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Abstract: Inspired by the work of S. D. Odintsov and V. K. Oikonomou, Phys. Rev. D 92, 024016 
(2015) [1], the present study reports a reconstruction scheme for f (R) gravity with the scale factor

a(t) ∝ (t∗ − t) c
2
2 describing the pre-bounce ekpyrotic contraction, where t∗ is the big crunch time.

The reconstructed f (R) is used to derive expressions for density and pressure contributions and the 
equation of state parameter resulting from this reconstruction is found to behave like "quintom". It 
has also been observed that the reconstructed f (R) has satisfied a sufficient condition for a realistic 
model. In the subsequent phase the reconstructed f (R) is applied to the model of chameleon scalar 
field and the scalar field φ and the potential V(φ) are tested for quasi-exponential ex pansion. It 
has been observed that although the reconstructed f (R) satisfies one of the sufficient conditions for 
realistic model, the quasi-exponential expansion is not available due to this reconstruction. Finally, 
the consequences pre-bounce ekpyrotic inflation i n f (R) gravity are compared to the background 
solution for f (R) matter bounce.

Keywords: pre-bounce ekpyrotic contraction; f (R) gravity; reconstruction.

1. Introduction

Observational evidence in support of the late time acceleration of the universe is documented in 
plethora of literatures [2,3,4,5]. An exotic matter, characterized by negative pressure, is considered to 
be the responsible for this accelerated expansion and is dubbed as “dark energy" (DE) [6,7,8]. Reviews 
on various candidates of DE have been made in a considerable number of literatures. Some significant 
ones include [6,8,9,10]. An approach, alterative to dark energy, also known as “modified gravity" have 
some relative advantages. Although DE and modified gravity theories have some similarities in their 
basic approach, the modified gravity has some features that have made it attractive in the study of the 
late time acceleration of the universe. One very promising modified theory of gravity i s f (R) gravity 
[11,12,13,14,15,16,17,18].

A scheme of reconstruction of modified gravity, that is capable of realizing an unification of the 
acceleration of late time and early inflation, was demonstrated in [19]. In this reconstruction scheme,
[19] reported models of modified gravity that capable of presenting a successful transition from the 
phase of matter dominance to the late time accelerated phase of the universe. Another noteworthy 
reference in this context is [20] that reported f (R) gravities that are viable and are reproduced through
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e-folding numbers. The unification of late- and early-time acceleration was also reported in this study.
Another f (R) reconstruction by the imposition of restrictions of dynamical nature was presented in
[21]. Realization of ΛCDM through f (R) gravity was elaborated in [22]. Reference [23] demonstrated
how reconstruction schemes can be extended to modified gravity models so as to realize the transition
from matter dominance to dark energy dominance. It is due to the non-linear character the f (R)
gravity is relevant to early inflation for large R [24]. The unification approach, as stated above, has also
been reported in [25,26,27,28].

To avoid the measurable corrections to the occurrence of the local gravity, the models have to
apply the chameleon mechanism [29,30] to overcome the solar system tests. References [31,32,33,
34] suggested the models which satisfies both the cosmological and the local gravity constraints.
Studies including [35,36,37,38] demonstrated exact solutions that are capable of explaining the current
acceleration. For more details, see Ref. [39,40]. Exact behaviour of the exotic matter that is thought
to be responsible for the acceleration of the current unverse is yet to be fully understood. As a
consequences, various candidates have been proposed for DE till date and modified theories are also
having a considerable variability in approach and accordingly the cosmological parameters have been
studied. Among the several candidates proposed so far for DE, holographic dark energy (HDE) is
considered to be of immense potential. The HDE was proposed on the basis of holographic principle
[41,42,43,44]. The present work, as one of its primary objectives, aims to reconstruct modified gravity
based on holographic dark energy. Holographic reconstruction of modified gravity has already been
reported in the cosmological literatures. Various authors [39,40,45,46,47] have reconstructed different
candidates of modified gravity from holographic dark energy (HDE) with different IR cut-offs.

