

Article

Ablation-Dominated Arcs in CO₂ atmosphere - Part II: Molecule emission and absorption

Ralf Methling ^{1,†}, Nicolas Götte ^{2,†}, and Dirk Uhrlandt ^{1,†}

¹ Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489 Greifswald, Germany; methling@inp-greifswald.de

² Institute for High Voltage Technology, RWTH Aachen University, Schinkelstrasse 2, 52056 Aachen, Germany; e-mail@e-mail.com

* Correspondence: methling@inp-greifswald.de; Tel.: +49-3834-554-3840

† These authors contributed equally to this work.

Version August 11, 2020 submitted to *Energies*

Abstract: Molecule radiation can be used as a tool to study colder regions in switching arc plasmas like arc fringes in contact to walls and ranges around current zero (CZ). This is demonstrated in the present study for the first time for the case of ablation-dominated high-current arcs as key elements of self-blast circuit breakers. The arc in a model circuit breaker (MCB) in CO₂ with and an arc in a long nozzle under ambient conditions with peak currents between 5 and 10 kA were studied by emission and absorption spectroscopy in the visible spectral range. The nozzle material was polytetrafluoroethylene (PTFE) in both cases. Imaging spectroscopy was carried out either with high-speed cameras or with intensified CCD cameras. A pulsed high-intensity Xe lamp was applied as background radiator for the broad-band absorption spectroscopy. Emission of Swan bands from carbon dimers was observed at the edge of nozzles only or across the whole nozzle radius with highest intensity in the arc center, depending on current and nozzle geometry. Furthermore, absorption of C₂ Swan bands and CuF bands were found with the arc plasma serving as background radiator. After CZ, only CuF was detected in absorption experiments.

Keywords: circuit breaker; switching arc; optical emission spectroscopy; optical absorption spectroscopy; current zero; SF₆ alternative gases; CO₂; PTFE; Swan bands; CuF

1. Introduction

Self-blast circuit breakers represent one of the main technologies for high-current interruption at high voltage. After contact separation, intense radiation emitted from the high-current arc leads to a considerable photo-ablation of the surrounding nozzle which causes a pressure build up and finally a strong gas flow necessary for arc quenching around current zero (CZ) [1,2]. Polytetrafluoroethylene (PTFE) is typically used as the nozzle material and SF₆ as the filling gas. However, the substitution of the greenhouse gas SF₆ by more environment-friendly gases like CO₂ is an actual trend. The pressure build up due to strong arc radiation and nozzle ablation as well as the arc quenching processes are key issues of the successful current breaking and have been subject of a large number of scientific studies. Main questions concern the properties of the arc and the hot gas regions like temperatures and species densities which are required for a sufficient understanding of the processes. Optical methods like emission and absorption spectroscopy can provide such quantities under the demand that arc and hot gas regions are optically accessible. However, an optical access can only be realized by adapted construction of specific model circuit breakers (MCB) or by appropriate model experiments [3–5].

Meanwhile, a sufficiently good knowledge of the arc properties during the high-current phase and in the high temperature regions (above 6 000 K) of the arc has been developed from spectroscopic

32 studies of switching arc experiments and MCBs (see e.g. [3]). This is because atomic and ionic species
33 dominate in the high temperature regions and generate an intense spectral line radiation which can be
34 well used for the determination of temperatures and species densities [6–8]. However, the analysis of
35 low-temperature regions of the arc fringes, of the regions near nozzle walls and of the temporal phase
36 of arc quenching is much more challenging due to low line radiation intensities.

37 The investigation of the phase around current zero by optical emission spectroscopy (OES) and
38 the determination of arc temperatures during the arc quenching as close as possible to CZ was a topic
39 of our accompanying paper [9]. An MCB using CO₂ as a filling gas and a PTFE-nozzle experiment
40 under ambient air were used for the analysis of line radiation of oxygen and fluorine atoms as well as
41 of carbon ions. Both setups will be also used in this study and explained shortly in section 2.

42 It is well known from composition calculations of thermal plasmas that the dissociation of filling
43 gases like SF₆ and CO₂ and reactions with the ablation product C₂F₄ and metal vapor from electrode
44 erosion can produce a number of molecular species in an intermediate temperature range before an
45 almost complete dissociation to atoms occurs at higher temperatures (see e.g. [10]). Hence, the study
46 of molecule radiation can help to analyze the interesting ranges of lower temperatures near the nozzle
47 boundaries and in the arc quenching phases. Unfortunately, there is a very low number of such studies
48 for arcs in corresponding gas mixtures and particularly for switching arcs.

49 Interesting candidates for the study of molecule radiation are the Swan-bands of the C₂ molecule
50 (around 500 nm) or the violet band of CN (around 385 nm) because of the relatively intense radiation
51 in the optical range. Emission and absorption spectroscopy of the C₂ radiation have been used for
52 example to study the structure of carbon arcs for nanoparticle synthesis [11–13]. The radiation of CN
53 was analyzed in a study of the arc ablation of organic materials in ambient air with close relation to
54 low-voltage switching [14]. Furthermore, both molecules have been more intensely studied in plasmas
55 produced by laser ablation or in the laser-induced breakdown [15–19].

56 The occurrence of C₂ molecules is expected in switching arcs in CO₂ atmosphere or in the case
57 of ablation of PTFE or organic wall materials. For laser irradiation it was reported that the dominant
58 mechanism for the production of C₂ molecules at low power is the collision of electrons with larger
59 molecules like C₃, C₄ followed by photo-defragmentation whereby one of the emitted products is an
60 excited C₂ molecule. At higher laser irradiance, the Swan band emission is mainly caused by excitation
61 resulting from electron–ion and ion–ion recombination [15]. The shape of continuum is influenced
62 by pressure and temperature. Thus, an estimation of the vibrational temperature can be obtained
63 by comparison of measured and simulated spectra [16,18]. Temperatures in a thermal argon plasma
64 interacting with various insulating plastic materials at magnetically forced arc movement [20] and
65 temperature decay of thermal plasmas caused by polymer ablation using inductively coupled plasma
66 irradiation [21] were investigated experimentally and numerically. As an example of a switching arc
67 study, the absorption spectrum of the C₂ Swan bands was analyzed in a low-voltage circuit breaker
68 model [22]. An arc moving between polyethylene walls was considered, and the density and the
69 rotational temperature of the C₂ molecules were determined from the absorption spectrum which
70 indicates the ablation of the plastic walls. Reports on the analysis of molecule radiation, the C₂ Swan
71 bands in particular, in high-voltage switching experiments as representative for high-voltage circuit
72 breakers are missing so far.

