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Abstract

The outbreak of novel Coronavirus (SARS-COV-2 ) disease (COVID-19) in
Wuhan has attracted worldwide attention. SARS-COV-2 known to share a
similar clinical manifestation that includes various symptoms such as pneu-
monia, fever, breathing difficulty, and in particular, SARS-COV-2 also causes
a severe inflammation state that leads to death.

Consequently, massive and rapid research growth has been observed across
the globe to elucidate the mechanisms of infections and disease progression
in genotype and phenotype scale. Data Science is playing a pivotal role in
in-silico analysis to draw hidden and novel insights about the SARS-COV-
2 origin, pathogenesis, COVID-19 outbreak forecasting, medical diagnosis,
and drug discovery. With the availability of multi-omics, radiological, bio-
molecular, and medical data urges to develop novel exploratory and predic-
tive models or customise exiting learning models to fit the current problem
domain. The presence of many approaches generates the need for the sys-
tematic surveys to guide both data scientists and medical practitioners.

We perform an elaborate study on the state-of-the-art data science method-
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ologies in action to tackle the current pandemic scenario. We consider var-
ious active COVID-19 data analytics domains such as phylogeny analysis,
SARS-COV-2 genome identification, protein structure prediction, host-viral
protein interactomics, clinical imaging, epidemiological analysis, and most
importantly (existing) drug discovery. We highlight types of data, their gen-
eration pipeline, and the data science models in use. We believe that the
current study will give a detailed sketch of the road map towards handling
COVID-19 like situation by leveraging data science in the future. We sum-
marise our review focusing on prime challenges and possible future research
directions .

1. Introduction

The massive outbreak of SARS-COV-2 (Severe Acute Respiratory Syn-
drome CoronaVirus) viral infections in the world lead to a life-threatening
pathogenic disease, WHO (World Health Organisation) named it as COVID-
19 (coronavirus disease) [I]. The surprisingly rapid human-to-human trans-
mission created an alert with the increasing number of cases E| [2]. Since
December 2019, the novel coronavirus had a surprisingly high spreading rate
among humans, and the WHO declared it a pandemic in March 2020. It
already infected more than 17 million people and has spread to over 213
countries so far in less than six months and its continuing. Unlike other
severe acute respiratory syndrome (SARS) coronaviruses (order Nidovirales,
family Coronaviridae, subfamily Coronavirinae) like SARS-CoV or MERS
(Middle East respiratory syndrome) coronavirus, SARS-COV-2 spreading is
massive and so far unsolved battle. The unprecedented scenario of COVID-
19 pandemic forces the scientific communities for the rapid development of
vaccines and drugs to control the outbreak by understanding the disease
pathogenesis.

The explosion of COVID-19 related published research confirms that sci-
entific communities are actively contributing to understanding the pathogenic
ity and control of SARS-COV-2 . A growth trend is shown in Figure 2
According to Nature Index updates on 27 June 202(ﬂ, 67,753+ papers on
COVID-19 have published so far (see also [3]).

"https://www.who.int/emergencies/diseases/novel-coronavirus-2019/
situation-reports
“https://www.natureindex.com/news-blog/the-top-coronavirus-research-articles-by-metrics
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Undoubtedly, a significant fraction of the scientific community, compris-
ing almost all the disciplines, is working on developing vaccines, therapies,
as well as patient and resource management, on helping the fight against the
virus. It is causing the rapid availability of free to access COVID-19 related
omics and clinical data allowing further research results to be released almost
instantaneously. For instance, focusing only on genomic data, the GISAID
databaseﬁ has collected more than 67,000 viral genomic sequences that have
been collected and shared with unprecedented speed [4]. The Johns Hopkins
dashboard El has rapidly become one of the primary data sources for monitor-
ing disease from an epidemiological perspective. The rapid accumulation of
data and the need to support wet-lab investigation also motivated the intro-
duction of many data/computational based approaches (e.g., deep learning,
artificial intelligence, network medicine) [5]

It helped to understand the pathogenesis of the disease and the rapid
development of vaccine/drugs, but conversely, this has resulted in an accu-
mulation of data, algorithms, software, and tools that need to be categorized
and organized. The whole categorization of all the approaches is undoubtedly
yet impossible due to the constant rate of the introduction of novel tools.

Therefore, we aim to present the main characteristics of the current land-
scape, as depicted in Figure [I We categorized them into five levels: data
source, repositories, data science models, decision making, and interpreta-
tion. Some of the outcomes (say phylogeny or interactomes) are looped
back, for other data science analysis, as input. The integration and analysis
step also involves data science models to infer more meta-knowledge from the
intermediate decision or outcome. For instance, the drug-disease association
needs a network biology approach to determine the optimized relationship
between drug molecules and their impact during the disease. Many labora-
tories are producing a massive amount of heterogeneous data, considering
both format and content. Viral sequences are represented as strings. Raw
clinical data are largely heterogeneous, while medical images are more stan-
dardized data. Such data are accumulated into public databases or websites
(e.g., GISAID database, Johns Hopkins public repository) that may be inte-
grated with other existing databases (e.g., virus-host interaction databases,
clinical and epidemiological databases). It is the starting point for any data-

Shttps://www.gisaid.org/
4https://coronavirus. jhu.edu/map.html
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Figure 1: A Data-Science landscape for SARS-COV-2 and COVID-19 studies. Many dif-
ferent technologies produce a large quantity of data related to patients at different scales
(e.g., molecular data, medical images, and clinical data, and epidemiological data). The
accumulation of these data is the pre-requisite for a substantial rise of data-science ap-
proaches (e.g., deep-learning and classical data mining) that often integrate existing data
stored in databases or apriori knowledge (e.g., domain experts or ontologies). Such ap-
proaches produce new information about molecular interactions, phylogenetic analysis,
in-silico design of drugs, or healthcare management decisions. The output of this informa-
tion may guide the execution of novel experiments closing the loop of the whole process.
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science based approach. Such approaches may be categorized considering
the methodological approach or the aim, such as studying drug-disease as-
sociation, screening possible candidate vaccines, or supporting healthcare
decisions (e.g., management of resources such as Intensive Care Units). Fi-
nally, these analysis results may guide the execution of novel experiments to
confirm in-silico findings (e.g., novel hypothesis).

Main contributions of this review are:

e we present a comprehensive review on the in-silico approaches adopted
so far to handle COVID-19 in genomics, proteomics, interactomics,
epidemics, clinical imaging, and drug identification level.

e for the first time ever we present the systematic categorization of data
analytics tasks related to COVID-19;

e we present an overall landscape suggesting the judicious integration of
heterogeneous data sources;

e we report the data resources, data science models, and tools used to

analyze SARS-COV-2 and COVID-19 .

e in a nutshell, our current documentation will give the glance of com-
putational biology and bioinformatics approaches available in all spare
of biological data analysis;

e we aim to offer to the data-scientists, medical doctors, healthcare ad-
visers, drug/vaccine designers, a guide to finding a suitable vademecum
to select the right data, models, approaches, and tools.

2. Virology and Data Science: Background

Recent pandemic forces different research communities (e.g., virologists,
computational biologists, medicine specialists, data scientists, etc.) to col-
laborate for the rapid understanding of the pathogenesis and diagnosis of
COVID-19. Large number of recent researches generating bulk experimental
data. It needs to be analyzed in-silico using data science technologies to un-
veil hidden and novel knowledge. It is crucial to have a basic understanding
of the biology behind SARS-COV-2 and data science and its steps. Here, we
try to briefly introduce the SARS-COV-2 virus and how omics, images data,
and epidemiological data related to COVID-19 are generated and stored in
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publicly available data repositories. We briefly introduce the concept of data

science used as a tool to unleash new insights from the available datasets to
handle COVID-19.

