

1 *Type of the Paper (Research Article.)*

2 **PhotonLabeler: An Inter-disciplinary Platform for**

3 **Visual Interpretation and Labeling of ICESat-2**

4 **Geolocated Photon Data**

5 **Lonesome Malambo^{1,*} and Sorin Popescu¹**

6 ¹ Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX;

7 * Correspondence: Correspondence mmoonga@tamu.edu;

8 **Abstract:** NASA's ICESat-2 space-borne photon-counting lidar mission is providing global
9 elevation measurements that will provide significant benefits to a variety of bio-geoscience
10 research applications. Given the novelty of elevation and the derived data products from the
11 ICESat-2 mission, the research community needs software tools that can facilitate photon-level
12 analyses to support product validation and development new analysis methods. Here, we
13 describe *PhotonLabeler*, a free graphic user interface (GUI) for manual labeling and visualization
14 of ICESat-2 Geolocated Photon data (ATL03). Developed in MATLAB, the GUI facilitates the
15 reading and display of ATL03 Hierarchical Data Format (HDF) files, the manual labeling of
16 individual photons into target classes of choice using a number of point selections tools and
17 enables eventual saving of labeled data in ASCII format. Other capabilities include saving and
18 loading of labeling sessions to manage labeling tasks over time. We expect labeled data generated
19 using the application to serve two main purposes. First, serve as ground truth for validating
20 various products from ICESat-2 mission, especially for study sites around the world that do not
21 have existing reference datasets such as airborne lidar. Second, serve as training and validation
22 data in the development of new algorithms for generating various ICESat-2 data products. We
23 demonstrate the first use case through a validation case study for the land and vegetation product
24 (ATL08), which provides canopy and terrain height estimates, over two sites. For the first site,
25 located in northwestern Zambia, we used ICESat-2 ATL03 data acquired at night and for our
26 second site in Texas, US, we used ATL03 data acquired during the day. The *PhotonLabeler*
27 application is freely available as a compiled MATLAB binary to enable free access and utilization
28 by interested researchers.

29 **Keywords:** ICESat-2; Photon-counting lidar, Photon Labeling, Visualization, ATL03, ATL08,
30 Visual Interpretation, Solar-induced noise

31

32 **1. Introduction**

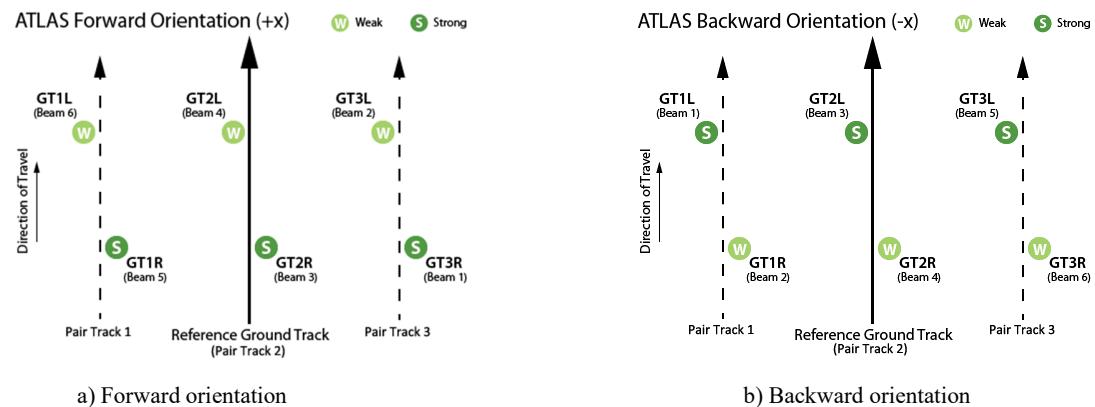
33 NASA'S ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) space-borne lidar mission
34 launched in September 2018. A follow-up spaceborne lidar mission to the first ICESat mission,
35 ICESat-2 carries the Advanced Topographic Laser Altimeter System (ATLAS) lidar instrument, a
36 photon-counting lidar that uses a green (532 nm) laser for range measurement. The ATLAS
37 instrument has notable advantages over its predecessor GLAS sensor including a reduced laser
38 footprint (~14-17 m diameter reduced from ~70 m diameter) and an increased along-track sampling
39 through higher pulse-repetition rate (10 kHz or about 0.70 m footprint spacing). Other
40 improvements include the increased across-track sampling by partitioning the emitted laser into
41 multiple profiling strong and weak beams [1,2]. Since its launch, ATLAS has provided
42 unprecedented high-resolution three-dimensional along-track measurements of ice sheets, sea ice,

43 vegetation canopies, inland water and clouds providing opportunities for transformational Earth
44 science and vegetation science research [3-5].

45 The single-photon counting technique utilized by ATLAS differs in a fundamental way from
46 conventional lidar sensing as ranging is achieved at an individual photon scale as opposed to
47 sensing energy peaks of backscattered laser energy [6]. Using photon time of flight values and
48 measurements from ancillary systems such as GPS each photon is precisely geolocated by
49 determining its time, latitude, longitude, and height to generate the Geolocated Photon Data
50 (ATL03)[7]. Photons reflected from the surface along with those from the atmosphere or solar
51 radiation are detectable which usually results in a combination of signal and noise photons. Thus,
52 ATL03 data tends to exhibit higher levels of noise for daytime acquisition given the higher impact
53 of solar background illumination [6,8]. Notwithstanding the presence of noise in the data, ICESat-
54 2 mission, being a space-based instrument, has improved the possibility to characterize the Earth's
55 surface from local to global scales. Utilizing the 532 nm wavelength on the ATLAS instrument has
56 also created opportunities for both surface and bathymetric mapping as the green energy can also
57 penetrate water and interact with the sub-surface in addition to its surface and vegetation
58 interactions [4,9,10]. ICESat-2 ATL03 photon data is enabling the generation of various standard
59 data products for land ice, sea ice, the atmosphere, vegetation and land, oceans and inland water
60 applications, which are available from the National Snow & Ice Data Center (NSIDC) website
61 (<https://nsidc.org/data/icesat-2/data-sets>).

62 The availability of ICESat-2 products has spurred various studies to validate the products [11],
63 develop alternative algorithms to generate similar datasets [2] or derive other products based on
64 available products [4]. In those studies, the availability of reference data is a critical component to
65 enable comparisons with existing products or assessment of developed algorithms, and airborne
66 lidar data predominantly played this vital role. In Wang et al. [10] airborne lidar data were used to
67 validate ground elevation and vegetation heights from the ATL08 product. Similar assessments
68 have been carried out for land and vegetation height metrics [11]. Some studies also used airborne
69 lidar data to simulate ICESat-2 data prior to launch of the mission to enable development of noise
70 filtering algorithms [2]. However, airborne lidar data are not be available in all areas or might be
71 outdated to allow for an objective evaluation of current ICESat-2 products. In addition, there are
72 assessments that may require a photon level understanding such as noise filtering, photon
73 classification or assessing sources of error that airborne lidar data might not adequately support.
74 In such cases, expert manually labeled photon data developed by direct interpretation of raw
75 ATL03 photon data can facilitate such analyses. Manually labeled data also eliminates positional
76 errors due the reference data, which enhances the overall analysis. Visual interpretation of data is
77 not new in remote sensing and has supported various studies where ground truth data were not
78 available [12-14]. Manually labeling photons is analogous to aerial photo interpretation consisting
79 in identification of features in remote sensing images through visual interpretation. Scientific
80 software tools allowing the display and labeling of photon data would enhance the development
81 of labeled datasets to support product validation and development of analysis methods.

