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Abstract: The use of biocatalysts in organic chemistry for catalysing chemo-, regio- and stereo-11 
selective transformations has become an usual tool in the last years, both at lab and industrial scale, 12 
not only because of their exquisite precision, but also due to the inherent increase in the process 13 
sustainability. Nevertheless, most of the interesting industrial reactions involve water-insoluble 14 
substrates, so that the use of (generally not green) organic solvents is generally required. Although 15 
lipases are perfectly capable of maintaining their catalytic precision working in those solvents, 16 
reactions are usually very slow and consequently not very appropriate for industrial purposes. 17 
Thus, the use of thermophilic enzymes at high temperatures can help in accelerating reaction rates. 18 
In this paper we describe the use of lipase from Geobacillus thermocatenolatus as catalyst in the 19 
ethanolysis of racemic 2-(butyryloxy)-2-phenylacetic to furnish both enantiomers of mandelic acid, 20 
an useful intermediate in the synthesis of many drugs and active products. The catalytic 21 
performance at high temperature in a conventional organic solvent (isooctane) and four 22 
imidazolium-based ionic liquids has been assessed. Best results were obtained using 1-ethyl-3-23 
methyl imidazolium tetrafluoroborate (EMIMBF4) and 1-ethyl-3-methyl imidazolium 24 
hexafluorophosphate (EMIMPF6) at temperatures as high as 120°C, observing in both cases very fast 25 
and exquisite enantioselective kinetic resolutions, respectively leading exclusively to the (S) or to 26 
the (R)-enantiomer of mandelic acid, depending on the anion component of the ionic liquid.  27 

Keywords: Geobacillus thermocatenolatus; lipases; ethanolysis; ionic liquids; kinetic resolution; 28 
mandelic acid.  29 

 30 

1. Introduction 31 
The employ of biocatalysts in organic chemistry, either alone [1,2] or combined with chemical 32 

catalysts [3,4] for developing selective transformations has become an usual tool in the last years [5,6]. 33 
This fact is based on the extremely enzymatic precision (chemo-, regio- and stereo-selectivity) 34 
acquired when applied in biotransformations not only at lab but also at industrial scale [7-11], being 35 
used mainly in pharma industry [12-21]. Moreover, moving from chemical catalysis to biocatalysis 36 
leads to an increase in the process sustainability, provided that biocatalysis and green chemistry 37 
usually go hand-in-hand [2,18,20,22-24]. 38 

In fact, one of the green credentials of biocatalysis derives from the fact that biotransformations 39 
can be conducted under very mild reaction conditions, e.g., atmospheric pressure, room temperature 40 
or aqueous media. Anyhow, harsh conditions required for many industrial processes, such as high 41 
temperature and/or the use of organic (co)solvents may impede the use of some enzymes. For solving 42 
these drawbacks, the employ of thermotolerant biocatalysts obtained from thermophilic organisms 43 
is an excellent alternative [25-29], as these thermozymes can efficiently work at very high 44 
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temperatures [30-32] and are generally very resistant to organic solvents-promoted denaturation 45 
[33,34]. Among all the arsenal of enzymes available for being used in biotransformations, lipases 46 
(triacylglycerol hydrolases, EC 3.1.1.3) are one of the most frequently applied, as they are easily 47 
available, do not need cofactors and display a wide range of substrate recognition [35-39]. 48 
Furthermore, their ability for working in almost anhydrous organic solvents allows conducting 49 
reactions in the sense of synthesis instead of hydrolysis, therefore favoring the transformation of 50 
many organic compounds, which are generally water-insoluble, and thus reverting the original 51 
enzymatic selectivity [40-43]. 52 

The use of lipases from thermophiles has been frequently reported [29,44,45]; additionally, it is 53 
worth to mention that several lipases from mesophiles (such as lipase B from Candida antarctica 54 
[46,47], lipase from Bacillus licheniformis [48], lipase from Rhizopus oryzae [49] , ELBn12 lipase (an 55 
alkaline thermotolerant lipase, from a mesophilic Enterobacter sp. [50]), lipase Lip3 from Drosophila 56 
melanogaster [51]) have being genetically modified in order to increase their thermal stability. 57 
Amongst the lipases from thermophiles, the term “thermoalkaline (TA) lipases” describe some 58 
enzymes resistant not only to temperature (70-80°C) but also to the presence of alkaline media (pH 59 
values between 8 and 10) [45]. These enzymes possess a peculiar feature in their 3D structure, due to 60 
the presence of a relatively large lid domain (around 70 residues) formed by 2 alpha-helices (α6 and 61 
α7)[52], so that the opening of this lid domain upon exposing the active site requires a significant 62 
conformational change [53]. One of the most representative examples of TA lipases is that one from 63 
Geobacillus (formerly Bacillus [54]) thermocatenulatus. From this microorganism, Schmidt-Dannert et 64 
al. [55-58] described two lipases, namely BTL1 and BTL2, this last one being crystallized in its open 65 
form by Carrasco-Lopez et al. [52,59]. The stereoselectivity of BTL2 towards 29 chiral substrates was 66 
initially tested by Liu et al [60], reporting only good results for the acylation of 1-phenylethanol and 67 
1-phenylpropanol with vinyl acetate (as well as for the hydrolysis of the corresponding esters). Later, 68 
this enzyme, immobilized on different supports via diverse methodologies, has been extensively 69 
tested on different substrates, some of them chiral [61-80], generally with moderate results. 70 
Additionally, chemical [71,74,81-83] and genetic [72,84-89] modifications of BTL2 lipase for 71 
improving its catalytic behavior (typically, to reduce the steric hindrance around the active site) have 72 
been also reported. Finally, different papers in recent literature have employed the reported 3D 73 
structure of BTL2 for performing molecular simulations aiming to rationalize its catalytic 74 
performance and stability [53,90-93] 75 