2.1. Virus Biology of SARS-COV-2

Viruses are small microorganisms that use living cells to replicate them-
selves. Viruses cause many infectious diseases that are responsible for mil-
lions of death every year [0]. They exist in the form of small independent
particles named virions. Each virion consists of two main components: (1)
the genetic information, encoded as DNA or RNA, and (i) a protein coat,
named capsid, which wraps the genetic material. Sometimes the capsid is sur-
rounded by an envelope of lipids. Virions have different shapes that are used
for classification of themselves [7]. Viruses are not able to replicate them-
selves alone. Therefore they must use the metabolism of an host organism to
reproduce themselves. The virus replication cycle may be summarised into
six main steps [§] :

1. Attachment. First, viruses bind the surface of host cells.

2. Penetration. Viruses enter the host cell through receptor-mediated
endocytosis or membrane fusion.

3. Uncoating. The viral capsid is removed, and virus genomic materials
are released.

4. Replication: Viruses use the host cells to replicate their genomic in-
formation. In this step, viral proteins are synthesized and possibly
assembled. Viral proteins may interact among them and host proteins
to perform their function (e.g., regulate the protein expression).

5. Assembly. Following the structure-mediated self-assembly of the virus
particles, some modifications of the proteins often occur.

6. Release: Viruses can be released from the host cell by lysis, a process
that kills the cell.

There exist many different viruses classified into major classes by phe-
notypic characteristics, such as morphology, nucleic acid type (e.g., RNA or
DNA), and more. The taxonomy of viruses is in charge of the International
Committee on Taxonomy of Viruses (ICTV). In parallel, the Baltimore clas-
sification system is also used, and viruses are grouped into seven groups based
on mRNA synthesis.

SARS-COV-2 belongs to S-coronaviruses that are a subgroup of the coro-
navirus family. Such viruses are giant enveloped positive-stranded RNA
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viruses that are usually able to infect a wide variety of mammals and avian
species. All the members of the family cause respiratory or digestive and
enteric diseases [9]. The infection mechanism is based on the action of sur-
face spikes constituted by glycoproteins (named S or spike proteins) that are
responsible for binding host cell receptors.

The literature contains seven [-coronaviruses that are responsible for
causing disease in humans. Four strains cause mild infection of respira-
tory apparatus that are treated without lethal consequences (HCoV 229E,
HKU1, NL63, and OC43). More recently, three strains of betacoronavirus
have caused severe and lethal diseases: SARS-CoV, MERS-CoV, and SARS-
COV-2 [10].

SARS-CoV (i.e., Severe Acute Respiratory Syndrome CoronaVirus) was
responsible for a severe respiratory syndrome outbreak in China in 2002.
MERS-CoV (i.e., the Middle East respiratory CoronaVirus) caused an out-
break in the middle east in 2012. Both viruses had a similar manifestation:
patients manifested pneumonia. MERS-CoV infected patients also presented
gastrointestinal complications and kidney failures.

The third member of the family, SARS-COV-2 , appeared in December
2019 in Wuhan, Hubei Province, China [I1]. From the initial steps, it pre-
sented a surprisingly rapid diffusion rate. Until now, COVID-19 has killed
more people than SARS, and MERS combined, despite having lower fatal-
ity rate [12]. By the end of April 2020, the COVID-19 virus caused over
1,500,000 confirmed cases around the world, of which around 350,000 re-
covered, and over 94,000 patients died. In China, more than 80,000 have
been the confirmed cases with more than 3,000 deaths.

The sequence and structural analysis revealed a high similarity between
SARS-CoV and SARS-COV-2 | as confirmed by the evidence that the new
coronavirus binds with the ACE2 receptor. Unfortunately, it presents a
higher affinity than the previous virus [I2]. Moreover, the pattern of expres-
sion of ACE2 in human respiratory epithelia and oral mucosa may represent
the cause of human-human transmission. Clinical manifestation of COVID-
19 are large and severe since it seems to impact all the tissues and organs that
express ACE2 receptor: severe pneumonia, kidney failure, anemia, neurolog-
ical problems, cardiovascular complication and a large state of inflammation
(know as cytokine storm) in more severe causes [13], 14} [15].
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Figure 2: The trends of COVID-19 related research publications from two sources: Di-
mensions El and Google scholar El as of 08 August, 2020. We searched by three main
keywords: COVID-19 , COVID-19 and Machine learning, and COVID-19 and Data sci-
ence. The search hits includes publications in Published Articles, Preprints, Edited Books,
Monographs, Proceedings, and Chapters.

2.2. COVID-19 Data Generation and Sources

On a positive note, COVID-19 pandemic is experiencing massive, un-
precedented, and rapid growth in the data generation and research publica-
tions across the world (Figure. As reported in the academic search engine,
Dimension El, a total of 730 datasets related to COVID-19 are available pub-
licly. Deposited data are primary data (sequence, clinical images, medical
reports) or secondary data (Proteins structures, interactomes, epidemiology).
Primary data are generated from the virus or the patients. Based on primary
data, a more refined, summarised, and inferred outputs are again stored as
secondary data. During COVID-19 data analysis and inferences, existing
knowledge bases play a significant role as a reference set for drawing a new
knowledge. Next, discuss briefly the data generation pipeline and publicly
available repositories for COVID-19 data mining.

“https://app.dimensions.ai/discover/publication
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2.2.1. Omics Data

High-throughput omics technologieﬂ use biochemical assays that assess
comprehensively and simultaneously set of molecules in the biological sam-
ples. Omics data are usually categorized into Genomics, Transcriptomics,
Proteomics, and Metabolomics type. To understand the severity of the
COVID-19 disease, the first and foremost necessary task for scientists to
sequencing the genome of SARS-COV-2 . RNA sequencing of SARS-COV-
2 is essential to elucidate how this coronavirus grows, mutates, and replicates.
Consequently, the rapid development of therapeutic vaccines and drugs use
such sequence and protein data in the downstream pipeline.

Blood and/or throat swab specimens are collected from the suspected pa-
tients and RNA extracted using an RNA extraction kit. The extracted RNA
further sequenced using Next Generation Sequencing (NGS). The principle
behind NGS is capillary electrophoresis. At first, the genomic strands are
fragmented, and the bases are identified in each fragment by ligation with cus-
tom linkers or template strand [16]. The NGS uses an array-based sequencing
method to process millions of reactions in parallel at a very high speed at
a reduced cost. There are three general steps involved in NGS: (i) Library
Preparation, (ii) Amplification, and (iii) Sequencing. Before sequencing, the
isolated and purified RNA must be converted to double-stranded complemen-
tary DNA (cDNA) or ¢cDNA library. Sequencing platform-specific adapters
are then added to each end of the fragments. Adding adapters and amplifi-
cation of DNA to make a cDNA is the steps in library preparation. Finally,
the ¢cDNA library is sequenced using NGS. Reference-based mapping also
performed to retrieve the sequence of the SARS-COV-2 before depositing
into public repositories (see Table . Sequence data are available in FASTA
or FASTQ format. Apart from these two, other sequencing data formats
are Sequence Alignment Map (SAM) and BAM (a compressed binary format
for SAM). A CoDing Sequence (CDS) [[]is a region of DNA or RNA whose
sequence determines the sequence of amino acids in a protein. Protein se-
quences are derived from translations of Coding Sequence (CDS). CDS is not
the same as Open Reading Frame (ORF), which is a series of DNA codons
that do not contain any STOP codons. We report available SARS-COV-
2 nucleotide and protein sequence repositories in the Table

Ohttp://omics.org
"Uhttps://www.uniprot.org/
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2.2.2. Interactome Data

Interactomics data refer to the set of molecules (e.g., proteins, transcrip-
tion factors, small-molecules) and their biochemical interactions. Since these
interactions are the elementary building blocks of almost all cellular pro-
cesses, their elucidation does appear as an essential step in describing SARS-
COV-2 mechanisms of infections and replications. There exist many experi-
mental platforms for deriving such physical interactions [17], such as Affinity
purification mass-spectrometry (AP-MS) and yeast-two-hybrid (Y2H) that
enable the accurate identification of interactions with a relatively long time.
Gordon et al. [I8] expressed 26 out of 29 SARS-COV-2 proteins and used
an affinity-purification followed by mass spectrometry to identify 332 hu-
man proteins to which the viral proteins bind. In parallel, there exist many
bioinformatics tools that enable the prediction of interactions using biological
pieces of information (e.g., homology modeling) coupled to network science
(e.g., network alignment or link prediction). Table [I| summarises these ap-
proaches (see for instance [19] for a more detailed comparison). Nowadays,
thanks to the use of different proteomic technologies, the complete set of
interactions are available for many viruses [20, 21, 22]. At the same time, for
SARS-COV-2 there exist some projects that have elucidated an almost com-
plete map of interactions. Such interactions are usually modelled by using
graphs and stored in a growing number of databases such as: Virus Mint [23],

String Viruses [24], HpiDB [25], Virus Mentha [26], and VirHostNet [27].

