

1 *Type of the Paper (Article)*

2 **Studying Unemployment Effects on Mental Health: 3 Social Media versus Traditional Approach**

4 **Samara Ahmed¹, Adil E. Rajput^{2,*} Akila Sarirete^{3,*} Asma Aljaberib⁴, Ohoud Alghanem⁵ and
5 Abrar Alsheraigib⁶**

6 ¹ Psychiatry Division, College of Medicine, King Abdulaziz University, Jeddah, KSA;
7 samraa2018@gmail.com

8 ² Computer Science Department, College of Engineering, Effat University, Jeddah, KSA;
9 aiilahi@effatuniversity.edu.sa

10 ³ Computer Science Department, College of Engineering, Effat University, Jeddah, KSA;
11 asarirete@effatuniversity.edu.sa

12 ⁴ Information Systems Department, College of Engineering, Effat University, Jeddah, KSA;
13 aaaljaberib@effat.edu.sa

14 ⁵ Information Systems Department, College of Engineering, Effat University, Jeddah, KSA;
15 Ohalghanem@effat.edu.sa

16 ⁶ Information Systems Department, College of Engineering, Effat University, Jeddah, KSA;
17 aaalsheraigib@effat.edu.sa

18 * Correspondence: aiilahi@effatuniversity.edu.sa

19 **Abstract:** Social media, traditionally reserved for social exchanges on the net, has been increasingly
20 used by researchers to gain insight into different facets of human life. Unemployment is an area that
21 has gained attention by researchers in various fields. Medical practitioners especially in the area of
22 mental health have traditionally monitored the effects of involuntary unemployment with great
23 interest. In this work, we compare the feedback gathered from social media using crowdsourcing
24 techniques to results obtained prior to the advent of Big Data. We find that the results are consistent
25 in terms of 1) financial strain is the biggest stressor and concern, 2) onslaught of depression is typical
26 and 3) possible interventions including reemployment and support from friends and family is
27 crucial in minimizing the effects of involuntary unemployment. Lastly, we could not find enough
28 evidence to study effects on physical health and somatization in this work.

30 **Keywords:** social media; unemployment; crowdsourcing; natural language processing; mental
31 health

32 **1. Introduction**

34 **1.1. Motivation and Background**

35 Unemployment has been a subject of interest among a wide community of researchers spanning
36 various disciplines. Specifically, healthcare providers have long been studying effects of involuntary
37 unemployment in societies both from an individual and aggregate level [1], [2]. The studies have
38 been mostly confined to a particular geographical area, as traditionally it has been difficult to do an
39 aggregate study spanning various geographical levels. Furthermore, the literature suggests that
40 various societies and countries have a different intervention system in place (unemployment benefits,
41 retraining opportunities etc.) – a fact that further complicates comparing samples across various
42 regions and societies.

43 Social computing has emerged as a discipline where users employ various computing devices
44 for social use rather than increasing productivity. The work done in [3] points out the change in social
45 interaction among people in the past few years. The social media platforms offer plethora of data in

46 forms of free text that embodies opinions of users across the globe. Thorne, Steven in [4] provides a
47 comprehensive study where he argues how internet has helped in learning different languages. What
48 is also interesting is the fact that the author in one case study observes that the difference in use of
49 the communication tools on internet is similar when engaging in non-internet communication.
50 Dunkels in his work [5] did a study on children's perceived dangers (Swedish 6th graders between
51 the age of 11 and 13) of the net and the fact that children of various ages not only were aware of the
52 dark side of online communications but also had various counter strategies very different than those
53 of adults and their parents. Savin et al. [6] use the shortage of child and adolescent psychiatrists across
54 the globe as motivation and make a case of telepsychiatry using video conferencing. The authors
55 specifically study whether the difference in culture could impede in providing effective treatment to
56 the patients. The study concludes that many impediments can be overcome by paying attention to
57 certain details such as studying nonverbal communication clues, historical aspects etc. The behavior
58 was observed across various cultures during COVID-19 when doctors across the globe used video
59 conferencing as a means to connect to their patients.
60

61 Coupling the information gathered from social media where various communities exist to
62 exchange ideas and express one's feelings with the power of Big Data, the question that comes to
63 mind is whether the emergence of various social media tools helped in convergence of uniform
64 expression of symptoms and the effects of a global human condition such as unemployment? The
65 traditional literature on unemployment pays great attention to various intervention factors such as
66 community support in minimizing the negative effects of unemployment. The existence of social
67 media tools and blogs are known to conflate exchanges across the globe but do they truly reflect the
68 actual thought process of people that are affected? Work done by [7] showed that the profile created
69 by Facebook was more accurate than the portrait given by actual friends of a person.
70

