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Abstract: NASA’s ICESat-2space-borne photon-counting lidar mission is providing global 8 

elevation measurements that will provide significant benefits to a variety of bio-geoscience 9 

research applications. Given the novelty of elevation and the derived data products from the 10 

ICESat-2 mission, the research community needs software tools that can facilitate photon-level 11 

analyses to support product validation and development new analysis methods. Here, we 12 

describe PhotonLabeler, a free graphic user interface (GUI) for manual labeling and visualization 13 

of ICESat-2 Geolocated Photon data (ATL03). Developed in MATLAB, the GUI facilitates the 14 

reading and display of ATL03 Hierarchical Data Format (HDF) files, the manual labeling of 15 

individual photons into target classes of choice using a number of point selections tools and 16 

enables eventual saving of labeled data in ASCII format. Other capabilities include saving and 17 

loading of labeling sessions to manage labeling tasks over time. We expect labeled data generated 18 

using the application to serve two main purposes. First, serve as ground truth for validating 19 

various products from ICESat-2 mission, especially for study sites around the world that do not 20 

have existing reference datasets such as airborne lidar. Second, serve as training and validation 21 

data in the development of new algorithms for generating various ICESat-2 data products. We 22 

demonstrate the first use case through a validation case study for the land and vegetation product 23 

(ATL08), which provides canopy and terrain height estimates, over two sites. For the first site, 24 

located in northwestern Zambia, we used ICESat-2 ATL03 data acquired at night and for our 25 

second site in Texas, US, we used ATL03 data acquired during the day. The PhotonLabeler 26 

application is freely available as a compiled MATLAB binary to enable free access and utilization 27 

by interested researchers.  28 

Keywords: ICESat-2; Photon-counting lidar, Photon Labeling, Visualization, ATL03, ATL08, 29 
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 31 

1. Introduction 32 

NASA’S ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) space-borne lidar mission 33 

launched in September 2018. A follow-up spaceborne lidar mission to the first ICESat mission, 34 

ICESat-2 carries the Advanced Topographic Laser Altimeter System (ATLAS) lidar instrument, a 35 

photon-counting lidar that uses a green (532 nm) laser for range measurement. The ATLAS 36 

instrument has notable advantages over its predecessor GLAS sensor including a reduced laser 37 

footprint (~14 -17 m diameter reduced from ~70 m diameter) and an increased along-track sampling 38 

through higher pulse-repetition rate (10 kHz or about 0.70 m footprint spacing). Other 39 

improvements include the increased across-track sampling by partitioning the emitted laser into 40 

multiple profiling strong and weak beams [1,2]. Since its launch, ATLAS has provided 41 

unprecedented high-resolution three-dimensional along-track measurements of ice sheets, sea ice, 42 
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vegetation canopies, inland water and clouds providing opportunities for transformational Earth 43 

science and vegetation science research [3-5]. 44 

The single-photon counting technique utilized by ATLAS differs in a fundamental way from 45 

conventional lidar sensing as ranging is achieved at an individual photon scale as opposed to 46 

sensing energy peaks of backscattered laser energy [6]. Using photon time of flight values and 47 

measurements from ancillary systems such as GPS each photon is precisely geolocated by 48 

determining its time, latitude, longitude, and height to generate the Geolocated Photon Data 49 

(ATL03)[7]. Photons reflected from the surface along with those from the atmosphere or solar 50 

radiation are detectable which usually results in a combination of signal and noise photons. Thus, 51 

ATL03 data tends to exhibit higher levels of noise for daytime acquisition given the higher impact 52 

of solar background illumination [6,8]. Notwithstanding the presence of noise in the data, ICESat-53 

2 mission, being a space-based instrument, has improved the possibility to characterize the Earth’s 54 

surface from local to global scales. Utilizing the 532 nm wavelength on the ATLAS instrument has 55 

also created opportunities for both surface and bathymetric mapping as the green energy can also 56 

penetrate water and interact with the sub-surface in addition to its surface and vegetation 57 

interactions [4,9,10]. ICESat-2 ATL03 photon data is enabling the generation of various standard 58 

data products for land ice, sea ice, the atmosphere, vegetation and land, oceans and inland water 59 

applications, which are available from the National Snow & Ice Data Center (NSIDC) website 60 

(https://nsidc.org/data/icesat-2/data-sets).  61 

The availability of ICESat-2 products has spurred various studies to validate the products [11], 62 

develop alternative algorithms to generate similar datasets [2] or derive other products based on 63 

available products [4]. In those studies, the availability of reference data is a critical component to 64 

enable comparisons with existing products or assessment of developed algorithms, and airborne 65 

lidar data predominantly played this vital role. In Wang et al. [10] airborne lidar data were used to 66 

validate ground elevation and vegetation heights from the ATL08 product. Similar assessments 67 

have been carried out for land and vegetation height metrics [11]. Some studies also used airborne 68 

lidar data to simulate ICESat-2 data prior to launch of the mission to enable development of noise 69 

filtering algorithms [2]. However, airborne lidar data are not be available in all areas or might be 70 

outdated to allow for an objective evaluation of current ICESat-2 products. In addition, there are 71 

assessments that may require a photon level understanding such as noise filtering, photon 72 

classification or assessing sources of error that airborne lidar data might not adequately support. 73 

