1 Article ## 2 Application of effective day degrees in the # 3 assessment of stable isotope patterns in developing ### 4 seahorses under different temperatures - 5 Sonia Valladares¹ and Miquel Planas^{1,*} - Department of Ecology and Marine Resources, Instituto de Investigaciones Marinas (CSIC), Eduardo Cabello 6, 36208 Vigo, Spain. - * Correspondence: mplanas@iim.csic.es Simple Summary: Temperature affects fish development, with especially strong influence on juvenile growth rates and metabolism. The present study provides new insights on stable isotopes (δ^{13} C and δ^{15} N) for the understanding of growth and food assimilation in early developing European long-snouted seahorse *Hippocampus guttulatus* under different temperature levels. The effects of feeding status, ontogeny and temperature regimes on stable isotope patterns were assessed and modelled as functions of relative weight gain (growth models) and development. We argue that chronological time is not a convenient developmental scale and we encourage the use of D°_{eff} as temperature-independent developmental index in stable isotopes studies involving temperature comparisons. **Abstract:** Relations between nutrient assimilation and growth rate in fishes may vary with abiotic factors such as temperature. The effects of feeding status, ontogeny and temperature regimes (15, 18 and 21 °C) on stable isotope (δ^{13} C and δ^{15} N) patterns were assayed and modelled in juveniles of the seahorse *Hippocampus guttulatus*. The use of effective day degrees (D°_{eff}) and chronological time (age) were compared as development progress indices. Newborn seahorses were maintained at three temperature levels both deprived of food (5 days) or fed (30 days) on copepods or/and *Artemia*. Isotopic signatures in fed seahorses clearly differed from those in unfed juveniles. Temperature had a significant effect on δ^{13} C values in fed juveniles throughout the experimental period. δ^{15} N values also varied significantly with age, but not with temperature level. Faster growth and food assimilation in seahorses held at 18 and 21 °C were supported by faster variations in isotopic values. Our findings demonstrate that effective day degrees should be preferred over chronological time as index of developmental progress in temperature fluctuating scenarios or for comparative studios. Keywords: seahorse; effective day degrees; temperature; stable isotopes; Hippocampus #### 1. Introduction The estimation of food intake, digestibility and assimilation patterns provides valuable information for the interpretation of growth and mortality rates of a consumer [1, 2]. Indirect techniques used to determine nutrient assimilation in fish (e.g., faeces collection, gut content analysis or individual growth rate measurement) might be difficult to apply, particularly in early life stages due to size limitation, complexity of sample collection and quantification of food intake [2, 3]. A direct method for overcoming these difficulties is the use of stable isotopes, whose values in consumer tissues reflect those of the food incorporated plus a trophic discrimination factor that occurs with nutrient assimilation [4]. For dietary studies, the two most commonly measured stable isotope ratios are ¹⁵N/¹⁴N and ¹³C/¹²C; both ratios are usually higher in consumer tissues compared to its diet because the lighter isotope (¹⁴N and ¹²C) is preferred in metabolic processes [4, 5]. Even though high variation has been reported [6], it is usually assumed that trophic discrimination factors - 45 $(\Delta\delta)$ are 0-1‰ for δ^{13} C [4, 7, 8] and 3.4‰ [5, 9, 10] for δ^{15} N, depending on tissues/species considered 46 - 47 Carbon and nitrogen stable isotopes (13C and 15N) have been successfully used as dietary tracers for 48 assessing the food utilization by organisms [12, 13, 14, 15]. Numerous factors such as environmental 49 conditions (e.g., temperature), feeding rates, physiological and nutritional status of the consumer 50 (e.g., stress, starvation) often cause modifications to food assimilation and thus differences in 51 consumer isotope composition [16, 17, 18, 19]. Experimental feeding studies allow the isolation of 52 one or more factors that modulate stable isotope ratios in consumers. In the case of fish larvae, 53 experimental stable isotope studies investigating the effects of environmental conditions on stable 54 isotope incorporation are relevant in identifying environmental preferences of larvae, 55 understanding larval nutrition needs, improving rearing techniques, and interpreting field stable 56 isotope studies. - 57 In lecitotrophic larvae of teleosts, initial isotopic trends would at least partially depend on the 58 presence and quantity of yolk remaining in the yolk-sac at hatching. Conversely, juvenile seahorses 59 are fully developed, active swimmers and hunters, and exclusively dependent on exogenous feeding 60 immediately after male's pouch release, when yolk is almost exhausted [20]. Suboptimal 61 nourishment or starvation during the first life stages of seahorses would cause the mobilization of 62 endogenous reserves from tissues to support energetic and metabolic demands, resulting in changes - 63 for δ^{13} C and δ^{15} N signals, which would differ from those in fed individuals. - 64 Generally, stable isotope values are fitted according to growth/weight or time-based models [21, 22, 65 23]. The use of time-based models is practical when using chronological time (days) but not for 66 fitting and comparing data from different temperature conditions. Temperature affects nearly every 67 aspect of fish development, with strong influence on larval and juvenile growth rates and 68 metabolism [24, 25, 26, 27, 28, 29]. Effective day degrees (D°eff) is a temperature independent index of 69 development progress in poikilotherms [26]. Planas et al. [29] demonstrated for the first time the 70 suitability of D°eff as a temperature-independent index to quantify development and growth in 71 feeding juveniles of a viviparous fish, the seahorse *Hippocampus