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What is a complex system? The definition of a complex system remains somewhat ambiguous. A 
complex system can be defined as a system consisting of many interacting parts exhibiting emergent 
behaviors. The emerging field of complexity science entails a change in the language of scientific 
research and thinking. As such, the general properties, tools, and definitions pertaining to complex 
systems must be made accessible in layman terms to multi-disciplinary systems scientists and thinkers. 
With this intention, this literary survey presents the development and glossary of essential concepts 
steering complex systems. 
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INTRODUCTION TO COMPLEXITY 
 
Complex systems theory, or simply complexity science is the interdisciplinary field of systems science 
which attempts to provide a wholistic description of complex systems through the (distortion) lens of 
information, as opposed to the (traditional) reductionist approaches [1]. Complex systems are systems 
composed of many nonlinearly and locally interacting parts (agents) which give rise to emergent 
behaviors [2]. However, the threshold for ‘many’ is subjected to debate depending on the system and 
discipline of science to which one adheres. Some general properties of complex systems include self-
organization, adaptation, pattern formation, criticality, dynamic multi-scale structures, multi-nested 
feedback loops, nonequilibrium processes and nonlinearity [3, 4]. In simple terms, a complex system is a 
system in which the collective whole is more than the sum of its interacting parts. The description of 
complex systems requires a new set of tools and language to communicate in between broad disciplines 
of investigators. Such is the motivation for this brief layman survey. 
 
The definition of complexity may vary from one discipline of science to another. Complexity theory is 
often confused with computational science, wherein computational complexity theory deals with the 
study of time, space and algorithmic resources required by computers to efficiently perform a task [5]. 
There are then descriptive measures of complexity such as algorithmic complexity, or Kolmogorov 
complexity which denotes the shortest string of bits required to effectively compute an algorithm [6, 7]. 
Such measures are of importance in network biology, where they quantify to some approximation the 
network complexity in terms of its information content [8]. However, the review will not focus on such 
branches of (computational) complexity and strictly focus on the more general complex systems. To 
make this illusory distinction, the term complex systems will be used mostly instead of complexity. 
 
THE ORIGIN OF COMPLEX SYSTEMS 
 
According to Merriam-Webster’s dictionary, the word complexity takes root in the latin word 
complectere or complecti, meaning to entwine or to infold. It is a compound of com- “together” and 
plectere “to weave, or to braid”. Complex thus means composed of interconnected and interacting 
parts. Complex systems are then systems in which the whole is composed of interrelated parts. Complex 
systems are thus whole systems. 

The details of when and where complex systems surged as a science is debatable depending on the 
disciplines of science. Most complexity scientists would accept the 1960s with the emergence of 
dynamical systems theory, or the 1980s when complex systems theory was being developed as a branch 
of systems science. In 1963, Edward Lorenz demonstrated the first numerical model of a strange 
attractor, the Lorenz attractor, by studying three coupled ordinary differential equations in attempt to 
describe weather turbulence [9]. This was a revolution which initiated the formal study of chaos theory 
and nonlinear dynamics. In the 1970s, Mandelbrot realized natural systems whether it be financial stock 
markets, the roughness of terrestrial landscapes, social networks or biological structures can be 
described using a descriptive statistical measure - the fractal dimension [10]. That is the stratification of 
these systems have ‘fractional’ dimensions, a value in between two consecutive integers. Nonlinear 
dynamics, fractals and chaos remain the essence of complex systems. Fractals have been extended into 
the study of complex systems such as cancer biology where it is generally believed cancers exhibit higher 
fractal dimensions [11, 12]. It was also at this time, the early 70s when Ruelle and Takens coined the 
term strange attractor to describe the multi-fractal patterns observed in fluid turbulence [13]. To most 
complexity thinkers, turbulence is the ideal picture of a complex system. Despite its universality, finding 
the solutions to the Navier-Stokes Equations governing fluid turbulence, remains the holy grail of 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 August 2020                   doi:10.20944/preprints202008.0400.v1

https://doi.org/10.20944/preprints202008.0400.v1


3 
 

mathematical physics. The major developments in the physics of fluids, their chaotic pattern formations 
and the strange attractors emerging in their flows are hot topics in complex systems research [14]. 
 