In such cases, expert manually labeled photon data developed by direct interpretation of raw 74 

ATL03 photon data can facilitate such analyses. Manually labeled data also eliminates positional 75 

errors due the reference data, which enhances the overall analysis. Visual interpretation of data is 76 

not new in remote sensing and has supported various studies where ground truth data were not 77 

available [12-14]. Manually labeling photons is analogous to aerial photo interpretation consisting 78 

in identification of features in remote sensing images through visual interpretation. Scientific 79 

software tools allowing the display and labeling of photon data would enhance the development 80 

of labeled datasets to support product validation and development of analysis methods.  81 

In this paper, we describe PhotonLabeler, a new free software tool for labeling and visualization 82 

of ATLAS geolocated photon data. Other software tools for working with ICESat-2 data are 83 

available including PhoReal (https://github.com/icesat-2UT/PhoREAL), the ICESat-2 Visualizer 84 

(https://icesat-2-scf.gsfc.nasa.gov/) and web-based OpenAltimetry platfom 85 

(https://openaltimetry.org/). These tools have focused mainly on the visualization of ICESat-2 data, 86 

data sub-setting and format conversion but do not offer labeling functionality as designed in the 87 

PhotonLabeler. The ICESat-2 Visualizer also has access limitations – from our check of the website, 88 

one needs an approved account to access it. The PhotonLabeler can support development of labeled 89 

reference data for a variety of assessments including ice, land and vegetation elevation worldwide. 90 

The tool also serves as a platform for development of new or alternative algorithms for deriving 91 

various height measurements from ICESat-2 geolocated photon data by facilitating the collection 92 
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of needed training data. We describe the general functionality of the application including reading 93 

and display of ATL03 data, labeling individual photons and exporting labeled data for further 94 

analyses. To demonstrate applicability of this software to suggested assessments, we also include 95 

a case study for validating canopy and terrain heights from the ATL08 product. We collected 96 

labeled photon data using PhotonLabeler from ICESat-2 ATL03 data over two sites, one in 97 

northwestern Zambia and the other in eastern Texas in the United States and compared height 98 

estimates generated from them with ATL08 height estimates. 99 

2. Materials and Methods  100 

2.1 ATL03 data 101 

2.1.1 Data description and organization 102 

ICESat-2 ATL03 data, in HDF format, are the main input to the PhotonLabeler application for 103 

visualization and labeling. ATL03 data (https://nsidc.org/data/atl03) provide time, latitude, 104 

longitude, and ellipsoidal height for each detected photon in the WGS-84 reference frame. The 105 

ATL03 data are organized by ground track, with ground tracks 1L and 1R forming the first pair, 106 

ground tracks 2L and 2R forming middle pair, and ground tracks 3L and 3R forming last or third 107 

pair [7]. The designation of which track is weak or strong depends on the direction of travel of 108 

ATLAS (Figure 1) - in forward orientation strong beams are mapped to the right (R) beams and 109 

weak beams to the left (L) tracks, and vice versa [7]. All the point data for each respective ground 110 

track can be accessed from the heights sub-group (/gtx/heights). For more details about the 111 

configuration of the ground tracks and data attributes in the ATL03 HDF file, we refer an interested 112 

reader to the ATL03 Algorithm Theoretical Basis document (ATBD)[7]. 113 

 114 

Figure 1: Ground track (GT) naming convention: a) ATLAS oriented in the forward (instrument 115 
coordinate +x) direction, b) ATLAS oriented in the backward (instrument coordinate +x) direction. 116 
Image credit: (Neumann et al. 2019). 117 

2.1.2 Visualizing and interpreting ATL03 data 118 

ATL03 data are profiling data, thus provide sample cross-sectional views of the observed area. 119 

As such, ATL03 data are usually visualized by plotting photon elevation values (y-axis) against 120 

time or along-track distance (ATD) values (x-axis) (Figure 2). ATL03 data could also be visualized 121 

in 3D space by plotting latitude, longitude and elevation values. For interpretation and labeling 122 

purposes, 2D views are generally sufficient.  123 

a) Forward orientation b) Backward orientation 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 August 2020                   doi:10.20944/preprints202008.0293.v1