guttulatus*. - 72 The direct effect of temperature on stable isotopes has been investigated in a few marine fish species 73 [17, 19, 30, 31], but never in syngnathid fishes such as seahorses. The present study was carried out: 74 (1) to test the hypothesis that fish developed at optimal temperature conditions will exhibit maximal 75 growth and nutrient assimilation rates, which would be reflected in the rate of change of consumer 76 isotopic signatures, and (2) to assess the applicability of D°eff as development index in modelling 77 stable isotope patterns. The study was performed in early life stages of the seahorse H. guttulatus by 78 assessing the influence of three temperature levels on changes in carbon (δ^{13} C) and nitrogen (δ^{15} N) 79 stable isotope values in fed or starved seahorse juveniles. To our knowledge, the present study 80 supports for the first time the use of the D°eff approach in the assessment of stable isotope patterns in 81 animals. ### 2. Materials and Methods 83 2.1. Broodstock - 84 Adult seahorses Hippocampus guttulatus Cuvier, 1829 were collected in Galicia (NW Spain) and - 85 maintained in ad hoc aquaria [32] at Instituto de Investigaciones Marinas (IIM-CSIC) in Vigo (Spain). - 86 Sea water temperature was maintained within an annual temperature regime ranging from 15 °C in - 87 winter to 19 °C in summer (± 0.5 °C). A natural-like photoperiod regime was applied: 10L:14D in - 88 winter and 16L:8D in summer. Pumped seawater was filtered (5 µm), UV treated, and 10-15% daily - 89 - exchanged. Water quality was checked periodically for NO₂, NO₃ and NH₄/NH₃ content (0 mg L⁻¹) 90 - using Sera Test Kits. Salinity and pH levels were maintained constant at 38 ± 1 and 8.1 ± 0.1, - 91 respectively. Seahorses were fed ad libitum twice daily on a diet consisting on nutritionally-enriched - 92 adult Artemia (EG, Inve, Spain) supplemented with captured mysidaceans (Leptomysis sp. and Siriella - 93 sp.). - 94 2.2. Fed seahorses - 95 Two batches of seahorse juveniles were released by two males held in captivity for 19 months. - 96 Immediately after male's pouch release, juveniles from each batch were randomly transferred (5 - 97 juveniles L⁻¹) into twelve 30 L pseudo-Kreisel aquaria (2 aquaria per batch and temperature level) - 98 [33]. The rearing system was illuminated by 20 W fluorescent lamps (Power Glo) and submitted to a - 99 16L:8D photoperiod regime. Water temperature was initially adjusted to 15 °C and subsequently - 100 increased for 2 days until reaching the desired experimental temperatures: 15, 18 and 21 °C (± 0.5 - 101 °C). Total seawater volumes in the rearing system were replaced twice per hour by means of an - 102 external inflow (24 L h⁻¹) of 20 µm filtered and UV-treated seawater. Aquaria were gently aerated in - 103 the upper part of the water column at a continuous flow rate of 700 ml min-1. - 104 Seahorse juveniles were fed for 30 days according to an optimized feeding schedule for growth and 105 survival maximization [34]. Three feeding periods were established from male's pouch release (day 106 - First feeding (days 0 to 5): Single daily dose of cultivated copepods Acartia tonsa and Tisbe sp. (1:1; 0.6 copepods ml⁻¹). - Transitional feeding (days 6 to 10): Daily dose of copepods (0.3 copepods ml⁻¹) and Great Salt Lake Artemia nauplii (1 Artemia ml-1). - 111 - Artemia feeding (days 11 to 30): Three daily doses of Artemia nauplii and 24 h enriched Artemia 112 *metanauplii* (1:1; 1 *Artemia* ml⁻¹). - 113 Copepods were cultivated in 250-500 L tanks at 26-27 °C and 38 salinity and fed every two days on - 114 mixtures of the microalgae Isochrysis galbana and Rhodomonas lens (103 cells ml-1). Only copepods - 115 retained by a 125 µm mesh were offered to seahorses. Artemia was nutritionally enriched in 5 L - 116 buckets (26 °C, 100 Artenia ml⁻¹). The enrichment diet consisted of a mixture of the microalgae - 117 Isochrysis galbana, Phaeodactylum tricornutum and Rhodomonas lens (10⁷ cells ml⁻¹). Twice daily, wastes - 118 and faeces were siphoned out, and dead seahorses removed and counted. - 119 2.3. Unfed seahorses 108 109 - 120 Seahorse juveniles were obtained from the batches reported for the feeding experiment and - 121 maintained deprived of food until total mortality at an initial density of 2 juveniles l-1 (two 30 L - 122 pseudo-Kreisel aquaria per batch and temperature level) with a constant water flow rate of 300 ml - 123 min⁻¹ and moderate aeration. Mortalities were recorded daily throughout the experimental period. - 124 2.4. Bioethics - 125 Animal maintenance and manipulation practices were conducted in compliance with all bioethics - 126 standards of the Spanish Government (Real Decreto 1201/2005, 10th October 2005) and approved by - 127 the Bioethics Committee of IIM-CSIC. Sampled juveniles were anesthetized or euthanized using - 128 tricaine methane-sulfonate (MS-222, Sigma Aldrich, Germany) at a concentration of 0.1 mg L-1 or - 129 above. - 130 2.5. Sampling, analyses and data treatment - 131 At the onset of the experiments, seahorse juveniles were subsampled (n = 10 per batch) to determine - 132 initial carbon (δ^{13} C) and nitrogen (δ^{15} N) isotope values, weight and length. Samples of Artenia and - 133 copepods were also collected, rinsed with distilled water and kept frozen at -20 °C for further - 134 isotope analysis. In the feeding experiment, samples for isotopes, weight and length analysis in - 135 juveniles were randomly collected (n = 4 per treatment) at ages of 5, 15 and 30 days from each - 136 aquarium before first daily feeding time. Starved seahorses were sampled at day 5 (n = 10 per - 137 treatment), prior to 50% mortality (5.6-6.7 days, depending on temperature) [29]. - 138 Sampled juveniles were anesthetized with tricaine methane-sulfonate MS222 (0.1 g L-1) (Sigma), - 139 transferred to Petri dishes, photographed and weighed individually on a Sartorius microbalance (± - 140 0.01 mg). Standard lengths (SL) were measured according to Lourie et al. [35] (SL = head + trunk + - 141 curved tail) from digital