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This paper discovers that current variational principle and Noether theorem for both different
physics systems and (in)finite freedom systems have missed the double extremum processes of the
general extremum functional that is deduced by variational principle and necessarily taken in de-
ducing all the physics laws, but these have not been corrected for over a century since Noether’s
proposing her theorem, which result in the crisis deducing all the physics laws. Using the double
extremum processes of the general extremum functionals, the crisis and the hidden logic cycle prob-
lem in current variational principle and current Noether theorem are solved. Furthermore, the new
mathematical and physical double extremum processes and their new mathematical and physical
pictures for (in)finite freedom systems are discovered. The improved variational principle and im-
proved Noether theorem are given, which are key useful to different branches of science.as key tools
of studying and processing them.
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I.Introduction

A variational principle in science is to enables a prob-
lem being solved by using the calculus of variations,
which optimizes the values of these quantities in the vari-
ational systems [1].

Fundamental physics laws can be expressed by a vari-
ational principle, which can give Euler-Lagrange equa-
tions and the corresponding convervation quantity [2, 3].
Noether generalized the variational principle to a now
called Noether theorem by finding the transformation
symmetry properties of variational systems and giving
both Euler-Lagrange equations and the many conserva-
tion quantities depending on the corresponding many
symmetries [4, 5].

Current variational principle and Noether theorem
have been extensively used in different branches of sci-
ence and have become key tools of studying and process-
ing the different branches, for examples:

In mathematics [1, 6–9]: (i) The extremum method for
solving boundary-value problems; (ii) Variational princi-
ple in mathematical optimization; (iii) Variational princi-
ple in mathematical extremum problems; (iv) Variational
principle in mathematical motion equations and invari-
ant quantities; (v) The finite element method; ...... . In
physics [2, 10–14]: (i) Fermat’s principle in geometrical
optics; (ii) Maupertuis’ principle in classical mechanics;
(iii) The principle of least action in mechanics, electro-
magnetic theory and so on; (iv) The variational method
in quantum mechanics; (v) Gauss’s principle of least con-
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straint and variational principle of least curvature; (vi)
Hilbert’s action principle in general relativity leading to
Einstein field equations; (vii) Palatini variational princi-
ple; (viii) Variational principle in different field theories;
...... . In astronmy and astrophysics [15], in chemistry
[16, 17], even in engineering [9] and so on.

Various variational principles and their application-
s are very well investigated, e.g., see [18–23]. Role of
Noether’s Theorem at the Deconfined Quantum Criti-
cal Point is studied [24], Noether’s theorems and con-
served currents in gauge theories in the presence of fixed
fields are explored [25], furthermore, Noether’s theorem
and conserved quantities for the crystal- and ligand-field
Hamiltonians invariant under continuous rotational sym-
metry are investigated [26].

In current variational principle and Noether theorem,
there are the needs in advance to assume existing some
conditions which are equivalent to Euler-Lagrange equa-
tions and conservation quantities, and then deducing
Euler-Lagrange equations and conservation quantities,
which are related to a hidden logic cycle problem and
are not both exact and natural.

Furthermore, we find that all the investigations on
variational principle and Noether theorem for differen-
t physics systems have missed the key studies on the
double extremum processes related to the general ex-
tremum functional that is deduced via the least action
principle and should be key largely taken in deducing al-
l the physics laws, but the current variational principle
and current Noether theorem have missed the general ex-
treme functionals and their minimum extremums for over
a century since Noether’s proposing her theorem [4, 5],
which result in the crisis of no objectively deducing all the
physics laws. Using the studies on the double extremum
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processes related to the general extremum functionals in
this paper, the crisis and the hidden logic cycle problem
are solved, and the new physical pictures are discovered.

No losing generality, all physics laws always can be ex-
pressed as some equations, these equations always can
be viewed as some Euler-Lagrange equations, the Euler-
Lagrange equations always can be deduced by the gener-
al variational principle and/or Noether theorem [4, 5].
Therefore, there always is the crisis deducing all the
physics laws. This paper wants to solve the crisis.

