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Abstract: The development of a highly specific drug delivery system (DDS) for anti-cancer 

therapeutics is an area of intense research focus. Chemical engineering of a “smart” DDS to 

specifically target tumor cells has gained interest, designed for safer, more efficient, and effective 

use of chemotherapeutics for the treatment of cancer. However, the selective targeting and choosing 

the critical cancer surface biomarker are essential for targeted treatments to work. The folic acid 

receptor alpha (FR) has gained popularity as a potential target in triple-negative breast cancer 

(TNBC). We have previously reported on a functionalized folic acid (FA)-conjugated amphiphilic 

alternating copolymer poly(styrene-alt-maleic anhydride) (FA-DABA-SMA) via a biodegradable 

linker 2,4-diaminobutyric acid (DABA) that has the essential features for efficient “smart” DDS. This 

biocompatible DDS self-assembles in a pH-dependent manner, providing stimuli-responsive, active 

targeting, extended-release of hydrophobic chemotherapeutic agents, and can effectively penetrate 

the inner core of 3-dimensional cancer spheroid models. The empty FA-DABA-SMA decreased 

spheroid volume, revealing a previously unknown mechanism of action. Upon further 

investigation, a size- and shape-dependent interaction FA-DABA-SMA with FR reduced the 

expression of p53, the product of the highly mutated TP53 gene, and additional oncogenic c-Myc 

and STAT3 proteins. Here, we investigated how this copolymer influences FR behavior and 

disrupting the receptor’s functions. Results indicate that FA-DABA-SMA increases FR expression 

levels in breast MDA MB-231 cancer cells and disrupting FR signaling by the reduction in HES1 

and NOTCH1 protein expression levels. Also, FA-DABA-SMA induces apoptosis and further causes 

a change in the morphology of the  MDA MB-231 cells, as well as significantly reduces their ability 

to migrate in a Scratch wound assay. Collectively, these findings provide a novel insight into the 

functionalized FA-DABA-SMA copolymer. The 350 kDa and 20 kDa copolymers actively target FRα 

to initialize internationalization. However, only the large size and sheet-shaped 350 kDa copolymers 

disrupt FRα signaling. The significance of these novel findings reveals the intracellular activity of 

the copolymer that is critically dependent on the size and structural shape. This report offers novel 

therapeutic insight into a dual mechanism of FA-DABA-SMA copolymer for its therapeutic 

potential for the treatment of cancer.  
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1. Introduction 

Carcinogenesis is a complex, multifactorial process, and its progression is the result of the 

manifestation of multiple disease states. The hallmarks of cancer highlight the main components of 

cancer progression, including sustaining proliferative signaling, evading growth suppressors, 

activating invasion and metastasis, enabling replicative immortality, inducing angiogenesis, and 

resisting cell death [1]. Together, these hallmarks only begin to highlight the complexity of the 

disease, explaining why many treatments are rendered ineffective. As such, the widespread use of 

cytotoxic chemotherapeutics has reached a therapeutic plateau; however, triple negative breast 

cancer (TNBC) treatment remains to be mainly limited to chemotherapeutic agents, such as cisplatin, 

anthracycline, paclitaxel, and tamoxifen (Tmx) [2]. Nevertheless, the efficacy of these treatments is 

low due to the heterogenic nature of TNBC and the development of resistance. For example, 

chemotherapy causes the tumor microenvironment (TME) to alter its phenotype in TNBC to become 

resistant to additional hormonal and chemotherapeutic treatments [2].  

Additionally, cancer stem cells (CSCs) are intrinsically resistant to chemotherapy due to their 

pluripotent and dormant state [3]. CSCs survive through most treatments, mutating to give rise to a 

more aggressive, resistant phenotype, contributing to metastatic disease, and is prevalent in TNBC 

[4]. Unfortunately, the treatment of the metastatic disease requires chemotherapeutic agents; thus, 

we must overcome setbacks, including chemoresistance, poor targeting, poor bioavailability, and 

high toxicities.  

In contrast, targeted therapies are carefully selected therapeutics based on particular molecular 

alterations driving the transition of more personalized treatment approaches in the era of 

personalized medicine [5]. Malignant cells often overexpress specific receptors, and sometimes, these 

become biomarkers for a cancer diagnosis. One such target and biomarkers are gaining popularity it 

the folate receptor alpha (FR). Folate is necessary to create a suitable TME as the folate cycle sustains 

metabolic reactions essential for rapidly growing cells [6]. Folate-mediated one-carbon metabolism 

(FOCM) is a network of folate-dependent metabolic pathways throughout the cytosol, nucleus, and 

mitochondria, primarily responsible for DNA and RNA synthesis and methylation of DNA [7]. Cells 

can direct the flow of one-carbon (1C) units according to cellular demands such as stress conditions, 

including disease states like cancer [7]. FR has gained the most attention as it is responsible for the 

1C units of folate, essential for the synthesis of DNA and RNA [8]. As such, the application of FR is 

extensively studied within the field of oncology as folate dysregulation can result in the disruption 

of many cell growth-related processes. FR has been found to overexpressed in a variety of 

malignancies, including breast, pancreatic, ovarian, colorectal, brain, and lung cancers [9]. 

FR is a glycosylphosphatidylinositol (GPI) cell surface protein; however, most normal tissues 

do not express FR allowing it to be an accurate target and biomarker of cancer [10]. The low affinity 

and high capacity reduced folate carrier (RFC) normally mediates folate intake and is distinct from 

folate receptors, as well as the proton-coupled folate transporter (PCFT)  [11]. The main route of 

transportation of folate is mediated by the RFC, which is responsible for the uptake of dietary folate 

but is unable to take up anything conjugated with folate [9]. Furthermore, FR expression in normal 

tissues is limited to the luminal surface, confined to the apical surface of the epithelium, out of direct 

contact to any circulating folate or folate receptor targeting agents [10]. When cells become malignant, 

FR loses its polarized cellular location, generally restricted to the luminal surface, resulting in the 

entire surface expressing FR [10]. Therefore, the low levels of FR expression in normal tissues, in 

addition to RFC being unable to take up any conjugated compounds, predicts low toxicity for these 

targeted agents.  

Studies in recent years have begun to focus on FRα as a biomarker and target for breast cancer. 

This approach has become increasingly relevant in treating TNBC as it has limited targetable 

receptors. FRα is overexpressed in breast malignancies with 30% of early-stage breast cancers 

expressing FRα and 70-80% of stage IV metastatic TNBC expressing FRα across multiple subtypes 

[12]. Additionally, FRα expression levels are retained in metastatic sites from diverse anatomic 

origins, including lymph nodes and bones [12]. Therefore, several folate-targeted therapies have 
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gained popularity. There are multiple ongoing clinical trials for FRα -targeting agents, including 

several trials specific for TNBC using FRα peptide vaccines and antibody-drug conjugates. 