73 During the OES study of a MCB and a nozzle experiment described in our first paper [9], molecule
74 radiation of C₂ and CuF was recorded under different conditions and to some extent in unexpected
75 ranges of the arc. The molecule CuF is expected when copper vapor from the electrode erosion is mixed
76 with the dissociated PTFE vapor from the nozzle ablation [10]. The results for molecule emission and
77 absorption should be given in this second paper in detail. The aim is to demonstrate the occurrence
78 of molecule radiation as a possible candidate to characterize low-temperature regions in self-blast
79 circuit breakers as well as ablation processes. However, determination of quantities like rotational
80 temperatures and densities is out of the scope of the present paper. The MCB and nozzle experiment

81 setups will be presented shortly in section 2 together with the setup for spectroscopic measurements
 82 because details can be found in [9]. Results are given in section 3 followed by a discussion in section 4.

83 2. Materials and Methods

84 Two setups of electrodes and nozzles were used. They are described in detail in an accompanying
 85 paper [9]; basic features are sketched in Figure 1. Actually, the majority of experiments described in
 86 this paper were carried out with setup (b) and only few with setup (a). The electrodes were made of
 87 W-Cu with a 10 mm diameter and had a fixed distance of 40 mm. Nozzles made of PTFE doped with
 88 <0.5 wt% molybdenum disulfide (MoS₂) with an inner diameter of 12 mm were placed around the
 89 electrodes: Either setup (a) was applied with one 126 mm long, tubular shaped nozzle of 50 mm outer
 90 diameter for strong ablation and high pressure built-up or setup (b) was used with two nozzles of
 91 about 50 mm length and 104 mm outer diameter separated by 4 mm distance to form a heating channel.
 92 At the electrode positions, the nozzle diameter was increased to about 16 mm for an exhaust gas flow.

93 The arcs were operated either under ambient conditions (setup (a)) or in a vessel filled with 1 bar
 94 CO₂ (setup (b)) as part of a model circuit breaker similar to [3]. Windows in both the model chamber
 95 and the vessel allowed a free view through the nozzle and hence absorption experiments.

96 Sine-like currents were applied, for setup (a) with about 100 Hz frequency and 11 kA peak current
 97 and for setup (b) with 50 Hz and 5.3 kA. Thin Cu wires were used to initiate the arc discharges. Currents
 98 were measured using Rogowski coils. In case of setup (b) a pressure sensor (603A from Kistler) was
 99 placed in the heating volume of the model circuit breaker.

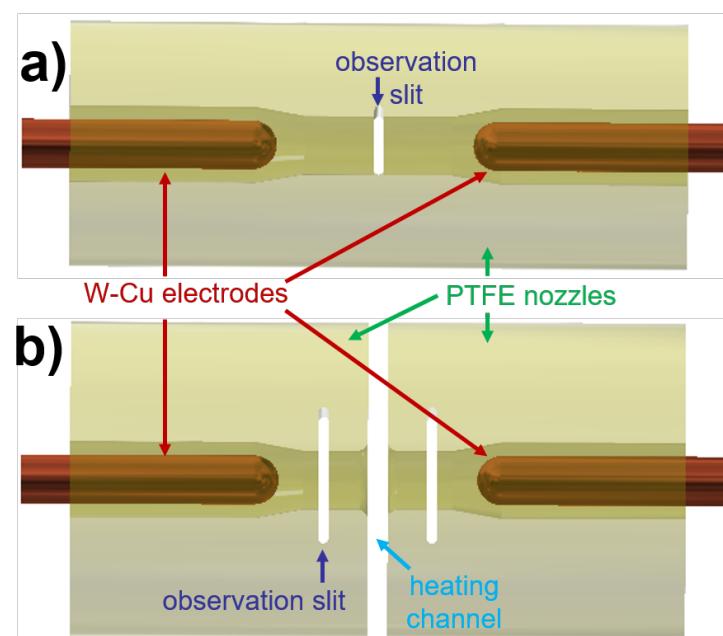


Figure 1. Setups (a) with a closed, long PTFE nozzle for experiments with strong ablation and high pressure built-up and vertical observation slits in the middle and (b) with two separated PTFE nozzles forming a heating channel for plasma flow into a heating volume as used for the model circuit breaker.

100 Optical access was realized by vertical slits of 2 mm width that were sealed by 2 mm-thick
 101 quartz plates, ranging over the complete nozzle diameter. After each shot the sealing plates were
 102 checked visually and exchanged; the transmission was measured regularly. Pairwise placement at
 103 opposite positions enabled background illumination and absorption measurements. For setup (a) the
 104 observation slits were placed in the middle between both electrodes. In setup (b), the observation
 105 point was positioned in one of the nozzles at half distance between electrode tip and nozzle exhaust,
 106 i.e. ~9 mm away from both. On the left side of Figure 3, an image of the HSC observation area (grey
 107 scale image) including the OES axis (yellow dashed line) is shown.

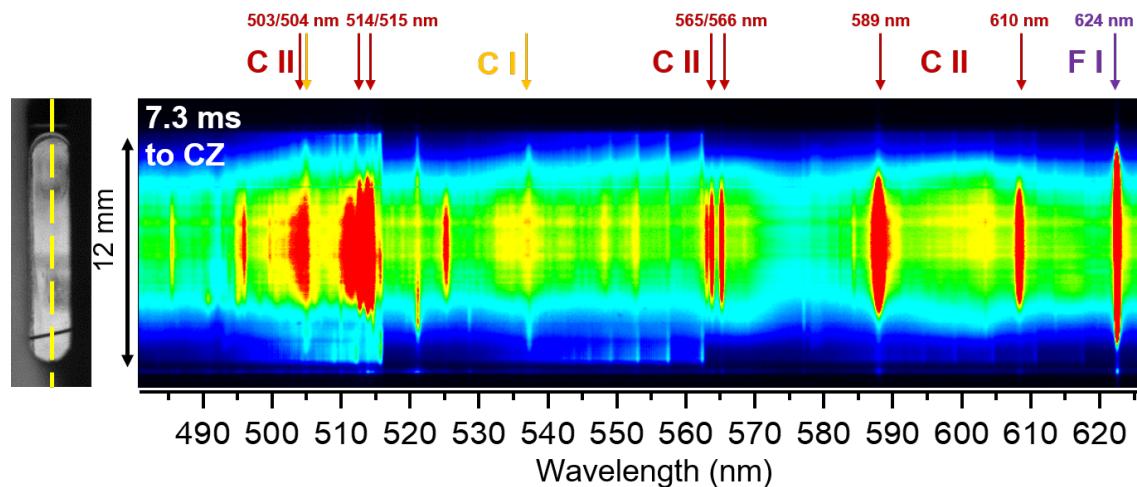
108 Different methods were applied for the optical analysis. Firstly, high-speed cameras (HSC) from
 109 Integrated Design Tools (IDT) were used to observe the general discharge behavior: Y6 with 24bits
 110 color or Y4 with 10bits monochrome. Secondly, optical emission spectroscopy was carried out by means
 111 of an imaging spectrograph with 0.5 m focal length (Roper Acton SpectraPro SP2500i). The nozzle
 112 slit was imaged on the entrance slit of the spectrograph by a focusing mirror to spectrally investigate
 113 arc cross sections, i.e. perpendicular to the arc axis. Using the spectrograph with Y4 HSC enabled to
 114 record series of 2D-spectra with typical repetition rates of 100 μ s (frame rate 10 kfps), allowing rather
 115 long exposure times up to 98 μ s that were necessary due to limited camera sensitivity. Alternatively,
 116 the HSC could be replaced by an intensified CCD camera (PI-MAX4 from Princeton Instruments)
 117 with higher sensitivity, allowing single frame acquisition of shorter exposure times even at lower
 118 intensities, e.g. around current zero. In a compromise between light intensity, spectral resolution, and
 119 exposure time, the entrance slit of the spectrograph was set to 50 μ m. With gratings of 150 lines per
 120 mm for overview and 18001/mm for detailed spectra, the spectral range was 150 nm and 10 nm and
 121 the spectral resolution 0.3 nm and <0.1 nm, respectively. The intensity of side-on spectra was calibrated
 122 in units of spectral radiance by means of a tungsten strip lamp (OSRAM Wi 17/G) at the arc position.
 123 The window transmission of 50–70 % was taken into account, mainly resulting from the coating of the
 124 quartz plates at the nozzles.