https://doi.org/10.20944/preprints202008.0293.v1


 124 

Figure 2: Interpretation of ATL03 data. Observing point distribution differences is useful in 125 
interpreting noise (random) and signal (clustered) points: a) Sample ATL03 data with lower noise 126 
levels over a site in north-western Zambia; b) Sample ATL03 data with higher noise level over a 127 
site in eastern Texas, United States; a) and b) also show further classification of signal points into 128 
terrain (lower local elevation variation) and vegetation (above terrain and exhibit higher local 129 
elevation variation); c) Sample ATL03 data corrupted by instrument errors, which could be 130 
interpreted as noise. d) Samples data with cloud points, which are identifiable by their significant 131 
elevation values compared to terrain points; e) Interpretation of ATL03 data over a built area in 132 
Houston, Texas. Shape attributes and regularity of surface is key to differentiating them from 133 
terrain; f) Using ancillary image data to aid interpretation of data in e). ATD is along-track distance 134 
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Plotting ATL03 data provides a convenient way for interpreting them into classes of interest. It 135 

is noteworthy to state that no studies have published formal guidelines for interpreting ATL03 or 136 

profiling lidar data as the case for image interpretation. Here, we provide some tips borne mostly 137 

from our experience with ATL03 data and knowledge from similar profiles generated across airborne 138 

lidar data. Unlike scanning-based lidar data with spatially complete coverage, the 3D visual cues 139 

such as shape, texture and color that users rely on to readily interpret various objects in the data are 140 

diminished for ATL03 data. Nevertheless, it is still feasible to interpret individual or group of points 141 

in ATL03 data into a variety of classes including terrain, vegetation canopy, building roof, clouds and 142 

so on. As in image interpretation, recognizing various objects or surfaces in plotted ATL03 data and 143 

an understanding of how the sensing energy interacts with various target objects (water, clouds, 144 

vegetation etc.) are critical for successful interpretation and labeling. Foremost, an interpreter should 145 

be able to recognize signal and noise points given that observing differences in the spatial distribution 146 

of points is one of the convenient ways of differentiating them. When ATL03 data are plotted on a 147 

Euclidean space, signal points (real data) tend to cluster together compared to noise points which 148 

tend to be randomly distributed in space (Figure 2a and b). Sometimes, ATL03 data are corrupted by 149 

instrument or geolocation errors, resulting in unnatural discontinuities and offsets in the data (Figure 150 

2c). Such data sections are usually unusable and could also be interpreted as noise.  151 

Signal points could further be interpreted into terrain (e.g. land or sea ice terrain), above-terrain 152 

point classes (e.g. forest canopies, buildings and clouds) and below-terrain surfaces (e.g. bathymetry) 153 

by leveraging attributes specific to the data and using ancillary data. For instance, elevation 154 

relationships among points or point clusters (e.g. points on vegetation canopies should lie above 155 

terrain points, cloud points usually cluster together but have very high elevations above terrain, 156 

Figure 2a, b and d), shape (regularity of building roof surfaces, Figure 2e) and point distribution 157 

information (terrain points show lower local elevation variance than points on vegetation, Figure 2a, 158 

b and d) could be applied for effective interpretation. Reduction in point density for weak beams can 159 

pose interpretation challenges, but observing data in a corresponding strong beam could aid 160 

interpretation even though they two beams do not sample the same area. While interpretation of 161 

ATL03 data could largely be done based on ATL03 data themselves, using ancillary data such as 162 

high-resolution imagery could enhance interpretation by applying the visual cues normally applied 163 

in image interpretation (Figure 2f).    164 

2.2 PhotonLabeler User Interface (UI) and software capabilities 165 

2.2.1. UI layout overview and display control 166 

We developed the PhotonLabeler UI and associated functionality using the MathWorks MATLAB 167 

App Designer (MATLAB R2020a). Figure 3 shows the three-panel layout of the PhotonLabeler UI. The 168 

left panel shows ground track details such as the beam level (weak or strong), the number of points 169 

in the track and the distance spanned. The panel also contains tools for defining or loading saved 170 

label definitions and displaying label statistics. The central panel contain two plot axes: the Overview 171 

and the Detail plots. We adopted the two-plot view to enhance the interpretation and labeling of 172 

individual photons by providing both an overview of the loaded data across a larger extent, and a 173 

more detailed view across a smaller extent. The left-most panel contains tools for data display control 174 

such as the size of the delta time or along-tract distance (ATD) span, the zFactor, which controls the 175 

portion of data to display in the Detail plot and an option that controls whether to use delta time or 176 

ATD values on the x-axis. This panel also contains number of point selection tools to facilitate 177 

labeling. In the following sections, we outline the general workflow and critical parameters that 178 

enable the reading, labeling and export of labeled data. For details on various functionality in the 179 

software, please refer to the supplementary material (SS). 180 
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 181 

Figure 3: PhotonLabeler graphical user interface showing track and label information and tools on the left panel, plot areas in middle and data display 182 
control and labeling and navigation tools on the right panel. 183 
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2.2.2 Reading and visualization of ATL03 data in PhotonLabeler 184 

The PhotonLabeler application reads and displays ATL03 HDF data by ground track and displays 185 

the data by plotting either the photon delta time values or the calculated along-track distance (ATD) 186 

values on the x-axis against the photon elevation values on the y-axis. To manage large file sizes, the 187 