Additional folate-targeting agents include a small molecule drug conjugate and an antibody-

drug conjugate, Vintafolide and Farletuzumab, respectively [13,14]. Early-stage clinical data of both 

of these agents have shown much promise in ovarian and lung cancers with limited toxicity and high 

response rates [13-16].  

Another area of therapeutic advancements is in the development of drug delivery systems 

(DDSs). DDSs refer to the approaches, technologies, and formulations to achieve the optimized 

therapeutic effects of drugs in an efficient, specific, and nontoxic manner [17]. DDS nanomaterials 

provide several benefits due to their unique nanoscale properties, bio-functions, and ability to be 

easily manipulated, improving previous drug delivery methods [17]. Research into the development 

of drug delivery vehicles has become increasingly popular in hopes of circumventing limitations 

associated with traditional drug delivery methods. Nanoparticles (NPs) are defined as particles with 

a characteristic dimension in the range of 1-100 nm in diameter and are used as potential DDS vehicles 

[18]. They possess a high drug loading capacity due to their large surface-area-to-volume ratio [19]. 

NPs can be loaded with a variety of compounds, including small molecules, peptides, proteins, DNA, 

and interface RNA [20].  

NP-based drug delivery offers several advantages compared to free drug treatments, including 

increased solubility, protection of the loaded drug from degradation or deactivation, increasing 

bioavailability, controlled release mechanisms, and altered pharmacokinetics [21]. NPs can be 

engineered with specific properties, including size, shape, and surface modifications to tailor 

delivery. Finally, NPs can be designed to have an optimal and sustained therapeutic activity through 

extended-release properties [19].   

Multifunctional “smart” NPs are defined as a system with two or more engineered properties 

[21]. Smart, multifunctional NPs combine targeting strategies to overcome barriers and increase the 

efficacy of drug delivery. Smart NPs must (i) encapsulate anti-cancer therapeutics, (ii) possess a 

targeting mechanism to locate malignant tissue effectively, and (iii) respond to stimuli releasing its 

cargo [18]. Smart NPs ensure that the therapeutic drugs are not released before reaching target 

tissues, and are only released at a specific rate to provide the most potent and sustained effect [17].  

In the present study, we characterized a functionalized NP, as previously reported [22-24]. Here, 

the functionalized NP is a self-assembled 350 kDa folic acid (FA) conjugated poly(styrene-alt-maleic 

anhydride) (SMA) via biological linker 2,4-diaminobutyric acid (DABA) (FA-DABA-SMA) 

copolymer. SMA is the polymeric backbone of the NP as it has previously been found to be 

biocompatible in addition to being capable of being an active drug carrier [22]. At a neutral pH, SMA 

self-assembles into amphiphilic structures with a 3 nm hydrophobic interior and hydrophilic exterior 

[22]. This NP property is ideal for chemotherapeutic agents, which are typically hydrophobic and can 

be encapsulated in the hydrophobic cavity of the NP. Amphiphilic alternating copolymers are 

advantageous because they can be structurally similar to biological systems as well as have the ability 

to self-assemble into nanostructures [24]. If the pH increases or decreases, SMA loses its ordered 

structure, collapsing and releasing its contents progressively in the cellular tumor environment.  

Previous studies revealed the empty FA-DABA-SMA copolymer NP reduced breast cancer 

spheroid volume [23]. This NP was designed to be chemically inert; thus, the mechanism by which 

the empty FA-DABA-SMA NP reduced spheroid volume was unknown. Further investigations 

demonstrated a size- and shape-dependent interactions in which the original 350 kDa FA-DABA-

SMA continues to induce apoptosis in MDA MB-231 breast cancer cells. In comparison, the 20 kDa 

FA-DABA-SMA, forming a nanotube structure, did not initiate the same effect  [25]. We also found 

that the interaction of the NP causes intracellular disruptions, reducing the expression of critical 

proteins, including p53, the product of the highly mutated TP53 gene, and oncogenic proteins STAT3 

and c-Myc [25]. These intracellular disruptions may be due to the interactions of FA-DABA-SMA and 

FR possibly dysregulating downstream signaling. 

The FR receptor has become an area of research interest in drug delivery and oncology. The 

receptor has a high affinity for FA, and cancerous cells overexpress FR up to two orders in 
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magnitude relative to non-malignant cells [10,11].  FR can translocate into the nucleus following FA 

binding and internalization, suggesting possible activity as a transcription factor for growth-

promoting genes, particularly relating to stemness [26]. This observation suggests that FR may 

influence the regulation of a variety of malignant processes, including cell growth, cell migration, 

and epithelial to mesenchymal transition (EMT). The disruption of the regulatory process by FR 

may provide a valuable treatment to human cancers. Here, FA-DABA-SMA in our previous studies 

[24] may be disrupting the interactions of FR influencing the EMT, an essential component of 

tumorigenesis and, therefore, warrants further investigations.  

The present study characterizes the toxicity, interactions, and secondary intracellular processes 

of a 350 kDa FA-DABA-SMA copolymer with FAα receptor using prostate and triple-negative breast 

cancer cell lines. We hypothesize that FA-DABA-SMA interacts with FR disrupting intracellular 

processes resulting in a secondary therapeutic mechanism of action, the process of which is size- and 

shape-dependent dysregulation of FR. 

2. Results 

2.1. Folic Acid Supports Cell Growth in Rapidly Proliferating Cells  

We have previously reported that the FA-DABA-SMA may have a dual mechanism of action 

that is size- and shape-dependent [25]. Here, the role of the FA-DABA-SMA may influence cell 

signaling, possibly contributing to the toxicity seen in the larger sized 350 kDa copolymer. To explore 

this further, we first asked whether the role of free FA influences cancer cell growth. We have 

previously demonstrated that the empty FA-DABA-SMA copolymer significantly reduces the cell 

viability of the MDA MB-231 cell line overexpressing FRα [23,25]. Furthermore, the DU-145 prostate 

cancer cells were also used because they are metabolically inactive and have been shown to have no 

significant differences in the cell viability after treatment with FA-DABA-SMA [25].  