71 This leads to another question: How does one gather and group data for a particular topic? The
72 concept of crowdsourcing (originally allowing outsourcing tasks to humans regardless of their
73 physical location) has been employed increasingly to group relevant data together. Paniagua &
74 Korzynski [8] show how the concept of crowdsourcing is part and parcel of the social media platform.
75 Thus, Twitter platform allowed in an emergency situation to gather feedback from volunteers in the
76 affected region and helped the authorities to respond appropriately [9]. This was a case where the
77 volunteers were fully cognizant that their input on social media is being used to form an action plan
78 and is considered an example of active outsourcing. On the other hand, Passive crowdsourcing
79 gathers users' thoughts without the users recognizing that they are contributing. The concept of
80 hashtag on twitter where various users contribute to a given subject falls under the concept of passive
81 crowdsourcing. Many social media providers provide mechanisms that allow researchers to gather
82 data from such site. The researchers employ techniques developed in the field of Natural Language
83 Processing (NLP) to segment and cull together relevant text gaining an insight in both the context
84 and the relevant meaning. The NLP techniques depend on an existing corpus that can represent a
85 language [10].
86

87 Demzsky et al. in [11] employ NLP techniques to uncover linguistic dimensions of political
88 polarization. The authors use the social media data to confirm earlier literature relating to
89 conceptualization of race in US. While the general corpus represent a particular language/dialect in
90 general, various domains are represented by a corpus more specific to the problem at hand. Rajput
91 and Ahmad in [12] make a case for a corpus to assist mental health professionals in detecting
92 depression among users provided some group of people. The researchers make use of twitter hashtag
93 #depression and conclude that keywords gleaned mimic the language of depression patients. Such a
94 corpus can serve to segment random text to predict with certain assurance the prevalence of
95 depression symptoms within the thoughts described by a particular user.

96 1.2. *Problem Description*

97 Our current work aims at scavenging data from the social media using NLP techniques and
98 crowdsourcing concept to gather and analyze data specific to unemployment. The work at hand
99 had started before the COVID-19 crisis but the data collection coincided during the early part of the
100 pandemic. The motivation for our work stems from the question: Can social media platform
101 provide sufficient data that conforms to the results obtained using the traditional methods.
102 Specifically, we will try to categorize the results in terms of possible reasons, consequences and
103 intervention techniques. We will further narrow down the consequences to see whether the users
104 suffering from unemployment suffer any mental health symptoms.

105 We utilized the hashtag #unemployment and gathered data for one month to arrive at our
106 results. The discussion was in English but contained several Out of Vocabulary (OOV) words that
107 we ignored. We look at the keywords both individually and with other words. Given the
108 importance of involuntary unemployment on a global scale, we try to address the following
109 questions in this work:

- 110 1. RQ1: Other than the financial strain, does involuntary unemployment affect the users globally
111 the same way when it comes to mental health?
- 112 2. RQ2: Can researchers use the data from social data as a basis for analysis compared to traditional
113 analysis approach?
- 114 3. RQ3: Does the data scavenged from social media provide basis for both the consequences and
115 intervention techniques when it comes to unemployment?

116 2. Literature Review

117 2.1. Traditional Measures for Unemployment

118 In [13], the authors discuss the long-term effects of unemployment on youth's behavior
119 employing a longitudinal study. Discussing from a purely behavioral and economic perspectives, the
120 authors argue that 1) the youth unemployment forces the youth to seek skills improving behavior by
121 engaging in more training and 2) even a six-month unemployment negatively affects the income over
122 a period of at least ten years. The authors argue that the unemployment propels the youth to accept
123 opportunities offering less than their worth in fear of possible unemployment in the future.
124 Arulamaplam in [14] confirmed these findings and concludes that in Britain, the unemployment
125 leaves a permanent financial scar on the individual and individuals earned 6% less on reentry while
126 they earn 14% less after three years. Kessler et al. in [15] did a community survey and focused on the
127 selection bias in earlier studies. After minimizing the selection bias issues, the authors concluded that
128 similar to prior studies, unemployment had a clinically significant impact on the health of
129 unemployed individuals. They further concluded that 1) financial strain caused the biggest impact
130 on health as financial strain's absence halved the negative health effects and 2) the unemployment
131 compounded the effects of otherwise unrelated life events. The clinically significant health effects
132 included both physical and mental health strains such as depression and anxiety. Furthermore, the
133 authors also mention the effects of somatization that are hard to measure. The authors also bring
134 forth the effects of mediating factors that include reemployment, family support etc. Mastekaasa in
135 [16] took an alternative view in literature where he argues, based on a study in Norway, that mentally
136 health people are less likely to get laid off or have higher chance of reemployment fairly quickly while
137 mentally ill people are at a higher risk for getting laid off. Authors in [17] take an opposite approach
138 and prove that on an aggregate level there is a high correlation between long term employment and
139 suicide rate while on an individual level, depression and substance abuse is a common consequence
140 of long-term unemployment. More recently, work done by Pohlan [18] confirm that unemployment
141 has negative effects on different aspects of an individual's life including social integration, life
142 satisfaction, access to economic resources and more importantly an individual's mental health as it
143 leads to social exclusion and eventually isolation from society. The authors also showed that having
144 a partner and being highly educated reduces the negative effects of job loss. The work done by
145 Voßemer et al. [19] takes a step further and limit the effects of unemployment to mental health and