PhotonLabeler only loads a portion of the data at a given time. Two parameters control how much data 188 

is loaded in the Overview and Detail plots: ∆T size parameter, which defines span of the data on x-axis 189 

and the zFactor parameter or zoom factor, which is a factor by which ∆T size is equally divided. All data 190 

that lies within a specified ∆T size range are loaded in the Overview plot. From the data loaded in the 191 

Overview plot, a sub-portion equal to ∆T size/zFactor is then loaded in the Detail plot, allowing a user 192 

to step through using the Next and Back buttons to view all data loaded in the Overview plot. At any 193 

point, the blue semi-transparent region in the Overview plot highlights the data displayed in the Detail 194 

plot as a guide when exploring or labeling the data. A user may also drag the blue region to positions 195 

of interest instead of using the Next and Back buttons to navigate through the data.  196 

PhotonLabeler application provides two methods for calculating ATD values. The first approach, 197 

which is the faster approach, uses an approximate relationship between delta time and the distance (1 198 

sec ≈ 7000 distance m) covered by the ICESat-2 satellite on the ground. Differenced delta time values 199 

are multiplied by the conversion factor (7000) and accumulated from the first point to generate along-200 

track distances. This approach treats all points as lying on a common track, thus neglects across 201 

variation within the footprint. The other approach generates a best-fit line among the points in the 202 

dataset and projects all points to this common line. Inter-point distances are then calculated and 203 

accumulated to get along-track distances. Due to the higher number of computations, this approach can 204 

is usually slow. For visualization and labeling purposes, the first approach is adequate and is 205 

recommended. 206 

As an aid to photon labeling or general data exploration in different part of the world, the 207 

PhotonLabeler application provide the means to link to base maps through MATLAB’s web maps as 208 

illustrated in Figure 4. In the figure, the yellow line shows the portion of the track covered by data in 209 

the Detail plot with the yellow marker indicating the direction of the track. Using visual cues from ATL03 210 

data as displayed in the Overview and Details plots and high-resolution imagery provide a powerful 211 

tool for effective photon interpretation and labeling. 212 

 213 

Figure 4: Web map integration. The section of an ICESat-2 track under consideration is displayed on 214 
a web-based map to aid interpretation of the ATL03 data.  215 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 August 2020                   doi:10.20944/preprints202008.0293.v1

https://doi.org/10.20944/preprints202008.0293.v1


 

 

2.2.3 Creating a point label definition, selecting and labeling points 216 

To manage labeling tasks, PhotonLabeler provides tools for defining point label definitions. A point 217 

label definition or scheme defines point classes and their respective representation for a target 218 

application. A user can define individual point class representation by specifying the label name, label 219 

code and picking a representation color as illustrated in Figure 5. PhotonLabeler also offers tools for 220 

deletion of defined point labels, saving of and loading of saved point label scheme. A saved label 221 

definition could be loaded when specifying session options or through the Load label definition button 222 

(Figure 5). Figure 5 shows an example of a classification scheme for vegetation study were target groups 223 

include noise, terrain, canopy and top of canopy. Defining a point label definition is only critical to 224 

labeling – visualization and general exploration of the loaded dataset could be done without it. 225 

The PhotonLabeler implements photon labeling on a track-by-track basis. A number of point 226 

selection tools including rectangle, polygon and polyline-based tools are available to facilitate the 227 

labeling of individual or group of photons. Normally, a user selects a target class and uses any of the 228 

available tools to select points of interest. Once the user has selected the points, the selected points are 229 

labeled and visualized based on a current active class. The user has the option to undo or reset recently 230 

labeled or all labeled data. The PhotonLabeler also provides an option to define top of canopy (ToC) 231 

points automatically, through the Assisted ToC Selection option (Figure 3), for vegetation related 232 

assessments. Based on the region of interest defined by the user, top of canopy points are defined by 233 

binning (see Bin Interval in Figure 3) the data along the x-axis and taking a point(s) above a specified 234 

percentile height (See Percentile Thresh in Figure 3) as top of canopy. The tool also estimates a ground 235 

level to allow elimination of points closer to the ground using a set ToC cut-off threshold. The automatic 236 

top of canopy tool relies on a user defining a region without noise above the canopy; otherwise, the tool 237 

could identify outlying noise points as ToC points. We also recommend using this tool over distances 238 

of 100 - 300 m, as longer distances tend to result in poor ground fits. 239 

 240 

Figure 5: Label definition tools in the PhotonLabeler. The red arrow illustrates the process of defining 241 
a new point label 242 