The benefit of targeting the FRα receptor is that it might confer a growth advantage to the tumor 

by modulating folate uptake from serum or by generating essential regulatory signals for cell growth 

[27]. Possibly, FRα may be elevated in some cancers to increase the FA uptake to stimulate the cancer 

cells to repair DNA damage in transcription factors or other proteins during the early stages of 

carcinogenesis. Due to the differential carcinogenic roles of FA, it is important to determine if FA has 

a concentration-dependent effect in DU-145 prostate and MDA MB-231 breast cancer cells. In Figure 

1A, the data demonstrate a concentration-dependent effect of FA on MDA MB-231 cells, where 

concentrations higher than 10 µM appear to reduce cell viability. In contrast, there appears to be no 

difference in cell viability in DU-145 cells (Figure 1B) until concentrations reach 40 µM, where there 

is a reduction in cell viability. These results suggest that the MDA MB-231 cells are more 

metabolically active over 48 hours and are dependent on FA when compared to DU-145 prostate 

cancer cells (Figure 1C and D).  This may, in part, explain the continuous influence FA-DABA-SMA 

has on MDA MB-231 cells.  
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Figure 1. Cell viability of DU-145 and MDA-MB-231 cells following a concentration-dependent 

treatment with folic acid (FA) using the WST-1 cell proliferation assay. Cells were plated 100 000 

cells/mL per well in triplicates. The indicated FA concentrations were serially diluted, and the cells 

were exposed to the treatments for 24 and 48 hours. At the end of each time point, the WST-1 reagent 

was added to each well. The cells were incubated for 2 hours, after which the plates were read on a 

colorimetric plate reader. (A) FA at a concentration of 0.625-10 µM supports MDA-MB-231 breast 

cancer cell growth over 48 hours. (B) FA does not influence the growth of DU-145 prostate cancer over 

48 hours. (C) At 24 hours, the growth of breast and prostate cancer cells is similarly supplemented 

with FA. (D) At 48 hours, the breast cancer cells increase in cell viability compared to prostate cancer 

supplemented with FA. The data are presented as cell viability as a mean percent of untreated control 

± SEM of two independent experiments (n = 2) performed in triplicates. 

2.2. The cytotoxicity of functionalized  folic acid-conjugated DABA-SMA is size and shape-dependent  

To further explore the possible importance of the functionalized folic acid (FA)-conjugated 

DABA-SMA copolymer, serial dilutions of the 20 kDa (small), and 350 kDa (large) FA-DABA-SMA 

were used to compare the cell viability of MDA MB-231 breast and DU-145 prostate cancer cells. 

Figures 2A and B demonstrate that both the small and large NPs have no effect on DU-145 cell 

viability at the previously determined 3 µM NP concentration. The 20 kDa small NP did not affect 

the DU-145 cell viability, even at high concentrations. Similar results are seen with the MDA MB-231 

cells (Figure 2C).  Interestingly, serial dilutions with the 350 kDa larger NP show a decrease in cell 

viability in DU-145 cells at 6 µM concentrations (Figure 2B). These data suggest that the size of the 

NP is a critical property for the therapeutic potential of FA-DABA-SMA.  
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Figure 2. Cell viability of DU-145 and MDA-MB-231 cells following a concentration-dependent 

treatment with 20 kDa and 350 kDa FA-DABA-SMA copolymer using the WST-1 cell proliferation 

assay. (A) WST-1 proliferation assay performed in triplicates. The graph represents the mean ± SEM 

combined results from two independent experiments (n = 2) compared to the untreated control. These 

results demonstrate that the 20 kDa FA-DABA-SMA does not influence cell viability DU-145 prostate 

cancer cells over 48 hours of treatment. (B) WST-1 proliferation assay (n = 2) performed in triplicates. 

The graph represents the mean ± SEM combined results from two independent experiments 

compared to the untreated control. (C) WST-1 proliferation assay performed in triplicates. The graph 

represents the mean ± SEM combined results from two independent experiments (n = 2) compared to 

the untreated control. (D) Schematic of large 350 kDa sheet-shaped FA-DABA-SMA (left) and small 

20 kDa cylinder-shaped FA-DABA-SMA. 

2.3. Functionalized FA-DABA-SMA induces the Expression of FR on MDA MB-231 Breast Cancer Cells  

We reported that the large 350 kDa FA-DABA-SMA copolymer causes intracellular disruptions 

of proteins associated with cell growth and proliferation [25]. The mechanism(s) of action for these 

observations is unknown until now. Here, we hypothesized that the cell surface interactions of the 

copolymer cause a decrease in cell expression of cell growth and proliferation proteins observed, 

involving the interaction of the functionalized FA with its FR target. To investigate this, we first 

characterized the expression levels of FRα on the cell surface of MDA MB-231 cells. The data depicted 

in Figure 3A, B, using immunocytochemistry staining with specific anti-FRα antibody confirmed the 

expression of FRα on MDA-MB-231 cells. To confirm these data, we performed flow cytometry to 

quantitate the percentage of MDA MB-231 cells expressing FRα (Figure 3C). 

We also investigated the possible stimulatory effects of the copolymer on FRα following 

treatment of MDA-MB-231 cells with FA (5 µM), SMA (3 µM), FA-DABA-SMA (3 µM), for 24 and 48 

hours. Here, we used the backbone template 350 kDa SMA to confirm that any effects observed at the 

levels of FRα expression on MDA MB-231 cells were the direct result of the functionalized FA moiety 

on the copolymer.  Interestingly, the treatment with the 350 kDa FA-DABA-SMA over 48 hours 

significantly increased the percentage of MDA MB-231 cells expressing FRα compared to the 

untreated controls (p < 0.01) and the 350 kDa SMA (p < 0.05) as depicted in Figures 3B and 3C.  These 

results suggest that the FA-DABA-SMA copolymer has a stimulatory effect of FRα expression on 

MDA MB-231 cells.  
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Figure 3. 350 kDa FA-DABA-SMA stimulates FRα expression in MDA MB-231 cells over 48 hours 

(A) Immunocytochemistry staining for FR in permeabilized MDA-MB-231 cells. Cell images were 

taken at 400× magnification. Blue DAPI stain represents the nuclei, and red staining is the anti- FR 

antibody followed with AlexaFluor 594 secondary antibody for FR expression. (B) Quantification of 

the percentage of MDA MB 231 cells expressing FRα by flow cytometry at 24 and 48 hours of 

treatment with FA (3 µM), SMA (3 µM), and FA-DABA-SMA (3 µM) and untreated control. Data 

represent the mean ± SEM of three independent experiments. The percent cells expressing FRα was 

compared to the untreated control by ANOVA using the uncorrected Fisher’s LSD multiple 

comparisons test with 95% confidence with indicated asterisks for statistical significance, n = 3.   The 

significance of differences is reported in comparison to the untreated control at the respective time 

point, and a comparison between SMA and FA-DABA-SMA NPs. (C) Representative flow cytometry 

shifts of 48 hours from one of three experiments showing the increase in FRα expression on the cell 

surface of MDA-MB-231 cells after treatment with SMA and FA-DABA-SMA and SMA. 