To systems biologists, the origins of complex systems may date back to Lamarck and Darwin. Complex 
systems are essentially inspired by the complex patterns and structures formed by living systems. 
However, most systems biologists would agree network biology and hence, network science as the 
initial grounds to complexity science. In 1942, Waddington derived a metaphorical description of 
developmental biology, where cell fates are visualized as attractors rolling down valleys and hills on the 
epigenetic landscape [15]. Reconstructing the Waddington landscape as the phase-space dynamics of 
biological networks remains one of the central interests in systems biologists. In 1969, Kauffman derived 
the NK automaton, a Random Boolean Network model where genes can occupy a binary state of 0 or 1 
representing on/off states [16]. Boolean networks are now universal tools in network biology. The 
physical foundations of network complexity were then established by mathematical physicists such as 
Barabasi and Newman [17, 18]. Network science is now at the heart of complex systems, used to assess 
the structure-to-function relationships in complex systems such as genes and protein interactions [19]. 
 
It was Nobel laureate and physicist Murray Gell-man who co-found the Santa Fe institute for complexity 
science in 1984. Thus, complexity was institutionalized upon the pioneering works of a thinker in 
abstract particle physics. This is to no surprise since group theory and field theory study how complex 
structures emerge from higher-dimensional abstract algebra. Yet, to most physicists, complex 
systems may predate to Ludwig Boltzmann who set the foundations of statistical mechanics [20]. The 
laws of thermodynamics remain unrefutably the central dogma of complex systems. The free energy 
principle and its trade-off with entropy governs emergence [20]. Most physicists would argue complex 
systems takes foundations in statistical mechanics and later Shannon’s information theory [21]. The shift 
in studying systems from the lens of energy towards that of information is central to the framework of 
complex systems. Complexity scientists are interested in how information flows and organizes into 
structures. However, this too is only a part of the skeleton of complexity. 

The study of information flow and steering them in control systems roots to the transdisciplinary science 
of cybernetics [22]. Cybernetics was also amidst the initial conditions to Artificial Intelligence and 
manmade self-regulating systems. Quantifying information flow (dynamics) in complex networks 
remains a fundamental problem in systems science. Many statistical approaches in the study of time-
series information systems have been paved by Wiener [22] and remain to be deciphered in their 
application to complex systems/networks. To get a feeling for cybernetic systems, allow me to illustrate 
a few examples. Let us consider the cybernetics (information flows) of social networks. 
 
Social networks such as those pertaining to human interactions (relationships) and societal structures 
are cybernetic systems; systems which can be visualized as a graph theoretic network with feedback 
loops controlling (regulating) their associative relationships. Now, think of Adolf Hitler, how did he 
succeed as a dictator of the masses? He was a positive feedback loop for the mentally unstable society at 
the devastating war- time, amplifying their collective behaviors towards synchronization by the 
transmission of certain information. Although this hub of supporters was a negative feedback system for 
society (as a whole), it was a positive feedback loop for Hitler. The supporters acted as coupled 
oscillators which kept preferentially supporting him in an amplifying manner (i.e., resonance). This 
collective oscillations-like description of complex networks applies to economic feedback systems as 
well, e.g., the rich get richer, the poor get poorer (i.e., the Pareto’s principle). We refer to such networks 
as critical networks, due to their power law behaviors.  Likewise, the same problem of criticality occurs 
in cancer gene expression – certain mutated gene networks form multi-nested feedback loops 
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amplifying the signal of their associated-hubs to make cancer cells uncontrollably grow and invade, 
while suppressing the cries and calls of all other genes. Although the tumor-disfavoring networks 
seemingly form the majority, their less-densely connected structures and resultant outcries are not 
strong enough to inhibit the cascading effects of cancer-stemness networks. Therefore, the cybernetics 
(information dynamics) of tumor ecosystems is essentially a graph theory problem. Cybernetics is then 
the science of communication and feedback loops in these complex graph networks. Cybernetics poses 
the central question: How can certain nodes (e.g., people, cells, or genes) of a complex network control 
the collective dynamics of the whole system? 
 