2.2.4 Exporting labeled data, saving and loading labeling sessions 243 

The PhotonLabeler allows the saving of labeled data in ASCII formats (comma separate values (.csv) 244 

and tab delimited text files (.txt). Labeled data are saved by ground track and includes point labels, 245 

point codes, section ID, longitude, latitude, elevation, delta time and if calculated, the along-track 246 
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distances. A section ID represents contiguous sections of labeled data along an ICESat-2 track and can 247 

facilitate separation of labeled data according phenomena of interest e.g. if one is interested in labeling 248 

data in sparse and dense forested regions. Section IDs are defined automatically by examining point 249 

index sequences and are more meaningful if contiguous sections of labeled data exist in the loaded 250 

dataset. To manage labeling tasks over time, the PhotonLabeler enables the saving and loading of 251 

labeling sessions. A saved session file contains the state of the application at the time of saving and 252 

stores input files path and parameters to enable one to pick up labeling from where they left. 253 

2.2.5 Software availability 254 

PhotonLabeler is available to interested scientists through our project website on GitHub 255 

(https://github.com/Oht0nger/PhoLabeler/releases/tag/v1.0). The application is available as a compiled 256 

binary, which one can install without a MATLAB license. The option requires a download of free 257 

MATLAB runtime environment. On our GitHub page, we also provide a detailed user manual on how 258 

to use the software. 259 

2.3 Case study: Using manually labeled data to access accuracy of ATL08 data  260 

2.3.1 ATL08 product overview 261 

The Land and Vegetation Height product (ATL08) contains along-track terrain and canopy 262 

heights above the WGS84 ellipsoid. The height estimates are derived from Geolocated Photon 263 

(ATL03) data in fixed 100 m x 14 m (footprint size) data segments [15]. The ATL03 photon data 264 

undergoes some preprocessing to filter background noise and to classify data points into respective 265 

terrain, canopy and top of canopy points [16]. Based on the classified terrain, canopy and top of 266 

canopy points, the various height metrics including descriptive statistics (minimum, mean, 267 

maximum) and height percentiles, are calculated within each 100-m segment. For canopy heights, the 268 

ATL08 product reports the height metrics in terms of the absolute height above the reference ellipsoid 269 

and relative height above an estimated ground. The ATL08 product, also distributed in HDF format, 270 

organizes calculated height metrics by ground track. Each ground track group in the HDF model 271 

contains subgroups that hold generated canopy and terrain heights and individual photon 272 

classification flags [15]. Table 1 summarizes the ATL08 height metrics evaluated for this case study. 273 

Table 1: ATL08 height metrics evaluated for the study. Height metrics include the minimum (Min), 274 
mean (Mean), maximum (Max) and height percentiles (Pxx, e.g., P25 for 25th percentile height). 275 
Metrics evaluated for a particular height type (Absolute canopy, Relative canopy and Terrain height) 276 
are marked by x 277 

Metric Max Mean Min P25 P50 P60 P70 P75 P80 P85 P90 P95 

Absolute canopy 
height 

x x x x x x x x x x x x 

Relative canopy 
height 

x x x x x x x x x x x x 

Terrain height x x x          
 

2.3.2 Study sites and objective 278 

We used the PhotonLabeler application to collect sample validation data over two sites, one in 279 

northwestern Zambia and the other in eastern Texas, United States. Our main goal here is to 280 

demonstrate how manually labeled data from PhotonLabeler could be used to assess accuracy of 281 

derived ICESat-2 products such as the ATL08. Given the influence of solar background radiation on 282 

noise levels in ICESat-2 photon data, our objective was to assess the agreement of ATL08 height 283 

estimates with matching estimates derived from labeled data for nighttime (when noise levels are 284 

lower) and daytime (when noise levels are higher) data acquisition scenarios. The Zambia site (circa 285 
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Latitude 13°49'10"S, Longitude 23°48'46" E) stretched across the Zambezian dry evergreen forest 286 

ecoregion comprising mainly of a tropical dry broadleaf forest, which rarely exceeds 25 m in height 287 

[17]. The Texas site (around Latitude 31°26'8.6"N, Longitude 95°16'38"W) lay across temperate conifer 288 

forests dominated by several species of Pine (Pinus spp.) as well as hardwoods including Hickory 289 

(Carya spp.) and Oak (Quercus spp.) [18].  290 

2.3.3 Data and labeling 291 

We selected one ATL03 granule over each site – a nighttime granule for the Zambian site and a 292 

day-time granule for the Texas site. We labeled data from strong beams only due to the low number 293 

of weak beam estimates to compare with in the ATL08 data. ATL03 granule IDs for the data used are 294 

ATL03_20190603025340_10050314_003_01 for the Zambia site and 295 

ATL03_20190415130456_02640302_003_01 for Texas site. From the granule ID, the data for the 296 

Zambia site was acquired on June 3rd 2019 while the data for the Texas site was acquired on April 15th 297 

2019. In both sites, our labeling scheme consisted of three main point classes: Terrain, for terrain 298 

points, Off-terrain comprising canopy points and top of canopy points, and Noise, for all background 299 

noise points. For the Zambian case, we labeled three 3000-m sections along a gt1l ICESat-2 track. In 300 

Texas, we labeled data across a 10,000 m transect, composed of two sections – one stretching about 301 