125 Thirdly, broadband absorption spectroscopy was carried out around CZ. Therefore, a background
 126 illumination was required with radiances higher or comparable to the emission of the arc. It was
 127 supplied by a pulsed high-intensity xenon lamp with a radiance similar to a Planckian radiator of
 128 12 000 K [23]. The square shaped pulse had about 1 ms-width at about 1 MW electric power, delivering
 129 a nearly constant emission intensity during the plateau phase.

Figure 2. Top: Arc current at the end of discharge. Bottom: Xe lamp current (red) and development of its emission intensity (blue squares).

130 Figure 2 shows exemplary current waveforms of the arc discharge around current zero (top,
 131 offset after CZ is caused by the Rogowski coil) and the quasi-rectangular pulsed current of the xenon
 132 lamp (bottom, red) as well as the spectrally integrated intensity measured by video spectroscopy
 133 (spectral range 400–800 nm). Since the electric pulse feeding the Xe-lamp was not perfectly rectangular,
 134 a heating phase of the xenon lamp could be observed. Thus, several Xe atomic lines were found
 135 in the first 100–200 μ s of the 1 ms-pulse before transition towards the 12 000 K-continuum emission.

136 Additionally, with decreasing current also the emission intensity decreased. Hence, for the OAS
137 analysis only the lamp's plateau phase was applied with a duration of about 700 μ s. This relatively
138 long, stable phase allowed for temporal investigation of absorption, e.g. compared to Z-pinchers with
139 some 10 μ s of varying radiation intensity as used in [22].


140 **3. Results**

141 In order to avoid doubling, some more general results that were already described and discussed
142 in the accompanying paper will not be repeated here. That relates to electrical waveforms, temporal
143 evolution of pressure and plasma composition in the nozzle, and video observation by HSC with and
144 without filtering. Additionally, only selected moments from the overview video spectroscopy will be
145 shown that are mandatory for the discussion of molecule emission and absorption. It should be noted
146 that for easier comparison all points in time are given with respect to the current zero crossing.

147 First, experiments in the MCB (setup (b)) with the sine-like current up to 5.3 kA are considered.
148 The arc voltage was around 200 V (after peak caused by explosion of ignition wire) until the arc
149 extinction peak some hundred μ s before CZ. The total pressure in the nozzle started from filling
150 pressure of 1.0 bar to a maximum of 3.5 bar close to peak current and decreased to about 2.0 bar at
151 current zero. After ignition, an arc discharge in CO₂ atmosphere was observed, also containing copper
152 from ignition wire and electrodes. Within the next few hundreds of microseconds, the ablation of the
153 PTFE (C₂F₄) wall material started to dominate the discharge, blowing the CO₂ out of the nozzle. In the
154 following, a long and stable period was observed that was dominated by ablation. Another reversal
155 of flow was found about 2 ms before CZ: With decreasing arc current, the wall ablation and thus the
156 pressure in the nozzle decreased to values below that in the heating volume. Hence, relatively cold gas
157 from the heating volume with high fraction of CO₂ flowed back into the nozzle. In the last ms, only
158 emission from O I was observed, indicating a plasma composition completely dominated by CO₂.