Anyhow, although TA lipases are very resistant to organic solvents and high temperatures, the 76 
boiling point of the solvents clearly limits the maximum operational temperature. In this sense, the 77 
use of RTILs (Room-Temperature Ionic Liquids) can be very convenient, as they display very high 78 
boiling points and have been proven to be compatible with enzymatic catalysis [94-98].  79 

In this paper we present the results obtained in the kinetic resolution of 2-(butyryloxy)-2-80 
phenylacetic acid via ethanolysis catalysed by BTL2 using different ionic liquids (1-butyl-3-methyl 81 
imidazolium tetrafluoroborate (BMIMBF4), 1-butyl-3-methyl imidazolium hexafluorophosphate 82 
(BMIMPF6), 1-ethyl-3-methyl imidazolium tetrafluoroborate (EMIMBF4) and 1-ethyl-3-methyl 83 
imidazolium hexafluorophosphate (EMIMPF6) at high temperatures (90 and 120ºC), comparing the 84 
results with those obtained with a conventional organic solvent (isooctane) 85 

2. Results 86 
The kinetic resolution of racemic 2-(butyryloxy)-2-phenylacetic acid (R, S)-1 to yield pure 87 

enantiomers of mandelic acid (R) or (S)-2 was selected as test reaction to check the performance of 88 
BTL2, as depicted in Figure 1 (a). 89 
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 90 
Figure 1. Kinetic resolution of 2-(butyryloxy)-2-phenylacetic acid (R, S)-1 via BTL2-catalyzed 91 
ethanolysis (a) or BTL2-catalyzed hydrolysis (b). 92 

(R)-mandelic acid and analogues are key synthons in the preparation of several drugs or 93 
biologically active compounds, being in the core of semi-synthetic antibiotics (cephalosporins as 94 
cefamandole [99] or penicillins as MA-6-APA II [100]) or anti-cholinergic drugs (such as oxybutynin 95 
[101] and homatropine [102]). Moreover, derivatives of (R)-mandelic acid have been also used as 96 
chiral synthons in the preparation of some drugs with different therapeutical activities: platelet/anti-97 
thrombotic agents (clopidogrel [103]), vasodilator (cyclandelate [104]), anti-tumor (complex of cis-98 
[Pt{2-(α-hydroxy)benzylbenzimidazole))2Cl2] [105], antiobesity [106,107] or CNS-stimulant 99 
dopaminergic agents ((R)-pemoline [108]). Conversely, (S)-mandelic acid is used for the production 100 
of non-steroidal anti-inflammatory drugs such as deracoxib and celecoxib [109] 101 

Selection of (R, S)-1 as model substrate was based in many previous studies in which BTL2 102 
(mainly immobilized) had been tested for catalyzing the stereoselective hydrolysis (Figure 1(b)) 103 
[61,65,67,72,74]. Thus, Palomo et al [61] reported the hydrolysis of (R, S)-1 using several preparations 104 
of BTL2 immobilized on different supports (octadecyl agarose, glyoxyl agarose or polyethylenimine-105 
modified (PEI) sepabeds [63]), at different pH values (5, 7 and 9) and different temperature (4, 25 and 106 
37°C). These authors carried out the kinetic resolution of (R, S)-1 at low conversion values (15%, no 107 
reaction time reported), obtaining the best results (ee > 99%, E >100) at low temperatures (4°C) using 108 
octadecyl or glyoxyl-agarose, being (R)-2 the major enantiomer; anyhow, resolution at higher 109 
temperatures (25 or 37°C) was only moderate. Interestingly, the use of PEI-sepabeads caused and 110 
inversion on the enzymatic stereobias, leading to the (S)-2 antipode, although with low or moderate 111 
enantioselection. A similar behavior was reported by Fernandez-Lorente et al [64] with BTL2 112 
immobilized on octylagarose; these same authors described the use of immobilized chemically-113 
aminated BTL2 derivatives covalently linked to CNBr-agarose or adsorbed on glyoxylagarose, and 114 
in this case (S)-2 (with only one exception) was the major enantiomer [65]. On the other hand, Godoy 115 
et al. [72], using wild-type BTL2 as well as some mutants produced by introducing a unique cysteine 116 
into different positions of the protein surface, reported a low enantioselectivity (24% ee of the 117 
corresponding (R)-2 acid for the soluble wild-type enzyme and ranging from 19-38% for the different 118 
mutants) in the hydrolysis of (R, S)-1 at pH=7 and 25°C. Remakably, the direct immobilization of 119 
BTL2 and its mutants on disulfide supports slightly increased the enantioselectivity (ee fluctuating 120 
from 20 to 50%), while the use of aldehyde-disulfide supports dramatically increased the 121 
enantiomeric discrimination up to ee values higher than 99% [72]. 122 
 123 
2.1. Ethanolysis of (R, S)-1 in isooctane at different temperatures. 124 