photographs using an image processing software (NIS, Nikon). - 142 For isotope analysis, whole seahorses were rinsed with distilled water, frozen at -20 °C, freeze dried - 143 and homogenized. The analyses were made in bulk seahorses on sub-samples of 1 mg dry weight - 144 biomass. High lipid content in samples might cause significant alterations in δ^{13} C and, to a lesser - 145 extent, δ15N values for most species and tissue types, indicating the need to correct for lipid carbon - isotope effects [36]. Samples are lipid extracted prior to the analysis when lipid content exceeds 5% - weight (C:N >3.56) [37]. C/N values in our samples indicated that lipid content was higher than 5% - in some samples, particularly in prey. We did not perform lipid extraction on the samples. Instead, - our own correction factors were applied to seahorse juveniles, copepods and Artemia. - $150~\delta^{_{13}}C$ and $\delta^{_{15}}N$ values and elemental composition (total C and N percentage) were analyzed at - 151 Servizos de Apoio á Investigación (SAI) of the University of A Coruña (Spain). Samples were - measured by continuous flow isotope ratio mass spectrometry using a FlashEA1112 elemental - analyser (Thermo Finnigan, Italy) coupled to a Delta Plus mass spectrometer (FinniganMat, Bremen, - Germany) through a Conflo II interface. Carbon and nitrogen stable isotope abundance was - expressed as permil (%) relative to VPDB (Vienna Pee Dee Belemnite) and Atmospheric Air, - according to the following equation: $$\delta X = (R_{sample} / R_{reference}) - 1, \tag{1}$$ - where X is ¹³C or ¹⁵N and R is the corresponding ratio of ¹³C/¹²C or ¹⁵N/¹⁴N. As part of an analytical - 158 batch run, a set of international reference materials for $\delta^{15}N$ values (IAEA-N-1, IAEA-N-2, - 159 IAEA-NO-3) and $\delta^{\scriptscriptstyle 13}$ C values (NBS 22, IAEA-CH-6, USGS24) were analysed. The precision (standard - deviation) for the analysis of δ^{13} C and δ^{15} N of the laboratory standard (acetanilide) was \pm 0.15% - 161 (1-sigma, n=10). Standards were run every 10 biological samples. - 162 Changes in δ^{13} C and δ^{15} N were studied by applying two different developmental index: - 163 chronological time (days) and effective day degrees (D°eff). Effective day-degrees (D°eff) is a - temperature independent index of developmental progress based on a species-specific threshold - temperature (T_o) at which development is theoretically arrested [26]. D°_{eff} was calculated as: $$D^{\circ}_{\text{eff}} = \Delta t \, \text{T}_{\text{eff}} = \Delta t \, (\text{T} - \text{T}_{\circ}), \tag{2}$$ - where Δt is developmental time in days, T_{eff} is the biologically effective temperature ($T_{eff} = T T_0$) - and T_0 the threshold temperature for *H. guttulatus* juveniles (13.1 ± 0.9 °C) [29]. - Values are provided as mean ± standard deviation. A Shapiro-Wilk test was used to test for - 169 normality of variables. Analysis of variance (ANOVA Univariate General Linear Model) was - applied to estimate the effects of temperature on survival, growth parameters and isotope data. - 171 When ANOVA assumptions were not met (Levene's test of homogeneity and Bartlett's test of - homoscedasticity), non-parametric Kruskal-Wallis tests were applied instead. When significant - differences were found at an alpha value of 0.05, Tukey's HSD post-hoc test was applied to - determine significance of pairwise differences. Statistical analyses and model-fitting were performed - with Statistica 8.0 (StatSoft, USA) software package. #### 176 **3. Results** - 177 3.1. Growth, survival and condition of juveniles - 178 Unfed juveniles showed weight loss at all tested temperatures but slightly increased in length (about - 179 1 mm until day 5) (Table 1). Juvenile survivals at day 5 were 88, 94 and 89% at 15, 18 and 21 °C, - whereas full mortalities were recorded at days 9, 8 and 7, respectively. In fed seahorses, the highest - final survival occurred at 18 °C (86 \pm 0.4%), which was significantly higher than at 15 °C (21 \pm 2%) - and 21 °C (81 \pm 0.2%) (Kruskal-Wallis test, p < 0.05). First mortalities started at day 4 in 15 °C - treatment and beyond day 6 at 18 and 21 °C. Final dry weights (day 30) at 15, 18 and 21 °C were 1.53 - \pm 0.39, 7.57 \pm 7.28 and 12.79 \pm 10.20 mg, respectively (Table 1). Despite clear differences among - treatments, final weights did not differ significantly with temperature due to the large standard - deviations of means at 18 and 21 °C ($F_{(2.5)}$ = 1.21, p = 0.41). C:N values were rather constant (< 2.94) - and did not differ significantly across temperature levels ($F_{(2,5)} = 1.02$, p = 0.39) (Table 1). - Table 1. Survival, dry weight, standard length (SL) and C:N ratios in fed and unfed Hippocampus - 189 guttulatus juveniles maintained at 15, 18 and 21 °C. Weight and size change correspond to the difference between the initial value (day 0) and the value of the corresponding sampling day. Data is provided as means (two batches per temperature level) and standard deviations (s.d.). n: individuals sampled. SL: standard length. #### 3.2. Isotopic patterns with ontogeny and feeding conditions The average isotopic values for copepods, *Artemia nauplii* and *metanauplii* were -18.62, -20.27 and -19.15‰ for δ^{13} C and -1.47, 12.30 and 9.35‰ for δ^{15} N, respectively. Average δ^{13} C and δ^{15} N values in newborn seahorses were -15.17 ± 0.42‰ (n = 10) and 11.86 ± 1.15‰ (n = 10), respectively (Figure 1). Non-significant isotopic changes occurred in unfed seahorses from days 0 to 5 (Figure 1 and 2). At 15, 18 and 21 °C, those changes corresponded to total δ^{13} C increase of 0.45, 0.58 and 0.10‰ and δ^{15} N decrease of 0.12, 0.18 and 0.18‰, respectively. In fed seahorses, a progressive asymptotical decrease in δ^{13} C values occurred from first feeding until the end of the experiment (progressive approach to diet values), whereas δ^{15} N decreased initially and afterwards increased sharply during the *Artemia* feeding period. As shown in figure 1, due to differences in temperature levels and in the resulting differences in developmental progress of juveniles across temperatures, chronological time (age) did not provide an adequate reference scale for development. On the contrary, weight and effective-day degrees (D°eff) performed rather similarly. In the first feeding stage (copepods), isotopic decreases were recorded at 15, 18 and 21 °C, accounting for 0.52, 0.96 and 1.27‰ in δ^{13} C and 1.85, 2.92 and 3.92‰ in δ^{15} N (Figure 2). Daily decrease rates in δ^{13} C and δ^{15} N were directly correlated with temperature level, ranging from 0.10 to 0.25‰ day-1 and from 0.37 to 0.78‰ day-1, respectively (Figure 2). Considering D°eff as developmental scale, decrease rates were similar and not related to temperature level, (0.03-0.04‰ D°eff-1 in δ^{15} N) (Figure 2). | | Temp | Day | D°_{eff} | n | Survival | Dry Weight (mg) | | Weight change