One natural query of the present day cosmology is whether the universe evolution actually
follows standard inflationary paradigm. In order the standard inflation to follow, an initial singularity
has to exist. Otherwise, the cosmological bounce is to be considered, in which case there does not
exist any initial singularity [48]. Big bounce scenarios provide us with an alternative An alternative
to the Big Bang cosmologies. A bounce cosmology in f (R) cosmological settings was reported
in [48], where it was observed that the bouncing point is characterized by type-IV singularity. In
another interesting study, Odintsov and Oikonomou [49] provided an F(R) gravity description of
a ΛCDM bouncing model without depending upon any matter fluid or cosmological constant. In
another study the authors [50] demonstrated by conformally transforming the Jordan frame singular
bounce that the Einstein frame metric leads to a Big Rip singularity. The present work endevours to
demonstrate a reconstruction scheme for f (R) gravity with a scale factor describing the pre-bounce
ekpyrotic contraction and to study the cosmological consequences for chameleon scalar field model.
Rest of the paper is organised as follows: in section II, a brief overview of f (R) gravity has been
presented. A reconstruction scheme for f (R) gravity has been presented in section III and section
IV has demonstrated the cosmology of chameleon scalar field under reconstructed f (R) gravity. In
section V we have discussed the background evolution of matter bounce in f (R) gravity for a different
choice of bouncing scale factor. The results and concluding remarks have been presented in section VI.

1. Brief Overview of f (R) Gravity

The action of f (R) gravity is given by [16,18]

S = d4x
√
−g
[

f (R)
2κ2 + Lmatter

]
(1)

where κ2 = 8πG, g is the determinant and Lmatter is the matter Lagrangian. In the remaining part of
the paper, we shall take κ2 = 1. The f (R) is a non-linear function of R that contains corrections to the
EH action. The gravitational field equations are given by

H2 =
1

3 f ′(R)
(ρm + ρR) (2)
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Ḣ = − 1
2 f ′(R)

(ρm + pm + ρR + pR) (3)

where ρR and pR are the density and pressure generated due to f (R) gravity and they have the forms

ρR =
1
2
[
− f (R) + R f ′(R)

]
− 3HṘ f ′′(R) (4)

and
pR =

1
2
[

f (R)− R f ′(R)
]
+
[
2HṘ + R̈

]
f ′′(R) + Ṙ2 f ′′′(R) (5)

respectively. The density due to dark matter in f (R) gravity is

ρm = 3H2 f ′(R)− ρR (6)

and we are considering pressureless dark matter, pm = 0. In the subsequent section, we will consider
the f (R) gravity with the scale factor describing pre-bounce ekpyrotic contraction.

2. A reconstruction scheme for f (R) gravity

In this section we describe reconstruction scheme for f (R) gravity in a bounce model developed
by Cai et al. [51] and further demonstrated by Cohen et al. [52] and Odintsov et al. [53]. In the
model demonstrated by [52] a scalar field φ with non-canonical kinetic terms and a potential V(φ)

was used to develop the cosmological model in a non-supersymmetric framework. In the present
work instead of taking the potential as ekpyrotic potential i.e. V(φ) ≈ −V0e−c(φ)φ we have considered
the chameleon scalar field in the framework of f (R) gravity reconstructed for a scale scale factor
describing a pre-bounce ekpyrotic contraction, as was mentioned in [52]. It may also be noted that
the reconstruction procedure is similar to that of [53]. However instead of introducing the e-folding
number N, contrary to what was presented in [53] we have demonstrated a reconstruction scheme for
f (R) through the cosmic time t and subsequently in terms of Ricci scale factor R. The presence of dark
matter has also been considered. In Eq. (7), t∗ is the big crunch time. However instead of constraining
c by the lower bound of

√
6 we have constrained it by non-negativity. The scale factor describing a

pre-bounce ekpyrotic contraction is

a(t) ∝ (t∗ − t)
2
c2 (7)

giving rise to

ȧ = −2(t∗ − t)
2
c2−1

c2 (8)

For the above choice scale factor the Hubble parameter and its derivatives come out to be as
follows:

H =
ȧ
a
= − 2

c2(t∗ − t)
, Ḣ = − 2

c2(t∗ − t)2 , Ḧ =
4

c2(t∗ − t)3 . (9)

Using the form of Hubble parameter derived above the Ricci scalar as well as its derivatives are
derived below:

R = 6
(

2H2 + Ḣ
)
= − 12(c2 − 4)

c4(t∗ − t)2 , Ṙ =
24(4− c2)

c4(t∗ − t)3 , R̈ =
72(4− c2)

c4(t∗ − t)4 . (10)

It has already been stated that the purpose of the present work is to reconstruct f (R) gravity and
to demonstrate the cosmology of chameleon scalar field under this reconstruction. In view of the above
the f (R) gravity would now be reconstructed using Eqs. (9–10). Hence the modified field Eqs. give
rise to the Friedmann equation in FRW geometry as follows:
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Figure 1. Evolution of reconstructed f (R) (Eq.
(12)).