159 *3.1. Analysis of C₂ Swan bands*

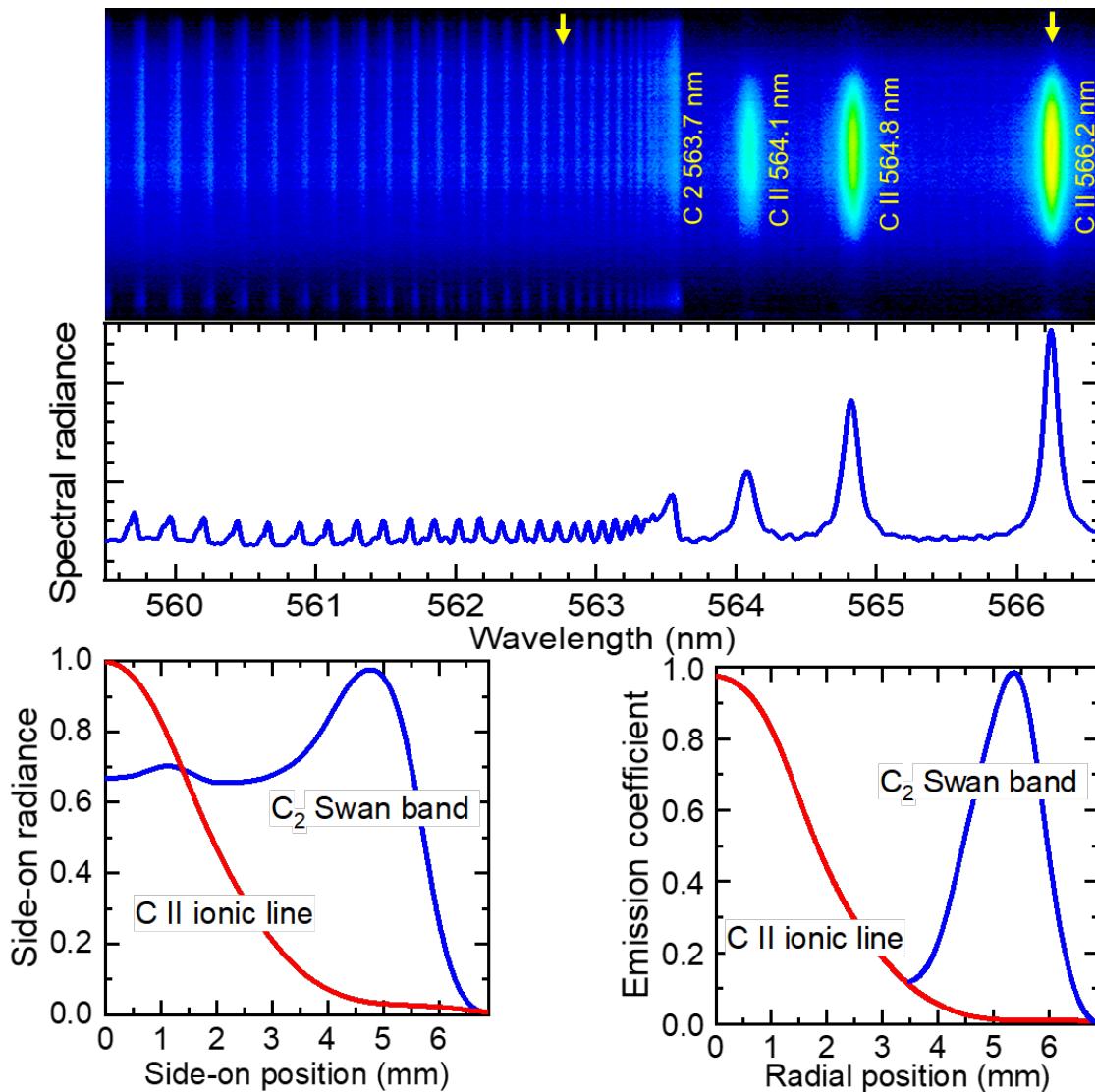

160 An example of a two-dimensional spectrum is shown in Figure 3. It was acquired with setup
161 (b) shortly before peak current (7.3 ms to CZ). The vertical axis represents the position along the
162 observation slit in the nozzle, cf. dashed yellow line in the HSC image on the left side; the horizontal
163 dimension is given by the wavelength in the spectral range ~480-625 nm. The arc discharge was
164 dominated by wall-ablation at that point in time; no emission from copper or oxygen but lines from
165 atomic fluorine F I and atomic and ionic carbon lines C I, C II could be observed. This radiation was
166 mainly emitted in a broad distribution over the arc cross section with highest intensities in central
167 positions, as it is typical for wall-stabilized arcs with broad and flat temperature profile [9]. However,
168 an additional structure can be recognized with a different lateral distribution: A dense pattern of lines
169 with increasing intensities and numbers towards higher wavelengths with abrupt breaks at positions
170 near 516 and 564 nm, spread over the whole nozzle diameter and partly even with maxima close to the
171 wall. This structure has been attributed to the Swan band system originating from transitions between
172 the d³ Π_g and the a³ Π_u electronic states of C₂ molecules. Four cases of appearance of Swan bands in
173 the discharge will be presented in the following.

Figure 3. Left: Photo (grey) of observation window. Right: Two-dimensional optical emission spectroscopy frame at 7.3 ms before CZ.

174 Firstly, the Swan bands occurred at the outer edges of the arc preferably close to the nozzle walls
 175 as shown in Figure 3. Generally, this can be regarded as typical behavior for cases of moderate PTFE
 176 influence, i.e. when current density is not too high and the temperature close to the wall is rather low,
 177 allowing existence of carbon dimers.

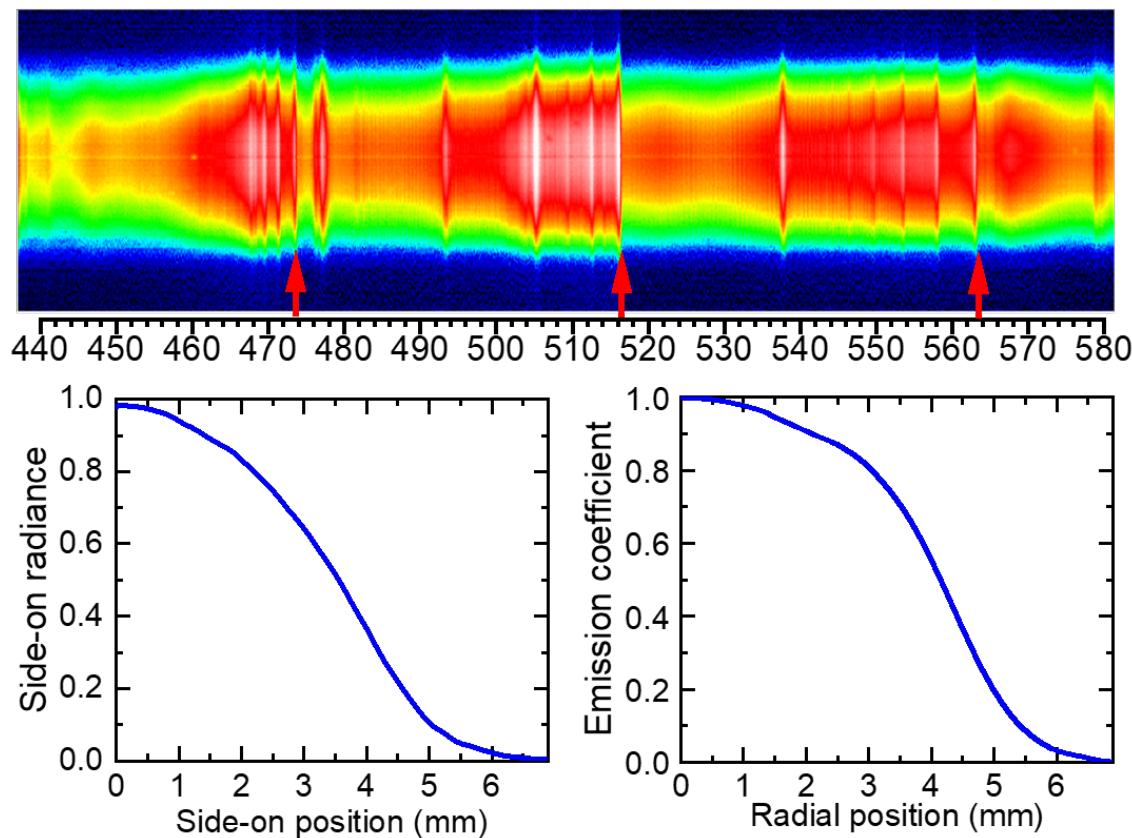
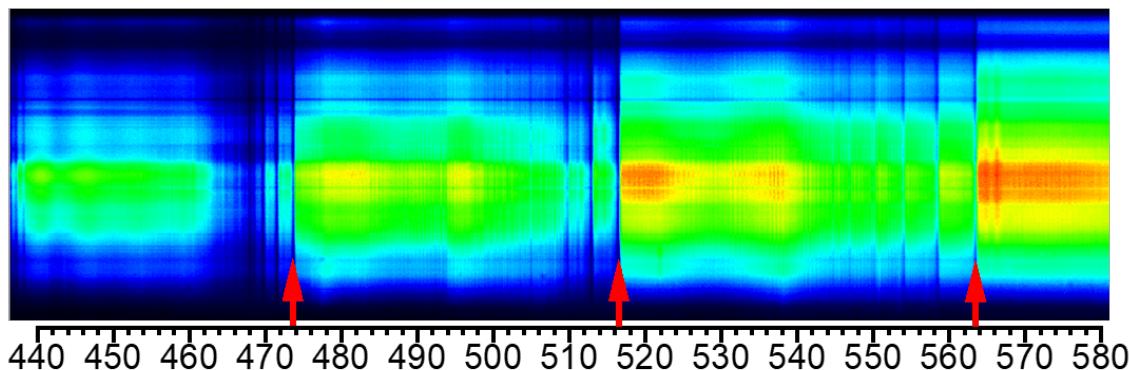