(mg) | | SL (n | SL (mm) | | Size change
(mm) | | C:N | | |-------|------|-----|--------------------------|----|----------|-----------------|-------|-----------------------|-------|-------|---------|-------|---------------------|------|------|--| | | (°C) | | | | (%) | mean | sd | | | Onset | 15 | 0 | 0 | 10 | 100 | 0.80 | 0.18 | - | - | 15.30 | 0.69 | - | - | 2.80 | 0.05 | | | Fed | 15 | 5 | 12.5 | 4 | 94 | 0.86 | 0.12 | 0.06 | 0.18 | 17.22 | 0.86 | 1.92 | 0.16 | 2.92 | 0.11 | | | | 15 | 15 | 31.5 | 4 | 44 | 1.11 | 0.39 | 0.31 | 0.21 | 18.08 | 1.70 | 2.78 | 1.01 | 2.85 | 0.02 | | | | 15 | 30 | 60.0 | 4 | 22 | 1.53 | 0.39 | 0.73 | 0.21 | 21.32 | 2.98 | 6.02 | 2.28 | 2.83 | 0.01 | | | | 18 | 5 | 24.5 | 4 | 100 | 0.81 | 0.42 | 0.01 | 0.24 | 17.84 | 0.42 | 2.53 | 0.28 | 2.92 | 0.06 | | | | 18 | 15 | 73.5 | 4 | 93 | 2.65 | 1.63 | 1.85 | 1.45 | 23.92 | 5.46 | 8.62 | 4.76 | 2.89 | 0.03 | | | | 18 | 30 | 147.0 | 4 | 86 | 7.57 | 7.28 | 6.77 | 7.10 | 30.49 | 12.98 | 15.19 | 12.29 | 2.92 | 0.07 | | | | 21 | 5 | 36.5 | 4 | 100 | 1.32 | 0.86 | 0.52 | 0.69 | 19.58 | 4.05 | 4.28 | 3.36 | 2.88 | 0.11 | | | | 21 | 15 | 115.5 | 4 | 96 | 4.49 | 2.45 | 3.69 | 2.27 | 29.37 | 4.53 | 14.07 | 3.83 | 2.86 | 0.01 | | | | 21 | 30 | 234.0 | 4 | 81 | 12.79 | 10.20 | 11.99 | 10.03 | 39.13 | 12.15 | 23.73 | 11.31 | 2.82 | 0.10 | | | Unfed | 15 | 5 | 12.5 | 10 | 88 | 0.76 | 0.24 | -0.04 | 0.06 | 16.34 | 0.37 | 1.03 | 0.33 | 2.87 | 0.01 | | | | 18 | 5 | 24,5 | 10 | 94 | 0.57 | 0.11 | -0.23 | 0.07 | 16.35 | 0.70 | 1.05 | 0.00 | 2.94 | 0.01 | | | | 21 | 5 | 36.5 | 10 | 89 | 0.61 | 0.02 | -0.20 | 0.16 | 16.16 | 0.70 | 0.86 | 0.01 | 2.81 | 0.08 | | **Figure 1.** Changes in δ^{13} C and δ^{15} N values (‰) in seahorse *Hippocampus guttulatus* juveniles grown at 15, 18 and 21 °C under feeding (gray line) and food deprivation (unfed; black line) conditions. Data is provided as means (two batches per temperature level) for dry weight (mg; upper) chronological time (days; middle) and effective day-degrees (D°eff; below). Prey: copepods (cop) and *Artemia* (nauplii and metanauplii). **Figure 2.** Changes in δ^{13} C and δ^{15} N (‰) within feeding periods (days 0-5, 5-15 and 15-30) in seahorse *Hippocampus guttulatus* juveniles maintained at 15, 18 and 21 °C under feeding (F; solid symbols) or food deprivation, unfed (U; open symbols). The transition from copepods to *Artemia* feeding was characterised by a drop in δ^{13} C values at all temperature levels, a small decrease in δ^{15} N values at 15 °C, and an increase in δ^{15} N values at 18 and 21 °C (Figure 1 and 2). At day 15, δ^{15} N and δ^{13} C values across treatments were similar (F_(2,5) = 0.07, p = 0.94 and F_(2,5) = 2.86, p = 0.20, respectively), Daily decrease of δ^{13} C at 15 °C (0.10% day⁻¹) was lower than at 18 °C (0.19% day⁻¹) and 21 °C (0.25% day⁻¹) (Figure 2). For δ^{15} N, daily changes accounted for -0.04, 0.07 and 0.15% day⁻¹ at 15, 18 and 21 °C, respectively (Figure 2). Regarding isotopic variation relative to D°efff, changes were not significantly different among treatments in δ^{13} C (-0.06, -0.04 and -0.02% D°efff⁻¹ at 15, 18 and 21 °C, respectively; F_(2,5) = 10.98, p = 0.04), except for δ^{13} C at 15 and 21 °C - 234 (p = 0.04), nor in $\delta^{15}N$ (-0.02, 0.02 and 0.02% D°_{eff} at 15, 18 and 21 °C, respectively; $F_{(2,5)}$ = 1.76, p = - 235 0.31). - The period of feeding on Artemia nauplii and metanauplii, comprising days 11 to 30, led to progressive - decrease in δ^{13} C values (final values of -17.38, -18.66 and -18.71% at 15, 18 and 21 °C, respectively) - and increase in δ^{15} N values (final values of 9.58, 10.86 and 12.24‰ at 15, 18 and 21 °C, respectively) - 239 (Figures 1 and 2). At 15, 18 and 21 °C, those changes corresponded to -0.02, -0.01 and -0.00% D°eff-1 - 240 for δ^{13} C (F_(2,5) = 2.08, p = 0.27), and -0.00, 0.02 and 0.02% $D^{\circ}_{eff^{-1}}$ for δ^{15} N (F_(2,5) = 0.52, p = 0.64), - 241 respectively. #### 242 4. Discussion 243 Temperature independence of effective day degrees (D° eff) as an index of development progress in 244 poikilotherms was firstly demonstrated by Weltzien et al. [26]. In addition, the suitability of that 245 index to quantify development and growth in feeding larvae/juveniles of viviparous fishes, 246 particularly in seahorses, was demonstrated for the first time by Planas et al. [29]. IN agreement with 247 those findings, the results achieved in the present study demonstrate the effectiveness of D_{eff} as 248 temperature-independent developmental index in stable isotopes studies involving temperature 249 comparisons. The calculation of D^oeff is based on the principle of thermal summation whereby the 250 rate of development is linearly related to environmental temperature above a species-specific 251 threshold temperature (T₀) at which development is theoretically arrested. However, a constrain on 252 the use of D°eff is that To is unknown for most species and explicit experimental assessments are 253 required for T₀ estimation at a species level [29]. 