It is noteworthy that the functionalized 350 kDa FA-DABA-SMA might have a dual role in 

increasing FRα expression levels on the cell surface, followed by disrupting the regular FRα 

functions, as previously observed by the reduction of intracellular proteins. The premise of this 

concept is that the 350 kDa FA-DABA-SMA induces the expression levels of FR on MDA MB-231 

cells to mediate its dual functionality and cytotoxicity, using its functionalized FA conjugated to the 

SMA polymer backbone template facilitating active targeting. These findings highlight the 

importance of receptor biology to gain insight into possible cascade effects and intracellular 

disruptions occurring in interacting and disrupting normal receptor behavior. 

2.4. The Cytotoxicity of FA-DABA-SMA Appears to be Dependent on the Interaction of FA and FR in 

MDA MB-231 Breast Cancer Cells  

To further assess whether the functionalized 350 kDa FA-DABA-SMA induces apoptosis, MDA 

MB-231 cells were treated with anti-FRα antibody, FA, FA-DABA-SMA, and SMA at the indicated 

concentration or left untreated as controls at 24 and 48 hours followed with the CellEvent Caspase 

3/7 Green Detection Reagent for 48 hours. As shown in Figure 4, the number of MDA MB-231 cells 

expressing the caspase 3/7 enzyme increased following treatment with the empty 350 kDa FA-DABA-
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SMA at 24- and 48-hour time points. In Figure 4B, caspase levels were analyzed every 2 hours over 

48 hours. There is a consistent increase in caspase activity with cells treated with the 350 kDa FA-

DABA-SMA (purple) compared to untreated cells (blue) and SMA (red) controls. These results are 

consistent with the cell viability assay depicted in Figure 4C, where there is a significant (p < 0.0001) 

reduction in cell viability and proliferation in cells treated with the 350 kDa FA-DABA-SMA 

compared to untreated (p < 0.0001) and SMA (p < 0.0001) controls. 

Interestingly, blocking FR with anti-FRα antibody or free FA in addition to 350 kDa FA-DABA-

SMA, caspase activity decreased as compared to the FA-DABA-SMA treatment alone, as seen in 

Figure 4B. These data are consistent with the results of the WST-1 proliferation assay depicted in 

Figure 4C. Additionally, Table 2 highlights the p values of the effect of blocking FR or adding FA in 

addition to FA-DABA-SMA. These data, in comparison with the observations with the SMA 

backbone polymer template having no cytotoxic effect, suggest that the functionalized FA-DABA-

SMA copolymer is interacting with FR and possibly disrupting other signaling pathways involved 

with apoptosis. These findings support the concept that the functionalized FA on the copolymer is 

the critical moiety driving the cytotoxicity for 350 kDa FA-DABA-SMA. 
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Figure 4. The cytotoxicity of 350 kDa FA-DABA-SMA appears to be due to the interaction of FA and 

FRα. In contrast, the 350 kDa SMA does not affect caspase activity or cell viability.  (A) Cells were 

plated at 100 000 cells/mL. Cells adhered to the well were treated with the indicated agents followed 

by CellEvent™ Caspase 3/7 Green Detection reagent added at a concentration of 5 μM in media. Green 

fluorescent images were acquired by the Incucyte Zoom Imager every 2 hours at 10x magnification. 

(B) Analyses were done using the Incucyte Zoom Imager Software Analyzer to count the number of 

expressing Caspase 3/7 (green) cells. The images are representative of two independent experiments 

performed in triplicates, showing similar results. (C) Comparison of cell viability of MDA MB 231 

cells following treatment over 48 hours using the WST-1 assay (n = 3) performed in triplicates. The 

graph represents the mean ± SEM combined results from two independent experiments compared to 

the untreated control for each treatment by ANOVA using the uncorrected Fisher’s LSD multiple 

comparisons test with 95% confidence with indicated asterisks for statistical significance. ns, not 

significant, * p ≤ 0.01, ** p ≤ 0.001. (D) FA-DABA-SMA affects the morphology and confluency of MDA 

MB 231 cells over 48 hours compared to untreated, and SMA treated cells. Pictures representative of 

three separate experiments (n = 3) performed in triplicates showing similar results. All pictures were 

taken at 10x magnification and sharpened 100%. 

Table 2. Significant p values (n = 3, independent experiments) from Figure 4C. 

 24 Hours 48 Hours 

Untreated vs FA-DABA-SMA p<0.0001 p<0.0001 

Untreated vs anti- FR + FA-DABA-SMA p=0.0007 p=0.013 

Untreated vs FA + FA-DABA-SMA p=0.003 p=0.0009 

Anti- FR vs anti- FR + FA-DABA-SMA p<0.0001 p=0.004 

FA vs FA + FA-DABA-SMA p=0.001 p=0.0021 

 

In addition to reducing proliferation and inducing apoptosis, the 350 kDa FA-DABA-SMA 

copolymer causes morphological changes in MDA MB-231 cells at 48 hours of treatment, as depicted 

in Figure 4D. These morphological cell changes may be due to FA-DABA-SMA disrupting FR 

mediated endocytosis. MDA MB-231 cells are typically spindle-shaped and mesenchymal, as seen in 

the untreated controls and cells treated with the unfunctionalized 350 kDa SMA. This change in the 

morphological cellular features suggests that there may be a phenotypical transition in these cells, 

influencing their migratory and invasive potential. 
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2.5. Functionalized FA-DABA-SMA Reduces the Migratory Potential of MDA MB-231 Breast Cancer Cells 

in a Scratch Wound Assay  

FR is involved in regulating growth-promoting genes, particularly related to cancer stemness 

[27]. This concept, together with the morphological changes after treatment with 350 kDa FA-DABA-

SMA as seen in Figure 4D, suggests that the effects of the copolymer may also influence the migratory 

potential of MDA MB-231 cells. Figure 5A depicts the results from a scratch wound assay on 

untreated controls, 350 kDa SMA, and 350 kDa FA-DABA-SMA on MDA MB-231 cell migration in 

the scratch wound area over 48 hours. The untreated cells and the unfunctionalized 350 kDa SMA 

polymer showed near-complete wound closure. In contrast, the 350 kDa FA-DABA-SMA prevented 

cell migration in the scratch wound closure. Figure 5B represents the quantification of wound width 

(µm) over 48 hours. Both untreated cells (p < 0.01) and those treated with the unfunctionalized 350 

kDa SMA (p < 0.001) have a significant decrease in wound width (µm) after 48 hours compared to the 

zero hours, as expected for the migratory potential of MDA MB-232 cells. However, treatment of the 

cells with the 350 kDa FA-DABA-SMA copolymer drastically disrupts migration in MDA MB-231 

cells as there is no significant decrease in wound width (µm) (p = 0.0589) over 48 hours. The wound 

width (µ m) remains relatively similar between timepoints. These data suggest that the 350 kDa FA-

DABA-SMA copolymer influences migration and invasiveness of MDA MB-231 cells and may alter 

epithelial-mesenchymal transition (EMT).  