178 Secondly, other Swan band pattern were observed over the full vertical axis of the side-on
 179 2D-spectra. The example shown in Figure 4 was acquired with setup (b) about 6 ms before CZ,
 180 i.e. shortly before the peak current. A grating of 18001/mm was applied to obtain higher spectral
 181 resolution. A good agreement was found of the 1D-spectrum taken in central position with spectra
 182 shown by Camacho in OES studies of a plume produced by laser ablation of a graphite target [17]. The
 183 weaker continuum and stronger C II lines compared to [17] hint on rather high plasma temperatures
 184 at least in the arc center with higher current density than near to the wall.

Figure 4. Top: 2D spectrum over the full arc cross section (upper part) together with the corresponding 1D-spectrum from central arc position (lower part) in the spectral range around the C₂ Swan band head at 563.7 nm - Swan band on the left side and C II lines on the right side. Bottom left: Spectrally integrated line intensities of the carbon ion line C II 566.2 nm and of the C₂ Swan band line at 562.8 nm, labeled by yellow arrows. Bottom right: Inverse Abel transformation carried out for these intensities to reveal origin of emission.

Exemplarily, one of the lines of the C₂ Swan band near 562.8 nm was analyzed; the carbon ionic line at 566.2 nm was used for comparison, cf. yellow arrows in the 2D-spectrum. The side-on radiances are shown in the lower left part of Figure 4, whereas the ionic line has its maximum in the center, the Swan band emission is spread more homogeneously over wide side-on positions between center and 4 mm but has a distinct maximum near to 5 mm, i.e. near to the wall. Since both emissions showed good symmetry in relation to the center, this axis was used for symmetrization and as central side-on position "0 mm". Then, the radial profile of the emission in the arc can be analyzed by Abel inversion of the side-on radiances. Results are shown in the lower right part of Figure 4. The C II 566.2 nm ionic line is emitted as expected mainly in the center; the emission coefficient decreases to 20% within radial positions of 2 mm. The C₂ Swan band, however, has a sharp peak of less than 2 mm FWHM with a maximum emission coefficient below 1 mm to the wall. It should be noted that although the nozzle diameter is 12 mm some intensity was detected at side-on position above 6 mm due to experimental limitations like quartz plate connection and refraction at the windows. The algorithm of inverse Abel

198 transformation is limited in case of very low emission from the central position, therefore the C_2
 199 emission coefficient in the center is not plotted for values below 10% (radial positions <3.5 mm). To
 200 summarize even in the case of Figure 4 the Swan bands are emitted only in a thin sheath at the wall.


Figure 5. Top: Spectrum acquired 300 μ s before CZ with setup (a) and 8 kA peak current. It is completely dominated by molecular radiation of C_2 Swan bands (band heads labeled by arrows). Bottom: Spectrally integrated line intensities (left) and emission coefficient obtained from Abel inversion (right) of the C_2 Swan band emission at 562 nm.

201 A third example for the occurrence of C_2 Swan bands is shown in Figure 5. It was only observed
 202 with setup (a) providing higher pressure and strong wall ablation due to peak currents of 8 kA (100 Hz).
 203 With the single long PTFE nozzle the current was not switched off and multiple current zero transition
 204 were observed. Except the ignition phase and few hundred μ s around CZ, all spectra are dominated
 205 by pronounced emission of the Swan bands. Its band heads at 473.7 nm, 516.5 nm, and 563.6 nm
 206 are indicated by red arrows in the two-dimensional spectrum in the upper part of Figure 5. The
 207 wavelength range chosen here does not include the band head at 438.2 nm but also contains the C
 208 II lines at 564.06 nm, 564.81 nm, and 566.26 nm as well as the C I atomic lines at 476.2 nm, 477.0 nm,
 209 493.2 nm, 505.2 nm, and 538.0 nm. Weak or non-visible ionic and atomic carbon lines in comparison
 210 with the Swan bands give first hint to rather low temperatures in the center of the arc. Furthermore, it
 211 was observed that the occurrence of carbon lines drastically changes approaching current zero. Within
 212 some 100 μ s, first the ionic and then the atomic lines disappear; after CZ they reappear in reversed
 213 order. In fact, disappearance of the atomic lines cannot be observed for first and second, but for the
 214 third CZ crossing.

215 The Swan band pattern has much higher intensity in central position though the emission is
 216 extended to the side-on positions of the nozzle wall. The origin of emission is further analyzed using
 217 the band head around 563 nm as shown in the lower part of Figure 5. The side-on profile (left) and the
 218 emission coefficient obtained by inverse Abel transformation (right) reveal a different occurrence in

219 comparison to the plasma in Figure 4. The Swan bands are emitted with highest intensities in the center
 220 of the arc, continuously decreasing towards the nozzle walls. Thus, it can be followed that the arc
 221 plasma is completely dominated by PTFE material and it is characterized by rather low temperatures
 222 even in the arc center. It should be mentioned that this third case of Swan band appearance is the most
 223 extreme and could not be achieved with setup (b) with two nozzles separated by the heating channel
 224 even when the peak current was doubled to 10 kA.

225 The forth example was typical for setup (b): Swan bands appeared as an absorption pattern at
 226 currents >4 kA. An example is shown in Figure 6. The spectrum was taken shortly after the current
 227 maximum (4.7 kA, 4.6 ms before CZ). Emission from the hot plasma in the arc center served as an
 228 internal background radiator that was absorbed by the much cooler carbon dimers near to the nozzle
 229 wall. As in Figure 5, the band heads at 473.7 nm, 516.5 nm, and 563.6 nm are indicated by arrows.
 230 Additionally to the absorption pattern, some emission lines can be found. These are all C II lines from
 231 carbon ions, e.g. at 564.06 nm, 564.81 nm, and 566.26 nm, and are mainly emitted in the center of the arc
 232 with higher temperatures. For the above described arcs with strong flow of ablated material towards
 233 the electrodes (third and fourth case), no copper lines were visible. The F I lines were not in the chosen
 234 wavelength range.