The arrangements of this paper are: Sect. 2 shows
unification studies on variational principle and Noether
theorem for finite freedom systems; Sect. 3 investigates
crisis of deducing physics laws and its solution to the cri-
sis for finite freedom systems; Sect. 4 gives unification
studies on variational principle and Noether theorem for
infinite freedom systems; Sect. 5 studies crisis of deduc-
ing physics laws and its solution to the crisis for infinite
freedom systems; Sect. 6 shows discussions; Sect. 7 gives
summary and conclusions.

II.Unification studies on variational principle
and Noether theorem for finite freedom systems

The exact mathematical descriptions of the least ac-
tion principle for a general case are: the variation of the
integral ( i.e., the action ) of the Lagrangian L during
[t1, t2] about N generalized coordinates q = (q1, q2,...,qN )
is [13, 27]

∆A = A′−A =

∫ t′2

t′1

L′(q′, q̇′, q̈′, t′)dt′−
∫ t2

t1

L(q, q̇, q̈, t)dt = 0.

(1)
It is no losing the generality, because the results of the

systems with higher derivatives of q are the similar but
more terms relevant to higher derivatives of q.

Among them, the general infinitesimal transformations
are [27–29]

t′ = t′(q, q̇, q̈, t, α) = t+ ∆t = t+ εστ
σ, (2)

q′i
(r) = q′i

(r)(q, q̇, q̈, t, α) = q
(r)
i + ∆q

(r)
i = q

(r)
i + εσ(ξσi )(r),

(3)
in which r = 0, 1, 2, α = (α1, α2, ..., αm) are independent
continuous variable parameters of Lie group G and

(ξσi )(r) =
∂q

′(r)
i (q, q̇, q̈, t, α)

∂ασ
|α=0 , σ = 1, 2, ...,m; r = 0, 1, 2,

(4)

τσ =
∂t′(q, q̇, q̈, t, α)

∂ασ
|α=0 , σ = 1, 2, ...,m. (5)

Eqs.(4) and (5) are the infinitesimal generating func-
tions under the operation of group G, εσ (σ = 1,2,. . . ,m)
are independent infinitesimal parameters corresponding
to α, one dot and two dots denote the first and second

order time derivatives respectively, the curve q(t) is pa-
rameterized by time, and the path takes extremum cor-
responding ∆A = 0.

Doing as the well-known Refs. [2, 9, 13, 27, 29], we
define

L′(q′, q̇′, q̈′, t′) = L(q′, q̇′, q̈′, t′)+εσ
dΩσ

dt
, σ = 1, 2, ...,m.

(6)
Putting Eq.(6) into Eq.(1), one has

∆A =

∫ t′2

t′1

[L(q′, q̇′, q̈′, t′)+εσ
dΩσ

dt
]dt′−

∫ t2

t1

L(q, q̇, q̈, t)dt = 0.

(7)
Using the technique of deducing Euler-Lagrange equa-

tions to simplify Eq.(7) and neglecting second-order in-
finitesimal quantities, we get

∆A =

∫ t2

t1

[
dΩ

dt
+

∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+
d2

dt2
∂L

∂q̈i
]δqi+

d

dt
[
∑
i

(
∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i −

d

dt

∂L

∂q̈i
δqi) + L∆(t)]]dt. (8)

where Ω = εσΩσ. Eq.(8) is simplified as

∆A = 0 =

∫ t2

t1

{
∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+
d2

dt2
∂L

∂q̈i
]δqi+

d

dt
[
∑
i

(
∂L

∂q̇i
δqi+

∂L

∂q̈i
δq̇i−

d

dt

∂L

∂q̈i
δqi)+L∆(t)+Ω]}dt. (9)

For Eq.(9), about the degree of freedom, there are still
three different cases:

Case (i): When assuming

∆A =

∫ t2

t1

d

dt
[
∑
i

(
∂L

∂q̇i
δqi+

∂L

∂q̈i
δq̇i−

d

dt

∂L

∂q̈i
δqi)+L∆(t)+Ω]dt,

(10)
using Eq.(10), one has

∂L

∂qi
− d

dt

∂L

∂q̇i
+
d2

dt2
∂L

∂q̈i
= 0, (11)

where i = 1, 2, . . . , N , because δqi (i =1,2,. . . ,N) are lin-
ear independent each other because qi are independent
coordinates.