82 In this paper, we describe *PhotonLabeler*, a new free software tool for labeling and visualization
83 of ATLAS geolocated photon data. Other software tools for working with ICESat-2 data are
84 available including PhoReal (<https://github.com/icesat-2UT/PhoREAL>), the ICESat-2 Visualizer
85 (<https://icesat-2-scf.gsfc.nasa.gov/>) and web-based OpenAltimetry platform
86 (<https://openaltimetry.org/>). These tools have focused mainly on the visualization of ICESat-2 data,
87 data sub-setting and format conversion but do not offer labeling functionality as designed in the
88 *PhotonLabeler*. The ICESat-2 Visualizer also has access limitations – from our check of the website,
89 one needs an approved account to access it. The *PhotonLabeler* can support development of labeled
90 reference data for a variety of assessments including ice, land and vegetation elevation worldwide.
91 The tool also serves as a platform for development of new or alternative algorithms for deriving
92 various height measurements from ICESat-2 geolocated photon data by facilitating the collection


93 of needed training data. We describe the general functionality of the application including reading
 94 and display of ATL03 data, labeling individual photons and exporting labeled data for further
 95 analyses. To demonstrate applicability of this software to suggested assessments, we also include
 96 a case study for validating canopy and terrain heights from the ATL08 product. We collected
 97 labeled photon data using PhotonLabeler from ICESat-2 ATL03 data over two sites, one in
 98 northwestern Zambia and the other in eastern Texas in the United States and compared height
 99 estimates generated from them with ATL08 height estimates.

100 **2. Materials and Methods**

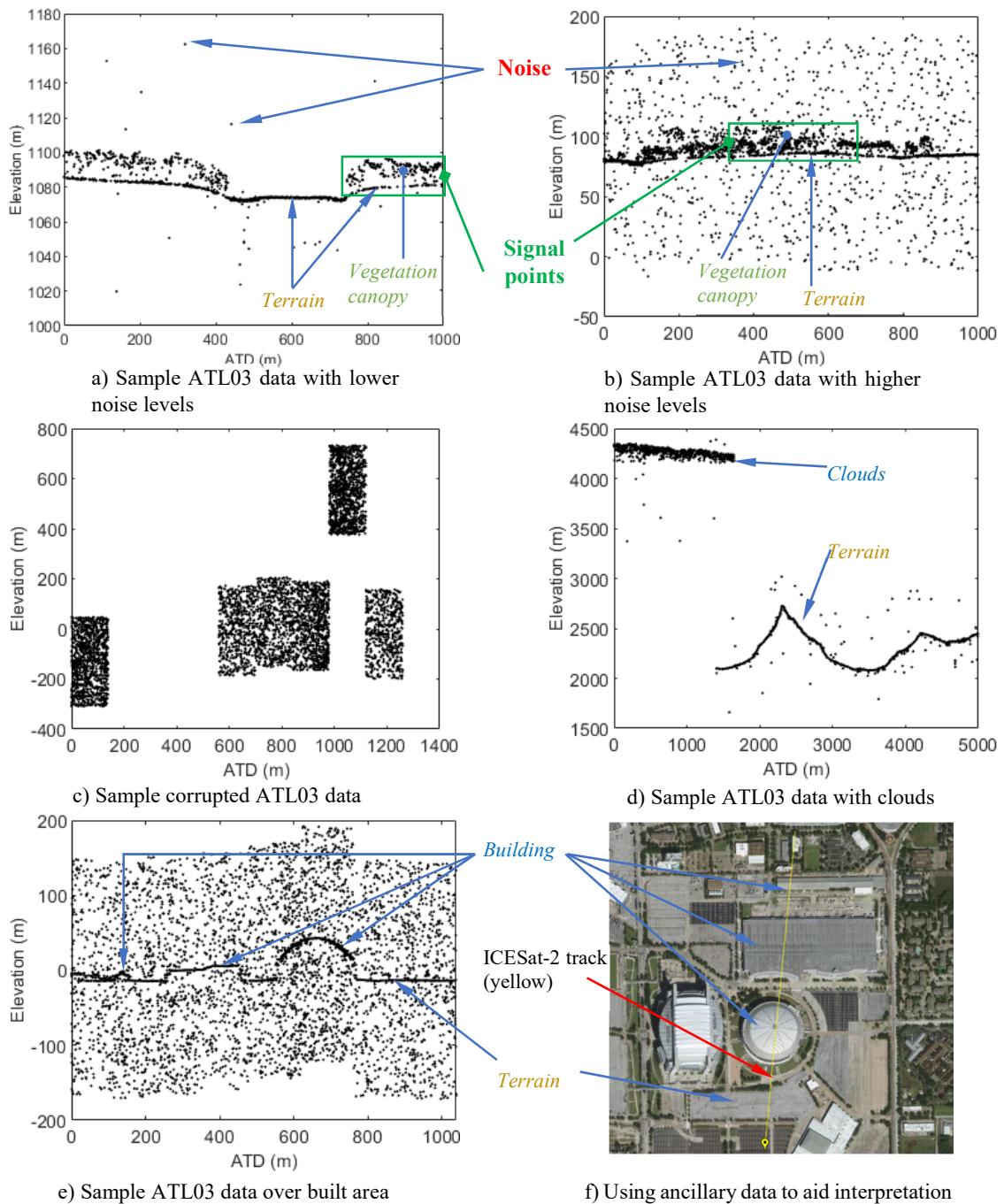
101 **2.1 ATL03 data**

102 **2.1.1 Data description and organization**

103 ICESat-2 ATL03 data, in HDF format, are the main input to the *PhotonLabeler* application for
 104 visualization and labeling. ATL03 data (<https://nsidc.org/data/atl03>) provide time, latitude,
 105 longitude, and ellipsoidal height for each detected photon in the WGS-84 reference frame. The
 106 ATL03 data are organized by ground track, with ground tracks 1L and 1R forming the first pair,
 107 ground tracks 2L and 2R forming middle pair, and ground tracks 3L and 3R forming last or third
 108 pair [7]. The designation of which track is weak or strong depends on the direction of travel of
 109 ATLAS (Figure 1) - in forward orientation strong beams are mapped to the right (R) beams and
 110 weak beams to the left (L) tracks, and vice versa [7]. All the point data for each respective ground
 111 track can be accessed from the heights sub-group (/gtx/heights). For more details about the
 112 configuration of the ground tracks and data attributes in the ATL03 HDF file, we refer an interested
 113 reader to the ATL03 Algorithm Theoretical Basis document (ATBD)[7].

114

a) Forward orientation


b) Backward orientation

115

Figure 1: Ground track (GT) naming convention: a) ATLAS oriented in the forward (instrument
 116 coordinate +x) direction, b) ATLAS oriented in the backward (instrument coordinate +x) direction.
 117 Image credit: (Neumann et al. 2019).

118 **2.1.2 Visualizing and interpreting ATL03 data**

119 ATL03 data are profiling data, thus provide sample cross-sectional views of the observed area.
 120 As such, ATL03 data are usually visualized by plotting photon elevation values (y-axis) against
 121 time or along-track distance (ATD) values (x-axis) (Figure 2). ATL03 data could also be visualized
 122 in 3D space by plotting latitude, longitude and elevation values. For interpretation and labeling
 123 purposes, 2D views are generally sufficient.