4000-m, the other about 6000-m along a gt2l track of the data granule.  302 

2.3.4 Preparing height metrics  303 

We extracted canopy and terrain metrics from ATL08 data corresponding with the ATL03 data 304 

granules used for labeling. The extracted data was saved as ASCII with the segment ID to serve a 305 

unique identifier when linking with estimates generated from our labeled data. To facilitate 306 

calculation of corresponding canopy and terrain height metrics, we recreated each ATL08 segment, 307 

which measures approximately 1000x14 m, based on segment attributes (begin/end delta times and 308 

the corresponding begin/end latitude/longitude) from both ATL03 and ATL08 data for the target 309 

tracks. Using the generated segment polygons as regions of interest, we calculated corresponding 310 

ATL08 metrics from the labeled point data. For absolute canopy heights, the labeled data excluding 311 

noise was used without ground normalization while relative canopy heights were calculated from 312 

normalized data, which leveraged already labeled terrain points. For terrain estimates, we used 313 

points labeled as terrain only. We applied LAStools software tools [19] for ground normalization and 314 

for calculating the corresponding ATL08 height metrics. To account for the point spread exhibited by 315 

ATL03, we imposed a 0.5 m threshold when calculating relative canopy metrics. 316 

2.3.5 Comparing ATL08 and PhotonLabeler derived height metrics 317 

We assessed the level of agreement between ATL08 height metrics and corresponding estimates 318 

derived from manually labeled data using regression analysis. We took values calculated from 319 

manually labeled data to be the reference or observed variables and took ATL08 data as predicted 320 

values, using the regression coefficient of determination (R2) as a measure of correlation. We also 321 

calculated a mean bias metric, calculated as the mean of differences between reference and predicted 322 

values, as a measure of precision and to shade light on under and over-estimation of the ATL08 323 

metrics with respect to manually labeled data, which we took as ground truth. 324 

3. Results 325 

3.1 Photon Labeling 326 

Figure 6 shows the manually labeled sections along the selected ICEsat-2 tracks and close-up 327 

views of ICESat-2 photon data over 100 m distance over the northwestern Zambia and Texas sites. 328 

The differences in the noise levels is notable reflecting the significant impact of solar background 329 

radiation can have on photon counting lidar measurements. The close-up views of the data also show 330 

differences in the amount of noise and the number of terrain points indicating differences in the level 331 
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of photon canopy penetration. Table 2 summarizes the number of points labeled along selected 332 

ICESat-2 tracks for the two sites. The distribution of the three-point classes is markedly different 333 

between the two sites. The proportion of noise points in the two sites was 1.7% for Zambia and 27.6% 334 

for Texas. The ICEsat-2 granule labeled for the Texas site was collected during the day (13:04:56 UTC) 335 

when the effect of background solar radiation is higher while the data used for the Zambia site was 336 

collected at night (02:53:40 UTC). The other notable difference is in the proportion of terrain and off-337 

terrain points. About two-thirds of the points for the Zambian site were ground whereas terrain 338 

points only account for less than a fifth of the points labeled. The reverse is observed for off-terrain 339 

points with the Texas site showing a large proportion of points than the Zambian sites. Apart from 340 

the time the data was acquired, these differences a reflective of the different vegetation structure 341 

(sparse vs closed canopy) or phenological stages (leaf-on vs leaf-off) in the two sites. The data for the 342 

Zambia site was acquired in June, which is a leaf-off period for most deciduous forest in Zambia 343 

while Texas forests were in their leaf-off state at the time the data was acquired in April [20,21]. 344 

Table 2: Number of manually labeled points in northwestern Zambia and Texas 345 

  Northwestern Zambia Eastern Texas, USA 
Label Label code No. points Proportion (%) No. points Proportion (%) 
Noise 0 368 1.7 6532 27.6 

Terrain 1 14198 65.3 4415 18.6 
Off-terrain 2 7174 33.0 12749 53.8 

Total  21740 100 23696 100.0 

3.2 ATL08 height metric comparison results 346 

The total numbers of ATL08 segments with valid canopy height estimates matched with labeled 347 

data from the Zambian and Texas sites were 84 and 90 respectively. The number of segments with 348 

valid terrain height estimates were 92 and 88 for the Zambian and Texas site respectively. Table 3 349 

and Table 4 summarize the relationships between various height metrics compared with 350 

corresponding estimates derived from manually labeled point data. In general, ATL08 height metrics 351 

were highly correlated (R2 > 0.8) with corresponding metrics from labeled data especially for absolute 352 

canopy and terrain height metrics. The correlation of ATL08 relative canopy heights with 353 

PhotonLabeler (PL) metrics varied by height metric with the minimum height values for the Zambia 354 

site showing a zero R2 value. We attribute the lack of correlation for minimum values to the 0.5 m 355 

threshold we applied when calculating relative height metrics, which force most of our minimum 356 

values to be 0.5 m. The maximum relative canopy values for the Texas site showed higher correlation 357 

with PL values compared to values for the Zambian site. This is somewhat surprising observation 358 

considering near-clean data for the Zambian site. The correlation for ATL08 percentile height metrics 359 

generally increased with the percentile level from P25 to P95 (R2 = 0.57 – 0.89 for the Texas site, R2 = 360 