Table 1: Technologies and Methodologies for Interactome Data Production

Class Technique Pros and
Cons
Experimental Mass Spec- | Low
trometry - | Through-
Yeast Two | put High
Hybrid Accuracy

Computational | Homology High
Modelling Through-

- Docking | put Low
- Network | Accuracy
Alignment

Despite the existence of such platforms, the scenario in SARS-COV-
2 studies is different due to the diffusion of the virus that imposes to the
researcher to determine quickly such interactions. Consequently, the first
studies used mainly the prediction of interactions made with bioinformatics
tools. For instance, in [2§], the homology among SARS-COV-2 and other

10
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coronaviruses is used to infer putative interactions among viral proteins and
host-viral proteins. Differently, a wet lab approach[18] is used where SARS-
COV-2 proteome is cloned and used AP-MS to identify 332 protein inter-
actions between SARS-COV-2 and humans. More recently, some innovative
projects integrate data from literature and other databases. For instance,
in [29], the development of a curated dataset of SARS-COV-2 interactions
extracted by the IMEx consortium is presented. Authors integrated proteins
and interactions from SARS-COV-2 , SARS-CoV-1, and other members of
the Coronaviridae family. The databases stores more than 2,200 interactions
extracted from more than 80 publications. Following other standard initia-
tives, the dataset can be accessed in some standard format, and it is updated
regularly.

2.2.3. Clinical Image Data

During COVID-19 clinical diagnosis, X-Ray and Computer Tomography
(CT) technologies are of great use to diagnose infected lungs and respiratory
tracks. X-Ray, an age-old technique appears to be effective in generating
a 2D image of bones and organs. During imaging, X-ray beams are passed
through the body, and detectors or a film capture the attenuated X-rays,
resulting in a clinical image. CT is a relatively more advanced, powerful,
and sophisticated 3D imaging technology that takes a 360-degree image of the
bones and internal organs. Ground glass (GGO) pattern in an infected chest
CT image is the most common finding in COVID-19 infections. Patterns
are usually multifocal, peripheral, and bilateral. However, during COVID-
19, GGO may appear as a unifocal lesion, most commonly located in the
inferior lobe of the right lung [30]. Chest X-Ray images observed to be
insensitive early in the disease. However, X-Ray may be useful in tracking
disease progression.

The urgent need for an automatic diagnostic tool for the rapid detection of
COVID-19 patients forces the data science communities to develop a machine
learning-based diagnostic framework. A good number of free repositories
and platforms are now available where labeled. X-ray and CT images can
be found for building machine learning models. TrainingData.io El is one of
the platforms offering a free collaborative tool. It is seeded with free image
datasets. Tools allow data-scientists and radiologists to share annotations of

2https://www.trainingdata.io/
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training data to be used for training machine learning models for COVID-
19. We report more such repository of annotated COVID-19 infected chest
images in the Table [2|

2.2.4. Epidemiological Data

Epidemiological data is a collection of non-experimental observations de-
riving from field investigations, statistics, or other health-related sensors col-
lected by domain experts. They are used to study data distributions and
infer knowledge on epidemiological phenomena.

From the beginning, the availability of epidemiological data (possibly cou-
pled to clinical and laboratory data), is essential. The relevance of such data
is related to the possibility of a better understanding of the transmissibil-
ity rate, the pattern of the geographic spread, as well as associated risks or
co-morbidities.

Consequently, many independent groups started to collect epidemiolog-
ical data produced and made available from healthcare providers. Dong et
al., [31] designed and developed the first dashboard hosted at Johns Hopkins
University, providing free access to health data collected from almost all the
nations in the world. Data are related to reported cases of COVID-19 | i.e.,
infected, dead, and recovered patients. In parallel, the Italian government
provided a similar dashboard, and related data, through an interactive, web-
based system [32]. Similarly, Xu et al., [33], realized an open-access database
for storing patient information produced in laboratories. Stored data are
related to movements (for retrieving travel history), symptoms, and demo-
graphics.

All these projects share some common characteristics: (i) the use of simple
formats (e.g., tabular formats), (ii) the possibility of exportation in common
data sharing format (e.g., comma-separated values or JSON), (iii) simple
query interfaces, and (iv) the integration of geographic data. Moreover, some
of them [33] also include demographic information. We report a few more
repositories in Table

2.2.5. Drug-target databases

The drug is an organic small molecule [34] that activates or inhibits the
function of a therapeutically important protein in disease development. New
drug molecule development (termed as drug discovery) and approval process
by the FDA (Food and Drug Administration) are a complex, expensive, and
time-consuming process. T'wo significant steps are involved during any drug

12
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discovery, (i) drug target identification that are critical proteins involved in a
particular metabolic or signaling pathways in a specific disease condition, and
(ii) developing small molecules that interact with the targets. To speed-up
the process, computer-aided methods are introduced for the automated drug
discovery [35], which is fast and accurate. It involves steps like hit identifi-
cation using virtual screening, hit-to-lead optimization of affinity, selectivity,
and lead optimization of other pharmaceutical properties while maintaining
affinity. The approved drug molecules and targets are stored in a publicly
available database for drug repurposing or commercial development of other
drug molecules. Drug molecules are usually stored as SMILES (Simplified
Molecular Input Line Entry System) format.

The DrugBank is one of the popular repositories of drug and drug target
information. The latest release of DrugBank (version 5.1.7, released 2020-
07-02) contains 13,596 drug entries, including 2,640 approved small molecule
drugs, 1,389 approved biologics (proteins, peptides, vaccines, and allergenic),
131 nutraceuticals and over 6,377 experimental (discovery-phase) drugs. Ad-
ditionally, 5,225 non-redundant protein (i.e. drug target/enzyme/transporter/carrier)
sequences are linked to these drug entries. PubChem is another world’s
largest collection of freely accessible chemical information. It stores chemical
and physical properties, biological activities, safety and toxicity information,
patents, literature citations, and more about any drug.

Excelra COVID-19 Drug Repurposing Database is an open-access database
which is a compilation of ’Approved’ small molecules and biologics, that may
rapidly enter into Phase 2 or 3. PHARMACEUTICAL is a coronavirus
drug tracker that lists drugs in all stages of preclinical and clinical develop-
ment (from discovery through to preregistration) for COVID-19. This list
is updated dynamically, based on the GlobalData Pharma Intelligence Cen-
ter Drugs database. CAS contains a connection of nearly 50,000 chemical
substances, along with related metadata such as CAS Registry Number and
physical properties for each element. It is available in the SD file format
(.sdf). More drug databases are reported in Table [2| .

2.3. The Data Science Pipeline

Data science is a growing interdisciplinary research field that leverages
methods, processes, and algorithms to support the extraction of relevant
knowledge from (big)-data. The term Data science was coined in 2008 by
DJ Patil and Jeff Hammerbacher [37]. Data science starts with raw data
and ends with decision or meta (description or summarization) data that
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Table 2: COVID-19 Public Data Repositories.