Using Eq.(10), we deduce conservation quantity

∑
i

(
∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i −

d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω = const.,

(12)
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because

∆q
(r)
i = δq

(r)
i (t) + q

(r+1)
i (t)∆t, r = 0, 1, 2, (13)

Eq.(12) can be rewritten as

∑
i

(
∂L

∂q̇i
(∆qi − q̇i∆t) +

∂L

∂q̈i
(∆q̇i − q̈i∆t)

− d

dt

∂L

∂q̈i
(∆qi − q̇i∆t)) + L∆(t) + Ω = const. (14)

Eq.(14) is the result of variational principle.
Putting Eqs.(2) and (3) into Eq.(14), we deduce m

conservation quantities of the systems∑
i

(
∂L

∂q̇i
(ξσi − q̇iτσ) +

∂L

∂q̈i
(
.

ξσi − q̈iτσ)

− d

dt

∂L

∂q̈i
(ξσi − q̇iτσ) + Lτσ + Ωσ = constσ. (15)

where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(15) is the
Noetther theorem’s result.

We can see that both variational principle and Noether
theorem all give the same Euler-Lagrange equations (11),
but they give the convervation quantities are very differ-
ent, i.e., Eq.(14) and Eq.(15) respectively.

Case (ii): When assuming that there exists Eq.(11),
then putting Eq.(11) into Eq.(9), one has Eq.(10). In the
following, there are the almost same discussions below
Eq.(11) in Case (i).

III.Crisis of deducing physics laws and its solu-
tion to the crisis for finite freedom systems

Case (iii): Using Eq.(9) and the rule of merging like
terms, we exactly have a general functional expression

∫ t2

t1

∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+
d2

dt2
∂L

∂q̈i
]δqidt = −

∫ t2

t1

d

dt
[

∑
i

(
∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i −

d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω]dt. (16)

Eq.(16) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the system has no
Eq.(10) or Eq.(11), or no Eqs.(10) and (11), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (iii) [27–29].

Cases (i) and (ii) are necessary and sufficient conditions
that just give real physics laws, and accordint to current
variational principle and current Noether theorem [28,
29], case (iii) at all cannot give real physics laws.

Using Eq.(16) derived from the variational extremum,
we can exactly define a general extremum functional

F =

∫ t2

t1

∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+
d2

dt2
∂L

∂q̈i
]δqidt = −

∫ t2

t1

d

dt
[

∑
i

(
∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i −

d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω]dt. (17)

The new general equal equation functional F between the
functional of deducing Euler-Lagrange equations having
merged like terms and the functional of deducing the gen-
eral conservation quantities having merged like terms is
deduced by satisfying variational principle.

When the absolute value of the general extremum func-
tion F is taken as zero, because the minimum absolute
value of any function is zero, i.e., a general extremum (
because the general extremum function F may general-
ly take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have

∫ t2

t1

∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+
d2

dt2
∂L

∂q̈i
]δqidt = 0

= −
∫ t2

t1

∑
i

d

dt
[
∑
i

(
∂L

∂q̇i
δqi +

∂L

∂q̈i
δq̇i

− d

dt

∂L

∂q̈i
δqi) + L∆(t) + Ω]dt = 0 (18)

thus the first line of Eq.(18) is equivalent to case (ii),
and the second and third lines of Eq.(18) are equivalent
to case (i), these all can give physics laws. Namely, the
general extremum functional F takes the minimum abso-
lute value, i.e., zero, all the physics laws can be deduced,
otherwise, all the physics laws cannot be deduced. That
is, Eq.(17) is deduced from the variational extremum,
Eq.(18) is further taking the absolute extreme value ze-
ro, i.e., the minimum absolute extremum, of the general
extremum functional F . Therefore, we, for the first time,
discover that it is the double extreme values (i.e., the ex-
treme functional F ’s extremum) that result in that all the
physics laws can be deduced, otherwise, all the physics
laws cannot be deduced.

