameters from various current literature works into account for 

computational purposes. In this analysis, we use silicon data as the physical material discussed:  

� = 169 GPa,     � = 2330�
��

���,      �� = 713 �
�

�� �
� ,

�� = 2.59 × 10�� �
�

�
� ,   � = 0.22,   �� = 293 �,� = 156 �

�

��
�.

  

 

We consider a nano‐beam with dimensionless parameters as given in equation (24). The ratios of the 

nanobeam are set in the current calculation, i.e., �/ℎ = 10  and �/ℎ = 0.5 . The dimensionless 

nanobeam length is taken as � = 1 and take � = ℎ/3 and time � = 0.1. Three cases for discussion 

and analysis are considered using the nonlocal theory of Eringen.  

As mentioned previous, a linear function of the variation in temperature � is assumed to be the 

thermal conductivity � of the material (see Eq. (13)). That is the main goal of the analysis. Figures 2‐

5 show the differences in non‐dimensional deflection, temperature increase, displacement and 

bending moment, compared to the ��‐parameter to illustrate the thermal properties of the nanobeam 

that vary according to temperature �. Two different thermal conduction parameter cases will be 

considered. When the thermal conductivity depends on the temperature, the �� = −1 and �� =

−0.5  will be used. If the thermal conductivity remains constant, the �� = 0 will be used. We shall 
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assume that the other parameters and affective factors are fixed in this case (� = 0.01, � = 5, Ω =

0.3, �� = 0.02 and �� = 0.01). 

From the figures we have noted that the variability parameter �� has a considerable impact on all 

fields that make our consideration of the variable thermal conductivity more seriously. The 

nanostructures can also be observed to based physically on temperatures and to increase external 

temperatures, results of small‐scale nonlocal theories increase.  

The deflection � with varying values of thermal conductivity variability parameter �� is shown in 

Figure 2. As can be shown, with the increased value of the parameter ��, the lateral vibration � 

decreases. Figure 2 illustrates that the deflection distribution � that starts and ends at zero values 

(i.e. disappears) and meets the limit conditions of the rotating nanobeam at � = 0 and � = �. The 

temperature �  for variability parameter ��  values can be seen in Figure 3. The temperature � 

decreases with increasing distance �, in order to drive towards wave propagation, as shown in Figure 

3. Figure 3 indicates that a decrease in the parameter �� increases the temperature distribution �.  

Figure 4 indicates that the displacement value decreases from 0 to 0.3 and consequently in the 

range 0.3 to 0.8 rises to the highest amplifications. The displacement � is going straight in the last 

range 0.8 ≤ � ≤ 1 of wave propagation. It should be noted that the displacement distribution is 

highly influenced by the variability parameter ��.  

We also note that the rise in ��  in Figure 5 is intended to increase the bending moment � 

distribution. The figures show that the effect of a change in thermal conductivity should not be 

disregarded [44]. The mechanical distributions of the nano beam show that the wave spreads in 

medium as a wave with a finite speed [45].  

 

 

 

Figure 2: The deflection � under the influence of variable thermal properties 
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Figure 3: Temperature � under the influence of variable thermal properties 

 

 

Figure 4: Displacement � under the influence of variable thermal properties 

 

 

Figure 5: Bending moment � under the influence of variable thermal properties 
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In second case, an effect on dimensionless field quantities has been performed on the angular rotation 

velocity Ω . It is supposed to be consistent both the non‐local parameter �, angular frequency of the 

harmonic thermal load �, and phase lags �� and ��. The calculations has been determined using 

the fixed values ̈� = 0.1, � = 5, �� = 0.02 and �� = 0.01 have been taken into account.  

The variation in the fields considered for three different values angular velocity (Ω = 0,0.1,0.3) is 

shown in Figures 10‐13. In the absence of rotation, the coefficient of rotation is equal to zero (Ω = 0), 

and this is a special case in current procedure.  

The angular rotation s Ω  that influences the deflection of the nanoscale beam w, is shown in Figure 

10. This parameter has been found to have a substantial effect on the distribution of deflection � and 

variation in outcomes in the case of presence and lack of rotation. Through increasing the angular 

velocity Ω , the deflection � decreases. These results are consistent with those reported [46]. 

The temperature variance �  of nanobeams with distance �  was verified for different non‐

dimensional angular velocity values Ω . These variations are illustrated in Figures 11. Clearly, the 

temperature increases with the rise of the angular velocity Ω . In the previous literature the results 

and observations are consistent with the corresponding results obtained, as those of the authors [47, 

48].  

 

Figure 12 presents a survey of the impact of angular speed Ω  on displacement variance �. We find 

that the curves that reflect the displacement field are influenced by the rotation. The figure shows 

that at certain ranges, with a rising rotation, the distribution of the displacement � decreases and 

increases at other intervals. Figure 13 shows the variation of varying angular velocity Ω  values in 

the distribution of bending moment � of the rotating nanobeam. It is observed from the figure that 

the rotation of the moment has a great effect on the curves, and that the amplitude of the moment 

increases with the moment �.  