Then, there is the problem of defining information itself. There are different measures of quantifying 
information, namely, Shannon’s information entropy, von Neuman’s entropy, Kolmogorov’s entropy, 
Fisher information, etc. [21]. Each measure describes information within a different study system. 
Contemporary physicists would rather argue complex systems is a spin-off of condensed (soft) matter 
systems. Perhaps this is because most soft matter systems (e.g., biosystems) are driven by 
nonequilibrium statistical mechanics and nonlinear dynamics, the bread and butter of complexity. 
Furthermore, condensed matter systems deal with many-body systems, wherein the interactions amidst 
larger degrees of freedom may result in complex, emergent behaviors [23]. Soft matter physics 
demonstrates nonlinear interactions between the many parts of a system give rise to collective, 
unexpected behaviors [23]. For example, active turbulence in dense suspensions of microtubules is a 
beautiful example to visualize complex pattern formations [24]. The hydrodynamical patterns are best 
described by variants of the Navier-stokes equations and not the conventional diffusion equations used 
to explain most biochemical systems suspended in a fluid [25]. 
 
In the 1980s, physicist David Bohm described quantum mechanics as a tool to investigate physics in the 
perspective of systems science [26]. He coined the term implicate and explicate order to describe the 
enfoldment and unfoldment (emergence) of information and structures/patterns from a whole system. 
The whole, he calls an undivided whole composed of fragments, where the many is subjected to the 
observer or type of explicate order [26]. He provides the analogy of how the information carried to an 
antenna on an old television box is fine-tuned to a certain frequency at which the visuals and sound are 
observed on the TV. The observations are the unfolded (explicate) orders, while the information carried 
off as electromagnetic waves is the implicate order [26]. Such an analogy well suits our study of complex 
systems and how orders/patterns emerge within them at different levels of observation. Quantum 
mechanics, although not seen as an obvious part of complex systems research, shares many of the 
features and insights required to approach complex systems. 
 
A computer scientist would argue the late 1930s when Church and Turing were laying the foundations of 
computation theory would be a better fit to the origin of complexity, although it pertains to 
computational complexity and not necessarily complex systems [5]. In fact, it was Alan Turing in 1952 
who devised a mathematical model of chemical morphogenesis, that nonlinear, partial differential 
equations characterizing reaction-diffusion systems may describe the pattern formations observed in 
biological organisms [27]. Pattern formation is a central attribute of complex systems. These works were 
then extended into the domain of nonequilibrium statistical mechanics by Nobel Laureate and Chemist 
Prigogine. Prigogine demonstrated nonequilibrium chemical systems can spontaneously give rise to 
highly ordered, dissipative structures (i.e., order out of chaos) [28]. These works are amidst the primary 
grounds to the concepts of emergence and self-organization in complex systems. It must also be noted 
that the term order is then ambiguous since chaos itself is a type of complex order. The terms regular, 
predictable, or well-behaved may be better suited to characterize ‘ordered’ systems in contrast to 
chaotic systems. 
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Today, computational simulations, machine learning and artificial intelligence are the state-of-the-art 
approaches in studying complex systems. Machine learning methods such as Deep learning neural 
networks are capable of complex pattern recognition from large complex datasets [29]. As such, 
inarguably computational physics is the contemporary foundations of complex systems science. It 
provides an alternate approach to investigating complex systems, whose behaviors tend to be nonlinear, 
adaptive and often chaotic [30]. As such, finding equations that well-model complex systems remain 
inadequate and if equations are found, finding analytical solutions to them remains intractable in most 
complex systems [30]. Hence, computational algorithms provide searching heuristics and approximation 
tools to model complex systems. 
 

To the mathematicians, Kolmogorov made pioneering contributions to all of the above-defined branches 
of complexity. Kolmogorov’s works on fluid turbulence remain the most coherent and well-developed 
mathematical bases in the understanding of the complex systems [31]. Kolmogorov’s works 
demonstrate turbulent flows obey a power-law decay within its inertial range, wherein the eddies and 
vortex structures breakdown into a fractal hierarchy [31]. Kolmogorov also pioneered algorithmic 
information theory, a branch of computational complexity which studies the algorithms and resources 
required to solve a computational problem [5]. As mentioned, the K-complexity, also known as 
Kolmogorov or algorithmic complexity quantifies the shortest bits of a string or computer program 
required to describe a complex system. K-complexity is a robust measure of a network’s complexity 
vastly unutilized in current approaches to network biology [5]. Kolmogorov also contributed to the study 
of biological morphogenesis and pattern formation (i.e., the FKPP equation) [32]. This brings into 
attention the Kuhnian model of science: how the various disciplines of science, and hence complexity, 
are driven by the socio-political history of science. 
 