Omics
Nucleotide/ GISAID more than 75,000 viral genomic sequences of https://www.gisaid.org/
Protein hCoV-19 ((updating))
Nucleotide/ NCBI more than 11969 nucleotide, 124288 protein https://www.ncbi.nlm.nih.gov/labs/virus/
Protein (updating) vssi/#/
Structure RCSB PDB SARS-COV-2 proteins (updating) https://www.rcsb.org/covidl9
Structure SWISS- SARS-COV-2 proteins (updating) https://swissmodel.expasy.org/repository/
MODEL species/2697049
Heterogeneous Covid-19 hg https://wuw.covidi9hg.org
Interactomics
Interactions, BioGRID more than 800 interacting proteins (updating) https://thebiogrid.org/
network
Interaction, IntAct 4,479 binary interactions (updating) https://www.ebi.ac.uk/intact/
graph
Interacting HPA more than 200 interacting human proteins |https://www.proteinatlas.org/
protein with SARS-COV-2 (updating) humanproteome/SARS-COV-2~
Imaging
X-Ray github more than 800 images (updating) https://github.com/ieee8023/
covid-chestxray-dataset
CcT github 349 images from 216 patients https://github.com/UCSD-AI4H/COVID-CT
github 63849 images from 377 patients https://github.com/mr7495/COVID-CTset
github 104,009 CT images from 1,489 patients https://github.com/lindawangg/COVID-Net/
MosMED 15589 and 48260 CT scan images belonging to  https://mosmed.ai/en/
95 Covid-19 and 282 normal persons
Both BIMCV- X-ray images CXR (CR, DX), 1380 CX, 885 |https://osf.io/nh7g8/
COVID19+ DX and 163 CT
Epidemiological
Information CIDRAP Cases of coronavirus disease, situation report, https://www.cidrap.umn.edu/covid-19/
epidemiology, virology, clinical features epidemiology
WHO Information regarding covid19 https://covidi9.who.int/
Italian Civil https://github.com/pcm-dpc/COVID-19
Protection
SCIENTIFIC  Curated individual-level data from national, https://doi.org/10.6084/m9.figshare.
DATA [36] provincial, and municipal health reports and [11974344
online reports
Drug repur-
posing
Molecule Drugbank Contains around 13,606 drug entries https://www.drugbank.ca/covid-19
PubChem World largest database: more than 350 million https://pubchem.ncbi.nlm.nih.gov/
Compounds, Substances, BioAssay
ChEMBL SARS-COV-2 related bioactive molecules with  https://www.ebi.ac.uk/chembl/
drug-like properties
Excelra COVID19 related drugs that are ‘clinical, pre- |https://www.excelra.com/
clinical and experimental’ stage. covid-19-drug-repurposing-database/
CAS Anti-viral drugs and related chemical com- https://www.cas.org/
pounds for COVID19 disease covid-19-antiviral-compounds-dataset
Pharmaceutical Drugs in all stages of preclinical and clinical https://www.pharmaceutical-technology.

development for COVID-19 indication

com/coronavirus-drug-trials-studies/
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needs to be interpreted before transforming it into knowledge. Broadly data
science pipeline passes through four major phases: (i) Raw data collection,
(ii) Preprocessing (iii) Descriptive or Predictive modeling (iv) Interpretation.
An illustrative representation of the data science workflow for COVID-19
management is shown in Figure

{
Descriptive
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reprocessi 5"“‘9'0 Outcome
Integ
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Optimization

Predictive
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'\, Knowledge Z
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&
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Figure 3: Major phases of Data Science pipeline towards decision making and analysis.
Data initially collected and integrated from many sources. Then they need to be prepro-
cessed to filter uninformative or possibly misleading values (e.g. outliers or noise). Then
existing models are used to explain data or to extract relevant patterns describing data
or to predict associations. Finally results need to be interpreted and explained by domain
experts. Each step of analysis may generate corrections (or refinements) that are applied
to precedent steps.

Single source data input always are not conclusive in optimized decision
making. Heterogeneous data integration and fusion are vital, while any data
science model is considered for analysis. The success of any data science
model largely depends on the quality of data in hand. Due to flaws in data
generation, storage, and transfer of data (molecular, imagery, and epidemic
data for COVID-19), noise may be attributed, which may deviate the true
outcome. It is crucial to apply different scrubbing and cleaning process on the
data. Standardization and transformation of data are required if data that
are to be consulted are generated from multiple and varying sources. Col-
lectively, all the above steps are labelled as preprocessing step (more details
available in [38]). Once target data is ready after scrubbing and cleaning,
data exploration can be performed before feeding the data to the comput-
ing model for decisive or descriptive outcomes. To understand data better,
it is suggestive of exploring the type, distribution, significant features (at-
tributes), and relationship among the data variables. Feature selection is
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one of the steps that help in identifying important attributes. Visualiza-
tion is a great way to explore the intimate relationship within the target
data. Feeding the most relevant subset of data through dimensionality and
data reduction helps to learn models to generate optimal outcomes. Descrip-
tive (unsupervised) and predictive (supervised) are the two major learning
paradigms through which data can be modeled and described for knowledge
generation. An intermediate model, termed a semi-supervised model, cul-
minating unsupervised learning followed by supervised learning, is another
popular model. Ensemble decision making that combines the decision of
multiple learning models (both supervised and unsupervised) is observed to
be a more effective alternative [39]. Most popular supervised models such
as machine learning and deep (machine) learning models are in great use for
handling and analyzing COVID-19 pandemic. It is worth mentioning a few
deep frameworks which are of great use during COVID-19 predictive data
analysis. Convolutional Neural Network (CNN) [40] is used extensively in
radiological chest images of COVID-19 patients. It is a modified version
of traditional neural network architecture that uses convolution (linear op-
eration) in place of general matrix multiplication in at least one of their
layers. Other than input-output layers, it involves multiple hidden layers
such as convolution, activation, pooling, fully connected, and softmax lay-
ers. A more evolved and powerful CNN model specific to graph or network
is Graph Convolution Network (GCN) [41] that appears to be very useful
in predicting interactomes or COVID-19 drug-target associations that rely
largely on multiple network integration. It considers two types of input, the
adjacency matrix and the feature vector of each node in the graph. Due to
the lack of adequate training samples during COVID-19 to train deep models,
the synthetic data play a significant role [42, [43]. A recent breakthrough in
deep model architecture is the Generative Adversarial Networks (GAN) [44]
for generating realistic synthetic data. A GAN is made of two simultane-
ously trained neural networks (Generator and Discriminator). Discriminator
recognizes training samples, whereas Generator is to create fake instances to
throw challenges to Discriminator. Both the networks tune themselves by
conflicting each other’s performance.

To a large extent, the performance of a descriptive or predictive data
science model depends on the optimized feature engineering representing the
true distribution of data in hand. However, with the arrival of deep learn-
ing models, life becomes easy. Deep models extract relevant features of its
own, and relative performance is far superior to the shallow neural networks
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or other classification models. On the contrary, deep models are resource-
intensive and work well when the sample size is large.

Regression analysis is another supervised model used to predict pandemic
trends [45]. Clustering [46] is a well-known unsupervised learning model
that describes and summarises the hidden pattern inside data based on cer-
tain proximity analysis. Investigating the evolutionary origin of SARS-COV-
2 virus is the most highlighted and debated issue that the scientific commu-
nity is trying to address with the help of clustering analysis. Decision and
description offered by different employed learning models are not meaningful
until it is interpreted by the domain expert to consider it as a novel knowl-
edge. Feedback of the expert may also be propagated iteratively to refine the
phases of the data science pipeline (see Figure [1).