Nevertheless, hydrolysis is not a good alternative for checking the real thermotolerance of a 125 
lipase, as the stability of these enzymes is much higher when they are working on organic solvents 126 
[33,41,94]. Thus, we decided to use a water-free reaction media, selecting EtOH as nucleophile instead 127 
of water and a water-insoluble organic solvent (Figure 1(a)). Opting for EtOH was based on our 128 
previous studies on esterification of phtalic acids with BTL2 [110], and it has been very recently 129 
corroborated by Shehata et al. [53]; indeed, these authors have published a molecular dynamics (MD) 130 
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simulation of the effect of different polar and non-polar solvents on the thermostability and lid-131 
opening of BTL2, reporting that the open (active) conformation of BLT2 is more stable in EtOH than 132 
in MeOH and even water. Additionally, this same study revealed that the overall lipase structure 133 
became more stable in non-polar organic solvents, while it was destabilized in polar solvents except 134 
EtOH. Thus, it seems reasonable to use EtOH as nucleophile. On the other hand, isooctane (2,2,4-135 
trimethylpentane) was the organic solvent selected, as we had previously described its excellent 136 
behavior in lipase-promoted catalysis [111-116]. 137 

Thus, following the experimental procedure described in Section 4.3, the ethanolysis of (R, S)-1 138 
was tested at three different temperatures (40, 70 and 90°C). The progress curves are depicted in 139 
Figures 1 to 3. 140 
  141 
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 157 

Figure 1. Progress curve of the BTL2-catalyzed production of both enantiomers of mandelic acid ((R)-158 
acid, in red; (S)-acid, in blue) via ethanolysis of racemic 2-(butyryloxy)-2-phenylacetic acid (R, S)-1, 159 
using isooctane as organic solvent at different temperatures: (a) 40°C; (b) 70°C; (c) 90°C.   160 

As can be seen from Fig.1 1, the reaction at 40°C (Figure 1a) proceeds very slowly, reaching a 161 
global conversion of around 10% for (S)-2 after 400 h and 3-4% for the (R)-2 counterpart. Also, a very 162 
strong lag-time is observed for both enantiomers, not detecting any trace of ethanolysis of (R, S)-1 in 163 
the first 75 hours. A similar behavior can be found for the generation of (R)-2 at 70°C (Figure 1b), 164 
while for (S)-2 at that temperature and for both enantiomers at 90°C (Figure 1c), no lag-time was 165 
observed, following a typical exponential grow. Thus, all the progress curves were adjusted using 166 
the program INRATE implemented inside SIMFIT fitting package (version 7.6, Release 9), a very 167 
powerful (and toll-free) Open Source software for simulation, curve fitting, statistics, and plotting, 168 
using a library of models or user-defined equations [117] (accessible at 169 
https://simfit.org.uk/simfit.html). Using this program, data were fitted either to lag-time kinetics or 170 
to standard single exponential growing model. Form these mathematical fitting, several parameters 171 
were calculated (shown in Table 1) and used to quantify the activity and enantioselectivity of BTL2 172 
in the kinetic resolution of (R, S)-1 via ethanolysis.  173 
  174 
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 175 

Table 1. Quantitaive assessment of the ethanolysis of racemic 2-(butyryloxy)-2-phenylacetic acid (R, 176 
S)-1 catalyzed by BTL2 using isooctane as organic solvent at different temperatures. 177 

 Medium 
T 

(°C) 
VS1 VR1 VS/VR tMAX4 

[C] 
max5 

P6 [(S)-2]7 [(R)-2]7 E7 

#1 isooctane 40 
0.0152 

0.0273 

0.0082 

0.0143 

1.92 

1.93 
   0 0 nd 

#2 isooctane 70 0.0832 
0.0632 

0.3323 
1.322 24 2.26 0.09 1.44 0 >200 

#3 isooctane 90 0.1102 0.1082 1.022    4.0 3.75 nd 

1Initial rate (mM/h). 2Single exponential model. 3Lag-time model. 4Higher reaction time (h) at which only one 178 
enantiomer is detected. 5Concentration (mM) of the only isomer detected at that higher reaction time. 179 

6Productivity (mM acid/h) at the higher reaction time. 7Enantiomeric ratio, calculated at 12 h 180 

As commented before, reaction was extremely slow at 40°C; increasing the temperature to 70°C 181 
(Figure 1b), the reaction rate increased very markedly, and the behavior for both enantiomers was 182 
clearly different: while the generation (S)-2 is detected from the early reaction stages, and follows a 183 
single exponential model, it is not until 100 h when (R)-2 is clearly detected, quickly growing after 184 
that point to reach similar conversion values than those observed for (S)-2 after 200 h. When the 185 
temperature was increased up to 90°C (Figure 1c), both enantiomers were produced by a similar 186 
pattern, at the same initial rate (Table 1, entry #3) and reaching similar conversion degrees (around 187 
40%) after 500h, with no enantioselectivity at all. Higher temperatures were not tested as it would 188 
mean approaching the boiling point of isooctane (99.6°C) 189 

Overall, best results are those obtained at 70°C at short reaction times. In fact, inside the time 190 
interval from 0 to 75h, the enantioselectivity is almost perfect, although at the expenses of a low 191 
overall conversions (around 10%, Figure 1b). Nevertheless, as these results are quite unsatisfactory, 192 
the use of room-temperature ionic liquids (RTILs) as reaction media was tested. 193 