To socioeconomic scientists, perhaps complex systems goes back to the founding principles of Game 
theory, and to psychology scholars it may date back to the abstract teachings of Carl Jung who 
advocated the principles of wholeness in the study of consciousness [33, 34]. Jung often used the word 
complex to describe the connected group of repressed ideas within an individual or rather the 
connection between a person and the surroundings [34]. Thus, complexity even in the psycho-social 
sciences is related to the interconnectivity of a system with its surroundings. To scholars in the arts, 
complex systems may pertain to pieces of art encompassing creativity. How does one quantify creativity 
to the information content in literature, a painting, or a sonata? Studies on harmonic analysis, frequency 
distributions (e.g., Zipf’s distribution) and statistical behaviors of artistic structures (e.g., multifractality) 
have been used as measures of creativity and hence, the emergence of complexity in artworks [35, 36]. 
However, most artists will simply seek to describe creative works whether it be Carroll’s Alice in 
Wonderland, Mozart’s symphonies or the swirly flows of Van Gogh’s starry night as complex systems 
that cannot be defined using words from human language. Artistic creativity can only be appreciated for 
its beauty and not analyzed (reduced to its parts). Such sentiments are to be shared in the descriptions 
of real-world, complex systems. 
 
While the time-point one may choose to better represent their personalized perspective of complexity 
may vary, complex systems are universal and are signatures of Nature. All the tools and disciplines 
described above cohere into a single framework in complex systems. It is an interdisciplinary science 
which cannot be reduced to parts, and as such cannot be separated to specific branches of science. To 
illustrate, consider the following example. Network biology is now being investigated within the 
framework of algorithmic complexity theory. In the emerging field of Algorithmic Information Dynamics 
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(AID), biological networks are investigated as dynamical systems in software space using perturbation 
analysis [37]. Measures of algorithmic information content are then approximated using algorithms such 
as Block Decomposition Method or lossless compression algorithms to quantify the network complexity 
[37]. This is a clear example of how interconnected various traditional disciplines of science have 
become in the study of complex systems. The AID framework combines tools from dynamical systems 
theory, computational physics, network science and biology into a whole systems science. 
 
THE FUNDAMENTALS OF COMPLEX SYSTEMS 
 
The following concepts and tools are the meat on the bones (substance) of complexity science. They are 
general characteristics and tools that apply to investigating any type of complex system, and hence 
should be appreciated by systems researchers. Note however nonequilibrium statistical mechanics, 
nonlinear dynamics and chaos are not enlisted here for they are not simple concepts. They are the 
foundations of complexity science and cannot be confined to this layman survey. 
 
Emergence: The current definition of a complex system implies emergence- the appearance of 
properties, patterns, and behaviors in a system, due to nonlinear interactions, not foreseen within the 
parts of the system [38]. For example, consider the flight of a bird or the swimming of a fish. The flow 
patterns of species across ecosystems exhibits emergent structures. As a single agent, the bird’s flight or 
the trajectory of a fish may seem apparently random but driven by its own survival instincts, the search 
for food, shelter, light, and resources. However, collectively groups of birds and schools of fishes exhibit 
organizational adaptability and emergent behaviors that are unforeseen by the individuals [38, 39]. The 
flocking of birds creates complex patterns following the Vicsek model, where birds follow a simple rule 
of behavior: stay close to your neighbors but not too close. However, collectively the flocking patterns 
appear to behave like hydrodynamic fluids [39]. The same description applies to the schools of fishes. 
Their collective motion displays a continuum model resembling fluid dynamics [39]. 
 