Next, we discuss various data science tasks involved in COVID-19 data
analysis. We compartmentalized our discussion into five different sections
based on the type of significant activities related to understanding disease
pathogenesis, diagnosis, spreading, and therapeutics. We primarily highlight
data handling, learning models employed, methodologies, and software tools
used.

3. Omics Data Analysis: DNA and Protein

The main objective of the omics study is to discover the proximal origin
of SARS-COV-2 , its mutational variants, and developing a predictive model
for identifying SARS-COV-2 from an isolated strain or sequence. In addition
to that, nucleotide sequences are used to determine the SARS-COV-2 viral
genome and 3D protein structure prediction.

3.1. Phylogeny and Mutant Variation Analysis

Discovering the evolutionary origin of SARS-COV-2 is the most focused
research right now, trying to generate an evolutionary tree between its near-
est species [47]. Clustering is the most popular technique applied to cre-
ate a phylogeny among the coronavirus family-like SARS-COV, MERS-COV
[48, 149, 50]. The evolution of viruses is mapped in silico using phylogenetic
analysis. In general, the phylogenetic tree creation method relies primar-
ily on either sequence alignment or without alignment (alignment-free). In
bioinformatics, sequence alignment is a way of re-organizing given sequences
(DNA, RNA, or protein) to identify functional and structural conserved re-
gions within the sequences that provide a hint for the evolutionary trends.
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Figure 4: Omics data generation and workflow of analysis. Fragments of virus nucleic
acids are extracted from host organisms (patients or other species). Then resulting in
different algorithms process data. Many goals of these analyses are: (i) analysis of genetic
variants, (ii) analysis of genomes of viruses infecting different species, (iii) prediction of
protein interactions and interactome, and (iv) inferring structure and dynamics of viral
proteins.

When sequences are lengthy, highly variable, or extremely numerous, it is
almost impossible to align solely by human effort. Several algorithms have
been developed to produce high-quality sequence alignments both for global
alignments (focusing on the whole length) and local alignments (interest on
specific region). Few common established methods and software are used for
SARS-COV-2 genome alignment such as DNAMAN El, ClustalW [51], MUS-
CLE [52], Jalview [53], and MAFFT [54]. From alignment data, the evolu-
tionary history is inferred using the Neighbour-Joining method or maximum
likelihood method [51), [55]. Alignment approaches are prominent in par-
ticular for identifying the SNP (Single Nucleotide Polymorphism) variation
and lucidity of proximal origin of rapidly evolving viruses like SARS-COV-
2 [56), 10, 10]. On the other hand, alignment-free methods are independent
of the length and volume of the sequence data. It uses feature-based meth-
ods generated from sequence data and then compares the sequences by the
derived features. Due to the low mutation rate and a high degree of simi-
larity among SARS-COV-2 genome, very few studies have been performed
using alignment-free methods. Correlation and partial information correla-
tion (PIC) [57], optimal word (k-mer) to construct continuous distributed

13https://www.lynnon.com/dnaman.html
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representations for protein sequences, to predict MHC class I and II binding
affinity [58], combined k-mer and n-gram techniques [59], chemical properties
(charge, hydropathy, side chain) of region-specific amino acid, mutations are
few important features used during analysis [60} [61]. These features are uti-
lized in several studies attempting to identify the cluster of SARS-COV-2 in
various ways, and its results demonstrated that this virus has multiple origins
with different degrees. Studies reveal that origin of SARS-COV-2 genome is
most likely similar with SARS-related Coronavirusesﬂfound in Pangolin [62]
or Bat [63], 64]. Scientists are studying the variants of novel coronavirus to
understand its mutant variants across the world. Despite of high degree of
similarity among SARS-COV-2 genomes collected from the strains across the
world [65], [66], significant variations are also reported[67, [68]. These stud-
ies are important to understand the clinical presentation and spread of the
disease and useful for antiviral drug design [69].

3.2. SARS-COV-2 genome prediction

Detection of highly divergent viruses is a primary challenging task given
its clinical importance. SARS-COV-2 genome prediction is equally essential
for the rapid classification of novel pathogens as the virus is mutating to cre-
ate divergent variants worldwide and differentiate with other coronaviruses.
Machine learning models coupled with comparative genomics, are in exten-
sive use to predict SARS-COV-2 . Both the alignment and alignment-free
methods are applied to generate features. Some significant genomic features
considered are k-mer and N-gram, amino acid chemical properties, substi-
tution/mutation information by alignment method are mostly utilized for
training machine learning models.

A combination of five well-known classification models [70], Naive Bayes,
K-Nearest Neighbors (KNN), Artificial Neural Networks (ANN), Decision
tree and Support Vector Machine(SVM) are applied on N-gram features de-
rived from 4432 genomes belonging to 93 families of coronavirus and 1869
genomes of SARS-COV-2 for novel SARS-COV-2 detection. In another at-
tempt, both k-mer and n-gram sequence motifs are used as a feature for
classification of SARS-COV-2 virus using Naive Bayes classifier[59]. Inte-
grated comparative genomics and machine learning applied to identify key ge-
nomic features that differentiate SARS-COV-2 from SARS-COV and MERS-

Yhttps://www.ecohealthalliance.org/2020/01/
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COV [60]. Using multiple sequence alignment (MSA), high-confidence align-
ment blocks (regions longer than 15 nucleotides (nt)) are identified and
trained SVMs with a linear kernel function on all 5-nt sliding windows in
the identified high-confidence alignment regions. Concept of digital signal
processing [71] coupled with decision tree also applied for sequence classifica-
tion based on over 5000 unique viral genomic sequences, totaling 61.8 million
bp that includes 29 COVID-19 virus sequences.

A good attempt has made leveraging the deep learning paradigm with-
out using any pre-selected genomic features. A general Convolution Neural
Networks (CNN) [72] made up of a convolutions layer with max pooling, a
fully connected layer, and a final softmax layer[73] used to classify six dif-
ferent human coronaviruses (SARS-COV-2 MERS-CoV, HCoV-NL63,HCoV-
0OC43, HCoV-229E, HCoV-HKU1, and SARS-CoV). It used various encoding
schemes (C=0.25, T=0.50, G=0.75, A=1.0) to encode the cDNA data into an
input tensor for the CNN. A prediction model has been proposed to detect
what kind of target or host a virus can infect [74]. A Bi-path CNN (Bi-
PathCNN) [75] is used where each viral sequence is represented by a one-hot
matrix for nucleotide bases and codons separately. Experimental outcome
reports six genomes of SARS-COV-2 having high infection possibility (p-
valuej0.05) to humans.

3.3. Protein Structure Prediction

Non-synonymous mutation [69] alters the amino acid that can influence
the structure and function of the protein. It is of utmost importance to un-
derstand the viral protein structures for identifying functional motifs towards
understanding the possible binding mechanisms with the host proteins and
antiviral-drug discovery [76], [77]. Experimentally, it is difficult to determine
the 3D structure of a protein. However, computationally it is possible to
predict the structure of a protein from the amino acid sequence. Utilizing
the inherent vital genetic information inside the amino acid sequence, it is
now possible to infer a protein more accurately with the help of several ma-
chine learning models, specifically with the help of advanced deep learning
models. Recently, SARS-COV-2 proteins are predicted El by the AlphaFold
and the structures are deposited in Protein Data Bank El AlphaFold [78] is

Yhttps://deepmind.com/
Yhttps://www.rcsb.org/
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a deep two-dimensional dilated convolutional residual network that predicts
the inter-residue distances between pairs of amino acids and the angles be-
tween chemical bonds that connect those amino acids. trRosetta [79] that
uses inter-residue distance and orientation distributions, predicted by a deep
residual neural network and its modification [80] are also used to predict
SARS-COV-2 protein structures. In addition to that other existing pro-
tein structure and homology modelling tools like COMPOSER [81], SWISS-
MODEL [82], PyMOL c [83], and I-Tasser [84] are used for rapid prediction
and comparison of Spike (S) protein [85, 86], Envelope (E) protein [2] and
ab initio homology modelling [84].