146 well-being but not on physical health. The work done in [20] concludes that while the importance
147 of education in the modern world is paramount, highly educated individuals have difficulty finding
148 jobs appropriate to their level and end up taking employment that is lower than their academic
149 qualifications impacting their mental health negatively. The results were replicated by [21] in India.
150 Using data from the German Socio-Economic Panel Study (SOEP) from 2002 through 2010 found the
151 negative effects of unemployment spouse's mental health and the fact that unemployment had severe
152 consequences on both the unemployed and their spouse [22].

153 *2.2. Social media and Unemployment*

154 Kunze & Suppa in [23] concluded that unemployment affects negatively on social participation for
155 public activities and exercises. However, they also reported that social media help unemployed people
156 keep their relationships. The social network impacts on individual inclusion and exclusion as the
157 unemployed people use social media to grow their social networks, and the chance to establish new
158 contacts. Thus, social networks differentiate between unemployed and employed through persisting
159 online [24]. [21] presented a contradicting view in terms of Information Technology's (IT)
160 contribution towards unemployment where certain studies supported that IT contributed towards
161 unemployment while others view IT positively in terms of helping to find various avenues for
162 employment including expanding social circles. The work done in [25] [26, p. 2] explore outsourcing of
163 jobs in general and IT in specific to see the effects on unemployment. Proserpio et al. in [27] did a very
164 thorough study of 230,000 U.S users that had either lost their jobs or gained a new one over five years
165 from the year 2010 to 2015. The authors argued that psychological well-being elements can be used as
166 leading indicators showing the economic indices weeks in advance with greater accuracy. Our research
167 takes a similar approach but our goal is to see whether the social media mimics the results found by
168 traditional methods. Suphan et al. [24] focused on the effective role of social media in reducing
169 unemployment where a survey of 809 Facebook users showed that the unemployed people found it
170 easier to use their virtual contacts as compared to the population of the rural regions. The community
171 of the urban areas is at higher exposure to drop out in the previous social networks that can lead to poor
172 mental condition due to the problem of unemployment. Mincer in [28] goes a step further in
173 contending that minimum wage earners suffer similar health effects as those who suffer from.
174 Involuntary unemployment.

175

176 The research done by [29] used social media social media content containing the news articles,
177 blogs, and tweets written in the Korean language, extracted the social moods and predict the
178 unemployment.

179

180 The study conducted by [27] in May 2015 found the relationship between psychological wellbeing
181 and unemployment, by analyzing Twitter posts from United States users who either lost a job or gained
182 a new job. Our study would build upon this and some of our prior research and see whether we can
183 pinpoint some intervention techniques. Furthermore, our research does not distinguish between the
184 geographical location but rather see whether we can locate the areas most affected by unemployment.
185 The work done by [30] focuses on people in the United States and contends that unemployed use social
186 media more at night while employed people use it more during the day. Authors in [31], [11], [32] focus
187 on predicting unemployment rated by employing NLP techniques.

188 *2.3. Crowdsourcing*

189 Crowdsourcing has gained popularity helping entities gather services, ideas, or content from a
190 large group of people mostly using electronic channels. It is interesting to note that prior to social media,
191 there were efforts done to cull together heterogenous data from various sources [33]. The advent of
192 Peer-to-Peer networks also were a step forward to conflate data in unstructured form [34]. Wazny in
193 [35] offers a thorough review of crowdsourcing including taxonomy, prevalent research and various
194 regulatory and ethical aspects. The author points out the potential of using crowdsourcing in medical
195 field as it has the potential to gather vast amount of relevant data. Doan et. al., in [36] discussed the

196 use of internet as a medium for crowdsourcing and discussed four significant challenges that included
197 how to recruit, measure their abilities, maintain quality of the work and more importantly how to
198 integrate the work performed. The work done in SES [37],[38],[39] use the same concept to predict the
199 socioeconomic status. The work done in [12] uses a similar technique to detect depression but the work
200 is more focused on building corpus.