0.67 – 0.86 for Zambia site).  361 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 August 2020                   doi:10.20944/preprints202008.0293.v1

https://doi.org/10.20944/preprints202008.0293.v1


 

 

 362 

Figure 6: Manual Photon Labeling using the Photon Labeler. a) – b) Label sections along ICESat-2 363 
tracks for the Zambian and Texas sites; c) –d) Close-up plot and base map views of 100-m segments 364 
for the Zambia and Texas sites  365 

The precision (Table 4) based on calculated mean biases of ATL08 absolute canopy, relative 366 

canopy and terrain height metrics with respect to PL metrics varied from -9.76 m (over-estimation) 367 

to 4.63 m (under-estimation). The precision between the two datasets improved with percentile level. 368 

For the Texas site, we observed over-estimation at lower percentiles (P25 – P60) including the 369 

minimum and mean height, which switched to under-estimation at higher percentiles (P70 – P95, 370 

Max). For the Zambia case, there was general over-estimation across all metrics except for the 371 

a) Label sections for northwestern Zambia site 

b) Label sections for Texas site 

c) Close-up view of a 100-m segment and its path on ESRI base map from Zambian site 

d) Close-up view of a 100-m segment and its path on ESRI base map from Texas site 
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maximum height. Again, we expected the Zambia case to provide better results due to the lower 372 

noise levels. These variations could be attributed to the impact of different noise levels on 373 

performance of ATL08 filtering algorithms. Results for relative canopy heights were as expected with 374 

the Zambia case showing lower biases (-0.36 – 0.70 m) compared to the Texas case (0.48 – 4.63 m). 375 

Lastly, ATL08 terrain height estimates showed high precision with respect to PL metrics for both 376 

sites. Figure 7 shows graphical relationships between ATL08 absolute canopy, relative canopy and 377 

terrain data with corresponding PL data for the minimum, mean and maximum height metrics. 378 

Table 3: Correlation (R2) between ATL08 absolute canopy, relative canopy and terrain height metrics 379 
with metrics derived from manually labeled point data for the Zambia and Texas sites. Height metrics 380 
include the minimum (Min), mean (Mean), maximum (Max) and percentiles (Pxx, e.g., P25 for 25th 381 
percentile height).  382 

 Absolute Canopy Height Relative Canopy Height Terrain Height 
Metric Texas Zambia Texas Zambia Texas Zambia 
Max 0.94 1.00 0.82 0.60 0.99 1.00 

Mean 0.96 0.99 0.82 0.82 1.00 1.00 
Min 0.98 1.00 0.29 0.00 0.99 1.00 
P25 0.87 0.98 0.57 0.67   
P50 0.89 0.95 0.62 0.86   
P60 0.90 0.94 0.71 0.79   
P70 0.94 0.92 0.75 0.73   
P75 0.96 0.93 0.79 0.78   
P80 0.97 0.95 0.85 0.78   
P85 0.98 0.97 0.84 0.79   
P90 0.97 0.99 0.87 0.80   
P95 0.97 0.99 0.89 0.76   

Table 4: Precision (mean biases) between ATL08 absolute canopy, relative canopy and terrain height 383 
metrics with metrics derived from manually labeled point data for the Zambia and Texas sites. Height 384 
metrics include the minimum (Min), mean (Mean), maximum (Max) and percentiles (Pxx, e.g., P25 385 
for 25th percentile height) 386 

 Absolute Canopy Height Relative Canopy Height Terrain Height 
Metric Texas Zambia Texas Zambia Texas Zambia 
Max 4.29 0.35 4.63 -0.17 0.45 0.19 

Mean -1.51 -5.89 2.91 0.26 -0.08 0.02 
Min -2.39 -1.31 0.48 0.18 -0.61 -0.21 
P25 -5.13 -6.36 3.14 0.70   
P50 -1.76 -9.63 3.27 0.14   
P60 -0.61 -9.76 3.16 0.03   
P70 0.39 -7.89 3.00 -0.02   
P75 0.90 -6.44 3.00 -0.10   
P80 1.47 -4.93 3.02 -0.25   
P85 1.83 -3.31 3.12 -0.33   
P90 2.33 -2.14 3.19 -0.36   
P95 2.69 -1.33 3.36 -0.34   
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 387 

Figure 7: Relationships between ATL08 minimum (Min), mean (Mean) and maximum (Max) height 388 
estimates and matching height estimates from PhotonLabeler (PL) labeled data for the Zambian (first 389 
column) and Texas (second column) sites: a) - b) Absolute canopy heights; c) - d) Relative canopy 390 
heights; e) - f) Terrain heights. The dashed line shows the expected 1:1 relationship between PL and 391 
ATL08 estimates. 392 