4. Interactome Network Inference and Analysis

Interactomics research related to SARS-COV-2 has two main goals: (i)
development of possible therapies for helping affected people, and (ii) intro-
duction of a novel vaccine for blocking the spreading. Despite the existence
of many different laboratories that have sequenced the whole genome and the
availability of such data, the above-described point may be successfully ad-
dressed, looking at a molecular scale through the elucidation of interactions
of viral proteins concerning the host proteins. As introduced before, during
the replication step, the virus’s proteins use the host environment, interact
among themselves and with the host proteins, causing loss of function or even
the death of the cells. Therefore the complete elucidation of the whole set
of such interactions is a crucial step for the comprehension of viruses. Un-
derstanding the interplay between host and virus proteins is relevant since it
may help identify virus-related diseases and potential targets for therapeutic
strategies. The interactomics information would help one to understand the
global mechanistic processes of the viral molecular machinery during the vi-
ral infection, survival within the host, and replication. With this knowledge,
one could discern the protein interactions that are crucial for transmission
and replication. These interactions could then be potential candidates for in-
hibitory drugs. Furthermore, using the network biology approach, one could
identify hubs and bottlenecks, new to SARS-COV-2 | that could again be
targeted by the antiviral drugs [28].

Experimentally validated physical interactions between intra-viral [87]
and human-SARS-COV-2 proteins usually determined using Affinity Purifi-
cation Mass Spectrometry (AP-MS) [18], Affinity Capture-Western [88], Re-
constituted Complex [89] and Yeast Two-Hybrid (Y2H) methods [87]. For
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instance, AP-MS based SARS-COV-2 -host interactomes are reported for 26
SARS-COV-2 proteins with 332 host proteins [I8]. The study aimed to iden-
tify possible drug targets. Therefore they isolate 66 possible drug targets in
human proteins suggesting potential 69 compounds (of which, 29 drugs are
approved by the US Food and Drug Administration, 12 are in clinical trials
and 28 are pre-clinical compounds).

It is a time-consuming and expensive task for elucidating experimentally
validated complete host protein interactions with viral proteins. Hence, the
in-silico prediction is the only alternative. Some studies presented the investi-
gation of virus-host interactomes using tools and methodologies coming from
graph theory [90, 2], demonstrating the importance of studying virus-host
interplay at network level [911 92] 93] 94] [95]. Data related to the interac-
tions (or functional associations) among biologically relevant macromolecules
(e.g., proteins, genes, etc.) are usually modeled using graph theory and its
related formalism [96], O7]. Consequently, biological entities are represented
as nodes, while edges models their associations [98]. Such networks may
contain a single kind of molecule, such as protein-protein interactions (PPI),
or gene-gene interactions [I7, 99]. More recently, it has been shown that
biological processes are constituted by the synergistic interplay of different
molecules (i.e., genes, non-coding RNA, proteins, mi-RNA, etc.) [100].

Consequently, novel models that integrate such different aspects and de-
scribe the interplay of the heterogeneous actor have been introduced. Ac-
cordingly, the use of more complex network models comprising different nodes
and various associations among them is growing [101], [102]. The SARS-COV-
2 scenario, as we describe in the follows, also contains such models (e.g.,
[8]). We represent a summarised view on in-silico interactome graph infer-
ence workflow that involves different available interactome, and omics data
sources are shown in Figure

From a bioinformatics point of view, few important queries exist: whether
the proteins infected by viruses central or peripheral (i.e., are the infected
proteins hub or not)? Do all of the viruses attach to similar proteins (from a
network point of view)?. What happens in an infected host interactome? [7].
This consideration guided the first attempts to produce an interactome wide
map of SARS-COV-2 proteins and their interaction with human proteins en-
abling scientists to answer the above questions. Interactions of viral proteins
may be categorized in two main classes:(i) Intra-Viral Interactions, i.e.,
interactions that occur among viral proteins that are in general limited and
easy to determine; Host-Virus Interactions, i.e., interactions that occur
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Figure 5: Data integration process to build a Host-SARS-CoV-2 Interactome graph. The
building of the integrated host-viral interactome starts with the analysis of the viral
genome. Then viral proteins and the interactions with host protein are determined. The
determination of all the interactions is often performed by integrating experimental ev-
idence and literature. In parallel, the structure of proteins is also predicted. All this
information (structure, virus-host interactions, and viral interaction) is integrated using
heterogeneous networks. The final product of the process is the desired interactome.

among viral and host proteins that may be potentially a large number. The
main challenges in this area are represented by the different speeds existing
between the spreading of SARS-COV-2 and the time needed for the wet-lab
experiments. Therefore, all the approaches we discuss below integrate both
in-silico and wet-lab experiments.

One of the first approaches of building a SARS-COV-2 interactome is
described in [2§]. The authors derived the first map of both intra-viral and
host-viral proteins using a bioinformatics approach based on the homology
among SARS-COV-2 and the previous 2002 SARS-COV virus. The hypoth-
esis underlying the work is that the similarity among two viruses is also pre-
served at the interactome level. Thus many interactions of 2002 SARS-COV
may be preserved in the SARS-COV-2 . Consequently, they derived a whole
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SARS-COV-2 interactome containing both intra-viral and virus-host inter-
actions. The authors derived a 2002 SARS-COV interactome by analyzing
public literature data. Such data are integrated with a genome-wide analysis
through Y2H on SARS-COV ORFeome, obtaining a resulting intra-viral in-
teraction network consisted of 31 proteins and 86 unique interactions. Then
the authors used both Y2H interaction data and literature mining to derive
the viral-host interactions. The final virus-host interaction network consisted
of 118 proteins, 93 host proteins, and 114 unique virus-host interactions.

Multiple interactome analysis is another popular way to integrate the
knowledge derived from heterogeneous protein or gene networks. In a simi-
lar attempt [103] integrated protein-protein interactions and gene expression
data are derived from literature and public databases. It started with data
related to three existing viruses (SARS-COV, MERS-COV, HCOV-229E) to
infer the interactome of SARS-COV-2 . It also integrated an additional PPI
database to reconstruct the action of SARS-COV-2 on the proteome level,
obtaining a network consisting of 13,020 nodes and 71,496 interactions. In
parallel, the authors inferred a gene co-expression network using Random
walk with restart (RWR) algorithm and using S-glycoproteins of SARS-COV,
MERS-COV, and HCOV-229E as seeds. Similarly, to build the SARS-COV-
2 interactome phylogenetically close HCOV-host interactome network was
built by assembling four known HCOVs (SARS-COV, MERS-COV, HCOV-
229E, and HCOV-NL63), one mouse MHV, and one avian IBV (N protein).

As a novel attempt [104], the codon usage pattern is used to infer possible
interactions between 26 SARS-COV-2 proteins and selective host proteins
involved in 17 major cell signaling pathways. They used the RSCU score as
a measure of codon usage bias to assess proximity between a pair of host and
viral proteins. MAPK pathway is highlighted as the worst affected pathways
during COVID-19 .

5. Chest Image Analysis

Image analysis transforms digital images into measurements that describe
the meaningful information from every cell of images. SARS is a respiratory
virus and found to infect primarily lungs leads to death. Chest image anal-
ysis may help in the early diagnosis of COVID-19 patient. Two kinds of
chest radiography image obtained through X-ray and CT (advanced X-ray
machine) scanners is usually effective in diagnosing pneumonia is now rec-
ommended for COVID-19 patients. Both technologies are significantly useful
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in large-scale screening and disease diagnosis. It is widely available and pro-
vides images for diagnosis quickly. Data science is an indispensable tool for
the automatic (or semi-automatic) analysis of large amounts of data that
require substantial quantitative assessment and computation. The chest im-
age data are utilized for multiple possible use cases such as predicting the
need for the ICU, predicting patient survival, and understanding a patient’s
trajectory during treatment and so on [105] [1]. Imaging is fast, non-invasive,
relatively cheap, and potentially bedside to monitor the progression of the
disease [106], [105]. The ultimate goals are many folds such as improving
patient health care, biomarker design for the COVID-19 ;| and, most impor-
tantly, early and automatic detection of COVID-19 .