124

125

126

127

128

129

130

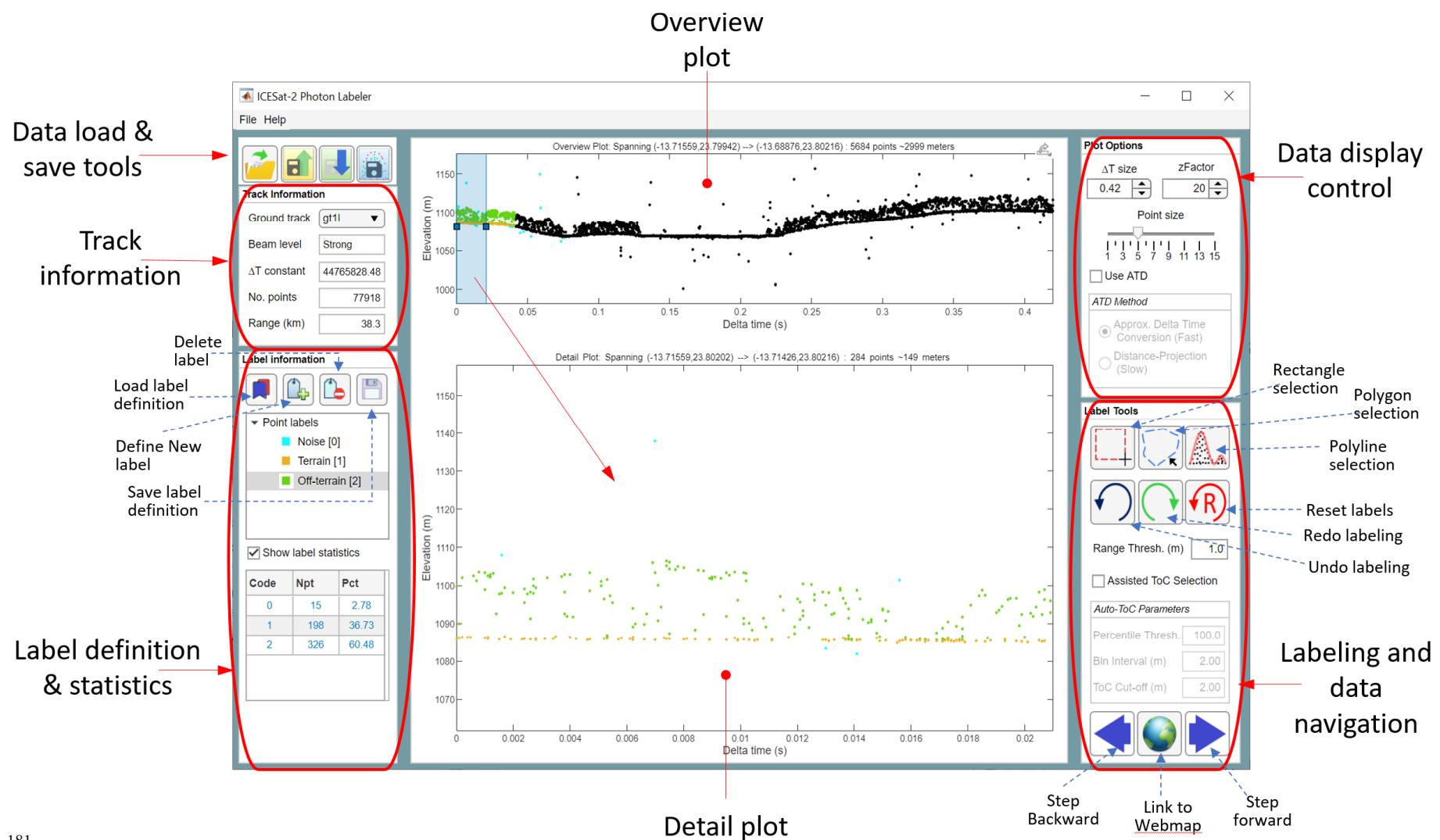
131

132

133

134

Figure 2: Interpretation of ATL03 data. Observing point distribution differences is useful in interpreting noise (random) and signal (clustered) points: a) Sample ATL03 data with lower noise levels over a site in north-western Zambia; b) Sample ATL03 data with higher noise level over a site in eastern Texas, United States; a) and b) also show further classification of signal points into terrain (lower local elevation variation) and vegetation (above terrain and exhibit higher local elevation variation); c) Sample ATL03 data corrupted by instrument errors, which could be interpreted as noise. d) Samples data with cloud points, which are identifiable by their significant elevation values compared to terrain points; e) Interpretation of ATL03 data over a built area in Houston, Texas. Shape attributes and regularity of surface is key to differentiating them from terrain; f) Using ancillary image data to aid interpretation of data in e). ATD is along-track distance

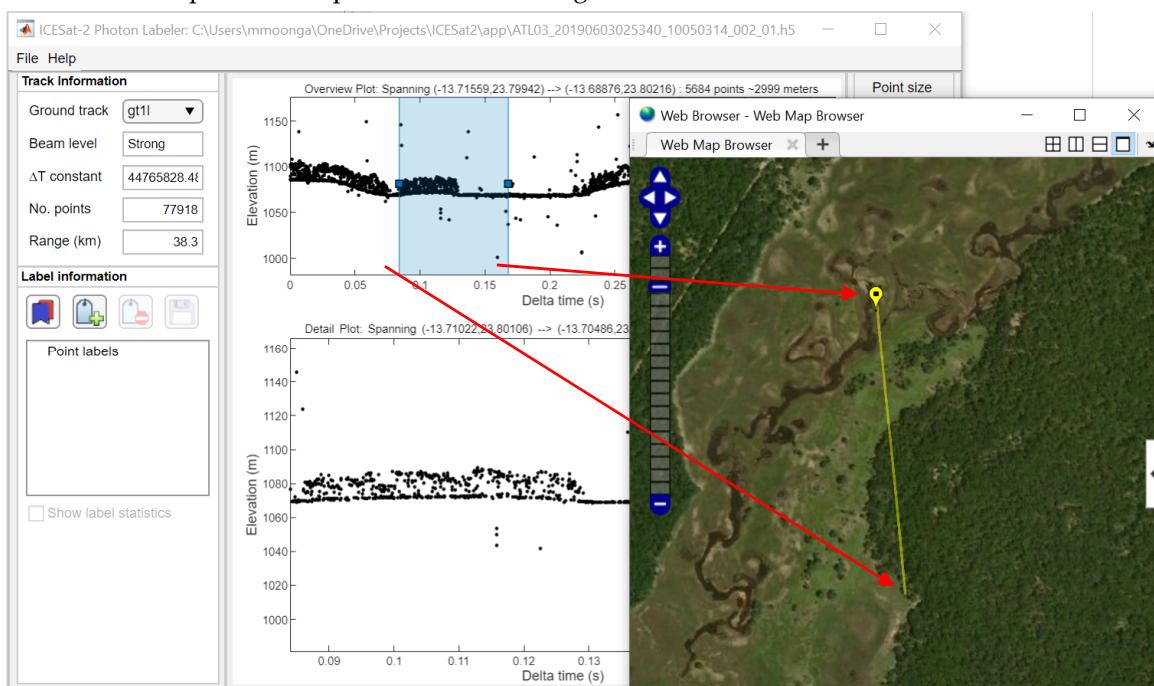

135 Plotting ATL03 data provides a convenient way for interpreting them into classes of interest. It
136 is noteworthy to state that no studies have published formal guidelines for interpreting ATL03 or
137 profiling lidar data as the case for image interpretation. Here, we provide some tips borne mostly
138 from our experience with ATL03 data and knowledge from similar profiles generated across airborne
139 lidar data. Unlike scanning-based lidar data with spatially complete coverage, the 3D visual cues
140 such as shape, texture and color that users rely on to readily interpret various objects in the data are
141 diminished for ATL03 data. Nevertheless, it is still feasible to interpret individual or group of points
142 in ATL03 data into a variety of classes including terrain, vegetation canopy, building roof, clouds and
143 so on. As in image interpretation, recognizing various objects or surfaces in plotted ATL03 data and
144 an understanding of how the sensing energy interacts with various target objects (water, clouds,
145 vegetation etc.) are critical for successful interpretation and labeling. Foremost, an interpreter should
146 be able to recognize signal and noise points given that observing differences in the spatial distribution
147 of points is one of the convenient ways of differentiating them. When ATL03 data are plotted on a
148 Euclidean space, signal points (real data) tend to cluster together compared to noise points which
149 tend to be randomly distributed in space (Figure 2a and b). Sometimes, ATL03 data are corrupted by
150 instrument or geolocation errors, resulting in unnatural discontinuities and offsets in the data (Figure
151 2c). Such data sections are usually unusable and could also be interpreted as noise.

152 Signal points could further be interpreted into terrain (e.g. land or sea ice terrain), above-terrain
153 point classes (e.g. forest canopies, buildings and clouds) and below-terrain surfaces (e.g. bathymetry)
154 by leveraging attributes specific to the data and using ancillary data. For instance, elevation
155 relationships among points or point clusters (e.g. points on vegetation canopies should lie above
156 terrain points, cloud points usually cluster together but have very high elevations above terrain,
157 Figure 2a, b and d), shape (regularity of building roof surfaces, Figure 2e) and point distribution
158 information (terrain points show lower local elevation variance than points on vegetation, Figure 2a,
159 b and d) could be applied for effective interpretation. Reduction in point density for weak beams can
160 pose interpretation challenges, but observing data in a corresponding strong beam could aid
161 interpretation even though they two beams do not sample the same area. While interpretation of
162 ATL03 data could largely be done based on ATL03 data themselves, using ancillary data such as
163 high-resolution imagery could enhance interpretation by applying the visual cues normally applied
164 in image interpretation (Figure 2f).