Therefore, the systems first choose extreme value (i.e.,
via Eq.(1)) of the Lagrangian, and then we naturally d-
educe Eq.(9), there are needs as usual in advance to as-
sume existing case (i) or (ii), because which are equiva-
lent to Euler-Lagrange equations and conservation quan-
tities, and then deducing Euler-Lagrange equations and
conservation quantities, which are related to a hidden
logic cycle problem and are not both exact and natural.

Actually, there naturally exists the general extremum
functional F so that we can choose the absolute extreme
value zero of the general extremum functional F , then
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case (i) or (ii) can be naturally deduced ( e.g., see the
studies below Eq.(18) ). Making these natural deduc-
tions reflects the systems’ intrinsical properties, namely,
the intrinsical mathematical and physical double extreme
value procceses. Otherwise, the systems cannot get real
physical laws. These results are supplementary devel-
opments of the current variational principle and current
Noether theorem.

For all times, both the Lagrangian and the action con-
tain the systems’ dynamics, and the real appearance case
is that the path taken by the systems during [t1, t2] takes
extreme value corresponding ∆A = 0, which means that
the systems can not only choose but also make the least
extremum choice and further choose the minimum abso-
lute extremum of the general extremum functional F .

We discover that, up to now, all the investigations on
variational principle and Noether theorem for different
physics systems have missed the key studies on the dou-
ble extremum processes related to the general extremum
functional F that is deduced via the least action princi-
ple and should be key largely taken in deducing all the
physics laws, but the current variational principle and
current Noether theorem have neglected the general ex-
treme function F and F ’s minimum extremum, which re-
sults in the crisis and the hidden logic cycle problem of no
objectively deducing all physics laws. Using the studies
on the double extremum processes related to the general
extremum functional F in this paper, the crisis and the
hidden logic cycle problem are not only solved, but al-
so the new mathematical and physical double extremum
processes and their new mathematical and physical pic-
tures are discovered. Therefore, the improved variantion-
al principle and the improved Noether theorem for finite
freedom systems are given, which solve the crisis and the
hidden logic cycle problem.

IV.Unification studies on variational principle
and Noether theorem for infinite freedom systems

For general field variables X(x) = {Ψ(x), ϕ(x),
ωµ(x), gµν(x), ..., } , the exact mathematical description-
s of the least action principle for a general case are:
the variation of the action about N field components
X = (X1, X2,...,XN ) is

∆A = A′ −A =

∫ x′
2

x′
1

L′(X ′(x′), ∂′αX ′(x′), ∂′α∂′βX ′(x′), x′)dx′4

−
∫ x2

x1

L((X(x), ∂αX(x), ∂α∂βX(x), x)dx4 = 0.

(19)

in which the general infinitesimal transformations are [28,
29]

x′µ = xµ+∆xµ = xµ+εσ(x)τµσ(x,X(x), ∂αX(x), ∂α∂βX(x)),
(20)

X ′α(x′) = Xa(x)+εσ(x)ξaσ(x,X(x), ∂µX(x), ∂µ∂νX(x))
(21)

where X ′α(x′) = Xα(x) + ∆Xα(x), ω = (ω1, ω2, ..., ωm)
are independent continuous variable parameters of Lie
group G and

τµσ =
∂xµ(x,X(x), ∂µX(x), ∂µ∂νX(x), ω)

∂ωσ
|ωσ=0 , (22)

ξaσ =
∂Xα(x,X(x), ∂αX(x), ∂α∂βX(x), ω)

∂ωσ
|ωσ=0 ,

(23)
where τµσ and ξaσ(σ = 1, 2, ...,m) are infinitesimal trans-
formation functions.