Continuous development of machine learning-based tools is in progress for
the detection, quantification, and monitoring of COVID-19 disease and dis-
tinguishing non-infected individuals [I07]. The majority of the study explores
the power of deep convolutional neural networks (CNN). COVID-Net [106]
is a CNN based first open-source framework designed based on deep learning
techniques for the detection of COVID-19 by analyzing chest X-ray images,
where authors developed COVIDx, an open-access benchmark dataset com-
prising of 13,975 CXR images across 13,870 patient cases. Model performance
is evaluated with deep neural network architectures (VGG-19 and ResNet-
50) for comparative purposes. The model predicts three possible outcomes
from input image data: a) no infection (normal), b) non-COVID19 infection
(e.g., viral, bacterial, etc.), and ¢) COVID-19 viral infection.

A transfer learning-based convolution neural network [Il [10§], also ap-
plied for detecting various abnormalities in small medical image datasets.
The authors collected 1427 X-rays images (224 COVID-19 , 700 common
pneumonia, and 504 normal cases) from several sources like Cohen El, Ra-
diological Society of North America (RSNA), Radiopaedia, and Italian So-
ciety of Medical and Interventional Radiology (SIRM) [F] The CNN models
employed for the task are VGG19, Mobile Net, Inception, Xception, and
Inception ResNet v2.

Pulmonary CT images and deep learning techniques aimed to establish an
early screening model to distinguish COVID-19 pneumonia and Influenza-A
viral pneumonia from healthy cases [109]. At first, candidate infection regions

"https://github.com/ieee8023/covid-chestxray-dataset
8https://www.kaggle.com/andrewmvd/convid19-xrays
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are isolated using Residual CNN (ResNet-23) from the pulmonary CT image
set. ResNet-18 architecture is used for image feature extraction. It uses a
location-attention classification model to categorize COVID-19, Influenza-
A, and non-symptomatic groups. Infection type with probability scores is
calculated using Noisy-or Bayesian function.

A combined CNN-LSTM architecture is also explored to detect infected
patients X-ray images [43]. CNN is used for the purpose of feature extraction,
whereas LSTM is used for prediction.

Inf-Net [I10] is a CNN based lung segmentation technique for automatic
segmentation of COVID-19 effected lung CT images. The high resolution and
low-level features are extracted with the help of two-level convolution layers,
which again passed through the next three convolution layers for extracting
high-level features. All the features are then aggregated using a parallel
partial decoder (PPD) to generate a global feature set. Implicit reverse
attention (RA) and explicit edge-attention are used for the enhancement
of the representations. The sigmoid activation function is used on the RA
output for final segmentation. A semi-supervised framework is also proposed
for dealing with small, manually segmented labeled images.

Due to the unavailability of adequate sample images for training, syn-
thetically chest X-ray (CXR) images are generated using Auxiliary Classifier
Generative Adversarial Network (ACGAN) based model, called CovidGAN
[42].
Statistical analysis is performed on the CT image [I11], based on the num-
ber of key imaging features like affected lobes, the presence of ground-glass
nodules (GGO), patchy/punctate ground-glass opacities, patchy consolida-
tion, fibrous stripes, and irregular solid nodules in each patient’s chest image.
The study reveals that manifestations of COVID-19 are diverse (imaging fea-
tures) and changing rapidly.

A binary classifier has been designed to segregate COVID-19 affected
chest X-ray images[I12]. It uses Manta-Ray Foraging Optimization (MRFO)
for feature extraction and K Nearest Neighbours (KNN) for classification.

6. Epidemiological Data Analysis

From the beginning of the outbreak, a significant data source was related
to the observation of novel cases to predict the evolution of the diffusion first.
Such data were used to run both existing, and ad hoc developed models [113],

33].
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The main aims of these approaches are: (i) controlling the diffusion of
the SARS-COV-2 ; (ii) supporting healthcare providers to allocate resources
(e.g., planning intensive care units places); (iii) evaluating the impact of
containment measures.

From a data science point of view, almost all of these works use real
data to build and fits predictive or observatory models. These works were
published mainly in the first weeks after the outbreak in Wuhan. They
usually use deterministic models based on classical epidemiological studies.
Consequently, real data are used to derive parameters of models based on
ordinary differential equations [114], 115]. The diffusion of such works has
been very high; for instance, simple queries on Google Scholar or on preprint
servers will return more than 2,000 papers.

In [IT6] authors integrated information of existing data sources provided
by the Johns Hopkins University, World Health Organization, Chinese Cen-
ter for Disease Control and Prevention, National Health Commission, and
Dingxiangyuan (DXY, a Chinese epidemiological database). They perform
an exploratory data analysis, using mainly visualization techniques to high-
light (and stimulating discussion) differences of different reported cases (e.g.,
infected, dead, and recovered), in many countries.

Moreover, more sophisticated models tried to integrate epidemiological
data with other data to study the impact of other variables (e.g., environ-
mental /geographical variables and patient-related variables ). In such cases,
authors use sometime simple descriptive and inferential statistics (e.g. [I17])
as well as complex data mining techniques [118].

A COVID-19 outbreak forecasting model is developed using Long short-
term memory (LSTM) networks [I19]. John Hopkins University and Cana-
dian health data are used to extract key features to predict the trends and
possible stopping time of the current COVID-19 outbreak within the world.

Based on the context of lockdown duration and social distancing and
its impact in controlling COVID-19 spread in India, a statistical analysis is
performed based on an age-structured SIR model with social contact matrices
obtained from surveys and Bayesian imputation [120)].

7. Drug Repurposing and Target Prediction

Drug discovery aims to identify new small molecules that potentially
modulate the functions of target proteins. The development of a new drug
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molecule for COVID-19 is a time consuming and costly affair. In the COVID-
19 era, the long process for the determination of a novel drug is not suitable,
looking into the rapid spread of the virus. It is of utmost importance to
identify in a faster way the anti-viral drugs that may control the adverse
effect of COVID-19, thereby reducing the mortality rate. The best alterna-
tive is to look for already (FDA-Food and Drug Administration) approved
drugs that may bind with the therapeutic target proteins (viral or host).
Identifying the therapeutic target responsible for the observed phenotype is
equally important [I21] for the same. Data analysis for discovering possible
drug candidates from the existing drugs is a well-know process referred to
as drug repurposing. It involves the identification of new uses for approved
(or experimental) drugs for novel pathologies. The process, as depicted in
Figure |§|, is based on the integration of molecular data (e.g., interactomes,
co-expression networks), concerning the existing drug-disease association.

Availability high-resolution proteomics, interactomics, drug-target asso-
ciation data, it is now possible to search quickly for a suitable small molecule
in-silico with the help of advanced (deep) neural network models. A good
number of deep learning-based drug-target association and repurposing tools
are available for other viral diseases that can be used for COVID-19 data
analysis (Table ?7).

DeepPurpose [122] is one such tool applied to COVID-19 drug prioritiza-
tion by leveraging the multiple deep neural network models. DeepPurpose
uses SMILES string for drugs and amino acid sequences for the target as
input. It uses different convolutional neural network models, namely the
convolutional recurrent neural network (CNN-RNN), Transformer encoders,
and Message-Passing Neural Network for encoding input strings. It ensem-
bles seven encodings for proteins and eight encodings for drugs. The output
of DeepPurpose is a score that measures the binding activity of the input
drug target pair.