165 2.2 *PhotonLabeler User Interface (UI) and software capabilities*

166 2.2.1. UI layout overview and display control

167 We developed the *PhotonLabeler* UI and associated functionality using the MathWorks MATLAB
168 App Designer (MATLAB R2020a). Figure 3 shows the three-panel layout of the *PhotonLabeler* UI. The
169 left panel shows ground track details such as the beam level (weak or strong), the number of points
170 in the track and the distance spanned. The panel also contains tools for defining or loading saved
171 label definitions and displaying label statistics. The central panel contain two plot axes: the Overview
172 and the Detail plots. We adopted the two-plot view to enhance the interpretation and labeling of
173 individual photons by providing both an overview of the loaded data across a larger extent, and a
174 more detailed view across a smaller extent. The left-most panel contains tools for data display control
175 such as the size of the delta time or along-track distance (ATD) span, the *zFactor*, which controls the
176 portion of data to display in the Detail plot and an option that controls whether to use delta time or
177 ATD values on the x-axis. This panel also contains number of point selection tools to facilitate
178 labeling. In the following sections, we outline the general workflow and critical parameters that
179 enable the reading, labeling and export of labeled data. For details on various functionality in the
180 software, please refer to the supplementary material (SS).

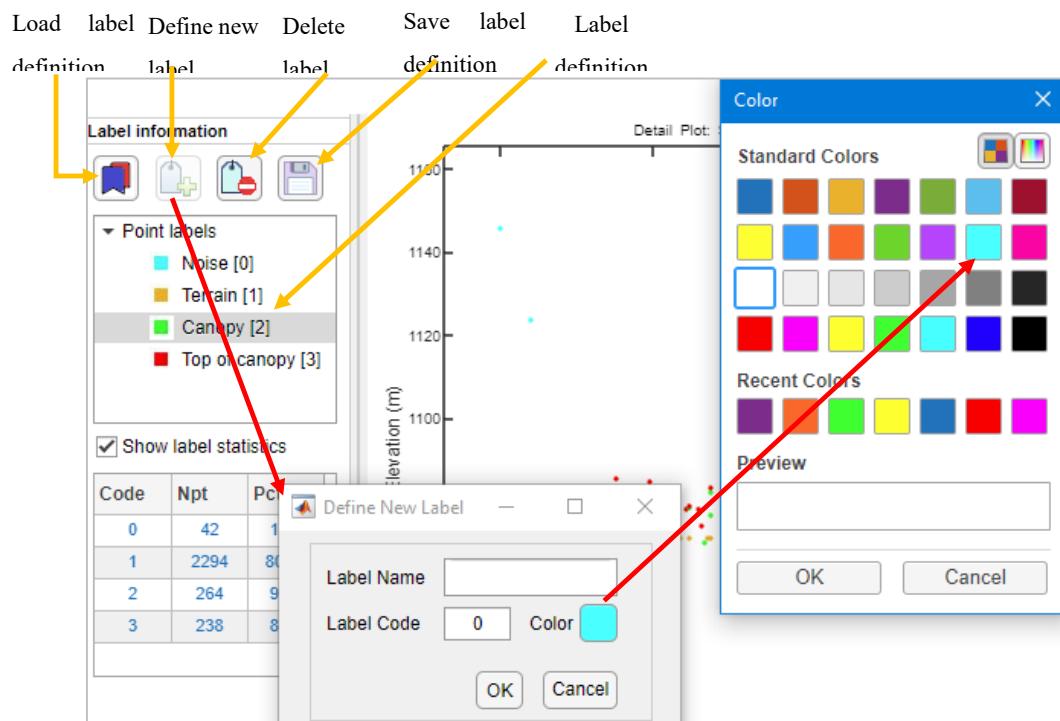

Figure 3: PhotonLabeler graphical user interface showing track and label information and tools on the left panel, plot areas in middle and data display control and labeling and navigation tools on the right panel.

184 2.2.2 Reading and visualization of ATL03 data in PhotonLabeler

185 The *PhotonLabeler* application reads and displays ATL03 HDF data by ground track and displays
 186 the data by plotting either the photon delta time values or the calculated along-track distance (ATD)
 187 values on the x-axis against the photon elevation values on the y-axis. To manage large file sizes, the
 188 PhotonLabeler only loads a portion of the data at a given time. Two parameters control how much data
 189 is loaded in the *Overview* and *Detail* plots: ΔT size parameter, which defines span of the data on x-axis
 190 and the zFactor parameter or zoom factor, which is a factor by which ΔT size is equally divided. All data
 191 that lies within a specified ΔT size range are loaded in the *Overview* plot. From the data loaded in the
 192 *Overview* plot, a sub-portion equal to ΔT size/zFactor is then loaded in the *Detail* plot, allowing a user
 193 to step through using the Next and Back buttons to view all data loaded in the *Overview* plot. At any
 194 point, the blue semi-transparent region in the *Overview* plot highlights the data displayed in the *Detail*
 195 plot as a guide when exploring or labeling the data. A user may also drag the blue region to positions
 196 of interest instead of using the Next and Back buttons to navigate through the data.

197 *PhotonLabeler* application provides two methods for calculating ATD values. The first approach,
 198 which is the faster approach, uses an approximate relationship between delta time and the distance (1
 199 sec \approx 7000 distance m) covered by the ICESat-2 satellite on the ground. Differenced delta time values
 200 are multiplied by the conversion factor (7000) and accumulated from the first point to generate along-
 201 track distances. This approach treats all points as lying on a common track, thus neglects across
 202 variation within the footprint. The other approach generates a best-fit line among the points in the
 203 dataset and projects all points to this common line. Inter-point distances are then calculated and
 204 accumulated to get along-track distances. Due to the higher number of computations, this approach can
 205 is usually slow. For visualization and labeling purposes, the first approach is adequate and is
 206 recommended.

207 As an aid to photon labeling or general data exploration in different part of the world, the
 208 *PhotonLabeler* application provide the means to link to base maps through MATLAB's web maps as
 209 illustrated in Figure 4. In the figure, the yellow line shows the portion of the track covered by data in
 210 the *Detail* plot with the yellow marker indicating the direction of the track. Using visual cues from ATL03
 211 data as displayed in the *Overview* and *Details* plots and high-resolution imagery provide a powerful
 212 tool for effective photon interpretation and labeling.


213

214 **Figure 4:** Web map integration. The section of an ICESat-2 track under consideration is displayed on
 215 a web-based map to aid interpretation of the ATL03 data.

216 2.2.3 Creating a point label definition, selecting and labeling points

217 To manage labeling tasks, *PhotonLabeler* provides tools for defining point label definitions. A point
 218 label definition or scheme defines point classes and their respective representation for a target
 219 application. A user can define individual point class representation by specifying the label name, label
 220 code and picking a representation color as illustrated in Figure 5. *PhotonLabeler* also offers tools for
 221 deletion of defined point labels, saving of and loading of saved point label scheme. A saved label
 222 definition could be loaded when specifying session options or through the Load label definition button
 223 (Figure 5). Figure 5 shows an example of a classification scheme for vegetation study were target groups
 224 include noise, terrain, canopy and top of canopy. Defining a point label definition is only critical to
 225 labeling – visualization and general exploration of the loaded dataset could be done without it.

226 The *PhotonLabeler* implements photon labeling on a track-by-track basis. A number of point
 227 selection tools including rectangle, polygon and polyline-based tools are available to facilitate the
 228 labeling of individual or group of photons. Normally, a user selects a target class and uses any of the
 229 available tools to select points of interest. Once the user has selected the points, the selected points are
 230 labeled and visualized based on a current active class. The user has the option to undo or reset recently
 231 labeled or all labeled data. The *PhotonLabeler* also provides an option to define top of canopy (ToC)
 232 points automatically, through the Assisted ToC Selection option (Figure 3), for vegetation related
 233 assessments. Based on the region of interest defined by the user, top of canopy points are defined by
 234 binning (see Bin Interval in Figure 3) the data along the x-axis and taking a point(s) above a specified
 235 percentile height (See Percentile Thresh in Figure 3) as top of canopy. The tool also estimates a ground
 236 level to allow elimination of points closer to the ground using a set ToC cut-off threshold. The automatic
 237 top of canopy tool relies on a user defining a region without noise above the canopy; otherwise, the tool
 238 could identify outlying noise points as ToC points. We also recommend using this tool over distances
 239 of 100 - 300 m, as longer distances tend to result in poor ground fits.