Thus, complex (adaptive) systems show systems following simple rules can exhibit unpredictable 
patterns and collective behaviors. Emergence is not necessarily observed in natural systems. For 
example, computational models such as Conway’s Game of Life and elementary Cellular Automata show 
that simple computer programs following local, discrete rules exhibit emergent behaviors resembling 
those observed in natural systems [40]. These computational models also show complex systems often 
exhibit computational irreducibility, intractability, undecidability, and unpredictability [40]. Such notions 
cannot be defined by studying a complex system in terms of differential equations. 
 
Self-organization: Self-organization (SO) refers to the spontaneous order that arises from local 
interactions between the parts of an initially disordered system, without the need for any external 
mediators [41]. The above-discussed emergent behaviors may be described as self-organized processes 
as well. It must be noted that order can also be ambiguous. For example, Prigogine describes chaos as a 
form of order in which the temporal sequence is complex. However, herein order will be defined as a 
system in which entropy is low. In 1944, physicist Erwin Schrodinger described the emergence of life as a 
nonequilibrium thermodynamic process driven by negentropy (i.e., the system lowers its own entropy 
while increasing the entropy of its surroundings) [42]. These principles were accounted by Schrodinger 
to describe the spontaneous order of genetic information, ‘aperiodic crystals’, which today is known as 
the chromatin [42]. Crystal formation, the arrangement of initially disordered molecules into highly 
structured lattices is thus a clear example of self-organization [23]. The ordered arrangement of 
chromatin in the metaphase plate during cellular division, driven by various locally interacting protein 
complexes such as microtubules and cell polarity complexes is a biological example of SO [43].  SO is 
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inherently linked to regularity and symmetry. We see the consequences of perturbed/aberrant SO in the 
asymmetric chromosomal segregation in pathological systems such as cancer cells. Another example of 
self-organization is stigmergy. Consider ant colonies, where individually an ant’s behavior may seem to 
be of very little intelligence and behave like a random walker [39]. However, collectively, the swarming 
of ant colonies exhibit intelligent structures and highly coordinated task performances [39]. Thus, self-
organization is a feature of most complex adaptive systems. 
 
Phase-transition and Criticality: Most complex systems display critical behaviors. That is, the system is 
at the tipping point between chaos and order [44]. The ant colonies defined in SO may also be described 
as a system of Self-organized Criticality (SOC). Kauffman describes healthy cellular phenotypes as critical 
attractors of the biological network’s state space (i.e., edge of chaos) [16]. The cell membrane may be 
defined as a critical structure poised between a solid and a fluid (i.e., fluid-mosaic model). Thus, 
criticality denotes the point at which a system may display a phase-transition. A phase-transition occurs 
when a system undergoes symmetry-breaking, i.e., when small fluctuations acting on a system crossing 
a critical point decides the system’s fate [45]. In complex systems such as fluid turbulence and the 
phase-space portrait of any chaotic system, a phase transition is denoted by the bifurcation of a system 
at that critical point [46]. For example, above a certain critical threshold of growth parameters, the 
logistic model will exhibit chaotic behaviors (i.e., period-doubling bifurcations) [46]. The Feigenbaum 
constant and fractal measures are then used to characterize the complex behaviors and structures 
emerging in these chaotic systems. It is self-evident that for one to truly understand complex systems, 
an appreciation of dynamical systems theory is a fundamental pre-requisite. 

Networks: Networks are one of the most widely used tools in the study of complex systems. Network 
science was found upon the disciplines of graph theory and information theory. Graph theory was 
developed by Swiss Mathematician Leonhard Euler. It is the branch of mathematical sciences which 
studies networks, abstract structures used to symbolize the pairwise relationships between objects. The 
graph network is then a visual representation of the associations amidst the various elements of the 
network, where the elements (e.g., proteins, genes, etc.) are represented as nodes (vertices) of the 
graph and their interactions by links (edges) [17, 18]. Complex systems form complex networks, with 
multi-level, multi-scale structures and nonlinear interactions [47]. 
 