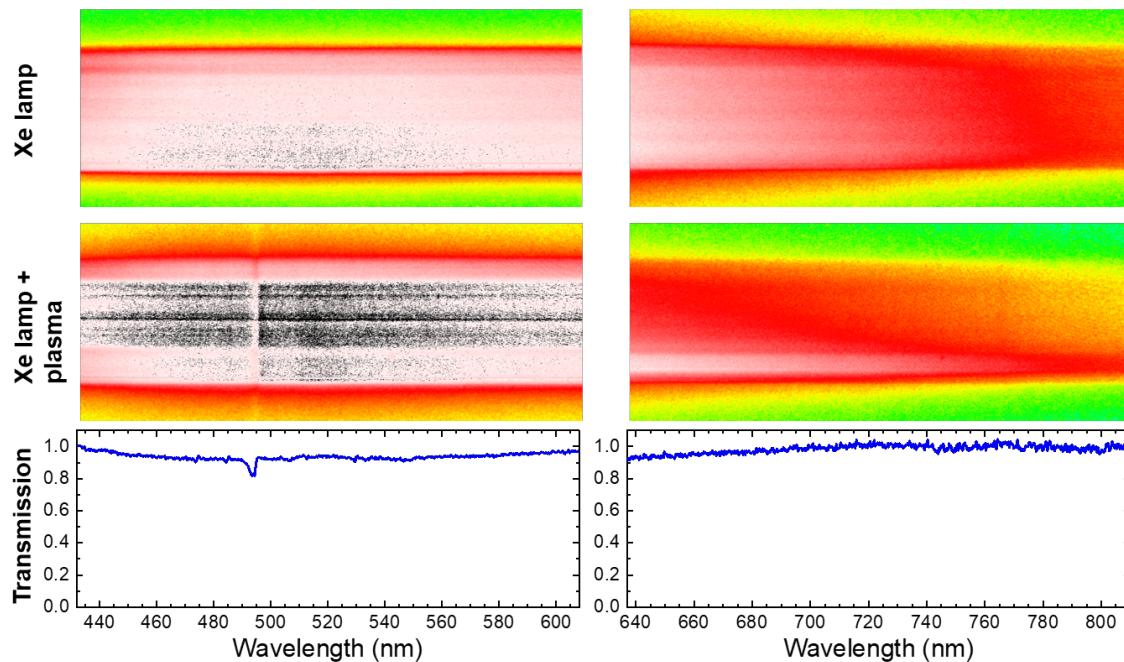
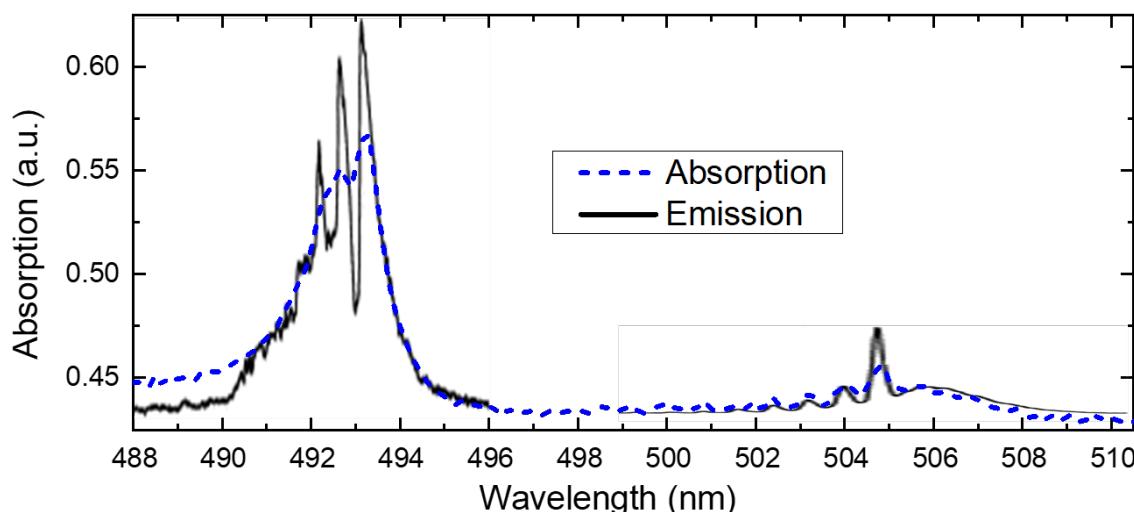


Figure 6. Spectrum during high-current phase of the discharge dominated by molecular radiation of C_2 Swan bands. With setup (b) the Swan bands could be observed as absorption pattern with the plasma in the arc center serving as background radiator. The band heads are labeled by arrows.

235 3.2. Optical Absorption Spectroscopy around Current Zero

236 The phase of current zero crossing is of highest importance for an understanding of the switch-off
 237 process and the dielectric recovery of the electrode gap region. Hence it is of special interest to extend
 238 experimental knowledge as close as possible to CZ and even beyond. However, even tapping the
 239 full potential of optical emission spectroscopy, e.g. by application of OES with intensified cameras
 240 as described above, the analysis based on optical emission spectroscopy is limited to times about
 241 $10\ \mu s$ before CZ due to reduced energy input by the arc[9]. Consequently, absorption techniques
 242 were required for further investigation of the current zero crossing and the immediately following
 243 time period. Since the majority of atoms is in the ground state in case of the lower temperatures
 244 near CZ, it will be necessary to analyze mainly lines going to ground or very low levels by optical
 245 absorption spectroscopy (OAS). However, most of the relevant lines are in deep UV regions far below
 246 300 nm. From the experimental point it is extremely demanding to investigate such radiation under
 247 switching-relevant conditions since all components of the setup including high-pressure vessel and
 248 model circuit chamber have to be transparent for these wavelengths. With the actual setup even
 249 resonant lines that might be more suitable could not be detected due to limited spectral sensitivity
 250 of the cameras such as C I at 296 nm or Cu I at 324 nm and 327 nm. The few resonant lines in the
 251 available wavelength range above 340 nm have very low transition probabilities, e.g. C I at 462 nm
 252 and O I at 630 nm. However, it might be possible that some lines might be occupied around CZ and
 253 could be detected by OAS that are characterized by relatively low energy levels and medium transition

254 probabilities, e.g. Cu I at 510 nm, 570 nm, and 578 nm with $E_u=1.39$ eV and 1.64 eV or O I at 557 nm
 255 with $E_u=1.26$ eV. Additionally, molecules are possible candidates for absorption, e.g. the C₂ molecule
 256 since its Swan bands were observed in emission until few 100 μ s before CZ and even in absorption
 257 during the high-current phase as shown above.


Figure 7. Optical absorption spectroscopy. Top: Overview emission spectra of Xe lamp only. Middle: Xe lamp with discharge of 5 kA peak current and setup (b), acquired at CZ with 50 μ s exposure time. Bottom: Spatially integrated transmission calculated from above spectra showing absorption around 500 nm.