240

241 **Figure 5:** Label definition tools in the PhotonLabeler. The red arrow illustrates the process of defining
 242 a new point label

243 2.2.4 Exporting labeled data, saving and loading labeling sessions

244 The *PhotonLabeler* allows the saving of labeled data in ASCII formats (comma separate values (.csv))
 245 and tab delimited text files (.txt). Labeled data are saved by ground track and includes point labels,
 246 point codes, section ID, longitude, latitude, elevation, delta time and if calculated, the along-track

247 distances. A section ID represents contiguous sections of labeled data along an ICESat-2 track and can
 248 facilitate separation of labeled data according phenomena of interest e.g. if one is interested in labeling
 249 data in sparse and dense forested regions. Section IDs are defined automatically by examining point
 250 index sequences and are more meaningful if contiguous sections of labeled data exist in the loaded
 251 dataset. To manage labeling tasks over time, the PhotonLabeler enables the saving and loading of
 252 labeling sessions. A saved session file contains the state of the application at the time of saving and
 253 stores input files path and parameters to enable one to pick up labeling from where they left.

254 **2.2.5 Software availability**

255 *PhotonLabeler* is available to interested scientists through our project website on GitHub
 256 (<https://github.com/Oht0nger/PhoLabeler/releases/tag/v1.0>). The application is available as a compiled
 257 binary, which one can install without a MATLAB license. The option requires a download of free
 258 MATLAB runtime environment. On our GitHub page, we also provide a detailed user manual on how
 259 to use the software.

260 **2.3 Case study: Using manually labeled data to access accuracy of ATL08 data**

261 **2.3.1 ATL08 product overview**

262 The Land and Vegetation Height product (ATL08) contains along-track terrain and canopy
 263 heights above the WGS84 ellipsoid. The height estimates are derived from Geolocated Photon
 264 (ATL03) data in fixed 100 m x 14 m (footprint size) data segments [15]. The ATL03 photon data
 265 undergoes some preprocessing to filter background noise and to classify data points into respective
 266 terrain, canopy and top of canopy points [16]. Based on the classified terrain, canopy and top of
 267 canopy points, the various height metrics including descriptive statistics (minimum, mean,
 268 maximum) and height percentiles, are calculated within each 100-m segment. For canopy heights, the
 269 ATL08 product reports the height metrics in terms of the absolute height above the reference ellipsoid
 270 and relative height above an estimated ground. The ATL08 product, also distributed in HDF format,
 271 organizes calculated height metrics by ground track. Each ground track group in the HDF model
 272 contains subgroups that hold generated canopy and terrain heights and individual photon
 273 classification flags [15]. Table 1 summarizes the ATL08 height metrics evaluated for this case study.

274 **Table 1:** ATL08 height metrics evaluated for the study. Height metrics include the minimum (Min),
 275 mean (Mean), maximum (Max) and height percentiles (Pxx, e.g., P25 for 25th percentile height).
 276 Metrics evaluated for a particular height type (Absolute canopy, Relative canopy and Terrain height)
 277 are marked by x

Metric	Max	Mean	Min	P25	P50	P60	P70	P75	P80	P85	P90	P95
Absolute canopy height	x	x	x	x	x	x	x	x	x	x	x	x
Relative canopy height	x	x	x	x	x	x	x	x	x	x	x	x
Terrain height	x	x	x									

278 **2.3.2 Study sites and objective**

279 We used the *PhotonLabeler* application to collect sample validation data over two sites, one in
 280 northwestern Zambia and the other in eastern Texas, United States. Our main goal here is to
 281 demonstrate how manually labeled data from PhotonLabeler could be used to assess accuracy of
 282 derived ICESat-2 products such as the ATL08. Given the influence of solar background radiation on
 283 noise levels in ICESat-2 photon data, our objective was to assess the agreement of ATL08 height
 284 estimates with matching estimates derived from labeled data for nighttime (when noise levels are
 285 lower) and daytime (when noise levels are higher) data acquisition scenarios. The Zambia site (circa

286 Latitude 13°49'10"S, Longitude 23°48'46" E) stretched across the Zambezian dry evergreen forest
287 ecoregion comprising mainly of a tropical dry broadleaf forest, which rarely exceeds 25 m in height
288 [17]. The Texas site (around Latitude 31°26'8.6"N, Longitude 95°16'38"W) lay across temperate conifer
289 forests dominated by several species of Pine (*Pinus* spp.) as well as hardwoods including Hickory
290 (*Carya* spp.) and Oak (*Quercus* spp.) [18].

291 2.3.3 Data and labeling

292 We selected one ATL03 granule over each site – a nighttime granule for the Zambian site and a
293 day-time granule for the Texas site. We labeled data from strong beams only due to the low number
294 of weak beam estimates to compare with in the ATL08 data. ATL03 granule IDs for the data used are
295 ATL03_20190603025340_10050314_003_01 for the Zambia site and
296 ATL03_20190415130456_02640302_003_01 for Texas site. From the granule ID, the data for the
297 Zambia site was acquired on June 3rd 2019 while the data for the Texas site was acquired on April 15th
298 2019. In both sites, our labeling scheme consisted of three main point classes: *Terrain*, for terrain
299 points, *Off-terrain* comprising canopy points and top of canopy points, and *Noise*, for all background
300 noise points. For the Zambian case, we labeled three 3000-m sections along a gt11 ICESat-2 track. In
301 Texas, we labeled data across a 10,000 m transect, composed of two sections – one stretching about
302 4000-m, the other about 6000-m along a gt21 track of the data granule.

303 2.3.4 Preparing height metrics

304 We extracted canopy and terrain metrics from ATL08 data corresponding with the ATL03 data
305 granules used for labeling. The extracted data was saved as ASCII with the segment ID to serve a
306 unique identifier when linking with estimates generated from our labeled data. To facilitate
307 calculation of corresponding canopy and terrain height metrics, we recreated each ATL08 segment,
308 which measures approximately 1000x14 m, based on segment attributes (begin/end delta times and
309 the corresponding begin/end latitude/longitude) from both ATL03 and ATL08 data for the target
310 tracks. Using the generated segment polygons as regions of interest, we calculated corresponding
311 ATL08 metrics from the labeled point data. For absolute canopy heights, the labeled data excluding
312 noise was used without ground normalization while relative canopy heights were calculated from
313 normalized data, which leveraged already labeled terrain points. For terrain estimates, we used
314 points labeled as terrain only. We applied LAStools software tools [19] for ground normalization and
315 for calculating the corresponding ATL08 height metrics. To account for the point spread exhibited by
316 ATL03, we imposed a 0.5 m threshold when calculating relative canopy metrics.