Recent trends adopt different network-embedding techniques [123], 5] and
the help of deep learning networks producing a list of possible candidate drugs
as output confirmed in wet-lab experiments or clinical trials. It should be
noted that after the in-silico identification, the process of drug repurposing
requires time and funds for the subsequent clinical trials, but the overall time
is lower than the development of a new chemical [124].

Gordon et al. .[I8] used their experimentally validated host-viral network
consisting of 26 viral protein and 332 host proteins and identified 66 human
proteins targeted by 69 existing drug compounds constituting potential drug
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Figure 6: Drug Repurposing Process. The process, is based on the integration of molecular
data and drug-disease association. The analysis is often performed by deep-learning or
network embedding. The output list of candidate drugs is then confirmed in wet lab
experiments or clinical trials.

targets to treat COVID-19 .

Multiple network-based strategies [5] coupled with Graph Convolution
Network (GCN) is explored to rank drug repurposing candidates. At first,
COVID-19 interactome modules are identified, considering 56 different hu-
man tissues. Existing drug molecules are then prioritized using a proximity
measure based on their ability to interact with their protein targets present
in the modules. A GCN is used to combine multiple sources of evidence
for drug repurposing. The manifestation of COVID-19 in other tissues, such
as the reproductive system, brain regions, and neurological co-morbidities,
are also predicted during the study. In a similar heterogeneous network-

29


https://doi.org/10.20944/preprints202008.0320.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 14 August 2020 d0i:10.20944/preprints202008.0320.v1

integrated drug repurposing [123] approach, network proximity analyses per-
formed on drug targets and HCOV-host interactions and prioritized 16 po-
tential anti-HCOV repurposable drugs. They used host proteins from four
known HCOVs (SARS-COV, MERS-COV, HCOV-229E, and HCOV-NL63)
based on phylogeny analysis and performed functional enrichment followed
by drug association analysis.

Another network-based approach for deriving possible drug targets is
attempted [8], where both protein interaction and gene coexpression net-
works are used to identify master regulator [125] involved during SARS-
COV-2 infection. Physical interactions of proteins were extracted from [28§].
Co-expression network is generated using SARS-COV-2 -human interactome
proteins derived from [126] and the largest human lung RNA-Seq dataset
available from the GTEX El consortium. The authors identified some key
proteins involved during an infection such as ACE2, TMPRSS, and MOCK.
They suggested to them as potential therapeutics or vaccine targets and high-
lighted the evidence that COVID-19 is characterized by a large inflammation
process that is not limited to respiratory apparatus only.

8. Summary and Challenges

The potential applications for data-science (and deep-learning and arti-
ficial intelligence) to improve the research related to SARS-COV-2 outbreak
are countless. However, due to the tremendous spread of the virus and the
birth of novel approaches worldwide, it seems that the application of data
science may fail or that results are far from successful. Therefore the need for
a comprehensive vademecum for practitioners as well as of a landscape for re-
searchers is high. Consequently, we provided an in-depth overview of the data
sources and methods that are currently used to elucidate the primary mech-
anism of pathogenesis and development of COVID-19 . We included almost
all data types, from the molecular scale to patient (medical imaging) and
population-scale (epidemiological data). We discussed the main approaches
for modeling SARS-COV-2 infection, drug repurposing, population surveil-
lance, disease, and treatment. An overall summary of data science models,
types of tasks and data, and various software tools are reported in Table 77?.
We also delineated the important challenges for data science applications in

s . gtexportal.org
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Table 3: Data Science tools and techniques for SARS-COV-2 data analysis.

Phylogeny/
alignment

Nucleotide/ Pro-
tein sequence

UPGMA, WPGMA, Neighbour-
joining, Maximum likelihood,
Fitch—Margoliash  method, Maxi-

mum parsimony, Bayesian inference

ClustalW, Clustalw, MAFFT, MUSCLE, T-
Coffee
DNAMAN [T

Structure
Prediction

Protein sequence

Deep neural-network (NeBcon, Re-
sPRE, ResTriplet, and TripletRes),
QSQE, Supervised machine learning
(SVM), Multiple regression

SWISS-MODEL [82], PyMOL |3, L
Tasser [84], COMPOSER [&T]

SARS-COV-
2 predictor

Nucleotide se-
quence

Conventional models (Naive Bayes, K-
Nearest Neighbors, Artificial Neural
Networks, Decision tree and Support
Vector Machine), Deep models (Con-
volutional Neural Networks (CNN),
Bi-path CNN (BiPathCNN)

COVID-Predictor [59]-

Protein Inter- | Protein sequence, | Graph analysis Cytoscapelﬁl
actions PPI Networks,
Protein structure
Chest imag- | Chest x-ray or | Deep learning model (VGG19, Mobile TrainingData.ioIﬂ
ing analysis CT image Net, Inception, Xception and Incep-
tion ResNet (v2,18,23,50), GAN, Dice
similarity coefficient (DSC)
Epidemic Experimental LSTM  Statistical models (SIR, | Worldometers-coronavirus 23]
Trend Analy- | and observational | Bayesian imputation, linear and

S18

polynomial regression)

WHO-COVID19-report
COVID-19 Projections

Drug Interac-
tion & Repur-
posing

Protein sequence,
Drug molecules,
Protein Structure

Graph Analysis, Graphical Convolu-
tion Network

DeepDR  [127], DeepPurpose [122], Deep-
dta [128], kGCN [129], DeepChem [130],
Graphdta [I3T] D3Targets-2019-nCoV [132],

CoVex [133]

cardiovascular care, including the need to introduce more standards and the
integration of data. If data science is successfully implemented in this area,
it will fulfill its potential as an essential component of fighting COVID-19 .

8.1. Current Challenges

e Ontology-based Federation of Data:

The current scenario is

characterized by many data formats that differ both in schemas and
use; therefore the introduction of a novel mechanism of federation able
to integrate data both horizontally and vertically, possibly mediated

by ad hoc ontologies;

e Development of graph-based models:

The integration of many

data into a single model (comprising patients, molecular and clinical
characteristics) may support the individuation of spreading diffusion
and the realization of more models;
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e Leveraging the use of efficient and high-throughput analysis
workflows:  The rapid spreading of virus and the unprecedented
production of data need the introduction of novel efficient and high-
throughput based analysis environments, possibly structured as virtual
laboratories federated by cloud infrastructures;

e Need attention worldwide mutation case for structure predic-
tion: Due to rapid mutations (non-synonymous) in SARS-COV-2 or
any other viruses, it may alter their protein structures. Structure-
based drug development depends on the structural coherence between
the drug molecule and target proteins, hence the dynamic variation
of viral structures is essential for stable anti-viral drug development.
Machine learning-based possible strain variation prediction may help
early decision in designing or reusing effective anti-viral drugs.

e Low data deep models for drug discovery: Often the success of
deep networks relies on large sample data for training. In reality, it is
always not possible to generate such large scale true samples. Synthetic
sample data (X-ray) are indeed generated using Generative Adversarial
Networks. However, for network-based drug discovery, it may not be
feasible to generate such synthetic data. In a recent attempt one-shot
LSTM framework [134] has been proposed [135] for repurposed drug
discovery in presence low data [136]. A similar method is yet to develop

for COVID-19 .

e Explainable Al support for the more reliable diagnostic sys-
tem: Diagnosis and drug discovery are the most sensitive task and
demand very high accuracy. Due to a similar phenotype of COVID-
19 infection with pneumonia, it is challenging to differentiate early
symptoms of COVID-19 chest infection. Explainable Al [137] is a new
concept where the reliability of a learning system can be interpreted
and visualized for confidence generation about the outcome instead of
treating it as a black box. Explainable Al may be incorporated with
COVID-19 image-based clinical diagnostic system for better reality and
confidence for early prediction. The same idea may be propagated to-
wards drawing accurate drug-target associations.
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