To further investigate these phenotypic changes occurring following 350 kDa FA-DABA-SMA 

treatment of MDA MB-231 cells, HES1 and Notch1 protein levels were examined before and after the 

treatment of 350 kDa FA-DABA-SMA. FR binds to its HES1 promoter region. HES1, in particular, is 

involved in stemness and the generation and regulation of cancer stem cells (CSCs) [28]. Similarly, 

Notch1 is also related to stemness and influencing EMT [29]. Using Western blot analyses, the data 

in Figure 5C demonstrate the reduction in both HES1 and Notch1 before and after treatment of MDA 

MB-231 cells with the 350 kDa FA-DABA-SMA copolymer. The quantification of the band densities 

of the Western blot results presented in Figure 5D shows a decrease in protein levels after treatment 

with 350 kDa FA-DABA-SMA. These results suggest that 350 kDa FA-DABA-SMA copolymer 

induces a cascade of intracellular disruptions in MDA MB-231 cells, thereby influencing the cell’s 

invasiveness and ability to migrate. This regulatory effect induced by the 350 kDa FA-DABA-SMA 

copolymer may be due to the disruption of CSCs via the dysregulation of FR, HES1 and Notch1. 

 

Figure 5. The 350 kDa FA-DABA-SMA blocks the migratory potential of MDA MB-231 cells using the 

Scratch Wound assay by disrupting Notch1 and HES1 expression. A) FA-DABA-SMA affects the 
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morphology, confluency, and migration of MDA MB 231 cells over 48 hours compared to untreated, 

and SMA treated cells using a Scratch Wound assay. Pictures representative of two separate 

experiments (n = 2) performed in triplicates showing similar results. All pictures were taken at 10x 

magnification and sharpened 100%. Scale bar represents 300 μm. B) Quantification of wound width 

(μm) at time 0, 24, and 48 hours. Results were compared by a one-way ANOVA at a 95% confidence 

using Fisher’s LSD test. Error bars represent SEM C) Preliminary western blot analysis showing FA-

DABA-SMA decreases HES1 and Notch1 protein levels in MDA MB-231 breast cancer cells after 48 

hours (+) compared to untreated controls (-). Data presented as one of two similar experiments (n = 2) 

D) Quantification of relative band density between untreated and FA-DABA-SMA treated MDA MB 

231 breast cancer cells. 

2.6. The 350 kDa FA-DABA-SMA Copolymer affects the cell viability of MCF-7 Breast Cancer Cells  

Using MCF-7 breast cancer cells, the results in Figure 6B indicate that only the functionalized 

350 kDa FA-DABA-SMA copolymer reduces the cell viability compared to untreated and SMA 

controls. These data suggest the implications of NP-cellular interactions through conjugated FA 

interacting with FRα, and also indicates the possible tissue-specific role of the 350 kDa FA-DABA-

SMA is likely due to the differential roles of FA- FRα in different malignancies.  

 

Figure 6. The cell viability of MCF-7 breast cancer cells following treatment with (A) 350 kDa FA-

DABA-SMA, and (B) anti-FRα antibody, free FA, and SMA using the WST-1 cell proliferation assay. 

A) Cells were plated 100 000 cells/mL per well in triplicates. At each time point, the WST-1 reagent 

was added to each well. The cells were incubated for 2 hours, after which the plates were read on a 

colorimetric plate reader. The data are cell viability as a mean percent of untreated control ± SEM of 

three independent experiments performed in triplicates. The cell viabilities were compared to the 

untreated control for each time point by an unpaired t-test at a 95% confidence. B)  WST-1 proliferation 

assays performed in triplicates. The graph represents the mean ± SEM combined results from three 

independent experiments compared to the untreated control for each treatment by ANOVA using the 

uncorrected Fisher’s LSD multiple comparisons test with 95% confidence with indicated asterisks for 

statistical significance. *** p ≤ 0.001, **** p ≤ 0.0001. 

3. Discussion  

Many nanoparticles (NP), mainly with organic properties, are designed to be chemically inert 

by acting as benign carriers [30]. As our understanding of the physiochemical interactions of NPs 

within biological systems advances, it is clear that NPs designed to be inert can actively interact with 

cells, causing a cascade of intracellular disruptions, with the ability to promote therapeutic effects. 

The nano-biointerface describes the dynamic physiochemical interactions, kinetics, and 

thermodynamic exchanges between the NP and a biological surface, such as a cell membrane [31]. 

Understanding these interactions, a point of contact is essential in understanding the functionality 

and cellular fate of the NP [32].  

Typically, active targeting NPs will bind to their target receptor, inducing receptor-mediated 

endocytosis. The binding of the NP results in a localized decrease in Gibbs free energy allowing the 
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cell membrane to wrap around the NP, forming a closed vesicle structure [30]. The uptake of NPs is 

size-dependent, which is likely related to the membrane wrapping process. Since small NPs have less 

ligand-to-receptor interactions compared to larger NPs, several small NPs need to bind to receptors 

within proximity in order to produce enough free energy to facilitate membrane wrapping [30].  This 

concept may explain why the large 350 kDa FA-DABA-SMA continuously influences cell behavior 

compared to the small-sized 20 kDa FA-DABA-SMA as demonstrated in Figure 2.  

The larger NPs also cluster receptors, further promoting cellular uptake [30]. Larger NPs require 

more receptors facilitating a slower wrapping process. They also tend to arrange themselves linearly, 

increasing their contact with the cell surface [33]. Internalization is optimized when there is no ligand 

shortage and no localized receptor shortage on the cell surface [30].  This may explain the stimulatory 

effect the 350 kDa FA-DABA-SMA to have on FRα expression in MDA MB-23 breast cancer cells 

(Figure 3B and C). It is plausible that the 350 kDa FA-DABA-SMA is clustering FRα requiring more 

of the receptor to be expressed on the surface instead of intracellularly. This observation may also 

explain why the non-functionalized 350 kDa SMA backbone template does not have a significant 

effect on FRα expression levels. The cell-type-specific toxicity of the large 350 kDa FA-DABA-SMA 

(Figure 2 and Figure 6) is dependent on the FRα expression levels, which differ among tissue types, 

and the differential role of FA in each cell type (Figure 1).  