201 *2.4. Big Data/Social Media and Mental Health*

202 Murdoch and Detsky [40] introduced the need for applying the big data techniques to medical
203 field to gather better insights. Chen & Wojcik described a framework on applying big data in the field
204 of psychology and mental health [41]. The authors focus on the four steps necessary for such endeavors
205 namely planning, acquisition, analysis and analytics and also provide three tutorials for the users. The
206 field of psychiatry saw many initiatives recently spurred by the interest in Big Data. These include
207 developing suicide risk algorithms, risk of dementia, substance abuse disorders, prescribing
208 psychotropic drugs and studying cognitive impairment. Monteith et al. summarizes the above and
209 describes the ramifications Big Data is having in the field of psychiatry in [42] while the work done in
210 [43] provides an overview of work done in medical sciences along with various techniques that are
211 employed. Dechoudhry et. al. has laid foundation for work in applying such techniques to social media
212 platform [44],[45]. Specifically, they have demonstrated predicting depression in Twitter users given a
213 set of users who have indicated prevalence of depression in their lives. The work however is based on
214 users who have indicated the prevalence of depression and made their tweets available.
215

216 **3. Experimental Setup**

217 As is the case in such research, we only collected the data from public sources to ensure that we
218 address the privacy concerns of using such data [46],[47]. Furthermore, we do not publish any user
219 handle on twitter but make sure that we eliminate duplicate tweets to ensure that we are working
220 from a clean set of data.

221 *3.1. Preprocessing and Processing Data*

222 We followed the following process for preprocessing and processing of data:

- 223 1. Collected over 25000 tweets under the hashtag #unemployment
- 224 2. We use the nltk toolkit to parse the texts and get rid of the stop-words (recurring words such as
225 articles that need to be filtered out)
- 226 3. We use the tf-idf algorithm [48] to generate the keywords
- 227 4. We used the n-gram model for n = 1, 2 and 3. This helped us get the top keywords (1-gram), 2
228 adjacent words (2-gram/bigram) and 3 adjacent words (3-gram/trigram). We use the nltk built in
229 functionality and the n-gram model is not gappy.
- 230 5. Once we have finalized the preprocessing part, we used the sklearn library to tokenize and
231 vectorize the tweets.
- 232 6. For the sake of our work, we treated the entire set of tweets as one corpus.
- 233 7. In addition to collecting the n-gram keywords, we also collected all the hashtags that are
234 mentioned in the tweets and the number of times they were used.
- 235 8. Implemented the above on a standard Dell running Ubuntu Linux and Python3 program with a
236 16G RAM

237 *3.1.1. The APIs used*

238 For this work, we used the python programming to gather and analyze the data. We used the
239 following open-source APIs available for python programming language.

- 240 1. Twitter API: This requires registering with Twitter and creating a twitter development account.
241 The twitter library can be installed for Python that provides all the requisite APIs

242 2. Pandas: This is an open-source python library which allows data cleaning, preparation and fast
 243 analysis. The data can be easily imported into Excel.
 244 3. NLTK: This is one of the most powerful NLP libraries that provides the basic tools such as
 245 tokenization, stemming, lemmatization etc. Interested readers can refer to [49] for pertinent
 246 details.
 247 4. Sklearn: This library helps in big data analysis such as classification, regression, clustering etc.
 248

249 **4. Results and Discussion**

250 As a reminder, we restate the three questions we posed as the goals of this study

251 1. RQ1: Other than the financial strain, does involuntary unemployment affect the users globally
 252 the same way when it comes to mental health?
 253 2. RQ2: Can researchers use the data from social media as a basis for analysis compared to traditional
 254 analysis approach?
 255 3. RQ3: Does the data scavenged from social media provide basis for both the consequences and
 256 intervention techniques when it comes to unemployment?

257 *4.1. 1-gram*

258 As mentioned in the previous section, we looked at 1-gram, bigram and trigram keywords that
 259 we gleaned from the tweets. While the research for this work commenced prior to COVID19 crisis,
 260 the tweets we gathered spanned the month of April and hence the results reflected this phenomenon.
 261 Below are the results of the top 20 terms using the tf-idf analysis. Please note that these were the terms
 262 that stood out when using the 1-gram analysis out of more than 25,000 tweets and we ignored the
 263 term 'unemployment' as that was the name of the hashtag (also proving the basic premise of tf-idf)
 264 (Table 1 below).