 194 
2.2. Ethanolysis of (R, S)-1 in RTILs at different temperatures. 195 

As commented in the Introduction, RTILs have been described to be compatible with enzymatic 196 
catalysis [94-98]. RTILs (organic salts consisting of an organic cation and a polyatomic inorganic 197 
anion, liquid under 100°C), are broadly regarded as green solvents [118,119], as they have extremely 198 
high enthalpies of vaporization (making them effectively nonvolatile), as well as high chemical and 199 
thermal stabilities and remarkable solvating power. Anyhow, the large number of steps required for 200 
their synthesis, sometimes demanding the use of nonrenewable crude oil sources and some toxic 201 
intermediates, may alter their consideration of eco-friendly solvents [120].  202 

Anyhow, the most popular RTILs are those based on imidazolium cations [121-124], being 1-203 
butyl-3-methyl imidazolium tetrafluoroborate (BMIMBF4), 1-butyl-3-methyl imidazolium 204 
hexafluorophosphate (BMIMPF6), 1-ethyl-3-methyl imidazolium tetrafluoroborate (EMIMBF4) and 1-205 
ethyl-3-methyl imidazolium hexafluorophosphate (EMIMPF6) probably the first ones to be broadly 206 
commercialized. Their properties have been profusely described, especially including their complete 207 
miscibility with EtOH [125-134], the other main component of the reaction medium, used both as 208 
cosolvent and nucleophile. As these RTILs possess a very high boiling point, the use of their mixtures 209 
with EtOH allows the possibility of employing these binary mixtures at high reaction temperatures, 210 
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without any noticeable EtOH evaporation. Thus, the ethanolysis of (R, S)-1 was tested at two different 211 
temperatures, 90°C (similar to the maximum tested with isooctane) and 120°C, a temperature higher 212 
than the boiling point of the organic solvent. The results are depicted in Figures 2 to 5, while Table 2 213 
summarizes the parameters obtained from the fitting of the corresponding progress curves.  214 

 215 
2.2.1. Ethanolysis of (R, S)-1 using RTILs based on 1-butyl-3-methyl imidazolium (BMIM) as 216 

solvent 217 
 218 
When the tetrafluoroborate (BMIMBF4) solvent is used (Figure 2), it can be observed how the 219 

employ of the lower reaction temperature (90°C, Figure 2a) leads to a different kinetic behavior in the 220 
generation of both enantiomers of mandelic acid. In fact, as the (S)-acid (in blue) is detected from the 221 
earlier reaction stages, the correspondent (R)-acid (in red) is not produced until a lag-time of around 222 
12 h has been overpassed, experimenting a rapid increase in its production leading to an overall 223 
sigmoid curve (Figure 2a, red solid line); remarkably, a similar initial rate (VS =3.85 mM/h, Table 2) 224 
was calculated considering a single exponential model (Figure 2a, red dotted line) or the sigmoid lag-225 
time model, red solid line). In this case, (S)-acid (in blue) is the best-recognized enantiomer, as also 226 
observed using isooctane (Figure 1), although for BMIMBF4 the initial rate is 35 times higher than that 227 
observed for isooctane (VS =0.11 mM/h, Table 1). Furthermore, the reaction in this RTIL is not only 228 
faster but also more enantioselective than in isooctane, as the lag-time observed for the generation of 229 
the (R)-acid allows the production of exclusively (S)-2 at the first stages of the reaction (tMAX 10h, [(S)-230 
2]MAX 13.6%, corresponding to 22.7% conversion).  231 

 232 
 233 
 234 
 235 
 236 
 237 
 238 
 239 
 240 
 241 
 242 
 243 
 244 
 245 
 246 
 247 
Figure 2. Progress curve of the BTL2-catalyzed production of both enantiomers of mandelic acid ((R)-248 
acid, in red; (S)-acid, in blue) via ethanolysis of racemic 2-(butyryloxy)-2-phenylacetic acid (R, S)-1, 249 
using BMIMBF4 at different temperatures: (a) 90°C; (b) 120°C. Fitting parameters shown in Table 2, 250 
corresponding to entries #4 (BMIMBF4 90°C) and #5 (BMIMBF4 120°C) 251 

Another interesting aspect to be taken into account is that, while the generation (R)-2 remains 252 
constant after a certain reaction time (around 30% after 50 h, according to the sigmoid fitting), the 253 
production of (S)-2 is slowly increasing after that time, although at a lower reaction rate than that 254 
observed at the early stages; that is the reason why the overall (S)-2 production follows a double 255 
exponential fitting. This slower second reaction rate could be caused by an inhibition promoted by 256 
the increasing amounts of (R)-2 present in the reaction media, as the slope change in the (S)-2 257 
production is observed only after a certain accumulation of (R)-2. 258 
  259 
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Table 2. Quantitaive assessment of the ethanolysis of racemic 2-(butyryloxy)-2-phenylacetic acid (R, 260 
S)-1 catalyzed by BTL2 using different RTILs at different temperatures. 261 