The receptor-ligand binding of larger NPs allows for transmembrane penetration due to the 

interaction force is sufficient. However, this may be harmful to cells as large membrane pores must, 

therefore, open to allow for particle entry contributing to the toxicity, as seen with the 350 kDa FA-

DABA-SMA [34]. Also, simulation studies have now begun to study the NP-cell interface, with a 

focus on adhesion and possible cytotoxic effects. For example, weak NP-cell adhesion results in 

insufficient endocytosis, whereas strong NP-membrane adhesion may trap the NP within the 

membrane, causing a potentially toxic effect and induce apoptosis [35]. Therefore, it is essential to 

understand the binding activity of the 350 kDa FA-DABA-SMA NP with the cell surface and should 

be investigated in future studies. 

When NPs are internalized via endocytosis, they are then confined to membrane-lined vesicles 

that are transported throughout the cell. The physiochemical properties of NPs further regulate their 

interaction with organelles. For example, NP translocation to the nucleus is size-dependent [32]. 

Additionally, targeting moieties can influence intracellular trafficking, directing NPs to specific 

organelles [32]. Due to the novel role of FRα translocating to the nucleus and acting as a transcription 

factor, the functionalized FA-DABA-SMA may facilitate trafficking towards the nucleus causing 

possible transcriptional disruptions. Such transcriptional disruptions may result in a reduction of 

protein expression levels, as seen in Figure 5C and D and reported in our previous study [25].  

The 350 kDa FA-DABA-SMA copolymer is capable of some degree of intracellular trafficking 

and subsequent cellular disruptions. The active intracellular movement of NPs requires an 

endosomal escape. pH responsive NPs appear to be particularly ideal [36]. With endosomes and 

lysosomes having an acidic pH, NPs designed to be reactive to pH collapse from their folded 

structure, increasing in volume. This increase in volume helps facilitate endosomal escape by causing 

either an endosome or lysosome to rupture, allowing for the NP to be released within the cytoplasm 

[36]. Endosomal escape is required to avoid lysosomal degradation of the NP and to facilitate 

intracellular interactions [36]. Based on the size and pH sensitivity of FA-DABA-SMA, endosomal 

escape, and intracellular trafficking is apparent and requires further investigation. 

The nano-biointerface heavily focuses on the initial point of contact between an NP and the cell 

surface; however, a sufficient understanding of target receptor biology is crucial in understanding 

this interface. It is noteworthy that receptors not only provide adhesion force, they also carry 

translational entropy in which there is redistribution of the receptors on the entire cell membrane 

[34]. Thus, this nano-biointerface disrupts downstream cell signaling. Additionally, NP-bound 

ligands can have differential effects on cell signaling when compared with the free ligand [30]. 

Therefore, the NP surface is a region of highly concentrated ligands, increasing avidity, and 

potentially altering cell signaling through disrupting regular receptor functions [30].  
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It is known that FA-FRα signaling is essential during embryogenesis, particularly in neural 

development, regulating neural crest, and neural tube formation [37,38]. Disruption of this signaling 

during development results in craniofacial abnormalities, abnormal heart defects, and neural tube 

defects [38]. Additionally, the role of FRα in maintaining stemness is relatively novel. Specifically, 

FRα has important transcriptional roles in regulating the expression of pluripotent genes, including 

Oct4 and HES1 [26,37,38]. These genes maintain the stem-like characteristics of neural crest cells while 

they are migrating during developmental stages [38]. Interestingly, this FA-FRα signaling and 

regulation of stemness are prevalent in several malignancies [10,39,40]. Therefore, disrupting this 

signaling may provide significant therapeutic potential.  

Results from the present and our other reports demonstrate intracellular disruptions via the 

interaction with FRα by the decrease in expression of p53, STAT3, c-Myc [25], and HES1 and Notch1 

(Figure 5C and D) after-treatment of the 350 kDa FA-DABA-SMA. As the 350 kDa FA-DABA-SMA 

binds to FRα, the receptor function, including localization, may be disrupted. For example, FRα 

transcriptionally regulates Oct4. Interestingly, Oct4 interacts with STAT3 and c-Myc, where the 

STAT3/Oct4/c-Myc signaling cascade regulates stemness and mediates doxorubicin resistance in 

TNBC [41]. The transcriptional role of FRα is disrupted by the 350 kDa FA-DABA-SMA copolymer 

by dysregulating Oct4 and subsequently causing a reduction in STAT3 and c-Myc.  

Furthermore, the treatment of the 350 kDa FA-DABA-SMA results in morphological changes 

where the MDA MB-231 cells lose their characteristic spindle-shaped, as demonstrated in Figure 4D. 

This spindle-shape is related to the mesenchymal, stem-like phenotype of aggressive and highly 

invasive cancer cells, typically mediated by a subpopulation of CSCs [41]. It appears the 350 kDa FA-

DABA-SMA reduces the stemness of MDA MB-231 cells as supported by results from Figure 5, where 

there is a reduction in migration and reduced expression of HES1 and Notch1. 

CSCs are characterized by their ability to sustain rapid proliferation, self-renewal, invasion, 

metastasis, and drug resistance [28]. HES1 is essential in maintaining stem cells in their 

undifferentiated state [42]. CSCs are similar to normal stem cells in that they maintain an 

undifferentiated state, are resistant to cell death, and maintain the ability of self-renewal [28]. 

Specifically, the Notch-HES1 pathway is significant in maintaining breast cancer stem cells, observed 

in invasive cells, and related to metastasis [28]. Further, during EMT, HES1 has been found to act as 

a regulator, inducing, and maintaining phenotypic plasticity [28]. Additionally, genome-wide 

functional analysis has determined HES1, among other novel genes, to regulate p53 activity [43].  

HES1 activates p53 through repressing HDM2 transcription [43]. Although several mechanisms 

regulate p53, including localization, phosphorylation, acetylation, and degradation, protein stability 

is essential. HDM2 modulates p53 stability, directing nuclear export and proteasomal degradation 

[43].  

HES1 is also regulated by Notch signaling, which can act as an oncogene or tumor suppressor 

in a cell-type dependent manner [28]. It is, therefore, postulated that cell-type-specific crosstalk occurs 

between Notch and p53 transduction in which Notch activates p53 by upregulating target genes such 

as HES1 [43].  This is further supported by Notch signaling supporting CSC populations in some 

tumors. For example, when Notch signaling was inhibited in MCF-7 breast cancer cells, there was a 

significant reduction in tumor-initiating cells, thus eliminating the subpopulation of CSCs [44]. 

Additionally, the accumulation of the cytoplasmic domain of Notch1 has been reported in many 

breast cancer cell lines, indicating active Notch signaling supporting CSCs in mammary tissue [44].  