4. Discussion 393 

Over the decades lidar remote sensing has proven to be a highly effective technique for 394 

characterizing the 3D structure of terrestrial ecosystems including forests, snow ice and topography 395 

a) Absolute canopy height - Zambia b) Absolute canopy height - Texas 

c) Relative canopy height - Zambia 

e) Terrain height - Zambia f) Terrain height - Texas 

d) Relative canopy height - Texas 
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in general. Space-borne lidar missions such as ICESat-2 extend our capability to characterize 396 

terrestrial ecosystems from local to global scales. Critical to these endeavors are analysis methods 397 

and software tools to foster a better understanding of phenomena of interest including forest 398 

structure, bathymetry or surface topography or the understanding of the data itself. The PhotonLabeler 399 

application described in this paper is an effort to provide researchers with a tool for easy visualization 400 

and labeling of ICESat-2 photon data. Such capability could support a number of analyses including 401 

checking the accuracy of height estimates provided by ICESat-2 products as demonstrated in the case 402 

study or training new or re-calibrating existing algorithms with manually labeled data. Development 403 

of labeled photon datasets could motivate the development of even better algorithms for generating 404 

various products from ATL03 data. Machine learning and deep learning techniques presents one 405 

avenue for developing robust approaches [22,23], but still lack labeled point data to motivate 406 

adoption as in image-based analyses. Using applications such as PhotonLabeler could readily 407 

support such labeled data collection tasks. 408 

The critical importance of data visualization in remote sensing research to enhancing 409 

understanding of phenomena and communication cannot be over-emphasized. We believe software 410 

tools such as the PhotonLabeler present a great avenue to understanding ICESat-2 data in diverse 411 

environments. Researchers and educators may use it as a tool for instruction to demonstrate a variety 412 

of aspects of the ICESat-2 ATL03 data including responses of photon counting lidar in various 413 

environments. For instance, the impact of solar background illumination on the data quality could be 414 

shown by displaying day and night acquisitions. The impact of canopy cover on photon penetration 415 

in environments such as the Amazon compared to sparsely forested environments in the Savannas 416 

of Southern Africa, is another example. Insight or cues on developing algorithms could also be 417 

generated from visualizing data in different ecoregions. 418 

The case studies on the manual validation of ATL08 data provided a glimpse into the accuracy 419 

of ATL08 data for day and night acquisition. These results were generally promising with high 420 

correlations (R2 > 0.8) and precision (mean biases < 5) between ATL08 estimates and estimates 421 

generated from manually labeled data. However, these observations as the results of this assessment 422 

are limited. Further validation assessment incorporating data in various ecoregions, seasons and of 423 

different noise levels is still needed to provide a more complete view of the accuracy of the ATL08 424 

estimates. We also acknowledged that manually labeled data is not immune to error and 425 

inconsistencies may arise between how the ATL08 algorithms define surfaces and how we manually 426 

labeled data.  Given the high correlations between ATL08 and PL estimates, we think that was not a 427 

big issue for this assessment. For future studies intending to do similar assessments on a large scale, 428 

we recommended developing labeling protocols to enhance consistency among labeling experts or 429 

data in different environments. 430 

Additional functionality in the PhotonLabeler application is in the works to enhance productivity 431 

and general user-friendliness. Given that some ICESat-2 products such as ATL06 and ATL08 also 432 

contain photon level classification data, one capability envisioned is to enable users start labeling 433 

based on the existing labels and updating them where necessary. In collecting ground truth data for 434 

our demonstration study, it took about 20 – 30 minutes to label a 3000-m section along an ATL03 435 

track, which could add up for many sections of the data. Providing functionality to start labeling from 436 

some existing classification would enhance labeling efficiency from our current setup and would 437 

complement assisted labeling, such as automatic top of canopy selection, already implemented in the 438 

application. We are also working on providing wider options for saving labeled data. One option is 439 

saving the labeled data in HDF format similar to the ATL03 structure to improve the organization of 440 

the data. The other option to be included in future releases of the software is saving to industry 441 

formats such as LAS to facilitate view of the data with other software packages. 442 

5. Conclusion 443 

This study presented a user-friendly software application to support visualization and manual 444 

labeling of ICESat-2 ATL03 photon data. The application enables definition of custom labeling 445 

schemes to meet requirements of a research study and offers various point selection tools to facility 446 
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collection of labeled data. Labeled data collected using the PhotonLabeler can serve as ground truth 447 

for validating various ICESAt-2 elevation products especially in developing countries were airborne 448 

lidar acquisitions are not routinely done. We were able to demonstrate how manually labeled data 449 

could be applied for validating ATL08 estimates. Such an assessment could be extended to other 450 

validation studies for snow ice elevation or bathymetry. The PhotonLabeler can also facilitate the 451 

development of new algorithms by providing critical labeled data to support testing and validation.  452 
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