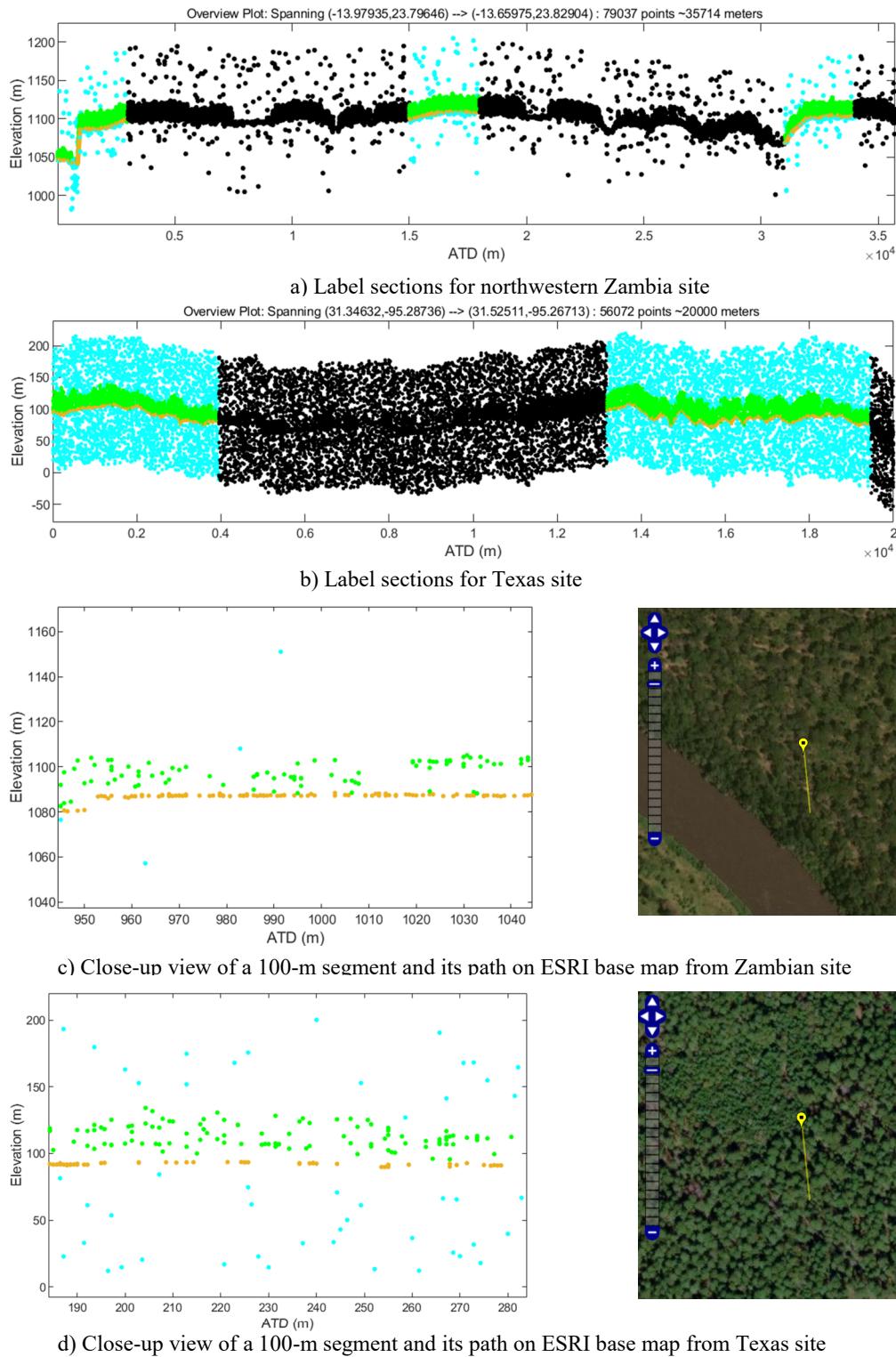
317 2.3.5 Comparing ATL08 and PhotonLabeler derived height metrics

318 We assessed the level of agreement between ATL08 height metrics and corresponding estimates
319 derived from manually labeled data using regression analysis. We took values calculated from
320 manually labeled data to be the reference or observed variables and took ATL08 data as predicted
321 values, using the regression coefficient of determination (R^2) as a measure of correlation. We also
322 calculated a mean bias metric, calculated as the mean of differences between reference and predicted
323 values, as a measure of precision and to shade light on under and over-estimation of the ATL08
324 metrics with respect to manually labeled data, which we took as ground truth.

325 3. Results

326 3.1 Photon Labeling

327 Figure 6 shows the manually labeled sections along the selected ICESat-2 tracks and close-up
328 views of ICESat-2 photon data over 100 m distance over the northwestern Zambia and Texas sites.
329 The differences in the noise levels is notable reflecting the significant impact of solar background
330 radiation can have on photon counting lidar measurements. The close-up views of the data also show
331 differences in the amount of noise and the number of terrain points indicating differences in the level


332 of photon canopy penetration. Table 2 summarizes the number of points labeled along selected
 333 ICESat-2 tracks for the two sites. The distribution of the three-point classes is markedly different
 334 between the two sites. The proportion of noise points in the two sites was 1.7% for Zambia and 27.6%
 335 for Texas. The ICEsat-2 granule labeled for the Texas site was collected during the day (13:04:56 UTC)
 336 when the effect of background solar radiation is higher while the data used for the Zambia site was
 337 collected at night (02:53:40 UTC). The other notable difference is in the proportion of terrain and off-
 338 terrain points. About two-thirds of the points for the Zambian site were ground whereas terrain
 339 points only account for less than a fifth of the points labeled. The reverse is observed for off-terrain
 340 points with the Texas site showing a large proportion of points than the Zambian sites. Apart from
 341 the time the data was acquired, these differences a reflective of the different vegetation structure
 342 (sparse vs closed canopy) or phenological stages (leaf-on vs leaf-off) in the two sites. The data for the
 343 Zambia site was acquired in June, which is a leaf-off period for most deciduous forest in Zambia
 344 while Texas forests were in their leaf-off state at the time the data was acquired in April [20,21].

345 **Table 2:** Number of manually labeled points in northwestern Zambia and Texas

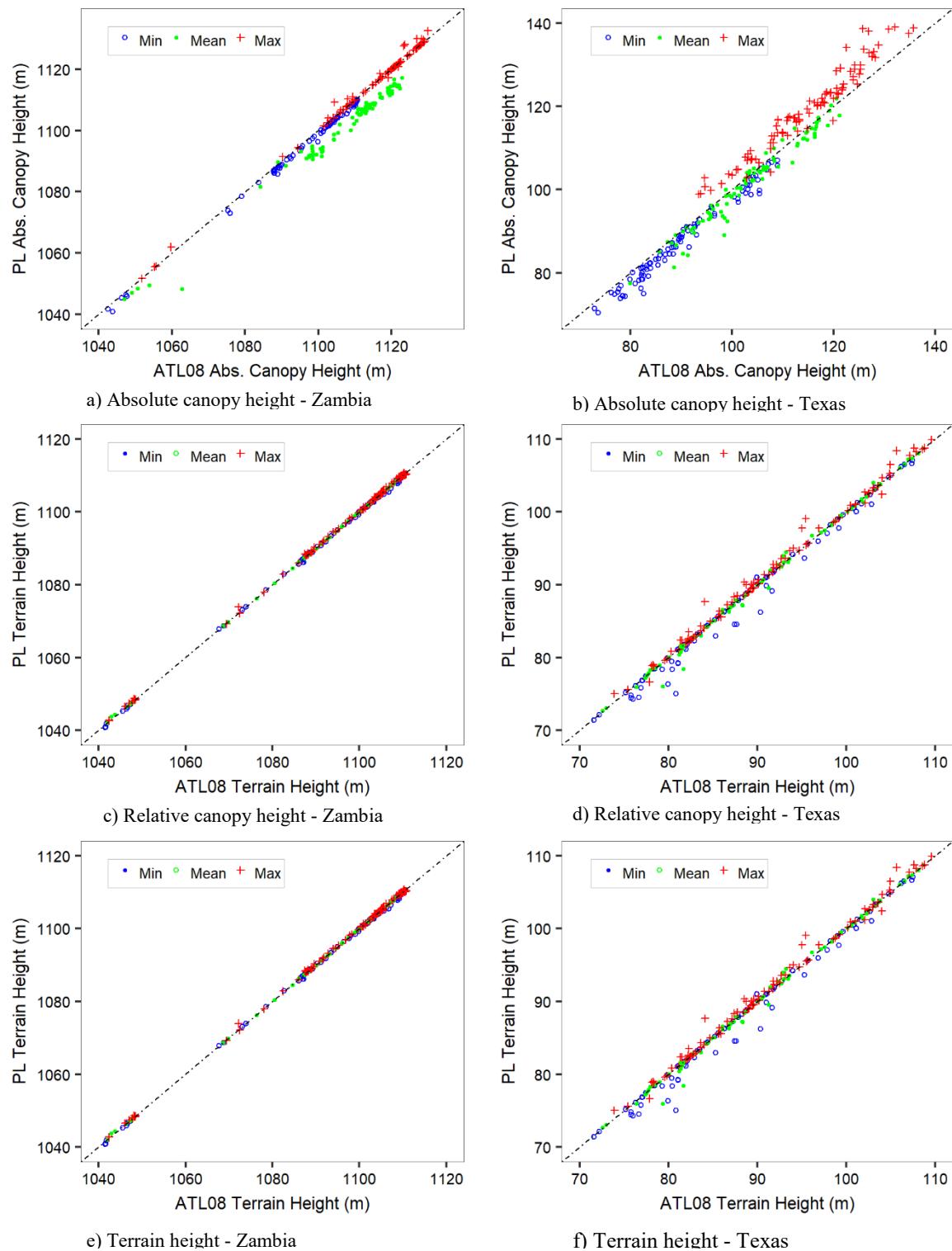
Label	Label code	Northwestern Zambia		Eastern Texas, USA	
		No. points	Proportion (%)	No. points	Proportion (%)
Noise	0	368	1.7	6532	27.6
Terrain	1	14198	65.3	4415	18.6
Off-terrain	2	7174	33.0	12749	53.8
Total		21740	100	23696	100.0