265 **Table 1.** tf-idf analysis - 1-gram model

Reason/Location	Effects	Intervention
Michigan	Suffering	Government
Sweden	Pain	Society
Coronavirus	Worrying	Self Employed
Economy	Poverty	Qualify/Eligible
Recession	Struggles	Claims
Layoffs	Depression	
Businesses	Insurance	
China		

266

267 So interestingly despite the hashtag was in English, we see that majority of the users referred to
 268 Michigan, China and Sweden. Cross-checking against the unemployment data from US during the
 269 month of April, Michigan was indeed one of the hardest hit states. The data from China and Sweden
 270 was not available but the frequency of the term indicates the presence of non-English speakers on the
 271 hashtag. This goes to the RQ1 above and is consistent with the finding of [4] where the authors argued
 272 that social media has played a role in propagation of language – English in this case. Furthermore,
 273 we note that coronavirus was the biggest term that appeared as the cause of the unemployment.
 274

275 Continuing to answer RQ1, looking at the terms related to Effects of unemployment, we see that
 276 there are three major concerns namely financial strain, possible worry about health insurance and the

277 onslaught of depression. While we cannot say for certainty the term 'insurance' refers to 'health
 278 insurance', the context of unemployment indicates that this might be the case.
 279

280 Looking at RQ2, we can see from above that the social media discusses all the three tenets of
 281 traditional research on unemployment namely Causes, Effects and possible interventions – in this
 282 case, the users look up to the government and society to provide the necessary means.
 283

284 *4.2. 2-gram*

285 To further refine the above, we look at the results obtained from the 2-gram model (Table 2).
 286

Table 2. 2-gram model

Reason/Location	Effects	Intervention
coronavirus	pain suffering	qualify assistance
unemployment		
yemen americans	americans struggle	unemployment
		coverage/receiving
		unemployment
rick scott	gig workers	stimulus payments
	lose healthcare	stop thinking
	jobless claims	teleworking paid
	suffering depression	working teleworking
	worrying loss	paid leave
	provide food	compensation law
	thinking worrying	

287

288 Once again, we see coronavirus is being used with unemployment indicating that it is being
 289 singled out as the reason for unemployment in US. Furthermore, continuing the trend of Michigan,
 290 the bigram 'yemen americans' is used extensively – a community mostly found in Michigan. Also,
 291 the term 'rick scott' – senator from Florida appeared quite a bit and was filtered in the 1-gram model
 292 as the terms 'rick' and 'scott' individually did not mean much. Looking at the effects, the bigram 'pain
 293 suffering' occurred very highly but remains ambiguous in terms of physical pain versus the financial
 294 pain. Again, looking at the effects, we see that depression was the major issue. The Intervention
 295 column has more information in the bigram model as users mostly discuss ways to ease the financial
 296 suffering. However, one bigram 'stop thinking' offered a possible intervention for worrying and
 297 depression as we can see from the Effects column.

298 *4.3. 3-gram*

299 Finally, we look at the 3-gram results from our analysis. In terms of location, we see that Texas
 300 workforce has been added to the mix. The effects were similar to what we found earlier as is also the
 301 case for the intervention mechanisms. While no new results stand out in 3-gram model for effects and
 302 intervention, we see that the results below confirm the results we got in both 1-gram and 2-gram
 303 model (Table 3).
 304

Table 3. 3-gram model

Reason/Location	Effects	Intervention
lost job covid19	covid19 apply healthcare	Expanded unemployment coverage
yemen americans struggle	million people filed	sweeping unemployment compensation
annette_taddeo rick scott	americans filed unemployment	get stimulus payments/stimulus payments individuals
txworkforce qualify assistance	americans struggle provide families increase unemployment enormous pain suffering	teleworking paid leave currently working teleworking paid leave eligible
	coronavirus enormous pain	stop thinking worrying
	worrying loss jobs	
	provide food families	

306

307 *4.4. Hashtags*

308 Lastly, we also looked at the hashtags that were mentioned in the tweets. While there were more
 309 than 2500 hashtags that we encountered in our analysis, the following ten hashtags were mentioned
 310 more than 100 times.

311

Table 4. Top Hashtags

Top Hashtags
#economy
#unemployment
#coronavirus
#covid19
#florida
#stimulus
#sweden
#jobs
#yemenamericans
#texas

312

313 Looking at the hashtags above, we see that the results confirm our earlier results and more
 314 importantly we see that the results we obtain confirm the findings of traditional research on
 315 unemployment where users confirm the importance of intervention when it comes to involuntary
 316 unemployment.