254 Low food availability or a delayed initial feeding in seahorse juveniles is accompanied by a 255 progressive decrease in weight and energetic status [38, 39]. Newborns deprived of food for 5 days 256 reduced weight, but increased in length at the expense of endogenous reserves consumption. The 257 higher weight loss observed at 21 °C was probably due to both a higher metabolic activity and a 258 lower energetic efficiency compared to juveniles kept at 18 °C and 15 °C. As a consequence, unfed 259 seahorses maintained at 21 °C would consume their body reserves faster than at lower temperatures. 260 Initially, the main catabolic sources would be lipids and, to a lesser extent, proteins [39]. 261 Subsequently, proteins would be almost the unique catabolic source available. In consumers, 262 isotopic discrimination results from the balance between assimilation and excretion processes [40]. 263 In ammonotelic fish, ammonia excretion predominates following hatching as a by-product of an 264 amino acid-based metabolism [41]. There are two components to nitrogenous excretion in fish: 265 endogenous (for maintenance) and exogenous fractions; the former is affected by fish size and 266 temperature levels [42]. Within limits, increasing temperatures accelerate most physiological 267 processes [43], resulting in higher growth rates and reduced excretion rates. A selective decrease of 268 the lighter isotopes δ^{12} C (loss of 12 CO₂ due to respiration/catabolism) and/or δ^{14} N (selective 269 ¹⁵N-depleted excretion) would be expected in the absence of food [4, 16]. Consequently, tissues 270 would become enriched in ¹⁵N because they are forced to synthetize their own amino acids pool by 271 transamination from tissue proteins. This would result in an inverse relationship between $\delta^{15}N$ and 272 growth rate, which is also related with the reported increase of δ^{15} N in fasting animals [16, 44, 45, 46]. 273 The increase in δ^{15} N values occurs due a preferential use of molecules with only light isotopes for 274 catabolism and body retention of those with heavier isotopes [47]. Those processes agree with the 275 slight initial decrease of δ^{15} N observed in unfed juveniles, which was followed by a reduced increase 276 of $\delta^{15}N$ (protein catabolism) until the end of the starvation period (days 5-7, depending on 277 temperature level). The effects of starvation in the isotopic composition of a variety of fish are rather variable among species. Small increases in δ¹³C values have been reported in unfed larvae of common carp (*Cyprinus carpio*) [13], whitefish (*Coregonus lavuretus*) [48] and pacu (*Piaractus mesopotamicus*) [49]. Changes in δ¹⁵N values where not detected in pacu larvae, but fasting significantly affected δ¹⁵N signatures in Nile tilapia (*Oreochromis niloticus*), with values higher than in fed fish [46]. In red drum (*Sciaenops ocellatus*) larvae, isotopic composition was not related to food deprivation [17]. Among other factors, the amount and quality of yolk available in lecitotrophic fish larvae and parental/maternal 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 inheritance would probably define initial isotopic patterns as pointed out in bluefin tuna *Thunnus* thynnus [50]. Our findings suggest that H. guttulatus juveniles can support food deprivation for a certain period, as previously reported in other seahorse species [38], which is inversely related to temperature level. Accordingly, juveniles developing at lower temperatures would be less dependent on food availability during the initial planktonic period, enhancing their survival under adverse food availability conditions. Fed juveniles grew faster at 18 and 21 °C than at 15 °C. Juveniles at 15 °C were very likely incapable to assimilate prey as efficiently as faster-growing individuals held at warmer temperatures. The hypothesis of a higher food assimilation rate in seahorses held at warmer temperatures is supported by the shifting in δ^{13} C and δ^{15} N values of juveniles towards those in prey. Furthermore, the similarity between the isotope composition in unfed and 5 days old fed juveniles suggest a poor assimilation efficiency at the suboptimal temperature of 15 °C, which is near the threshold temperature (T₀ = 13.1 °C), at which growth in *H. guttulatus* juveniles is arrested [29]. Due to the absence of yolk reserves and the rapid adaptation to exogenous feeding, juveniles underwent a rapid initial change towards dietary isotopic values. Isotopic shifting in fed juvenile seahorses clearly differed from unfed individuals, which was very likely due to changes in the ratio of anabolism to catabolism and to metabolic disruptions derived from fasting in the former [29]. δ^{13} C and δ^{15} N values in unfed juveniles increased and decreased, respectively, but not significantly. Effects of temperature and feeding on isotopic enrichment have been reported in several species [18, 19, 30, 46, 51, 52]. In metamorphosed winter flounder Pseudopleuronectes americanus, higher lipid content at a lower temperature was responsible for the increase in δ^{13} C values [30]. Temperature-dependent nutrient assimilation rates (indicated by stable isotope data) have also been demonstrated for summer flounder Paralichthys dentatus [31] and larval red drum Sciaenops ocellatus [17]. All those studies were carried out considering development as chronological time. Considering that development scale, the decrease in isotopic rates observed in H. guttulatus juveniles until day 5 was directly related with temperature level (Figure 2). Conversely, the effect of temperature level resulted negligible when using D°eff as development progress scale. This finding is probably related to one well known of limitation in early developing H. guttulatus, e.g. the low digestion efficiency on the days following first feeding [53, 54], particularly when fed on Artemia [55]. Such limitation would apply to all temperature conditions. Consequently, a reduced effect of temperature would be expected under such conditions as confirmed when referring development as D°eff. From day 5, the progressive decrease in δ^{13} C and increase in δ^{15} N towards diet isotope values suggests an enhancement in prey