 RTIL 
T 

(°C) 
VS1 VR1 VMAX/Vmin2 tMAX 3 

[C] 
max4 

P5 [(S)-2]6 [(R)-2]6 E6 

#4 
BMIM 

BF4 
90 3.85 0.76 5.1 10 13.6 1.36 15.42 13.6 1.1 

#5 
BMIM 

BF4 
120 ---- 8.14 ---- 36 18.8 0.52 0 18.8 >200 

#6 
BMIM-

PF6 
90 2.0 0.31 6.4 24 17.0 0.71 14.0 0 >200 

#7 
BMIM- 

PF6 
120 0.04b 0.96 24 8 6.3 0.79 0 3.06 >200 

#8 
EMIM- 

BF4 
90 4.08 0.52 7.8 12 18.2 3.03 18.2 0 >200 

#9 
EMIM- 

BF4 
120 53.4 0 ---- 2.5 29.2 11.7 28.1 0 >200 

#10 
EMIM- 

PF6 
90 1.86 ---- ---- 240 16.2 0.81 2.28 0.06 51.3 

#11 
EMIM- 

PF6 
120 1.3  ---- 54 9.8 0.18 8.52 0 >200 

1Initial rate (mM/h). 2 VS/VR in all cases except for entries #5 and #7, when it should be VR/VS. 3Higher reaction 262 
time (h) at which only one enantiomer is detected. 4Concentration (mM) of the only isomer detected at that 263 

higher reaction time. 5Productivity (mM acid/h) at the higher reaction time. 6Enantiomeric ratio, calculated at 264 
12 h 265 

Anyhow, when performing the ethanolysis at 120°C (Figure 2b), the observed reaction pattern 266 
is radically different to that obtained at 90°C, as now only the (R) enantiomer of mandelic acid is 267 
produced through a fast and almost perfect single exponential fit, displaying an initial rate (VR =8,14 268 
mM/h, Table 2) twice that one obtained for the preferentially-recognized (S)-2 at 90°C. Indeed, the 269 
reaction did not progress after 40 h, and no traces of (S)-2 were detected under these conditions, so 270 
that the enantioselectivity is absolutely perfect, leading to an overall conversion of around 30%. 271 

An inversion in the stereobias of BTL2 in the recognition of both enantiomers of mandelic acid 272 
had been previously reported, although in the hydrolysis of (R,S)-1 and associated to the different 273 
methodology and support used for the immobilization of this lipase [61,63-65], as already mentioned 274 
in the Introduction. A simple explanation of this modification in the enantiodiscrimination of BTL2 275 
upon increasing the temperature would demand a detailed computational study, which is out of the 276 
scope of this manuscript. 277 

In Figure 3, the results of the ethanolysis of (R,S)-1 using BMIMPF6, keeping constant the cationic 278 
component (1-butyl-3-methyl imidazolium) but changing the anion from BF4 to PF6 are shown. 279 

 280 
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 281 
 282 
 283 
 284 
 285 
 286 
 287 
 288 
 289 
 290 
 291 
 292 
 293 
 294 

Figure 3. Progress curve of the BTL2-catalyzed production of both enantiomers of mandelic acid ((R)-295 
acid, in red; (S)-acid, in blue) via ethanolysis of racemic 2-(butyryloxy)-2-phenylacetic acid (R, S)-1, 296 
using BMIMPF6 at different temperatures: (a) 90°C; (b) 120°C. Fitting parameters shown in Table 2, 297 
corresponding to entries #6 (BMIMPF6 90°C) and #7 (BMIMPF6 120°C) 298 

As can be seen, the behavior is somehow similar to that observed using BMIMBF4, hence, when 299 
performing the ethanolysis at 90°C (Figure 3a), the (S) enantiomer of mandelic acid is more quickly 300 
produced, once again following a double exponential fit, and displaying a smaller initial rate than 301 
that one obtained using BMIMBF4., but also higher if compared to that calculated using isooctane 302 
(Table 1). Similarly, the inversion in the stereobias at 120°C is also detected, but now the reaction 303 
proceeded very poorly compared to that depicted in Figure 2b, as only a maximum of 6% conversion 304 
is detected for (R)-2. 305 

 306 
2.2.2. Ethanolysis of (R, S)-1 using RTILs based on 1-ethyl-3-methyl imidazolium (EMIM) as 307 

solvent 308 
 309 
The results obtained using RTILs in which 1-ethyl-3-methyl imidazolium (EMIM) is the cation 310 

are shown in Figures 4 and 5. More concretely, Figure 4 shows the reaction progress curves when 311 
using EMIMBF4 at 90°C (Figure 4a) and 120°C (Figure 4b). 312 
 313 

 314 

 315 

 316 

 317 

 318 

 319 

 320 

 321 
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Figure 4. Progress curve of the BTL2-catalyzed production of both enantiomers of mandelic acid ((R)-322 
acid, in red; (S)-acid, in blue) via ethanolysis of racemic 2-(butyryloxy)-2-phenylacetic acid (R, S)-1, 323 
using EMIMBF4 at different temperatures: (a) 90°C; (b) 120°C. Fitting parameters shown in Table 2, 324 
corresponding to entries #8 (EMIMBF4 90°C) and #9 (EMIMBF4 120°C) 325 

 326 
Comparing Figure 4a (EMIMBF4) with Figure 2a (BMIMBF4), a similar behavior is observed.As 327 

depicted in Figure 4a, the lag-time for the detection of (R)-2 is slightly higher than that observed using 328 
BMIMPF4, and also the initial rate is somewhat higher (4,08 vs 3.85 mM h-1, Table 2), so that it was 329 
possible to detect only (S)-2 in the first 12 hours, reaching a concentration of 18.2 mM (around 30% 330 
conversion) with a perfect enantioselectivity Once again, as the reaction proceeded and the (R)-2 331 
enantiomer is being produced (lag-time and single exponential models almost similar), the rate of 332 
production of (S)-2 was reduced, so that once again the overall behavior for (R)-2 can be fitted to a 333 
double exponential curve. 334 