258 Broadband optical absorption spectroscopy (OAS) was carried out around CZ using the pulsed
 259 high-intensity xenon lamp as an external wide-band background illumination. Two examples are
 260 shown in Figure 7, comprising the wavelength ranges about 440–600 nm (left) and 640–800 nm (right
 261 column). In the upper panel only the emission from the Xe lamp is given, i.e. through model circuit
 262 breaker including all windows but without discharge. Broadband continuum can be seen in both
 263 spectral ranges. It should be noted that the spectra are not calibrated concerning absolute intensity. The
 264 edges of the nozzle are indicated by sharp transitions from the bright stripe caused by illumination with
 265 the xenon lamp and the dark areas. The spatial distribution within the nozzle slit is quite homogeneous,
 266 showing smooth illumination by the background source. In the middle panel, the OES spectra were
 267 taken at CZ (exposure time 50 μ s) with the Xe lamp continuum passing the remainder of arc discharge
 268 in the nozzle. Patterns of horizontal stripes were sometimes observed. Similar experiments using HSC
 269 instead of ICCD camera revealed that these stripes did not change from one video frame to the next.
 270 Thus, it was reasonable to assume a deposition on the quartz glass sealing the slits, e.g. by particles.
 271 In the left spectrum a certain structure was found below 500 nm whereas the right spectrum did not
 272 show any peculiarities. From spectra in top and middle panel a transmission could be calculated, cf.
 273 lower panel of Figure 7. For an improvement of the signal-to-noise ratio and a better visualization
 274 of the intensity ratio, spatial integration was carried out for determination of the transmission. It
 275 revealed that there was only one significant absorption peak around 493 nm. This absorption was
 276 clearly accorded to the CuF molecule as will be discussed below. Beside this CuF peak, no hint on
 277 any absorbing lines or other features could be detected around current zero, even with the intensified
 278 camera with high sensitivity and dynamic range. Even the C₂ Swan bands could not be observed
 279 before or after CZ in OAS with the Xe lamp as background radiator although they were detectable in

280 OES up to few hundred μ s before CZ. Moreover, a closer look onto the emission spectra (cf. Figure 3)
 281 showed that the CuF absorption at 493 nm could also be found during the high-current phase of the
 282 discharge though this effect was rather weak compared to the intense line emission. This will be
 283 further investigated in Section 3.3.

284 Other species for an absorption with maximum around 493 nm could be excluded in detailed
 285 spectral analysis, including all relevant elements as Cu and W from electrodes, C, O, and F from filling
 286 gas and nozzle, and even H as possible contamination. As an example, a prominent candidate might
 287 have been the carbon atomic line C I at 493.20 nm, although its lower energy level of 7.7 eV is rather
 288 high. However, this line was not detected in emission like other atomic carbon lines with similar upper
 289 level of about 10 eV and comparable transition probabilities in the range of several 10^6 s^{-1} , e.g. C I
 290 505.21 nm and 538.03 nm (cf. Figure 3). Moreover, these C I lines were still observed in emission 0.7 ms
 291 before CZ, while at 493 nm an absorption could be seen even during discharge.

292 Since no absorption spectra were found in literature for CuF, a comparison was carried out with
 293 emission spectra of photofragments in a gas phase photochemical fragmentation process excited by
 294 308 nm-laser radiation [24]. In Figure 8, the emission spectrum from Cheon et al. [24] was added as an
 295 overlay (black) to the calculated absorption spectrum (dashed blue curve) for comparison. Taking into
 296 account the different experimental conditions and methods, a compelling agreement was found. Basic
 297 data of the CuF emission are listed in Table 1.