Figure 2. Evolution of reconstructed f ′(R).

− 18
(

4H2Ḣ + HḦ
)

f ′′(R) + 3
(

H2 + Ḣ
)

f ′(R)− f (R)
2

+ ρm = 0, (11)

where ρm = ρm0 a(t)−3 indicates the dark matter density and R is the Ricci scalar as stated in Eq. (10).
In Eq. (10) we have shown how R can be expressed in terms of t based on the choice of the scale factor.
Hence, the modified Friedmann equation (11) written above gives rise to a differential equation with t
as the independent variable which on solving gives us the solution for f (R) in terms of cosmic time t
as follows:

F(t) = 1728
1
c2 A1

[
− −4 + c2

c4(t∗ − t)2

] 3
c2

+ 12A2

[
− −4 + c2

c4(t∗ − t)2

]A2

C1 + 12A3

[
− −4 + c2

c4(t∗ − t)2

]A3

C2 (12)

where, F(t) = f (R(t)). The above Eq. (12) is converted to a function of R and finally the
reconstructed f (R) takes the following the form:

f (R) = A1R
3
c2 + RA2 C1 + RA3 C2, (13)

where

A1 =
1

24− 13c2 + c4

21− 6
c2 3−

3
c2 ρm0 c2(−4 + c2)

(
4− c2

c4

)− 3
c2

 ,

A2 = − 1
4c2

[
2 + c

{
−3c +

(4 + c)
√

c4 + 20c2 + 4
c2 − 4

}]
+

2
√

c4 + 20c2 + 4
c2(c2 − 4)

,

A3 = − 1
4c2

[
2 + c

{
−3c +

(4 + c)
√

c4 + 20c2 + 4
c2 − 4

}]
+

√
c4 + 20c2 + 4
2(c2 − 4)

. (14)
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Figure 3. The EoS parameter wR =
pR
ρR

(Eqs. (21)–(22)) due to reconstructed f (R)
gravity.

Figure 4. The behaviour of effective EoS
parameter (we f f =

pR
ρR+ρm

) (Eqs. (21)–(23)).

Figure 5. The evolution of the fractional
matter density Ωm =

ρm
3H2 in the reconstructed

f (R) gravity.

Figure 6. Evolution of 2V − φ̇2 in the
reconstructed f (R) gravity framework.
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The derivatives of f (R) up to various orders are computed below

f ′(R) =
1
R

3A1R
3
c2

c2 + A2RA2 C1 + A3RA3 C2

 , (15)

f ′′(R) =
1

R2

3A1(3− c2)R
3
c2

c4 + (−1 + A2)A2RA2 C1 + (−1 + A3)A3RA3 C2

 , (16)

f ′′′(R) =
1

R3 [
3A1(9− 9c2 + 2c4)R

3
c2

c6 + (−2 + A2)(−1 + A2)A2RA2 C1+

(−2 + A3)(−1 + A3)A3RA3 C2]. (17)

It is clear from the above expressions that reconstructed f (R) is a real solution to Eq. (11) and
derivatives up to the orders shown above exist. In Fig. 1 we are observing that f (R) is showing an
increasing pattern with cosmic time for 0 < c2 < 4. This indicates that d

dt f (R) > 0 for 0 < c2 < 4.

Also, Eq. (10) shows that Ṙ > 0 for 0 < c2 < 4. Thus, f ′(R) =
˙f (R)
Ṙ > 0 for 0 < c2 < 4. Hence, it is

observed that f (R) gravity so obtained is free from ghost instability. Also, from Fig.2 we observe that
for 0 < c2 < 4, we have an increasing pattern of f ′(R) with cosmic time t. Hence, time derivative of

f ′(R) would be positive. Therefore, we will be having
˙f ′(R)
Ṙ > 0. Thus, the model of f (R) obtained

through the reconstruction scheme presented above is free from tachyonic instability. This proves the
physical viability of the reconstructed f (R) model.