317 **5. Conclusions**

318 In this paper, we put together a framework to scavenge data on involuntary unemployment and
319 people's reaction to it. Comparing to the traditional research on unemployment, we established that
320 1) the financial strain is the most difficult part of the involuntary unemployment, 2) it causes mental
321 health issue specially depression and 3) people look for intervention both in terms of reemployment
322 and family/friends' support. We built upon the earlier work done on active and passive
323 crowdsourcing and gathered over 25,000 tweets under the hashtag '#unemployment'. Using the tf-
324 idf algorithm, we looked at n-gram models for n = 1,2 and 3 while also gathering over 2500 hashtags
325 and distilled it into ten hashtags that were mentioned more than 100 times. Looking at the data from
326 social media, our results replicated the traditional model and we found the three tenets of prior
327 research on unemployment. We plan to extend this work by looking at other hashtags gathered from
328 this work and compare to our results. What will also be interesting would be to compare the results
329 gathered in English language to another language.

330

331 **Author Contributions:** For research articles with several authors, a short paragraph specifying their individual
332 contributions must be provided. The following statements should be used "Samara Ahmed: Conceptualization,
333 1,2, 5 and writing—original draft preparation and software; Adil Rajput: methodology, 3, 4 and writing—
334 original draft preparation and software; Akila Sarirete: 4, validation and software and writing—review and
335 editing; Asma Aljaberi, Ohoud Alghanem and Abrar Alsheraigi: investigation, data curation, 2.2 and 3;

336 **Funding:** "This research received no external funding".

337 **Conflicts of Interest:** "The authors declare no conflict of interest."

338 **References**

- 339 [1] G. Coppersmith, C. Harman, and M. Dredze, "Measuring post traumatic stress disorder in Twitter," Menlo Park, CA,
340 2014, pp. 579–582.
- 341 [2] M. W. Linn, R. Sandifer, and S. Stein, "Effects of unemployment on mental and physical health," *Am J Public Health*,
342 vol. 75, no. 5, pp. 502–506, May 1985, doi: 10.2105/ajph.75.5.502.
- 343 [3] M. Parameswaran and A. B. Whinston, "Social computing: An overview," vol. 16, pp. 762–780, 2007, doi:
344 10.17705/1CAIS.01937.
- 345 [4] S. L. Thorne, "Artifacts and cultures-of-use in intercultural communication," *Language Learning & Technology*,
346 2003, [Online]. Available: https://scholarspace.manoa.hawaii.edu/bitstream/10125/25200/07_02_thorne.pdf.
- 347 [5] E. Dunkels, "Bridging the distance : children's strategies on the internet," PhD Thesis, Umeå University, Interactive
348 Media and Learning, 2007.
- 349 [6] D. Savin, D. A. Glueck, J. Chardavoyne, J. Yager, and D. K. Novins, "Bridging cultures: child psychiatry via
350 videoconferencing," *Child Adolesc Psychiatr Clin N Am*, vol. 20, no. 1, pp. 125–134, Jan. 2011, doi:
351 10.1016/j.chc.2010.09.002.
- 352 [7] W. Youyou, M. Kosinski, and D. Stillwell, "Computer-based personality judgments are more accurate than those
353 made by humans," *Proceedings of the National Academy of Sciences*, vol. 112, no. 4, pp. 1036–1040, 2015, doi:
354 10.1073/pnas.1418680112.
- 355 [8] J. Paniagua and P. Korzynski, "Social Media Crowdsourcing," *Springer*, 2017.
- 356 [9] S. E. Jordan, S. E. Hovet, I. C. Fung, H. Liang, K. W. Fu, and Z. T. H. Tse, "Using twitter for public health
357 surveillance from monitoring and prediction to public response," *Data*, vol. 4, no. 1, 2019, doi:
358 <https://doi.org/10.3390/data4010006>.
- 359 [10] R. W. Schvaneveldt and D. E. Meyer, "Lexical ambiguity, semantic context, and visual word recognition.," *J Exp
360 Psychol Hum Percept Perform*, vol. 2, no. 2, pp. 243–256, May 1976, doi: 10.1037//0096-1523.2.2.243.

361 [11] D. Demszky *et al.*, *Analyzing Polarization in Social Media: Method and Application to Tweets on 21 Mass Shootings*.
362 2019.

363 [12] A. Rajput and S. Ahmed, "Making a case for social media corpus for detecting depression," *arXiv preprint*
364 *arXiv:1902.00702*, 2019, [Online]. Available: <https://arxiv.org/abs/1902.00702>.

365 [13] T. Mroz and T. H. Savage, "The Long-Term Effects of Youth Unemployment," *Journal of Human Resources*, vol.
366 41, no. 2, 2006, [Online]. Available: <https://EconPapers.repec.org/RePEc:uwp:jhriss:v:41:y:2006:i:2:p259-293>.

367 [14] W. Arulampalam, "Is Unemployment Really Scarring? Effects of Unemployment Experiences on Wages," *Economic*
368 *Journal*, vol. 111, no. 475, pp. F585-606, 2001.