In the present study, the 350 kDa FA-DABA-SMA copolymer leads to the reduction of HES1 and 

Notch1, resulting in morphological changes, reduced migration, and apoptosis. These proteins are a 

part of the complex, interconnected signaling paradigms regulating stemness, and in some way, are 

regulated by FRα in breast cancer, as summarized below in Figure 7. This signaling appears to be 

specific to breast cancer, possibly explaining the cell-type-specific toxicity seen in Figures 2 and 6. In 

addition to being a drug delivery vehicle, the 350 kDa FA-DABA-SMA copolymer has dual 

therapeutic anti-cancer potential in disrupting FRα signaling, potentially reducing EMT, stemness, 

and drug resistance.  
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Figure 7. Simplified schematic of possible FRα signaling in breast cancer. FRα transcriptionally 

regulates HES1 and Oct4. Oct4 interacts with STAT3 and c-Myc to promote stemness and resistance. 

HES1 inhibits HDM2 increasing p53 activity. p53 is highly mutated in cancer. Particularly in breast 

cancer, p53 becomes oncogenic facilitating EMT. Additionally, there is evidence of Notch-HES1 

crosstalk further influencing p53 oncogenic activity. 

4. Materials and Methods  

4.1. Cell Lines and Culturing  

MDA MB-231 (ATCC®  HTB-26™) is a human triple-negative breast cancer cell line whose site of 

origin was a metastatic pleural effusion site of a 51-year-old woman with metastatic breast cancer. 

MDA-MB-231 is a highly aggressive invasive ductal adenocarcinoma and has a genetic profile that 

expresses BRAF, CDKN2A, KRAS, NF2, TP53, and PDGFRA mutations [45]. MCF-7 (ATCC®  HTB-

22™) is a human breast adenocarcinoma cell line originating in a metastatic pleural effusion site of a 

woman 69 years of age with metastatic breast cancer and is ER+. DU-145 (ATCC®  HTB-81™) is a 

human prostate cancer cell line derived from a metastatic brain lesion from a 69-year man with 

prostate cancer.  

All cell lines are grown in standard culture conditions containing 1xDMEM medium 

supplemented with 10% fetal bovine serum (FBS; HyClone, Logan, UT, USA) and 5µg/mL 

plasmocin™ (InvivoGen, San Diego, CA, USA). All cells were incubated at 37°C in a 5% CO2 

incubator. Cells were sub-cultured as needed (approximately every 3–5 days) using TrypLE Express 

(Gibco, Rockville, MD, USA). 

4.2. FA-DABA-SMA Copolymer  

This copolymer is composed of a hydrophobic group (styrene) alternating with a hydrophilic 

group (maleic acid) along the polymeric chain (poly (styrene-alt-maleic anhydride), SMA). The NP 

can self-assemble into nanostructures at physiological pH with a hydrophobic inner core allowing 

for the encapsulation of hydrophobic drugs. Previously, the synthesis of FA-DABA-SMA involves 

powdered SMA being added to the coupling agent DCC/NHS at a 1:10 ratio with FA-DABA at room 

temperature and left overnight. FA-DABA-SMA is then dialyzed in water to remove the DMSO 

solvent and is subsequently freeze-dried. The NP is characterized via HNMR, IR, and DLS. FA-

DABA-SMA is dissolved in 10N NaOH and 1 x PBS. 12N HCl is added to bring pH to 7-7.3. Two 

variations of the NP were used in this study to test the effects of size and shape. The large NP has an 
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MW of 350,000 g/mol (350kDa) with an Rh of 6 nm and self-assembles into sheets. The small NP has 

an MW of 20,000 g/mol (20 kDa) with an Rh of 3 nm and self-assembles into cylinders.  

4.3. Flow Cytometry  

MDA MB-231 cells were harvested and counted for a final concentration of 1.0 × 106 cells/mL. 

All subsequent steps were done on ice. Cells were washed 2× in 2% FBS + 1× PBS before the primary 

antibody addition. The cells were treated with 100μL of FR (MAB5646) primary monoclonal mouse 

antibody at a final concentration of 10μg/mL and incubated for 60 minutes. Secondary control cells 

were treated with 100μL of 2% FBS + 1× PBS and incubated for 60 minutes. The cells were then washed 

2× with 2% FBS + 1× PBS followed by incubation for 60 minutes with 100μL of secondary anti-mouse 

antibody AlexaFluor 488 at a final concentration of 10μg/mL. The cells were then washed 2× with 2% 

FBS + 1× PBS and fixed in 1mL of 4% paraformaldehyde solution before flow cytometry analysis. 

4.4. Folic Acid Receptor Alpha 

Cells were plated at a density of 10 000 cells/well in 96-well plates for WST-1 experiments, 

Caspase 3/7 assays, and Live Cell tracking. For Scratch Wound assays, cells were plated at a density 

of 50 000 cells/well in 96-well plates. Following plating, cells were incubated with 10µg/mL of anti-

FR (MAB5646) antibody for 2 hours to block the FR. Each experiment type was performed 

following the respective procedure outlined in each section. 

4.5. Immunocytochemistry  

Cells were plated at a density of 100 000 cells/mL on glass coverslips in 24 well plates. Cells were 

treated for 48 hours with empty FA-SMA-DABA. At the end the time point, cells were washed and 

fixed with 4% PFA for 30 minutes followed by blocking for 1 hour in 10% FBS + 0.1% Triton X-100 + 

1x PBS (note: 0.1% Triton x-100 was omitted from blocking buffer for membrane only stains to prevent 

intracellular non-specific binding). Cells were washed with 1x PBS 3x for 10 minutes followed by the 

addition of the primary antibody which was diluted to 1:200 or a 10µg/ml concentration using a 1% 

FBS + 1x PBS + 0.1% Triton X-100 (note: 0.1% Triton x-100 was omitted from antibody buffer for 

membrane only stains to prevent intracellular non-specific binding) overnight at 4°C. The primary 

antibody used for these studies was FR (MAB5646). Cells were washed 3x for 10 minutes with 1x 

PBS and incubated for 1 hour with AlexaFluor 594 secondary antibodies. Cells were then washed 5x 

for 10 minutes with 1xPBS (note: one wash included 0.1% Triton x-100 to permeabilize cells for DAPI). 

DAPI containing mounting media (BioLynx MJS VECTH1200) was added to slides, and coverslips 

were inverted on to mounting media droplets to counterstain nuclei.  

4.6. WST-1 Proliferation Assay  

The water-soluble tetrazolium salt-1 (WST-1) assay is a direct measure of metabolically active 

cells, based on the reduction of a tetrazolium compound to its soluble formazan (orange) derivative 

by metabolically active cells [46]. The absorbance of the reaction at 420 nm directly correlates to the 

number of living cells in culture. 