One of the objectives of this analysis is to explain the approach to the temperature field and to the 

angular velocity of certain nano‐device blades such as nano‐turbines [50], which provide valuable 

insights. Via the previous observations, we can also deduce the major effect of rotation on the 

different physical distributions. The findings are in line with the earlier results of [49‐51].  
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Figure 10: The deflection � via the angular velocity Ω  

 

Figure 11: The temperature � via the angular velocity Ω  

 

Figure 12: The displacement � via the angular velocity Ω  
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Figure 13: The bending moment � via the angular velocity Ω  

 

When values of the parameters (�,��,Ω,��,��) are set, the effect of the nonlocal coefficient � after 

the non‐dimensional‐field, variable behavior is examined. In Figures 6‐9 along the axial direction, the 

thermoelastic vibrations of the rotating nanobeam for different parameter values are shown. The non‐

local coefficient values are considered to be: � = 0  (local theory), � = 0.01  and � = 0.0 3 for 

comparison. The figures indicate that local parameters influence all the fields studied. It illustrates 

the difference between local thermoelasticity theories and non‐local ones.  

 

For various values of the non‐local scaling coefficient �, Figure 4 shows the curves for non‐rotating 

nanobeam deflection. It can be seen that with an increase in the parameter of the nonlocal scaling, the 

deflection becomes very small and the dispersed nature turns into a non‐dispersed form. The 

temperature distributions are also shown for the various non‐local scaling parameter in the axial 

direction in Figure 3. The Figure shows that the temperature convergence can be accomplished by 

increasing the nonlocal parameter across the space. Figure 6 shows that the displacement amplitude 

increases with the non‐local parameter due to the inclusion of the nonlocality in the given model. The 

influence of the non‐local coefficient � on the distribution of the non‐dimensional moment is shown 

in Figure 7. As the non‐local coefficient � increases, the bending moment will decrease.  

 

The reported findings and conclusions are consistent with those of various literature researchers [52]. 

The results shown typically show that the non‐local parameter has a major effect on all observed 

physical variables. The distinction between local thermoelasticity models and non‐local 

thermoelasticity models in thermal fields is clarified [53]. In nanoscale systems and devices the 

impact of this parameter should also be taken into account.  

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 August 2020                   doi:10.20944/preprints202008.0405.v1

https://doi.org/10.20944/preprints202008.0405.v1


 

 

 

Figure 2: The deflection � distribution via the nonlocal parameter � 

 

Figure 3: The temperature � distribution via the nonlocal parameter � 

 

Figure 4: The isplacement � distribution via the nonlocal parameter � 
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Figure 5: The bending moment � distribution via the nonlocal parameter � 

 

In the last case, the variant of studied field variables studied against point load �� will be plotted in 

Figures 3. There are three different non‐dimensional magnitude values for the point load �� that are 

taken into account. The figures show the point load effect. We use � = 0 for the uniformly distributed 

load, and we take � = 1 for the exponential decay time load. Clearly, the variations between the 

results become more important with a rise in the point load ��. The figures show that the point load 

�� has a great impact on all the fields studied. Figure 6 indicates that there is a greater disparity 

between physical quantities with the point load in the highest points of the figures.  

We also note from these figures that the absolute values of the field variables increase with the 

magnitude of point load �� if the varying load exponential decay with time [54].  

 

 

Figure 2: The deflection � under the influence the point load �� 
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Figure 3: Temperature � under the influence the point load �� 

 

 

Figure 4: Displacement � under the influence of the point load �� 

 

 

Figure 5: Bending moment � under the influence the point load �� 
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10. Conclusions 

The research in this paper focuses on rotating nanobeam wave dispersion behavior using the non‐

local elasticity theory and generalized thermoelasticity with phase delay. The rotating beam is formed 

by based on the theory of Euler–Bernoulli. The thermal conductivity of the nanobeam and modulus 

of elasticity are considered to be temperature‐dependent. For a uniform rotating nanobeam, the 

governing equations are derived including the variability of thermal conductivity and nonlocal scale 

effect. The nanobeam surface is expected to be thermally loaded with uniformly variable heat and 

subjected to exponential decay time load under proven boundary conditions. The dynamic load 

effects, the non‐local variability parameter and rotation and change in thermal conductivity in the 

studied fields are graphically described and examined. The figures also show the following important 

results:  

 

 The parameter of variation of the thermal conductivity affects the wave propagation 

rate of all of the fields under study. Physical fields depend strongly on thermal 

conductivity variability.  

 The dependency from the temperature on thermal conductivity has a significant 

influence on mechanical and thermal interactions.  

 The nonlocal parameter effects can be significant on all fields studied.  

 Dynamic loads have a major impact on all physical quantities.  

 There are significant variations in the fields investigated between the exponential 

time of decay and the load distributed uniformly. The thermoelastic stresses, and 

temperature, on the other hand, are highly dependent on the angular rate of the 

thermal vibrators parameter.  

 Nanobeam research is an important subject in nanotechnology as it encompasses 

the optical and electronic characteristics in nanobeams.  

 Current research may be used in applications including resonators, sensors for the 

voltage surge, frequency filters, accelerometers and relay switches.  

 This study will recognize demands and various requirements for the design and 

production of the environmentally sensitive resonator machines.  
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