Eqs.(22) and (23) are the infinitesimal generating func-
tion under the operation of group G, εσ (σ = 1,2,. . . ,m)
are independent infinitesimal parameters corresponding
to ω.

Without loss of generality, we define

L′(X ′(x′), ∂′αX ′(x′), ∂α∂βX ′(x′), x′) = L(X ′(x′), ∂′αX
′(x′),

∂′α∂
′
βX
′(x′), x′) + εσ∂µΩσ(X(x), ∂αX(x), ∂α∂βX(x), x),

(24)

where σ = 1, 2, ...,m. Putting Eq.(24) into Eq.(19), one
has

∆A =

∫ x′
2

x′
1

[L(X ′(x′), ∂′αX
′(x′), ∂′α∂

′
βX
′(x′), x′)+εσ∂µΩσ(X(

x), ∂αX(x), ∂α∂βX(x), x)− L(X(x′), ∂′αX(x′), ∂′α∂
′
βX(x′), x′)

+ L(X(x′), ∂′αX(x′), ∂′α∂
′
βX(x′), x′)]dx′4 −

∫ x2

x1

L(X(x),

∂αX(x), ∂α∂βX(x), x)dx4 =

∫ x′
2

x′
1

[δ(L(X ′(x′), ∂′αX
′(x′),

∂′α∂
′
βX
′(x′), x′) + εσ∂µΩσ(X(x), ∂αX(x), ∂α∂βX(x), x) +

L+
DL
Dxµ

∆xµ]dx′4 −
∫ x2

x1

L(X(x), ∂αX(x), ∂α∂βX(x),

x)dx4 =

∫ x2

x1

[(
∂L
∂Xa

δXa +
∂L
∂X,aν

δ∂νX
a+

∂L
∂X,aνρ

δ∂ν∂ρX
a)dx4 +

∫ x2

x1

[εσ∂µΩσ + L+
DL
Dxµ

∆xµ](

1 +
∂∆xβ

∂xβ
)dx4 −

∫ x2

x1

L(X(x), ∂αX(x), ∂α∂βX(x), x)dx4

(25)
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where DL/Dxµ is whole derivative for the whole La-
grangian. Using the technique of deducing Euler-
Lagrange equations to make Eq.(25) into order and ne-
glecting two order infinitesimal quantities, we get

∆A =

∫
M4

{εσ∂µΩσ(X(x), ∂αX(x), ∂α∂βX(x), x)+[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa +

∂L
∂Xa,µν

δXa,ν + L∆xµ]}d4x (26)

Omitting the higher order infinitesimal quantities,
Eq.(26) is simplified as

∆A = 0 =

∫
M4

{[ ∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa + ∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ + Ωµ]}d4x (27)

in which Ω = εσΩσ(σ = 1, 2, ...,m) is one order in-
finitesimal quantity. Eq.(27) cannot directly give Euler-
Lagrange equations, and there are some additional de-
grees of freedom.

For Eq.(27)), about the degree of freedom, there are
still three cases:

Case (I): When assuming∫
M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ + Ωµ]}d4x = 0, (28)

using Eq.(28), one has

∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

= 0 (29)

because δXa (a = 1, 2, . . . , N) are independent each oth-
er. Eq.(29) are just the usual Euler-Lagrange equations.