369 [15] R. C. Kessler, J. B. Turner, and J. S. House, "Effects of unemployment on health in a community survey: Main,
370 modifying, and mediating effects..," *Journal of Social Issues*, vol. 44, no. 4, pp. 69–85, 1988, doi: 10.1111/j.1540-
371 4560.1988.tb02092.x.

372 [16] A. MASTEKAASA, "Unemployment and Health: Selection Effects," *Journal of Community & Applied Social*
373 *Psychology*, vol. 6, no. 3, pp. 189–205, 1996, doi: 10.1002/(SICI)1099-1298(199608)6:3<189::AID-
374 CASP366>3.0.CO;2-O.

375 [17] D. Dooley, J. Fielding, and L. Levi, "Health and Unemployment," *Annu. Rev. Public Health*, vol. 17, no. 1, pp. 449–
376 465, Jan. 1996, doi: 10.1146/annurev.pu.17.050196.002313.

377 [18] L. Pohlan, "Unemployment and social exclusion," *Journal of Economic Behavior & Organization*, vol. 164, pp. 273–
378 299, 2019, doi: <https://doi.org/10.1016/j.jebo.2019.06.006>.

379 [19] J. Voßemer, M. Gebel, K. Täht, M. Unt, B. Höglberg, and M. Strandh, "The Effects of Unemployment and Insecure
380 Jobs on Well-Being and Health: The Moderating Role of Labor Market Policies," *Social Indicators Research*, vol.
381 138, no. 3, pp. 1229–1257, Aug. 2018, doi: 10.1007/s11205-017-1697-y.

382 [20] C. E. Mihaela, "The Education – An Important Factor on Unemployment And Profession," *Constantin*
383 *Brâncuși, University of Târgu Jiu*, no. 6, pp. 219–226, 2013.

384 [21] J. Dixit, Pankajtiwari, S. Gupta, P. Singh, and H. Gupta, *Educated Unemployed: A Challenge before Sustainable*
385 *Education*. 2011.

386 [22] J. Marcus, "The effect of unemployment on the mental health of spouses – Evidence from plant closures in Germany,"
387 *Journal of Health Economics*, vol. 32, no. 3, pp. 546–558, 2013, doi: <https://doi.org/10.1016/j.jhealeco.2013.02.004>.

388 [23] L. Kunze and N. Suppa, "Bowling alone or bowling at all? The effect of unemployment on social participation,"
389 *Journal of Economic Behavior & Organization*, vol. 133, no. C, pp. 213–235, 2017, doi: 10.1016/j.jebo.2016.11.01.

390 [24] A. Suphan, M. Feuls, C. Fieseler, and M. Meckel, "The Supportive Role of Social Media Networks for those Out of
391 Work," *2013 46th Hawaii International Conference on System Sciences*, pp. 3312–3321, 2013.

392 [25] K. A. Shahkooh, M. Azadnia, and S. A. Shahkooh, "An Investigation into the Effect of Information Technology on
393 the Rate of Unemployment," in *2008 Third International Conference on Convergence and Hybrid Information*
394 *Technology*, Nov. 2008, vol. 1, pp. 61–65, doi: 10.1109/ICCIT.2008.259.

395 [26] G. Strawn, "IT and Future Unemployment: Part 2," *IT Professional*, vol. 19, no. 1, pp. 70–72, Jan. 2017, doi:
396 10.1109/MITP.2017.14.

397 [27] D. Proserpio, S. Counts, and A. Jain, "The psychology of job loss: using social media data to characterize and predict
398 unemployment," in *Proceedings of the 8th ACM Conference on Web Science*, 2016, pp. 223–232, doi:
399 <https://doi.org/10.1145/2908131.2913008>.

400 [28] J. Mincer, "Unemployment Effects of Minimum Wages," *Journal of Political Economy*, vol. 84, no. 4, pp. S87-104,
401 1976.

402 [29] P.-M. Ryu, "Predicting the Unemployment Rate Using Social Media Analysis," *Journal of Information Processing*
403 *Systems*, vol. 14, no. 4, pp. 904–915, Aug. 2018, doi: 10.3745/JIPS.04.0079.

404 [30] E. Bokányi, Z. Lábszki, and G. Vattay, "Prediction of employment and unemployment rates from Twitter daily
405 rhythms in the US," *EPJ Data Science*, vol. 6, no. 1, p. 14, Jul. 2017, doi: 10.1140/epjds/s13688-017-0112-x.

406 [31] C. Nirmala, G. Roopa, and K. N. Kumar, "Twitter data analysis for unemployment crisis," *2015 International
407 Conference on Applied and Theoretical Computing and Communication Technology (iCATccT)*, pp. 420–423, 2015.