3. Chameleon scalar field under modified f (R) gravity

In this section the reconstructed f (R) gravity would be considered to reconstruct the chameleon
scalar field and chameleon potential to investigate whether they can lead to quasi-exponential
expansion in the framework of the reconstructed f (R) gravity. In this connection, it may be noted
that an equivalence between f (R) and scalar–tensor theories has been discussed in [56] and [57]. In
these references it has been discussed how one may consider φ = R to reproduce the original action
of chameleon mechanism. In a flat homogeneous universe the action for the relevant scalar field and
potential is given by [55]

S =
√−gd4x

[
f (φ)L+ 1

2 φ,µφ,µ + R
16πG −V(φ)

]
(18)

where φ is the chameleon scalar field and V(φ) is the chameleon potential. R and G represents Ricci
scalar and Newtonian constant of gravity respectively. f (φ) is an analytic function of φ and f (φ)L is
the modified matter Lagrangian. Variation of the action with respect to metric tensor components in a
FRW cosmology leads to the following modified field equation (assuming 8πG = 1).

H2 =
1
3

[
(ρm + ρR) f (R) +

1
2

φ̇2 + V(φ)

]
, (19)

2Ḣ + 3H2 =
1
2

[
−pR f (R)− 1

2
φ̇2 + V(φ)

]
. (20)

It may be noted that as we are considering the chameleon scalar field in f (R) gravity framework we
choose the density to be ρm + ρR, the pressure to be pR and the analytic function to be replaced by a
function of the Ricci scalar R.
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Solving Eqs. (4) and we get the reconstructed density contribution due to f (R) gravity as follows:

ρR = − 1
2c2(−4+c2)

[
1728

1
c2 A1

(
30− 13c2 + c4) { 4−c2

c4(t∗−t)2

} 3
c2
+

c2
{

12A2(−1 + A2)
{

4 + (−1 + 2A2)c2} {− −4+c2

c4(t∗−t)2

}A2
C1+

12A3(−1 + A3)
{

4 + (−1 + 2A3)c2} {− −4+c2

c4(t∗−t)2

}A3
C2

}]
.

(21)

Similarly, from Eq. (5) we derive the expression for pressure contribution for this reconstructed f (R)
gravity as follows:

pR = 1
6c2(−4+c2)

[
−21+ 6

c2 31+ 3
c2 A1

(
−3 + c2) { 4−c2

c4(t∗−t)2

} 3
c2
+

c2
{
−12A2(−1 + A2)

{
−12 + (3− 4A2)c2 + A2(−1 + 2A2)c4} {− −4+c2

c4(t∗−t)2

}A2
C1−

12A3(−1 + A3)
{
−12 + (3− 4A3)c2 + A3(−1 + 2A3)c4} {− −4+c2

c4(t∗−t)2

}A3
C2

}] (22)

Now using the reconstructed f (R) and ρR in Eq. (6) the form of dark matter density in f (R) gravity
framework comes out to be the following:

ρm = 1
2(−4+c2)

 1728
1
c2 A1(24−13c2+c4)

{
4−c2

c4(t∗−t)2

} 3
c2

c2 +

12A2
{
−4 + c2 + A2

{
2 + (−3 + 2A2)c2}} {− −4+c2

c4(t∗−t)2

}A2
C1+

12A3
{
−4 + c2 + A3

{
2 + (−3 + 2A3)c2}} {− −4+c2

c4(t∗−t)2

}A3
C2

]
.

(23)

The equation of state parameters, as defined below, can be modified using the reconstructed pressure
and densities elaborated above.

wR =
pR
ρR

(24)

we f f =
pR

ρm + ρR
(25)

At this juncture, we consider the modified field equations for reconstruction of the chameleon scalar
field. Using modified field equations (19) and (20) we can have

2V − φ̇2 = 8Ḣ + 12H2 + 2pR f (R) (26)

where, H, pR and f (R) have already been derived. The cosmological parameters derived above would
now be explored through plots and the outcomes would be discussed in the subsequent section.

4. Background solution for f (R) matter bounce

In the previous sections we have discussed the various outcomes of a scale factor describing the
pre-bounce ekpyrotic contraction. In this section, we demonstrate a comparison of the results with the
bounce scale factor proposed in [61]

a(t) = a0

(
1 +

3σt2

2

) 1
3

(27)
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Figure 7. Evolution of the reconstructed f (R)
gravity over cosmic time t for scale factor
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Figure 8. Evolution of f ′(R)
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Figure 9. Evolution of the reconstructed 2V −
φ̇2 over cosmic time t in the reconstructed
f (R) gravity (Fig. 7) framework.

where, a0 is a scale factor at the bouncing point and σ is a positive parameter. With the help of this
scale factor, we have derived Hubble parameter (H), Ricci scalar (R) and their derivatives in terms of
cosmic time t as follows:

H =
2tσ

2 + 3t2σ
, Ḣ =

2σ(2− 3t2σ)

(2 + 3t2σ)2 , Ḧ =
36tσ2(t2σ− 2)
(2 + 3t2σ)3 (28)

R =
12σ(2 + t2σ)

(2 + 3t2σ)2 , Ṙ = −24tσ2(10 + 3t2σ)

(2 + 3t2σ)3 , R̈ =
24σ2 (−20 + 3t2σ(44 + 9t2σ)

)
(2 + 3t2σ)4 (29)

This choice of a(t) presents the bouncing behavior corresponding to matter-dominated contraction
and expansion. Furthermore, t ranges from −∞ to +∞. Bounce occurs at t = 0. Using the expression
for R, we can straightway express t as

t(R) = ±


√

2
3

√√√√−Rσ +
(

σ2 ±
√

σ3(4R + σ)
)

Rσ2

 (30)

The above inversion is valid if −
√

2
3σ < t <

√
2

3σ . At the bouncing point we take a0 = 1 and

ρm0 = 1.41× 10−5. Roughly based on CMB spectrum, σ = 7× 10−6.
The H, R and a(t) discussed above. Clearly, with this choice,

f ′(R) = − (2+3t2σ)
3

f ′(t)
24tσ2(10+3t2σ)

and

f ′′(R) = (2+3t2σ)
5
((−20+132t2σ+27t4σ2) f ′(t)+t(20+36t2σ+9t4σ2) f ′′(t))

576t3σ4(10+3t2σ)
3 .

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 August 2020                   doi:10.20944/preprints202008.0339.v1

https://doi.org/10.20944/preprints202008.0339.v1


Because of the complicated form the coefficients the differential equation (Eq. 11) with
f ′(R), f ′′(R) in the above forms could not be solved analytically. The reconstructed f (R) is obtained
numerically and the solution in terms of cosmic time t in graphically presented in Fig. 7. Here in the
numerical solutions, the positive parameter σ played a significant role. So, we have taken three values
of σ = 0.75, 1.25, 1.75 from the interval (0.7, 2) for the entire calculations. In the following figures, the
red, green and blue lines indicate the values σ = 0.75, 1.25, and 1.75 respectively. It is observed in Fig. 7
that f (R)→ 0 as t→ 0 before as well as after bounce. Before bounce the reconstructed f (R) is tending
to 0 from negative side. However, after attaining 0 at the bouncing point it starts increasing towards
positive direction. Hence, f (R)→ 0 irrespective of pre or post bounce scenario. Hence, it is apparent
that a realistic solution is available with this choice of bounce scale factor. Secondly, Fig. 8 shows
that the f ′(R)

R > 0 before bounce and < 0 after bounce. Hence in the pre-bounce phase the model is
not affected by tachyon instability and this is consistent with the pre-bounce ekpyrotic contraction
presented in the previous section. However, after the bounce, f ′(R)

R < 0 after the bounce. Hence, the
post-bounce scenario is characterized by tachyon instability. As we study 2V − φ̇2 we observe that it is
positive in the pre as well as post-bounce scenario. However, for t− < t < t+, i.e. in the vicinity of the
bouncing point, 2V − φ̇2 is nearly flat and after the bounce, it starts increasing sharply and hence, we
may consider it to be consistent with the inflationary expansion.

5. Results and Conclusions

In the present work we have carried out a reconstruction scheme for f (R) gravity with the scale

factor in the form a(t) = (t∗ − t)
2
c2 . Initially a Hubble parameter H has been computed and its time

derivatives of different orders have also been derived for this scale factor to get the Ricci scalar R.
Subsequently, the field equation for f (R) gravity Eq. (11) has been solved in presence of dark matter.
The reconstructed f (R) has been obtained this way as a function of t in Eq. (12), which has been
reexpressed as a function of R in Eq. (13). This reconstructed f (R) has been plotted again cosmic time
t for a range of values of 0 < c2 < 4 in Fig. 1. It has been observed in Fig. 1 that f (R) has an increasing
pattern with t. Also, Eq. (13) shows that limR→0 f (R) = 0. This satisfies a sufficient condition for a
realistic model [58,59]. Furthermore, the non-existence of ghost and tachyonic instability have been
established. Hence, it can be said that the reconstructed f (R) model is a realistic model. It may be
noted that C1 = 0.5, C2 = 0.3, t∗ = 4.1, ρm0 = 0.32 and 0 < c2 < 4 have been used while creating the
plots. Choice of C1, C2 have been made through trial and error, t∗ and c2 have been set keeping the
real solution for f (R) in mind. It may be noted that the formulation of the reconstruction approach is
inspired by [23].