Using Eq.(28), we deduce a general continuous equa-
tion

∂µJ
µ = 0 = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ + Ωµ] (30)

and its general conservation current

Jµ = (
∂L

∂Xa,µ
−∂ν

∂L
∂Xa,µν

)δXa+
∂L

∂Xa,µν
δXa,ν +L∆xµ+Ωµ

(31)
Because

δXa = ∆Xa −Xa,ν ∆xν ; δX,aβ = ∆X,aβ −X,aβν ∆xν ,
(32)

Eqs. (30) and (31) can be rewritten as

∂µJ
µ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(∆Xa −Xa,ν′ ∆xν

′
)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν
′
) + L∆xµ + Ωµ] = 0

(33)

and a general conservation current

Jµ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(∆Xa −Xa,ν′ ∆xν
′
)+

∂L
∂Xa,µν

(∆X,aν −Xa,νν′ ∆xν
′
) + L∆xµ + Ωµ (34)

Namely, eq.(34) is the variational principle’s result.
Using Eqs.(20) and (21), we achieve m continuos equa-

tions and their conservative currents

∂µJ
µσ = ∂µ[(

∂L
∂Xa,µ

− ∂ν
∂L

∂Xa,µν
)(ξaσ −Xa,ν′ τν

′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ + Ωµσ] = 0

(35)

Jµσ = (
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)(ξaσ −Xa,ν′ τν
′σ)+

∂L
∂Xa,µν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτµσ + Ωµσ (36)

where we have used that εσ(σ = 1, 2, . . . ,m) are inde-
pendent infinitesimal parameters. Namely, eq.(36) is the
Noetther theorem’s result.

Using Eqs.(34) and (36) and
∫
M3 ∂0J

0dV =

−
∫
M2 J

idSi → 0, ( Si → ∞, J i → 0), we achieve
conservation charges of variational principle and
Noether theorem, respectively

Qvp =

∫
M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(∆Xa −Xa,ν′ ∆xν
′
)+

∂L
∂Xa,0ν

(∆X,aν −Xa,νν′ ∆xν
′
) + L∆x0 + Ω0]dV, (37)
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QσNt =

∫
M3

[(
∂L

∂Xa,0
− ∂ν

∂L
∂Xa,0ν

)(ξaσ −Xa,ν′ τν
′σ) +

∂L
∂Xa,0ν

(ξ,aσν −Xa,νν′ τν
′σ) + Lτ0σ + Ω0σdV,(38)

where σ = 1, 2, . . . ,m. We can see that both variational
principle and Noether theorem all give the same Euler-
Lagrange equations (29), but they give the convervation
currents (charges) are very different, i.e., Eq.(34) and
Eq.(36) (Eq.(37) and Eq.(38)) respectively.

Case (II): When assuming that there are Eq.(29), then
putting Eq.(29) into Eq.(27), one has Eq.(28). In the fol-
lowing, there the almost same discussions below Eq.(29)
in Case (I).

V.Crisis of deducing physics laws and its solu-
tion to the crisis for infinite freedom systems

Case (III): Using Eq.(27), we generally have∫
M4

{[ ∂L
∂Xa

−∂µ
∂L

∂Xa,µ
+∂µ∂ν

∂L
∂Xa,µν

]δXad4x = −
∫
M4

∂µ[(

∂L
∂Xa,µ

−∂ν
∂L

∂Xa,µν
)δXa+

∂L
∂Xa,µν

δXa,ν +L∆xµ+Ωµ]}d4x

(39)

Eq.(39) comes from the general systems’ taking ex-
tremum of the Lagrangian, but when the systems have
no Eq.(28) or Eq.(29), or no Eqs.(28) and (29), then the
systems cannot give Euler-Lagrange equations and the
corresponding conservation quantities. Namely, this case
cannot give real physics laws, which is just the reason
that current variational principle and current Noether
theorem have missed the case (III) [28, 29].

Cases (I) and (II) are necessary and sufficient condi-
tions that just give real physics laws, and accordint to
current variational principle and current Noether theo-
rem [28, 29], case (III) at all cannot give real physics
laws.

Using Eq.(39) derived from the variational extremum,
we can exactly define a general extremum functional

G =

∫
M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x

= −
∫
M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ + Ωµ]d4x (40)

The new general equal equation functional G between
the functional of deducing Euler-Lagrange equations hav-
ing merged like terms and the functional of deducing the
general conservation quantities having merged like terms
is deduced by satisfying variational principle.