When the reaction temperature is increased up to 120°C (Figure 4b), a fantastic and fast kinetic 335 
resolution can be observed. In fact, the initial rate in the generation of (S)-2 (VS =53.4 mM h-1, Table 2) 336 
is one order of magnitude higher than that obtained at 90°C; moreover, no traces of (R)-2 were 337 
detected during the whole reaction time, so that the shape of the progress curve fits to a single 338 
exponential plot leading to around 50% conversion (the maximum for a kinetic resolution) in only 5 339 
hours.   340 

Results obtained using EMIMPF6 as solvents are depicted in Figure 5. As can be seen, at both 341 
temperatures only small traces of (R)-2 were detected, while the generation of (S)-2 follows single 342 
exponential kinetics. At 90°C, the kinetic resolution observed using this solvent (Figure 5a) is slower 343 
(VS around one half, See Table 2, entries #8 vs #10) than that obtained with EMIMBF4 (Figure 4a), 344 
although this fact is compensated with an absence of production of (R)-2, so that the kinetic resolution 345 
is considerably better in terms of enantioselectivity, allowing around a 30% conversion after 250 h. 346 
When increasing the temperature to 120°C (Figure 5b), the kinetic resolution was slightly slower and 347 
the maxinum conversion was half that obtained at 90°C. 348 

 349 
 350 
 351 
 352 
 353 
 354 
 355 
 356 
 357 
 358 
 359 
 360 
 361 
 362 
 363 
Figure 5. Progress curve of the BTL2-catalyzed production of both enantiomers of mandelic acid ((R)-364 
acid, in red; (S)-acid, in blue) via ethanolysis of racemic 2-(butyryloxy)-2-phenylacetic acid (R, S)-1, 365 
using EMIMPF6 at different temperatures: (a) 90°C; (b) 120°C. Fitting parameters shown in Table 2, 366 
corresponding to entries #9 (EMIMPF6 90°C) and #10 (EMIMPF6 120°C). 367 

3. Discussion 368 
It is generally accepted that enzymes in RTILs are more active and stable as the hydrophobicity 369 

of the RTIL increases (see the review from Liu and coworkers [94], as well as the references cited 370 
therein). This fact is commonly related to the higher preservation of the essential water layer 371 
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surrounding the enzyme structure, resulting in a decrease of the protein-ion interactions with a 372 
concomitant reduction of enzyme denaturation [95]. Therefore, the use of water-inmiscible RTILs, 373 
more hydrophobic than the corresponding water-soluble ones, has been recommended [94]. 374 
Anyhow, these assumptions have been described for pure RTILs. In fact, mixtures of RTILs and 375 
organic solvents have been reported to increase the catalytic activity, stability and enantioselectivity 376 
of enzymes compared to the single RTIL (probably by reducing the viscosity of the RTIL and 377 
diminishing mass-transfer limitations [94]); on the other hand, the proportion and the nature of the 378 
organic cosolvent is usually crutial to reach good activity and selectivities (see [94] and references 379 
cited therein). Varela et al. [134] collected some data on theoretical studies of mixtures of RTILs and 380 
alcohols, concluding that molecular dynamics simulations of the solvation of alcohols in RTILs may 381 
resemble water behavior. Thus, the different regions of the bulk RTIL can interact with the analogous 382 
(polar or apolar) parts of the solute molecules, and this fact is pivotal for understanding both the 383 
mesomorphic structure of the mixtures as well as their dynamics, following a pattern termed 384 
“nanostructured solvation” [134]. Anyhow, theoretical studies describing the effect of RTIL/organic 385 
solvent mixtures on the structure of enzymes are still missing. 386 

In fact, for BTL2 it has been reported, based on molecular dynamics simulation, how the use of 387 
an apolar organic solvent (toluene) made the lipase structure more rigid, even in simulations carried 388 
out at 450°K (176.85°C) [90], without observing any tendency for the lid to open, and claiming that 389 
either inserting a thin layer of water around the enzyme or promoting a single point mutation 390 
(G116P) would be required for retaining activity in acyl-transfer processes [90]. Additional, another 391 
very recent study confirmed the reduced flexibility of BTL2 in non-polar organic solvents, using 392 
molecular dynamics on toluene and cyclohexane, and thus confirming the enhancement of 393 
thermostability of BTL2 in the presence of this type of solvents [53]. These theoretical studies would 394 
support our results obtained using isooctane as solvent in the BTL2-catalyzed ethanolysis of 2-395 
(butyryloxy)-2-phenylacetic acid (R, S)-1 (Figure 1 and Table 1), where we described how increasing 396 
the reaction temperature up to 90°C promoted a moderate rise in the reaction rate, but with no 397 
enantioselectivity, as the lid should not open (the only water present in the medium would be that 398 
one retained in the enzymatic liophilizate, not enough to reach a proper concentration), and therefore 399 
not upholding the lid flexibility required for the proper enzymatic enantiodiscrimination [135,136]. 400 

It has been also described that polar solvents (water and short-chain alcohols) lead to enhanced 401 
fluctuation of BTL2’s lid at low temperatures, but surprisingly the open conformation turned out to 402 
be more stable in EtOH than in water or MeOH [53]. Thus, considering the benefitial effect of EtOH 403 
on BTL2, we decide to check the catalytic behavior in mixtures between different RTILs and EtOH. 404 
As pointed out in Section 4.3, EtOH was used in a high molar excess compared to the starting 405 
substrate (3.42 M EtOH versus 60 mM for (R,S)-1), but if we consider the molar fraction of EtOH and 406 
the RTIL, the situation is different, as indicated in Table 3. 407 