digestion/assimilation, particularly from day 15 onwards, which agrees with gut development in the species [20]. About day 15, significant changes occur in gut morphology and physiology, including a change in the secretion of goblet cells and a progressive increase in the intestinal absorption surface. Those changes would lead to better digestive efficiencies and significant enhancement of digestion and assimilation capabilities from that age 323 Growth in fish [24, 25, 56], and specifically in seahorses [27, 28, 29], is generally linked to variation in 324 temperature but not always [57]. In ectotherms, faster metabolism in $\delta^{15}N$ and particularly in $\delta^{13}C$ 325 should theoretically increase at warmer temperatures [19, 30, 43, 58, 59], with some exceptions [57, 326 60]. The faster daily growth rates and greater daily isotopic changes occurring in seahorse juveniles 327 at 18 and 21 °C compared to 15 °C is consistent with the cornerstone of metabolic theory. 328 When using D°eff, the increased growth in seahorses fed at 21 °C was likely due to an increase in 329 metabolic activities when compared to lower temperatures. Considering growth, nutrient 330 assimilation and survival, the optimal temperature for juvenile seahorse performance would be 331 achieved at temperatures of 18 °C or slightly higher (19-20 °C), which is in accordance with previous 332 findings [29]. The results have a practical applicability to ex-situ rearing techniques of the species, 333 particularly on the optimization of temperature levels. This will contribute to optimize breeding 334 programs for the conservation of the species (wild population's recovery), an approach that could 335 counteract fishing pressure on threatened stocks [35, 61, 62]. 336 Our findings are relevant to some aspects of the biology and ecology of *H. guttulatus*, such as the 337 geographical distribution of the species or the duration and extension of the breeding season. In - 338 nature, H. guttulatus has adapted to different temperature ranges along its distribution from - Morocco to the British Isles [63]. The duration of the breeding season differs on the region - 340 considered but extends over the warmer period of the year when primary and secondary production - 341 is maximal [64, 65]. The results from this study show that water temperature is an important - 342 determining factor for growth, food assimilation, and survival of *H. guttulatus* juveniles. Seahorses - 343 inhabiting temperate or sub-tropical areas would experience enhanced growth and survival under - optimal prey availability compared to those from colder regions [29]. The effect of climate change, - 345 with increasing water temperatures within the Atlantic range of *H. guttulatus*, might affect seahorse - 346 physiology and their biogeographical distribution [29]. Considering the current distribution range of - 347 the species, increased temperatures would (a) provide a rich food supply, (b) increase potential - 348 colonization of coastal areas beyond the current Northern limit of the species, and (c) improve - juvenile performance in terms of assimilation and metabolism. #### 350 5. Conclusions - We provided new insights for the understanding of growth and food assimilation in early - developing Hippocampus guttulatus juveniles under different temperature levels. One of the main - 353 goals of this study was to demonstrate for the first time the practical use of D°eff as developmental - 354 scale progress independently of previous feeding history (prey type changes) on the assessment of - 355 isotopic patterns. The present study highlights the importance of considering temperature when - 356 interpreting stable isotope data, especially in field-collected specimens from populations that - 357 consistently experience a fluctuating temperature regime. Further comparative studies on the effects - of temperature in developing seahorses are also encouraged as well as for ground-truthing the - applicability of results from mesocosm experiments to field populations. - 360 Author Contributions: Conceptualization, S.V. and M.P.; methodology, S.V. and M.P.; formal analysis, S.V. and - 361 M.P.; investigation, S.V. and M.P.; resources, M.P.; data curation, S.V. and M.P.; writing—original draft - preparation, S.V. and M.P.; writing-review and editing, S.V. and M.P.; supervision, M.P.; project - administration, M.P.; funding acquisition, M.P.. All authors have read and agreed to the published version of - 364 the manuscript. - Funding: This research was funded by the Spanish Government (Plan Nacional, Project CGL2009-08386) and - the Regional Government of Galicia (Xunta de Galicia, Project 09MDS022402PR). S. Valladares was supported - 367 by a PhD JAE-Pre grant (Junta para la Ampliación de Estudios Program) from the Spanish National Research - 368 Council (CSIC), co-financed by the European Social Fund. - 369 Acknowledgments: We are grateful to A. Chamorro, A. Blanco and P. Ruiz for their assistance in seahorse - 370 broodstock maintenance and rearing of juveniles. - 371 **Conflicts of Interest:** The authors declare no conflict of interest. #### 372 References - 373 1. Govoni, J.J.; Boehlert, G.W.; Watanabe, Y. The physiology of digestion in fish larvae. *Environ Biol Fishes* 1986, 16, 59–77. - 2. Conceição, L.E.C.; Morais, S.; Rønnestad, I. Tracers in fish larvae nutrition: A review of methods and applications. Aquaculture **2007**, *267*, *62*–75. - 377 3. Rønnestad, I.; Rojas-García, C.R.; Tonheim, S.K.; Conceição, L.E.C. In vivo studies of digestion and nutrient assimilation in marine fish larvae. Aquaculture **2001**, *201*, 161–175. - 379 4. DeNiro, M.J.; Epstein, S. Influence of diet on the distribution of carbon isotopes in animals. *Geochim Cosmochim Acta* **1978**, 42, 495–506. - 381 5. DeNiro, M.J.; Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. *Geochim* 382 *Cosmochim Acta* 1981, 45, 341–351. - 383 6. Caut, S.; Angulo, E.; Courchamp, F. Variation in discrimination factors (Δ15N and Δ13C): the effect of diet isotopic values and applications