When the absolute value of the general extremum func-
tion G is taken as zero, because the minimum absolute
value of any function is zero, i.e., a general extremum (

because the general extremum functional G may gener-
ally take a lot of different values, e.g., arbitrary positive
and/or negative values ), then we generally have∫

M4

[
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXad4x = 0

= −
∫
M4

∂µ[(
∂L

∂Xa,µ
− ∂ν

∂L
∂Xa,µν

)δXa

+
∂L

∂Xa,µν
δXa,ν + L∆xµ + Ωµ]d4x = 0 (41)

thus the first line of Eq.(41) is equivalent to case (II),
and the sum of the second and third lines of Eq.(41)
are equivalent to case (I), these all can give physics laws.
Namely, the general extremum function G takes the min-
imum absolute value, i.e., zero, all the physics laws can
be deduced. Otherwise, all the physics laws cannot be d-
educed. That is, Eq.(39) is deduced from the variational
extremum, Eq.(41) is further taking the absolute extreme
value zero, i.e., the minimum absolute extremum, of the
general extremum functional G, therefore, we, for the
first time, discover that it is the double extreme values
(i.e., the extreme functional G’s extremum) that result
in that all the physics laws can be deduced, otherwise,
all the physics laws cannot be deduced.

Therefore, the systems first choose extreme value (i.e.,
via Eq.(19)) of the Lagrangian, and then we naturally
deduce Eq.(27), there are needs as usual in advance to
assume existing case (I) or (II), because which are e-
quivalent to Euler-Lagrange equations and conservation
quantities, and then deducing Euler-Lagrange equations
and conservation quantities, which are related to a hidden
logic cycle problem and are not both exact and natural.

Actually, there naturally exists the general extremum
functional G so that we can choose the absolute extreme
value zero of the general extremum functional G, then
case (I) or (II) can be naturally deduced ( e.g., see the
studies below Eq.(41) ). Making these natural deduc-
tions reflects the systems’ intrinsical properties, namely,
the intrinsical mathematical and physical double extreme
value procceses. Otherwise, the systems cannot get real
physical laws. These results are supplementary devel-
opments of the current variational principle and current
Noether theorem for infinite freedom systems.

We discover that, up to now, all the investigations on
variational principle and Noether theorem for different
physics systems and infinite freedom systems have missed
the key studies on the double extremum processes relat-
ed to the general extremum functional G that is deduced
via the least action principle and should be key largely
taken in deducing all the physics laws, but the current
variational principle and current Noether theorem for in-
finite freedom systems have missed the general extreme
functional G and G’s minimum extremum, which result-
s in the crisis and the hidden logic cycle problem of no
objectively deducing all physics laws. Using the studies
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on the double extremum processes related to the general
extremum functional G in this paper, the crisis and the
hidden logic cycle problem are not only solved, but al-
so the new mathematical and physical double extremum
processes and their new mathematical and physical pic-
tures are discovered. Therefore, the improved variantion-
al principle and the improved Noether theorem for infi-
nite freedom systems are given, which solve the crisis and
the hidden logic cycle problem.

VI. Discussions

Using Eq.(17) derived from the variational extremum,
we have a general extremum functional expression for
finite freedom systems

f =
∑
i

[
∂L

∂qi
− d

dt

∂L

∂q̇i
+
d2

dt2
∂L

∂q̈i
]δqi =

− d

dt
[
∑
i

(
∂L

∂q̇i
δqi+

∂L

∂q̈i
δq̇i−

d

dt

∂L

∂q̈i
δqi)+L∆(t)+Ω]. (42)

where f can take any functional value and F =
∫ t2
t1
fdt.