408 [32] D. Antenucci, M. Cafarella, M. Levenstein, C. Ré, and M. D. Shapiro, "Using Social Media to Measure Labor Market
409 Flows," National Bureau of Economic Research, Working Paper 20010, Mar. 2014. doi: 10.3386/w20010.

410 [33] V. S. Subrahmanian, S. Adali, A. Brink, R. Emery, J. J. Lu, and ..., "HERMES: A heterogeneous reasoning and
411 mediator system." cs.umd.edu, 1995, [Online]. Available:
412 <http://www.cs.umd.edu/projects/hermes/publications/postscripts/tois.ps>.

413 [34] A. Rajput and S. Rotenstreich, "Making A Case for Resource Management in a P2P Environment.," *IKE*. 2004.

414 [35] K. Wazny, "'Crowdsourcing' ten years in: A review," *Journal of Global Health*, vol. 7, no. 2, p. 020602, Dec. 2017,
415 doi: 10.7189/jogh.07.020601.

416 [36] A. Doan and R. Ramakrishnan, "Crowdsourcing systems on the World-Wide Web," *Communications of the ACM*,
417 vol. 54, no. 4, Apr. 2011, doi: <https://doi.org/10.1145/1924421.1924442>.

418 [37] A. E. Rajput, A. Sarirete, and T. F. Desouky, "Using Crowdsourcing to Identify a Proxy of Socio-economic Status,"
419 in *The International Research & Innovation Forum*, 2019, pp. 479–486.

420 [38] S. Ahmed, A. Rajput, A. Sarirete, and T. Chaudhery, "Social Media Platform: Measuring Readability and Socio-
421 Economic Status," 2020, doi: 10.13140/RG.2.2.19861.96484/1.

422 [39] A. Llorente, M. Garcia-Herranz, M. Cebrian, and E. Moro, "Social Media Fingerprints of Unemployment," *PLOS
423 ONE*, vol. 10, no. 5, pp. 1–13, 2015, doi: 10.1371/journal.pone.0128692.

424 [40] T. B. Murdoch and A. S. Detsky, "The inevitable application of big data to health care.," *JAMA*, vol. 309, no. 13, pp.
425 1351–1352, Apr. 2013, doi: 10.1001/jama.2013.393.

426 [41] E. E. Chen and S. P. Wojcik, "A practical guide to big data research in psychology.," *Psychological Methods*, vol.
427 21, no. 4, pp. 458–474, 2016, doi: 10.1037/met0000111.

428 [42] S. Monteith, T. Glenn, J. Geddes, and M. Bauer, "Big data are coming to psychiatry: a general introduction,"
429 *International Journal of Bipolar Disorders*, vol. 3, no. 1, p. 21, Sep. 2015, doi: 10.1186/s40345-015-0038-9.

430 [43] A. E. Rajput and S. M. Ahmed, "Big data and social/medical sciences: state of the art and future trends," *arXiv
431 preprint arXiv:1902.00705*, 2019, [Online]. Available: <https://arxiv.org/abs/1902.00705>.

432 [44] M. De Choudhury, "Social Media for Mental Illness Risk Assessment, Prevention and Support," presented at the 1st
433 ACM Workshop on Social Media World Sensors, Sep. 2015, doi: <https://doi.org/10.1145/2806655.2806659>.

434 [45] M. De Choudhury, M. Gamon, S. Counts, and E. Horvitz, "Predicting Depression via Social Media," Jul. 2013,
435 [Online]. Available: [https://www.microsoft.com/en-us/research/publication/predicting-depression-via-social-
media/](https://www.microsoft.com/en-us/research/publication/predicting-depression-via-social-
436 media/).

437 [46] S. M. Ahmed and A. Rajput, "Threats to patients' privacy in smart healthcare environment," *Innovation in Health
438 Informatics*, 2020, [Online]. Available: <https://www.sciencedirect.com/science/article/pii/B9780128190432000162>.

439 [47] S. Ahmed, "BYOD, personal area networks (PANs) and IOT: threats to Patients Privacy," *The International
440 Research & Innovation Forum*, 2019, [Online]. Available: [https://link.springer.com/chapter/10.1007/978-3-030-30809-4_36](https://link.springer.com/chapter/10.1007/978-3-030-
441 30809-4_36).

442 [48] K. S. Jones, "A statistical interpretation of term specificity and its application in retrieval," *Journal of
443 Documentation*, vol. 28, pp. 11–21, 1972.

444 [49] A. Rajput, "Natural Language Processing, Sentiment Analysis, and Clinical Analytics," *Innovation in Health
445 Informatics*, 2020, [Online]. Available: <https://www.sciencedirect.com/science/article/pii/B9780128190432000034>.

446

447