The measures of a network’s complexity may pertain to the description of its structure and dynamics. 
Structural features of a network include the degree, distance, betweenness, and clustering coefficient 
while the dynamic features of a network are more complex to define and can only be inferred from 
statistical tools such as entropy, mutual information, algorithmic complexity, etc. (i.e., collectively 
referred to as information-graph theoretic methods) [19, 47].  For example, the gene interaction 
networks (GRN) and protein-protein interaction (PPI) of cancers are highly dynamic, complex networks 
[19]. The high-dimensional phase-space projection of these networks forms the epigenetic/attractor 
landscape, where the cellular phenotypes may correspond to attractors of the landscape [48]. An 
attractor is visualized as a valley (local energy minimum) of this state-space landscape. Attractors are 
abstract mathematical structures derived from dynamical systems theory which may be of many types: 
fixed-points, stable equilibria, periodic oscillators, limit cycles, critical, and chaotic (strange) [46]. 
Growing evidence suggest that cancer cells are unstable, aperiodic attractors of their network state 
space exhibiting nonequilibrium statistical mechanics (i.e., fluctuations around an attractor/valley) [49]. 
Whether these unstable attractors may be defined as strange attractors or not remains a poorly 
investigated topic in network biology [37]. 
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Adaptation: The term does not deviate from that defined in Darwin’s Origin of Species. Complex 
adaptive systems (CAS) are a category of complex systems which respond to the perturbations from 
external and/or internal environment by changes that allow the selection of their population’s survival 
fitness [50]. For example, cancer cells are CAS. There need not be more said about adaptation, but it is 
critical to consider that even in simple biosystems, adaptation is difficult to predict and characterize. 
There are many layers of complexity in biological networks, which makes comprehending CAS a 
complicated process [19, 50]. The complex networks in CAS tend to form multi-nested networks with 
dynamic feedback loops. Hence, the study of adaptation requires principles of control systems and 
cybernetics (i.e., the systems science of information processing) [22]. 
 
Pattern Formation: Pattern formation is inseparable from the above-discussed aspects of a complex 
system. Think of clouds, morphogenesis, bifurcating structures in plants and trees, etc. Herein, I draw 
attention to a sub-class of pattern formation observed in natural systems- fractals and multifractals, 
where the latter denotes fractals with dynamic scaling exponents [10]. Fractals are ubiquitously 
observed in nature, yet they do not have any closed-form analytical solutions [10]. Most chaotic and 
nonequilibrium systems exhibit multifractal structures, such as the strange attractors in fluid turbulence, 
the blood vessels networks in tumor angiogenesis, and the fluctuations of stock markets [14, 51]. 
Multifractal analysis is emerging as a tool in tumor texture characterization and diagnosis [52]. 
 
Computation and Algorithms: These are perhaps the most powerful tools in current complex systems 
research. An algorithm is a recipe or a set of instructions to perform a task. In many ways it is difficult to 
distinguish an algorithm from a computer, but for simplicity we may take a computer to be a system 
which can integrate and execute algorithm(s) [5]. Artificial Intelligence (AI), machine learning and data 
mining are used to recognize patterns and quantify information flow in complex systems. For example, 
Deep Learning is emerging as the frontier of precision oncology and is a powerful tool for causal 
structure inference in cancer networks [53]. This survey is not intended to educate on the various tools 
and approaches available in computational sciences. However, it must be noted that although AI 
algorithms can provide predictions of certain patterns and behaviors in complex systems, they do not 
necessarily provide an understanding of the whole system [54]. They are to be treated as tools to gain 
insights into what may constitute the whole or well-model the whole and not the whole itself [54]. The 
same implication applies to all other tools of complexity discussed above. Regardless, simulations, 
computational modelling and AI-applications are amidst the most promising prospects to complex 
systems research. Furthermore, there are tools such as agents-based modelling, evolutionary 
algorithms, etc. not discussed herein that falls into computational methods for complex systems science 
[1]. 
 
CONCLUSION 
 
Complex systems theory is a paradigm shift in systems thinking and research, wherein the key concepts 
required to appreciate the emerging science are briefly described above. The survey is written to 
stimulate systems thinkers towards adopting complexity science and its tools to approach real-world 
problems. Therefore, it is essential the thinkers from broad disciplines of investigation integrate as a 
whole, alike a complex system, to make true progress in finding solutions to these real-world problems. 
As Quantum Mechanics demonstrates, the observer, the measurement (observation) and that which is 
observed (the system) are intertwined and should not be separated [26]. That is, humans and the 
science driven by them are complex systems. 
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