When the absolute value of the general extremum func-
tional f is taken as zero, namely, taking the minimum
absolute extreme value of the general extremum func-
tional f , i.e., the general extremum functional f ’s ex-
tremum, that is, the double extremum process, Eq.(42)
can directly deduce Euler-Lagrange equations due to the
linear independent properties of δqi and the general con-
servation quantity due to having taken the second line of
Eq.(42) as zero.

Using Eq.(40) derived from the variational extremum,
we deduce a general extremum functional expression for
infinite freedom systems

g = [
∂L
∂Xa

− ∂µ
∂L

∂Xa,µ
+ ∂µ∂ν

∂L
∂Xa,µν

]δXa =

−∂µ[(
∂L

∂Xa,µ
−∂ν

∂L
∂Xa,µν

)δXa+
∂L

∂Xa,µν
δXa,ν+L∆xµ+Ωµ]

(43)
where g can take any functional value and G =

∫
M4 gd

4x.
When the absolute value of the general extremum func-

tional g is taken as zero, namely, taking the minimum ab-
solute extreme value of the general extremum functional
g, i.e., the general extremum functional g’s extremum,
that is, the double extremum process, Eq.(43) can di-
rectly deduce Euler-Lagrange equations due to the linear
independent properties of δXa and the general conser-
vation current due to having taken the second line of
Eq.(43) as zero.

All the investigations on functionals F and G in this
paper give the corresponding integral descriptions, using
functional f and g we can give the corresponding dif-
ferantial descriptions, the two descriptions are entirely
equivalent, thus we don’t repeat more here.

VII. Summary and conclutions

For the systems with Lagrangian and symmetry for
finite (infinite) freedom systems, people can deduce
Euler-Lagrange equations and corresponding conserva-
tion quantities by utilizing the variational principle and
Noether theorem. But we discover the fact that the sys-
tems generally have extra intrinsical freedoms of choice.
And if not assuming to exist Eq.(10) or (11) (Eq.(28) or
(29)), then the Lagrange systems cannot give true physi-
cal laws. Actually, Eqs.(10) and (11) (Eqs.(28) and (29))
are equivalent to Euler-Lagrange equations and conser-
vation quantities, and then deducing Euler-Lagrange e-
quations and conservation quantities, which are related
to a hidden logic cycle problem and are not both exact
and natural.

The systems first choose extreme value, and then must
choose the minimum absolute extremum of the general
extremum functional F (G), then cases (i) or (ii) (cas-
es (I) or (II)) can be naturally deduced. Making these
deductions show the systems’ intrinsical properties of
taking double extreme values, otherwise cannot get re-
al physical laws according exact deduction logic. These
results are supplementary developments of the curren-
t variational principle and current Noether theorem for
finite (infinite) freedom system.

This paper discovers, up to now, all the studies on vari-
ational principle and Noether theorem for both different
physics systems and finite (infinite) freedom systems have
neglected the key studies on the double extremum pro-
cesses of the general extremum functional F (G) that is
deduced by the least action principle and must be key
largely taken in deducing all the physics laws, but these
have not been done, which result in the crisis of deducing
all physics laws. Using the above studies on the double
extremum processes of the general extremum functional
F (G) in this paper, i.e., on the double extreme values,
the crisis and the hidden logic cycle problem are not on-
ly solved, but also the new mathematical and physical
double extremum processes and their new mathematical
and physical pictures are discovered. Therefore, the im-
proved variantional principle and the improved Noether
theorem for (in)finite freedom systems are given in this
paper, which solve the crisis and the hidden logic cycle
problem.

Therefore, this paper opens a new area of research on
variational principle and Noether theorem for finite (infi-
nite) freedom systems by choosing optima of the double
extreme values to explain origins of physics laws etc., and
will significantly influence the research of others in differ-
ent branches of science, because the least action principle
or variational principle and Noether theorem are the key
firm bases in modern physics, and we just discover new
right avenues of research within the established varia-
tional principle and Noether theorem for finite (infinite)
freedom systems, their applications and so on in modern
sciences, and all the relevant current articles and (tex-
t)books should be supplied and updated.
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