346 *3.2 ATL08 height metric comparison results*

347 The total numbers of ATL08 segments with valid canopy height estimates matched with labeled
 348 data from the Zambian and Texas sites were 84 and 90 respectively. The number of segments with
 349 valid terrain height estimates were 92 and 88 for the Zambian and Texas site respectively. **Table 3**
 350 and **Table 4** summarize the relationships between various height metrics compared with
 351 corresponding estimates derived from manually labeled point data. In general, ATL08 height metrics
 352 were highly correlated ($R^2 > 0.8$) with corresponding metrics from labeled data especially for absolute
 353 canopy and terrain height metrics. The correlation of ATL08 relative canopy heights with
 354 PhotonLabeler (PL) metrics varied by height metric with the minimum height values for the Zambia
 355 site showing a zero R^2 value. We attribute the lack of correlation for minimum values to the 0.5 m
 356 threshold we applied when calculating relative height metrics, which force most of our minimum
 357 values to be 0.5 m. The maximum relative canopy values for the Texas site showed higher correlation
 358 with PL values compared to values for the Zambian site. This is somewhat surprising observation
 359 considering near-clean data for the Zambian site. The correlation for ATL08 percentile height metrics
 360 generally increased with the percentile level from P25 to P95 ($R^2 = 0.57 - 0.89$ for the Texas site, $R^2 =$
 361 0.67 – 0.86 for Zambia site).

362
 363 **Figure 6:** Manual Photon Labeling using the Photon Labeler. a) – b) Label sections along ICESat-2
 364 tracks for the Zambian and Texas sites; c) –d) Close-up plot and base map views of 100-m segments
 365 for the Zambia and Texas sites

366 The precision (Table 4) based on calculated mean biases of ATL08 absolute canopy, relative
 367 canopy and terrain height metrics with respect to PL metrics varied from -9.76 m (over-estimation)
 368 to 4.63 m (under-estimation). The precision between the two datasets improved with percentile level.
 369 For the Texas site, we observed over-estimation at lower percentiles (P25 – P60) including the
 370 minimum and mean height, which switched to under-estimation at higher percentiles (P70 – P95,
 371 Max). For the Zambia case, there was general over-estimation across all metrics except for the


372 maximum height. Again, we expected the Zambia case to provide better results due to the lower
 373 noise levels. These variations could be attributed to the impact of different noise levels on
 374 performance of ATL08 filtering algorithms. Results for relative canopy heights were as expected with
 375 the Zambia case showing lower biases (-0.36 – 0.70 m) compared to the Texas case (0.48 – 4.63 m).
 376 Lastly, ATL08 terrain height estimates showed high precision with respect to PL metrics for both
 377 sites. Figure 7 shows graphical relationships between ATL08 absolute canopy, relative canopy and
 378 terrain data with corresponding PL data for the minimum, mean and maximum height metrics.

379 **Table 3:** Correlation (R^2) between ATL08 absolute canopy, relative canopy and terrain height metrics
 380 with metrics derived from manually labeled point data for the Zambia and Texas sites. Height metrics
 381 include the minimum (Min), mean (Mean), maximum (Max) and percentiles (Pxx, e.g., P25 for 25th
 382 percentile height).

Metric	Absolute Canopy Height		Relative Canopy Height		Terrain Height	
	Texas	Zambia	Texas	Zambia	Texas	Zambia
Max	0.94	1.00	0.82	0.60	0.99	1.00
Mean	0.96	0.99	0.82	0.82	1.00	1.00
Min	0.98	1.00	0.29	0.00	0.99	1.00
P25	0.87	0.98	0.57	0.67		
P50	0.89	0.95	0.62	0.86		
P60	0.90	0.94	0.71	0.79		
P70	0.94	0.92	0.75	0.73		
P75	0.96	0.93	0.79	0.78		
P80	0.97	0.95	0.85	0.78		
P85	0.98	0.97	0.84	0.79		
P90	0.97	0.99	0.87	0.80		
P95	0.97	0.99	0.89	0.76		

383 **Table 4:** Precision (mean biases) between ATL08 absolute canopy, relative canopy and terrain height
 384 metrics with metrics derived from manually labeled point data for the Zambia and Texas sites. Height
 385 metrics include the minimum (Min), mean (Mean), maximum (Max) and percentiles (Pxx, e.g., P25
 386 for 25th percentile height)

Metric	Absolute Canopy Height		Relative Canopy Height		Terrain Height	
	Texas	Zambia	Texas	Zambia	Texas	Zambia
Max	4.29	0.35	4.63	-0.17	0.45	0.19
Mean	-1.51	-5.89	2.91	0.26	-0.08	0.02
Min	-2.39	-1.31	0.48	0.18	-0.61	-0.21
P25	-5.13	-6.36	3.14	0.70		
P50	-1.76	-9.63	3.27	0.14		
P60	-0.61	-9.76	3.16	0.03		
P70	0.39	-7.89	3.00	-0.02		
P75	0.90	-6.44	3.00	-0.10		
P80	1.47	-4.93	3.02	-0.25		
P85	1.83	-3.31	3.12	-0.33		
P90	2.33	-2.14	3.19	-0.36		
P95	2.69	-1.33	3.36	-0.34		

387

388 **Figure 7:** Relationships between ATL08 minimum (Min), mean (Mean) and maximum (Max) height
 389 estimates and matching height estimates from PhotonLabeler (PL) labeled data for the Zambian (first column)
 390 and Texas (second column) sites: a) - b) Absolute canopy heights; c) - d) Relative canopy
 391 heights; e) - f) Terrain heights. The dashed line shows the expected 1:1 relationship between PL and
 392 ATL08 estimates.

393 **4. Discussion**

394 Over the decades lidar remote sensing has proven to be a highly effective technique for
 395 characterizing the 3D structure of terrestrial ecosystems including forests, snow ice and topography

396 in general. Space-borne lidar missions such as ICESat-2 extend our capability to characterize
397 terrestrial ecosystems from local to global scales. Critical to these endeavors are analysis methods
398 and software tools to foster a better understanding of phenomena of interest including forest
399 structure, bathymetry or surface topography or the understanding of the data itself. The *PhotonLabeler*
400 application described in this paper is an effort to provide researchers with a tool for easy visualization
401 and labeling of ICESat-2 photon data. Such capability could support a number of analyses including
402 checking the accuracy of height estimates provided by ICESat-2 products as demonstrated in the case
403 study or training new or re-calibrating existing algorithms with manually labeled data. Development
404 of labeled photon datasets could motivate the development of even better algorithms for generating
405 various products from ATL03 data. Machine learning and deep learning techniques presents one
406 avenue for developing robust approaches [22,23], but still lack labeled point data to motivate
407 adoption as in image-based analyses. Using applications such as PhotonLabeler could readily
408 support such labeled data collection tasks.

409 The critical importance of data visualization in remote sensing research to enhancing
410 understanding of phenomena and communication cannot be over-emphasized. We believe software
411 tools such as the PhotonLabeler present a great avenue to understanding ICESat-2 data in diverse
412 environments. Researchers and educators may use it as a tool for instruction to demonstrate a variety
413 of aspects of the ICESat-2 ATL03 data including responses of photon counting lidar in various
414 environments. For instance, the impact of solar background illumination on the data quality could be
415 shown by displaying day and night acquisitions. The impact of canopy cover on photon penetration
416 in environments such as the Amazon compared to sparsely forested environments in the Savannas
417 of Southern Africa, is another example. Insight or cues on developing algorithms could also be
418 generated from visualizing data in different ecoregions.

419 The case studies on the manual validation of ATL08 data provided a glimpse into the accuracy
420 of ATL08 data for day and night acquisition. These results were generally promising with high
421 correlations ($R^2 > 0.8$) and precision (mean biases < 5) between ATL08 estimates and estimates
422 generated from manually labeled data. However, these observations as the results of this assessment
423 are limited. Further validation assessment incorporating data in various ecoregions, seasons and of
424 different noise levels is still needed to provide a more complete view of the accuracy of the ATL08
425 estimates. We also acknowledged that manually labeled data is not immune to error and
426 inconsistencies may arise between how the ATL08 algorithms define surfaces and how we manually
427 labeled data. Given the high correlations between ATL08 and PL estimates, we think that was not a
428 big issue for this assessment. For future studies intending to do similar assessments on a large scale,
429 we recommended developing labeling protocols to enhance consistency among labeling experts or
430 data in different environments.