Table 3. Composition of the different reaction mixtures EtOH/RTIL (1mL/4mL)  408 

RTIL 
MW 1 

(g/mol) 

Density 1 

(g/mL) 
[RTIL], M [EtOH], M 

Molar 
fraction 

XRTIL 

Molar 
fraction 

XEtOH 

BMIMBF4 226.02 1.21 4.28 3.42 0.56 0.44 

BMIMPF6 284.19 1.38 3.89 3.42 0.53 0.47 

EMIMBF4 197.97 1.29 5.222 3.42 0.60 0.40 

EMIMPF6 256.13 1.48 4.62 3.42 0,57 0.43 

1 Data taken from SciFinder Database 409 
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 410 
As can be seen from Table 3, the molar composition of the reaction mixture is not exactly the 411 

same, because of the differences in the molecular weight and density of the four RTILs, although 412 
average values of (0.56±0.04) and (0.44±0.04) for XRTIL and XEtOH can be considered. 413 

The most hydrophobic RTIL, water-insoluble BMIMPF6, is definitively not the best option for 414 
the ethanolysis of (R,S)-1, as shown in Figure 3, neither at 90 nor at 120°C; in fact, the initial rate in 415 
the generation of (S)-2 at 90°C is not the highest, although enantioselectivity is perfect (E>200) up to 416 
24 h. At 120°C, an inversion in the stereobias at 120°C was observed, but only a maximum of 6% 417 
conversion is detected for (R)-2. Looking at the literature, (R)-1 is the recognized enantiomer in the 418 
hydrolysis of (R,S)-1 by wild-type BTL2 [72], as well as by some immobilized preparation of this 419 
enzyme [61], so that the “canonical” recognition, as predicted by the well-known Kazlauskas’ rule 420 
(Figure 6a), based on the relative size of substituents around the stereocentre [137] would be that one 421 
depicted in Figure 6b. 422 

 423 

 424 
Figure 6. (a) The Kazlausskas’ rule; (b) “canonical” recognition of (R)-1 enantiomer; (c) “non-425 
canonical” recognition of (S)-1 enantiomer 426 

Actually, the large (L) binding pockets is located at the entrance of binding site, while the other 427 
medium (m) pocket is buried deep inside the lipase; thus, this would mean that the phenyl ring of 428 
the (R)-substrate would be the one interacting with the cavity inside the 3D structure of BTL2 in the 429 
canonical recognition pattern. This interaction maybe could be attributed to a stacking of the phenyl 430 
moiety of (R)-1 with Phe17, a residue which changes its conformation in the open structure and allows 431 
the access of the substrate to the catalytic Ser [52]; a similar interaction has been proposed for other 432 
aromatic substrates with lipases [138,139]. Anyhow, using BMIMPF6 at 90°C, the non-Kazlauskas 433 
rcognition (Figure 6c) is majoritarian, while increasing temperature up to 120°C, an alteration of the 434 
enantioselectivity is observed, but this could be attributed to an enzyme inactivation, as long as the 435 
activity dropped dramatically. 436 

Changing from BMIMPF6 (Figure 3) to BMIMBF4 (Figure 2), the resolution become faster at 90°C, 437 
(Table 2) but even better at 120°C, when the inversion of the canonical recognition is absolute, up to 438 
the point that no (S)-2 is detected at all, and the (S)-selection is maintained until the reaction ends 439 
(after 12 h, Figure 2b). Filice et al. [140] described that the tetrafluoroborate anion, in aqueous media, 440 
does not cause negative effects on BTL2, as it happens with other lipases. Anyhow, the alteration in 441 
the canonical (Figure 6b) recognition to the non-Kazlauskas pattern (Figure 6c) upon heating at 120°C 442 
can be caused by many possible factors. Indeed, a different hydrogen bonding arrangement is one of 443 
the reported reason for changing the enantioselection of lipases [141,142]), and it is well known that 444 
the anionic component of a RTIL is the main responsible of establishing the hydrogen–bonding 445 
network with the enzyme [94]; anyhow, this assumption would demand a molecular dynamics study, 446 
out of the scope of this paper. 447 

On the other hand, the use of more hydrophilic 1-ethyl-3-methyl imidazolium (EMIM) cation 448 
has been recommended for BTL2 [140]. Similarly, for other lipases it has been also shown how the 449 
shorter the alkyl chain in the cationic imidazolium, the higher the activity [143], while Filice et al. 450 
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recommended the use of hexafluorophosphate (PF6-) combined with EMIM, as generally RTILs 451 
containing had a very negative effect on the enzyme activity. [140]. In fact, by looking at the progress 452 
curves obtained in the ethanolysis of (R,S)-1 using EtOH/EMIMPF6, and depicted in Figures 5a (90°C) 453 
and 5b (120°C), the kinetic resolutions are quite perfect, although better at 90°C, both in terms of a 454 
higher reaction rate (Table 2, entry #10 vs entry #11) and activity, as for 120°C the reaction did not 455 
progress to a conversion higher than 20% after 120 h, while at a lower temperature the maximum 456 
value detected was around 30% and still growing, according to the curve shape. In any case, it is 457 
noteworthy to observe how BTL2 is exquisitely enatioselective under these reaction conditions, as no 458 
traces of the “canonical” (R)-2 isomer were detected. 459 