Cells were plated at a density of 10 000 cells/well in 96 well plates, incubated, and allowed to 

adhere overnight. Adhered cells were treated with their respective treatment conditions and 

concentrations or were left as the untreated controls. At the 24, 48- and 72-hour time points following 

treatment (Days 1, 2, and 3, respectively), media was removed, and 100μL of 10% WST-1 reagent 

(Roche Diagnostics, Laval-des-Rapides, QC, Canada) diluted in cell culture media were added to 

each well. The 96 well plates were then incubated at 37 °C for 2 hours before taking an absorbance 

reading using the SpectraMax250 machine and SoftMax software. Cell viability measured as a 

percentage of untreated control was illustrated as a bar graph using GraphPad Prism software 

(GraphPad Software, La Jolla, CA, USA). 

The following formula was used to determine cell viability as a percentage of control (Day 0) 

after 24, 48, and 72 hours of drug treatment (Days 1, 2 and 3, respectively): 
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[(𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑖𝑛 𝑔𝑖𝑣𝑒𝑛 𝑑𝑟𝑢𝑔 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑜𝑛 𝑑𝑎𝑦 1, 2 𝑜𝑟 3) – (𝑚𝑒𝑑𝑖𝑎 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒)] × 100 

(𝑢𝑛𝑡𝑟𝑒𝑎𝑡𝑒𝑑 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒 𝑜𝑛 𝑑𝑎𝑦 0) − (𝑚𝑒𝑑𝑖𝑎 𝑎𝑏𝑠𝑜𝑟𝑏𝑎𝑛𝑐𝑒) 

4.7. Caspase 3/7 Assay  

Cells were plated at a density of 10 000 cells/well in a 96-well plate and incubated at 37°C in a 

5% CO2 incubator overnight. Cells were treated with 100µL of their respective conditions followed 

by caspase staining (CellEvent™ Caspase 3/7 Green Detection Reagent, Thermo Fisher Scientific, 168 

Third Avenue, Waltham, MA 02451, United States) diluted to the manufacturer’s recommended 

concentration of 5 µM in 5% FBS + 1× PBS from the stock solution of 2 mM. The assay plate was placed 

in the Incucyte ZOOM® with scan type selected to “caspase 3/7” and running every hour over 48 hrs. 

Images obtained are representative of 6 images over two separate experiments in triplicates. Image 

analysis measures fluorescence via Green Object Count per picture (1/𝑚𝑚2). 

4.8. Live Cell Imaging 

Cells were plated at a density of 10 000 cells/well in a 96-well plate and incubated at 37°C in a 

5% CO2 incubator overnight. 100µL of respective treatments were added to each well. The assay plate 

was placed in the Incucyte ZOOM®  with scans that captured images every 2 hrs over 48 hrs. Phase-

contrast images were obtained at 10× magnification and are representative of 6 images over two 

independent experiments in triplicates.  

4.9. Scratch Wound Assay  

Cells were plated at a density of 50 000 cells/well in an IncuCyte®  ImageLock 96-well plate and 

incubated at 37°C in a 5% CO2 incubator for 8-16 hours. Using the WoundMaker™ and following the 

wounding procedure, precise and reproducible wounds were created in all wells. After wounding, 

the media were aspirated, and wells were washed up to two times with culture media followed by 

the addition of 100µL of treatments to each well.  The assay plate was placed in the Incucyte ZOOM 

® with scan type selected to “scratch wound” and “wide mode” running every 2 hours over 48 hours.  

Phase-contrast images obtained at 10× magnification and are representative of three separate 

experiments in triplicates. Wound width was manually measured at three points per image (right, 

middle, left) to obtain an average. Average wound widths were graphed to show wound closure over 

48 hours for each respective well.  

4.10.  Western Blot  

Cells were plated at a density of 600 000 cells/well in a 6-well plate and incubated at 37°C in a 

5% CO2 incubator overnight. Cells were treated with 1mL of their respective treatments. After 48 

hours, cells were lysed and centrifuged at 14 000 g for 10 minutes. Protein supernatant was collected, 

and a DC™ Protein Assay was completed to quantify the amount of protein in the samples. Samples 

were heated in sample buffer (1:100 ß-mercaptoethanol (BME) to zymogram loading buffer) at 95ºC 

for 5 minutes. Samples were loaded, and the gel was running at 150V for 90 minutes in a 1x running 

buffer. Membranes were soaked in methanol for 5 minutes, followed by soaking in blotting buffer for 

10 minutes. Sponges and filter paper were soaked in blotting buffer for 10 minutes. Following 

membrane transfer, the membrane was blocked in 5% skim milk in 1 x TBS for 1 hour at room 

temperature. The membrane was cut, and primary antibodies were diluted to 1:1000 in 5% skim milk 

in 1x TBS rocking overnight at 4ºC. Primary antibodies used in this study were HES1 (D6P2U), 

Notch1 (D1E11), and ß-actin (Sigma A5441). The membrane was washed 3 x 15 minutes in 1x TBS 

and incubated for 1 hour with secondary antibodies either diluted to 1:3000 for goat-anti mouse IgG 

HRP (Biorad 170-6516) or 1:10 000 for goat anti-rabbit IgG HRP (Abcam ab97051) in 5% skim milk in 

1x TBS. The membrane was washed 3 x 15 minutes in 1 x TBS and then imaged with the Azure c600 

Series system. Band densities were quantified using ImageJ. 
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4.11. Statistical Analysis  

Data are presented as the means ± standard error of the mean (SEM) from two or three repeats 

(n=2 or n=3) of each experiment performed in triplicates. All statistical analyses were performed with 

GraphPad Prism software. For experiments with three independent experiments, results were either 

compared with a one-way analysis of variance (ANOVA) at 95% confidence using Fisher’s LSD test 

or results were compared with an unpaired t-test at 95% confidence. Statistical significance is 

indicated by an asterisk; * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001. 

5. Conclusions 

This report demonstrates the therapeutic potential of a functionalized 350 kDa FA-DABA-SMA 

copolymer in the treatment of breast cancer. The 350 kDa FA-DABA-SMA is a relevant drug delivery 

vehicle for breast cancer in addition to being able to disrupt intracellular signaling. There are no 

implications in targeting FRα as it is not responsible for folate metabolism or cytoplasmic transport 

of folate. Additionally, healthy breast tissue has highly restricted FRα expression levels, limited to 

the luminal membrane of secretory ductal cells. Therefore, FRα is a valuable target in several cancers, 

particularly breast cancer, in which this delivery vehicle therapeutically exploits through dual 

mechanisms of action.  
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