431 Additional functionality in the *PhotonLabeler* application is in the works to enhance productivity
432 and general user-friendliness. Given that some ICESat-2 products such as ATL06 and ATL08 also
433 contain photon level classification data, one capability envisioned is to enable users start labeling
434 based on the existing labels and updating them where necessary. In collecting ground truth data for
435 our demonstration study, it took about 20 – 30 minutes to label a 3000-m section along an ATL03
436 track, which could add up for many sections of the data. Providing functionality to start labeling from
437 some existing classification would enhance labeling efficiency from our current setup and would
438 complement assisted labeling, such as automatic top of canopy selection, already implemented in the
439 application. We are also working on providing wider options for saving labeled data. One option is
440 saving the labeled data in HDF format similar to the ATL03 structure to improve the organization of
441 the data. The other option to be included in future releases of the software is saving to industry
442 formats such as LAS to facilitate view of the data with other software packages.

443 5. Conclusion

444 This study presented a user-friendly software application to support visualization and manual
445 labeling of ICESat-2 ATL03 photon data. The application enables definition of custom labeling
446 schemes to meet requirements of a research study and offers various point selection tools to facility

447 collection of labeled data. Labeled data collected using the *PhotonLabeler* can serve as ground truth
448 for validating various ICESAt-2 elevation products especially in developing countries where airborne
449 lidar acquisitions are not routinely done. We were able to demonstrate how manually labeled data
450 could be applied for validating ATL08 estimates. Such an assessment could be extended to other
451 validation studies for snow ice elevation or bathymetry. The *PhotonLabeler* can also facilitate the
452 development of new algorithms by providing critical labeled data to support testing and validation.

453 Acknowledgements

454 This research was funded by NASA ICESat-2 Science Team, Studies with ICESat-2 NNH19ZDA001N
455 grant.

456 References

- 457 1. Markus, T.; Neumann, T.; Martino, A.; Abdalati, W.; Brunt, K.; Csatho, B.; Farrell, S.; Fricker, H.; Gardner, A.; Harding, D., *et al.* The ice, cloud, and land elevation satellite-2 (icesat-2): Science requirements, concept, and implementation. *Remote Sensing of Environment* **2017**, *190*, 260-273.
- 460 2. Popescu, S.C.; Zhou, T.; Nelson, R.; Neuenschwander, A.; Sheridan, R.; Narine, L.; Walsh, K.M. Photon counting lidar: An adaptive ground and canopy height retrieval algorithm for icesat-2 data. *Remote Sensing of Environment* **2018**, *208*, 154-170.
- 463 3. Petty, A.A.; Kurtz, N.T.; Kwok, R.; Markus, T.; Neumann, T.A. Winter arctic sea ice thickness from icesat-2 freeboards. *Journal of Geophysical Research: Oceans* **2020**, *125*, e2019JC015764.
- 466 4. Narine, L.L.; Popescu, S.C.; Malambo, L. Using icesat-2 to estimate and map forest aboveground biomass: A first example. *Remote Sens-Basel* **2020**, *12*, 1824.
- 469 5. Smith, B.; Fricker, H.A.; Gardner, A.S.; Medley, B.; Nilsson, J.; Paolo, F.S.; Holschuh, N.; Adusumilli, S.; Brunt, K.; Csatho, B., *et al.* Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. *Science* **2020**, *368*, 1239-1242.
- 472 6. Harding, D.J.; Dabney, P.W.; Valett, S. In *Polarimetric, two-color, photon-counting laser altimeter measurements of forest canopy structure*, International Symposium on Lidar and Radar Mapping 2011: Technologies and Applications, 2011; International Society for Optics and Photonics: p 828629.
- 475 7. Neumann, T.; Brenner, A.; Hancock, D.; Robbins, J.; Saba, J.; Harbeck, K.; Gibbons, A. Ice, cloud, and land elevation satellite-2 (icesat-2) project: Algorithm theoretical basis document (atbd) for global geolocated photons (atl03). *National Aeronautics and Space Administration, Goddard Space Flight Center* **2019**.
- 478 8. Swatantran, A.; Tang, H.; Barrett, T.; DeCola, P.; Dubayah, R. Rapid, high-resolution forest structure and terrain mapping over large areas using single photon lidar. *Sci Rep-Uk* **2016**, *6*, 28277.
- 481 9. Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonso, M.; Jasinski, M. Validation of icesat-2 atlas bathymetry and analysis of atlas's bathymetric mapping performance. *Remote Sens-Basel* **2019**, *11*, 1634.
- 484 10. Wang, C.; Zhu, X.; Nie, S.; Xi, X.; Li, D.; Zheng, W.; Chen, S. Ground elevation accuracy verification of icesat-2 data: A case study in alaska, USA. *Opt Express* **2019**, *27*, 38168-38179.
- 487 11. Neuenschwander, A.L.; Magruder, L.A. Canopy and terrain height retrievals with icesat-2: A first look. *Remote Sens-Basel* **2019**, *11*, 1721.
- 490 12. Malambo, L.; Heatwole, C.D. Automated training sample definition for seasonal burned area mapping. *ISPRS Journal of Photogrammetry and Remote Sensing* **2020**, *160*, 107-123.
- 493 13. Kennedy, R.E.; Cohen, W.B.; Schroeder, T.A. Trajectory-based change detection for automated characterization of forest disturbance dynamics. *Remote Sensing of Environment* **2007**, *110*, 370-386.

489 14. Malambo, L.; Popescu, S.C.; Horne, D.W.; Pugh, N.A.; Rooney, W.L. Automated detection and measurement
490 of individual sorghum panicles using density-based clustering of terrestrial lidar data. *ISPRS Journal of*
491 *Photogrammetry and Remote Sensing* **2019**, *149*, 1-13.

492 15. Neuenschwander, A.; Popescu, S.; Nelson, R.; Harding, D.; Pitts, K.; Robbins, J.; Pederson, D.; Sheridan, R.
493 Ice, cloud, and land elevation 1 satellite 2 (icesat-2) algorithm theoretical basis document (atbd) for land-
494 vegetation along-track products (atl08) release 002. *National Aeronautics and Space Administration. Goddard*
495 *Space Flight Centre* **2019**.

496 16. Neuenschwander, A.; Pitts, K. The atl08 land and vegetation product for the icesat-2 mission. *Remote sensing*
497 *of environment* **2019**, *221*, 247-259.

498 17. Hansen, M.C.; Potapov, P.V.; Goetz, S.J.; Turubanova, S.; Tyukavina, A.; Krylov, A.; Kommareddy, A.;
499 Egorov, A. Mapping tree height distributions in sub-saharan africa using landsat 7 and 8 data. *Remote*
500 *Sensing of Environment* **2016**, *185*, 221-232.

501 18. Liu, C.; Neal, J.; Scofield, C.; Chang, J.; Ludeke, A.K.; Frentress, C. Classification of land cover and
502 assessment of forested wetlands in the cypress creek watershed. *Texas Parks and Wildlife Department, Austin,*
503 *Texas. 21p* **1996**.

504 19. Isenburg, M. Lastools: Efficient tools for lidar processing. <https://rapidlasso.com/lastools/> (Accessed:
505 January,15,2020),

506 20. Chidumayo, E. Climate and phenology of savanna vegetation in southern africa. *J Veg Sci* **2001**, 347-354.

507 21. Hill, M.J.; Millington, A.; Lemons, R.; New, C. Functional phenology of a texas post oak savanna from a
508 chris proba time series. *Remote Sens-Basel* **2019**, *11*, 2388.

509 22. Malambo, L.; Popescu, S.; Ku, N.-W.; Rooney, W.; Zhou, T.; Moore, S. A deep learning semantic
510 segmentation-based approach for field-level sorghum panicle counting. *Remote Sens-Basel* **2019**, *11*, 2939.

511 23. Narine, L.L.; Popescu, S.C.; Malambo, L. Synergy of icesat-2 and landsat for mapping forest aboveground
512 biomass with deep learning. *Remote Sens-Basel* **2019**, *11*, 1503.

513