When using EtOH/EMIMBF4 at 90°C (Figure 4a), the situation is quite similar to that obtained 460 
with BMIMBF4 (Figure 2a) or BMIMPF6 (Figure 3a); nevertheless, the kinetic resolution is surprisingly 461 
perfect when using EtOH/EMIMBF4 at 120° (Figure 4b), as in only 2.5 h a perfect 50% conversion in 462 
(S)-2 is obtained, and again no traces of the (R)-antipode are formed. Thus, the best results, both in 463 
terms of reaction rate and enantioselectivity, are those obtained using this RTIL formed by the most 464 
hydrophilic cation and the most hydrophilic anion, at 120°C. Once again, we cannot propose a certain 465 
reason to explain this behavior, as that was not the purpose of this manuscript. According to the 466 
theoretical studies from Shehata et al. [53], the presence of EtOH in the reaction medium would allow 467 
the fluctuation of the lid to allow the active site to get exposed, and is very compatible with BTL2 468 
stability, as for sure EMIMBF4 has also proven to be.  469 

  470 
4.1. Materials 471 

Lipase from Geobacillus thermocatenulatus was a kind gift of the Biochemistry, Genetics and 472 
Inmunology Department of the Universidad de Vigo. All solvents of the highest purity commercially 473 
available and used without purification were purchased from Fluka. All other chemicals and RTILs 474 
(1-butyl-3-methyl imidazolium tetrafluoroborate (BMIMBF4), 1-butyl-3-methyl imidazolium 475 
hexafluorophosphate (BMIMPF6), 1-ethyl-3-methyl imidazolium tetrafluoroborate (EMIMBF4) and 1-476 
ethyl-3-methyl imidazolium hexafluorophosphate (EMIMPF6) were purchased from Sigma-Aldrich 477 
(Barcelona, Spain).  478 

 479 
4.2 Synthesis of (R,S) 2-(butyryloxy)-2-phenylacetic acid.- 480 

20 mmol of mandelic acid acid in 200 ml of diethyl ether were added to 2.88 ml triethylamine (20 481 
mmol). Subsequently, a solution of 2.131 ml (20 mmol) butyryl chloride in 100 ml ethyl ether was 482 
dropped. The reaction was carried out in a flask at 25 ° C for approximately 4 hours, giving a yield of 483 
50%. Reaction progress was followed by HPLC, 1H-NMR and 13C-NMR (Bruker AC-250 (1H), 63 MHz 484 
(13C)).  485 

Simply by adding water unreacted acid could be separated from the ester, which remained in the 486 
organic phase. Acid was removed performing successive washig with water. Subsequently, organic 487 
phase was dried with anhydrous sodium sulphate and the remaining ether was removed using rotary 488 
evaporator. Successive extraction with diethyl ether, allowed the isolation of 7 grams of yellowish oil 489 
as a final product ((R, S) 2-butanoiloxy phenyl acetic). Spectroscopic data were according to those 490 
previously reported in literature [144]  491 
 492 
4.3  Resolution of 2-(butyryloxy)-2-phenylacetic acid by alcoholysis reaction 493 

Reactions were carried out in closed glass vials and the temperature of the experiments varied 494 
between 40 and 120 ° C. In the case of isooctane, temperatures of 40, 70 and 90 ºC were used, whereas 495 
ionic liquids were tested at 90 and 120 ºC. To maintain the temperature fixed, a thermostatized bath oil 496 
was used for several days. The reaction mixture included: an organic solvent or RTIL (4 mL), 2-497 
(butyryloxy)-2-phenylacetic acid (60 mM) and ethanol (1 mL), assuring a molar excess of alcohol versus 498 
the organic acid. Then, the enzyme (4 mg solid/mL) was added. In order to ensure that reaction is due 499 
only to the lipase, a reaction test without lipase was carried out. As a consequence of the employment 500 
of high temperatures, the vials were rapidly cooled down for sampling previously to the opening to 501 
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avoid any evaporation of the alcohol; thus, aliquots of 100 μL were taken at different times. As RTILs 502 
cannot be directly injected into the HPLC, the samples were extracted with 1 mL of diethyl ether and 503 
the solvent evaporated at room temperature; subsequently, they were re-diluted with 400 μL hexane/2-504 
propanol (1:1) (v/v) and filtered using syringe filters (Millex-GV (PVDF), 0.22 μm pore size). HPLC 505 
analysis was performed using a Chiracel OD (20 μm (250 x 4.6 mm) chiral column, a mobile phase 506 
composed by n-hexane/2-propanol/trifluoroacetic acid (90/9/1), a 0.8 ml/min flux, and a wavelength of 507 
254 nm. Peak assignation was determined using pure compounds as standards.  508 

5. Conclusions 509 
Binary mixtures of EtOH and Room Temperature Ionic Liquids (RTILs) have proven to be an 510 

excellent reaction media for the enantioselective kinetic resolution (KR) of racemic 2-(butyryloxy)-2-511 
phenylacetic acid via ethanolysis catalyzed by lipase form Geobacillus thermocatenulatus (BTL2) at very 512 
high reaction temperatures. Thus, the KR carried out using an EtOH/BMIMBF4 at 120°C furnished 513 
(R)-mandelic acid as the only reaction product (E>200), while by changing the composition of the 514 
cationic moiety of the RTIL, then using EtOH/EMIMBF4 at the same temperature of 120°C, a fast and 515 
perfect KR led to enantipure (S)-mandelic acid. Some hypothesis to explain the enzyme behavior are 516 
presented, related to the described positive effect of EtOH on the enzymatic activity of BTL2, 517 
although a more detailed theoretical study would be demanded to rationalize the enzymatic 518 
stereobias. 519 
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