for diet reconstruction. *J Appl Ecol* **2009**, *46*, 443-453. - 7. Fry, B.; Sherr, E.B. δ^{13} C measurements as indicators of carbon flow in marine and fresh-water ecosystems. Contrib Mar Sci 1984, 27, 13–47. - 387 8. Michener, R.H.; Shell, D.M. Stable isotope ratios as tracers in marine aquatic food webs. In *Stable isotopes in ecology and environmental science*; Lajtha, K., Michener, R.H., Eds.; Blackwell scientific publications: Oxford, UK, 1994; Volume 1, pp. 138-157. - 390 9. Minagawa, M.; Wada, E. Stepwise enrichment of ^{15}N along food-chains further evidence and the relation between $\delta^{15}N$ and animal age. *Geochim Cosmochim Acta* **1984**, 48, 1135–1140. - 392 10. Post, D.M. Using stable isotopes to estimate trophic position: models, methods, and assumptions. *Ecol* **2002**, *83*, 703–718. - 394 11. Fry, B. *Stable Isotope Ecology;* Springer: New York, 2006. - 395 12. Schroeder, G.L. Stable isotope ratios as naturally occurring tracers in the aquaculture food web. *Aquaculture* **1983**, *30*, 203–210. - 397 13. Schlechtriem, C.; Focken, U.; Becker, K. Stable isotopes as a tool for nutrient assimilation studies on larval fish feeding on live food. *Aquatic Ecol* **2004**, *38*, 93–100. - 399 14. Gamboa-Delgado, J.; Cañavate, J.P.; Zerolo, R.; Le Vay, L. Natural carbon stable isotope ratios as indicators of the relative contribution of live and inert diets to growth in larval Senegalese sole (*Solea senegalensis*). Aquaculture 2008, 280, 190–197. - 402 15. Xia, B.; Gao, Q.F.; Dong, S.L.; Wang, F. Carbon stable isotope turnover and fractionation in grass carp 403 *Ctenopharyngodon idella* tissues. *Aquat Biol* **2013**, 19, 207-2016. - Hobson, K.A.; Alisauskas, R.T.; Clark, R.G. Stable-nitrogen isotope enrichment in avian tissues due to fasting and nutritional stress: implications for isotopic analyses of diet. *Condor* **1993**, *95*, 388–94. - 406 17. Herzka, S.Z.; Holt, G.J. Changes in isotopic composition of red drum (*Sciaenops ocellatus*) larvae in response to dietary shifts: potential applications to settlement studies. *Can J Fish Aquat Sci* **2000**, *57*, 137–408 147. - 409 18. Gaye-Siessegger, J.; Focken, U.; Muetzel, S.; Abel, H.J.; Becker, K. Feeding level and individual metabolic rate affect $\delta^{13}C$ and $\delta^{15}N$ values in carp: implications for food web studies. *Oecol* **2004**, *138*, 175–183. - 411 19. Barnes, C.; Sweeting, C.J.; Jennings, S.; Barry, J.T.; Polunin, N.V.C. Effect of temperature and ration size on carbon and nitrogen stable isotope trophic fractionation. *Funct Ecol* **2007**, *21*, 356–362. - 413 20. Ofelio, C.; Díaz, A.O.; Radaelli, G.; Planas, M. Histological characterization of early developmental stages in the seahorse *Hippocampus guttulatus*. *J Fish Biol* **2018**, 93, 72-87. - 415 21. Fry, B.; Arnold, C. Rapid 13C/12C turnover during growth of brown shrimp (*Penaeus aztecus*). *Oecol* **1982**, 416 172, 21-34. - 417 22. Hobson, K.A.; Clark, R.G. Assessing avian diets using stable isotopes I: turnover of 13C in tissues. *Condor* **1992**, *94*, 181-188. - 419 23. Hesslein, R.H.; Hallard, K.A.; Ramlal, P. Replacement of sulphur, carbon and nitrogen in tissue of growing 420 broad whitefish (*Coregonus nasus*) in response to a change in diet traced by δ^{34} S, δ^{13} C and δ^{15} N. Can J Fish 421 Aquat Sci 1993, 50, 2071-2076. - 422 24. Houde, E.D. Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. *Fish Bull* **1989**, *87*, 471–495. - 424 25. Hart, P.; Hutchinson, W.G.; Purser, J. Effects of photoperiod, temperature and salinity on hatchery-reared larvae of the greenback flounder (*Rhombosolea tapirina* Gfinther, 1862). *Aquaculture* **1996**, 144, 303–311. - Weltzien, F.A.; Planas, M.; Fyhn, H.J. Temperature dependency of early growth of turbot (*Scohthalmus maximus*) and its implications for developmental progress. *J Exp Mar Biol Ecol* **1999**, 242, 201–210. - 428 27. Wong, J.M.; Benzie, J.A.H. The effects of temperature, *Artemia* enrichment, stocking density and light on the growth of juvenile seahorses, *Hippocampus whitei* (Bleeker, 1855), from Australia. *Aquaculture* **2003**, 228, 107–121. - 431 28. Lin, Q.; Lu, J.; Gao, Y.; Shen, L.; Cai, J.; Luo, J. The effect of temperature on gonad, embryonic development and survival rate of juvenile seahorses, *Hippocampus kuda* Bleeker. *Aquaculture* **2006**, *254*, 701–713. - 433 29. Planas, M.; Blanco, A.; Chamorro, A.; Valladares, S.; Pintado, J. Temperature-induced changes of growth and survival in the early development of the seahorse *Hippocampus guttulatus*. *J Exp Mar Biol Ecol* **2012**, 438, 435 154–162. - 436 30. Bosley, K.L.; Witting, D.A.; Chambers, R.C.; Wainright, S.C. Estimating turnover rates of carbon and nitrogen in recently metamorphosed winter flounder *Pseudopleuronectes americanus* with stable isotopes. 438 *Mar Ecol Prog Ser* 2002, 236, 233–240. - 439 31. Witting, D.A.; Chambers, R.C.; Bosley, K.L.; Wainright, S.C. Experimental evaluation of ontogenetic diet transitions in summer flounder (*Paralichthys dentatus*), using stable isotopes as diet tracers. *Can J Fish Aquat Sci* **2004**, *61*, 2069–2084. - 442 32. Planas, M.; Chamorro, A.; Quintas, P.; Vilar, A. Establishment and maintenance of threatened long-snouted seahorse, *Hippocampus guttulatus*, broodstock in captivity. *Aquaculture* **2008**, *283*, 19–28. - 33. Blanco, A.; Chamorro, A.; Planas, M. Implications of physical key factors in the early rearing of the long-snouted seahorse *Hippocampus guttulatus*. *Aquaculture* **2014**, 433, 214–222. - 34. Blanco, A.; Planas, M. Mouth growth and prey selection in juveniles of the European long-snouted seahorse, *Hippocampus guttulatus*. *J World Aquacult Soc* **2015**, *46*, 596–607. - 448 35. Lourie, S.A.; Vincent, A.C.J.; Hall, H.J. Seahorses: An Identification Guide to the World's Species and their Conservation. Project Seahorse: London, UK, 1999. - 450 36. Logan, J.M.; Jardine, T.D.; Miller, T.J.; Bunn, S.E.; Cunjak, R.A.; Lutcavage, M.E. Lipid corrections in carbon and nitrogen stable isotope analyses: comparison of chemical extraction and modelling methods. *J* 452 *Anim Ecol* **2008**, 77, 838–846. - 453 37. Post, D.M.; Craig, A.; Layman, D.; Albrey Arrington, D.; Takimoto, G.; Quatrocchi, J.; Montaña, C.G. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. *Oecol* **2007**, *152*, 179–189. - 456 38. Sheng, J.; Lin, Q.; Chen, Q.; Shen, L.; Lu, J. Effect of starvation on the initiation of feeding, growth and survival rate of juvenile seahorses, *Hippocampus trimaculatus* Leach and *Hippocampus kuda* Bleeker. Aquaculture 2007, 271, 469–478. - 459 39. Blanco, A.; Quintas, P.; Planas, M. Catabolic sources in the early development of the long-snouted seahorse *Hippocampus guttulatus* under starving conditions. 5th International Husbandry Symposium, The Husbandry, Management and Conservation of Syngnathids, USA, 2–4 Nov 2011. - 462 40. Ponsard, S.; Averbuch, P. Should growing and adult animals fed on the same diet show different delta 15N values? *Rapid Commun Mass Sp* **1999**, *13*, 1305-1310. - 464 41. Zimmer, A.M.; Wright, P.A.; Wood, C.M. Ammonia and urea handling by early life stages of fishes. *J Exp Biol* **2017**, 220, 3843-3855. - 42. Brett, J.R.; Groves, T.D.D. Physiological energetics. In *Fish Physiology*, Hoar, W.S., Randall, D.J. Eds.; Academic Press: New York, USA, 1979; Volume 8, pp. 279-352. - 468 43. Schmidt-Nielsen, K. *Animal Physiology: Adaptation and Environment*, 5th ed.; Cambridge University Press: New York, 1997. - 470 44. Adams, T.S.; Sterner, R.W. The effect of dietary nitrogen content on trophic level 15N enrichment. *Limnol Oceanogr* **2000**, *45*, 601-607. - 472 45. Vanderklift, M.A.; Ponsard, S. Sources of variation in consumer-diet δ¹⁵N enrichment: a meta-analysis. 473 *Oecol* **2003**, *136*, 169-182. - 46. Gaye-Siessegger, J.; Focken, U.; Abel, H.J.; Becker, K. Starvation and low feeding levels result in an enrichment of 13C in lipids and 15N in protein of Nile tilapia *Oreochromis niloticus* L. *J Fish Biol* **2007**, *71*, 90–100. - 47. Gannes, L.Z.; O'Brien, D.M.; Martínez del Rio, C. Stable isotopes in animal ecology: assumptions, caveats, and a call for more laboratory experiments. *Ecology* **1997**, *78*, 1271–1276. - 48. Schlechtriem, C.; Focken, U.; Becker, K. Digestion and assimilation of the free-living nematode *Punugrellus* redivivus fed to first feeding coregonid larvae: evidence from histological and isotopic studies. *J World*481 Aquacul Soc 2005, 36, 24-31. - 482 49. Jomori, R.K.; Ducatti, C.; Carneiro, D.J.; Portella, M. Stable carbon (δ¹³C) and nitrogen (δ¹⁵N) isotopes as natural indicators of live and dry food in *Piaractus mesopotamicus* (Holmberg, 1887) larval tissue. *Aquac Res* **2008**, *39*, 370–381. - 485 50. Uriarte, A.; García, A.; Ortega, A.; de la Gándara, F.; Quintanilla, J.; Laiz-Carrión, R. Isotopic discrimination factors and nitrogen turnover rates in reared Atlantic bluefin tuna larvae (*Thunnus thynnus*): effects of maternal transmission. *Sci Mar* **2016**, *80*, 447-456. - 488 51. Olive, P.J.W.; Pinnegar, J.K.; Polunin, N.V.C.; Richards, G.; Welch, R. Isotope trophic-step fractionation: a dynamic equilibrium model. *J Anim Ecol* **2003**, 72, 608–617. - 490 52. Power, M.; Guiguer, K.; Barton, D.R. Effects of temperature on isotopic enrichment in Daphnia magna: implications for aquatic food-web studies. *Rapid Commun Mass Sp* **2003**, *17*, 1619–1625. - 492 53. Blanco, A.; Planas, M.; Moyano, F.J. Ontogeny of digestive enzymatic capacities in juvenile seahorses 493 *Hippocampus guttulatus* fed on different live diets. *Aquac Res* **2015**, *47*, 3558-3569. - 494 54. Ofelio, C.; Cohen, S.; Adriaens, D.; Radaelli, G.; Díaz, A.O. Histochemistry of goblet cells and micro-computed tomography to study the digestive system in the long-snouted seahorse *Hippocampus guttulatus*. *Aquaculture* **2019**, 502, 400-409. - 497 55. Olivotto, I.; Planas, M.; Simoes, N.; Holt, G.J.; Avella, A.M.; Calado, R. Advances in breeding and rearing marine ornamentals. *J World Aquacul Soc* **2011**, *42*, 135–166. - 56. Dou, S.Z.; Masuda, R.; Tanaka, M.; Tuskamoto, K. Effects of temperature and delayed initial feeding on the survival and growth of Japanese flounder larvae. *J Fish Biol* **2005**, *66*, 362–377. - 501 57. Herzka, S.Z.; Holt, S.A.; Holt, G.J. Documenting the settlement history of individual fish larvae using stable isotope ratios. Model development and validation. *J Exp Mar Biol Ecol* **2001**, 265, 49-79. - 503 58. Fry, F.E.J. The effect of environmental factors on the physiology of fish. In *Fish physiology, Environmental relations and behavior*, Hoar, W.S., Randall, D.J., Eds.; Academic Press: New York, 1971; pp. 1-98. - 505 59. Bloomfield, A.L.; Elsdon, T.S.; Walther, B.D.; Gier, E.J.; Gillanders, B.M. Temperature and diet affect carbon and nitrogen isotopes of fish muscle: can amino acid nitrogen isotopes explain effects? *J Exp Mar Biol Ecol* **2011**, 399, 48–59. - 508 60. Fauconneau, B.; Arnal, M. In vivo protein synthesis in different tissues and the whole body of rainbow trout (*Salmo gairdnerii* R.). Influence of environmental temperature. *Comp Biochem Phys A* **1985**, 82, 179-187. - 510 61. Vincent, A.C.J. The International Trade in Seahorses, TRAFFIC International: Cambridge, UK, 1996. - 511 62. Foster, S.J.; Vincent, A.C.J. Life history and ecology of seahorses: implications for conservation and management. *J Fish Biol* **2004**, *65*, 1–61. - 513 63. Lourie, S.A.; Foster, S.J.; Cooper, E.W.T.; Vincent, A.C.J. *A guide to the identification of seahorses.* University of British Columbia and World Wildlife Fund; Washington, D.C., USA, 2004. - 515 64. Arbones, B.; Castro, C.G.; Alonso-Pérez, F.; Figueiras, F.G. Phytoplankton size structure and water column metabolic balance in a coastal upwelling system: the Ría de Vigo, NW Iberia. *Aquat Microb Ecol* **2008**, *50*, 169–179. - 518 65. Curtis, J.M.R. Validation of a method for estimating realized annual fecundity in a multiple spawner, the long-snouted seahorse (*Hippocampus guttulatus*), using underwater visual census. *Fish Bull* **2007**, 105, 327–336.