It has further been observed that the increasing pattern of f (R) is influenced by the value of c. For
larger values of c, f (R) maintains approximately flat pattern for a considerable period of cosmic time
and exhibits sudden increase at a later stage of the universe. Different derivatives of this reconstructed
f (R) has also been computed and presented in Eqs. (15), (16) and (17). In the next of this study we have
demonstrated behaviour of chameleon scalar field under this modified form of f (R). The modified
field equations in presence of chameleon scalar field and potential have been presented in Eqs. (19)
and (20). While reconstructing chameleon scalar field and potential under this reconstructed f (R)
model we have first reconstructed the density and pressure due to f (R) using Eq. (13). Based on
the reconstructed pR and ρR we have demonstrated the behaviour of EoS parameter wR due to f (R)
gravity in Fig. 3 and effective EoS parameter we f f in Fig. 4. It is observed in Fig. 3 that wR stays in
the negative level for the evolution of the universe. This holds true for the entire range of c. Hence it
may be concluded that wR due to reconstructed f (R) gravity behaves like phantom. The phantom
behaviour is stronger for lower values of c than the higher values. However if we consider we f f with
the same choice of parameters it is found that for 0 < c0.5, we f f ≈ −1 i.e. behaving approximately like
cosmological constant. In Fig. 5 it is observed that the fractional energy density Ωm = ρm

3H2 based on
the reconstructed ρm and the scale factor describing the pre-bounce ekpyrotic contraction is staying at
positive level. This satisfies the weak energy condition (WEC). Furthermore, the model is producing
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fractional matter density that is decaying with the evolution of the universe. This indicates transition
from matter domination in the early stage to dark energy domination in the late stage.

In Fig. 6, the evolution of 2V − φ̇2 has been studied against z for a range of values of c. This
figure shows that 2V − φ̇2 ≤ 0 which violates the condition for inflationary expansion. Hence
quasi-exponential expansion is not available with the chameleon scalar field considered in the

framework of modified f (R) gravity in presence of the scale factor a(t) = (t∗ − t)
2
c2 describing the

pre-bounce ekpyrotic contraction. This observation is in contradiction to the study of Chattopadhyay
et. al. [54], where quasi-exponential expansion was found to be possible for a linear f (T) gravity based
on holographic Ricci dark energy.

While concluding, we should mention that the reconstruction of f (R) gravity has been
demonstrated in the model to unify the the bouncing behavior in the early universe and the late-time
accelerated expansion of the universe at the dark energy dominated stage can occur within a unified
model. In view of the same, a scale factor describing the pre-bounce ekpyrotic contraction has been
chosen and the reconstructed f (R) has been demonstrated that is capable of transiting the universe
from matter dominated to dark energy dominated phase. Also, the reconstructed f (R) has been found
to be free from ghost and tachyonic instabilities and hence it has been interpreted that the reconstructed
f (R) is realistic. We could explicitly derive the f (R) gravity model capable of demonstrating the
pre-bounce ekpyrotic contraction and the late time acceleration in a single model framework. This
kind of reconstruction approach has earlier been demonstrated in [60] in the framework of f (G)

gravity. As future study, we propose to demonstrate whether this reconstruction scheme works for any
arbitrary choice of scale factor and to compare the results with conventional reconstruction scheme
using e-foldings.

While concluding we have demonstrated the background matter bound for f (R) with another
bouncing scale factor introduced in [61] and found that although the pre bounce scenario the model is
having tachyonic stability and the tachyonic stability is lost after the bouncing point. At the bouncing
point we have found that f (R)→ 0 for t→ 0− as well as t→ 0+. At this juncture we must mention
some important works in the direction of matter bounce solutions in modified gravity framework. With
the scale factor in the form a(t) = (a0t2 + 1)n [62] demonstrated that Lagrange multiplier f (R) is more
adequate than standard f (R) in realizing the cosmological bounce. The matter bounce scenario, the
singular bounce, the superbounce and a symmetric bounce scenario in modular f (R) was discussed by
[63]. The present work primarily focused on pre-bounce ekpyrotic contraction scenario. Nevertheless,
the bouncing scenarios demonstrated in [63] are proposed to be incorporated into the study of exit
from the pre-bounce ekpyrotic contraction in modified gravity framework.
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