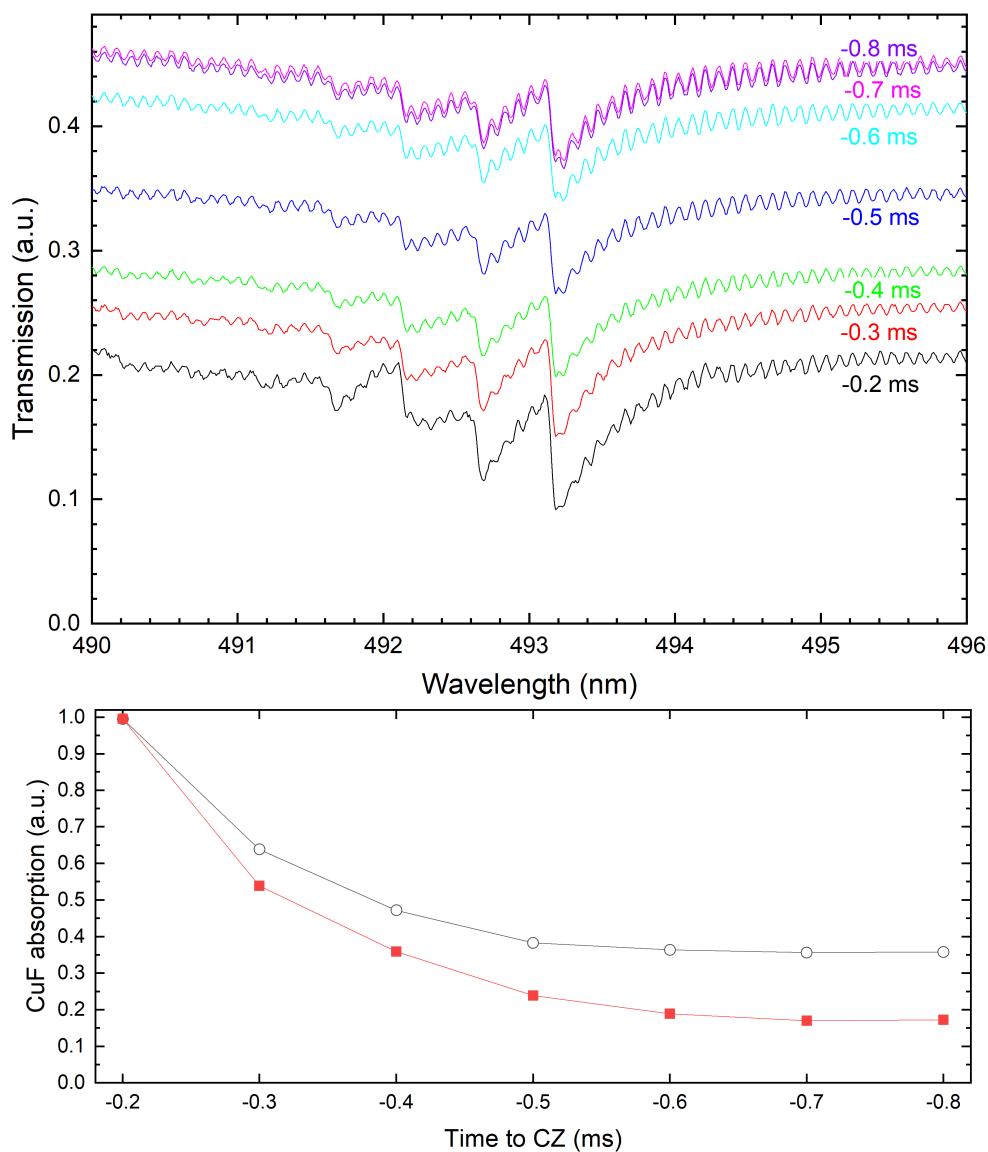
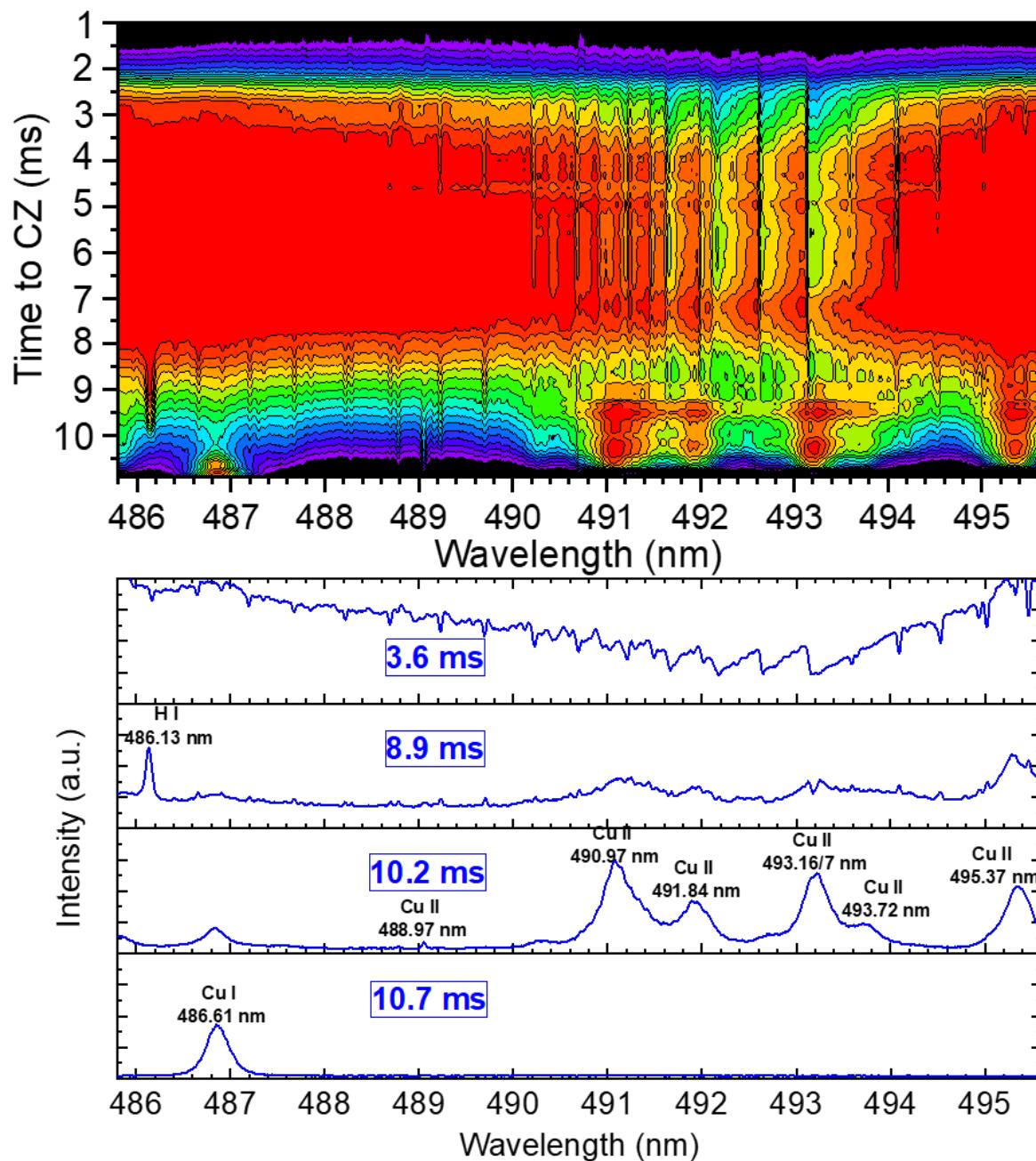


Figure 8. Absorption spectrum around current zero (dashed blue) and comparison with emission spectra of CuF molecules from [24] (black line).

Table 1. Basic data of CuF emission lines [25,26].

Wavelength nm	Relative intensity	Lower level eV	Upper level eV	Transition	Quantum upper	number lower	System
478.19	400	0	2.51	$X^1\Sigma^+$	$C^1\Pi$	0	C
490.13	500	0	2.44	$X^1\Sigma^+$	$B^1\Sigma$	0	B
492.68	600	0	2.51	$X^1\Sigma^+$	$C^1\Pi$	1	C
493.20	800	0	2.51	$X^1\Sigma^+$	$C^1\Pi$	0	C
505.23	600	0	2.44	$X^1\Sigma^+$	$B^1\Sigma$	1	B
506.11	700	0	2.44	$X^1\Sigma^+$	$B^1\Sigma$	0	B
508.64	200	0	2.51	$X^1\Sigma^+$	$C^1\Pi$	1	C
567.72	500	0	2.18	$X^1\Sigma^+$	$A^1\Pi$	2	A
568.57	600	0	2.18	$X^1\Sigma^+$	$A^1\Pi$	1	A
569.43	600	0	2.18	$X^1\Sigma^+$	$A^1\Pi$	0	A

298 In the following, the CuF molecular absorption after current zero should be analyzed in more
 299 detail. A series of time-resolved spectra is shown in the upper part of Figure 9. The transmission
 300 was calculated based on division of the measured spectra (plasma plus xenon lamp) by a xenon lamp
 301 spectrum without discharge. Higher spectral resolution was obtained by the grating with 1800 l/mm.
 302 Thus, also the peak structure including maxima at 493.2 nm, 492.7 nm, and 493.2 nm can be clearly
 303 recognized in agreement with the emission spectrum of CuF molecules from [24] shown in Figure 8.
 304 The overlaying periodic structure is not caused by the plasma in the nozzle since the same structure
 305 was also observed for the xenon lamp itself. Probably it was caused by an interference effect of glass
 306 plates in the detector. The background intensity increases although the xenon lamp is in its plateau
 307 phase.


Figure 9. Top: Series of detail transmission spectra after current zero. Bottom: Temporal development of absorption peak at 493 nm calculated as area under curve (AUC, open circles) and AUC normalized by background intensity (filled squares).

308 For a quantization of the temporal evolution of the absorption, the area under curve (AUC) was
 309 determined from the difference between the "background" (average of levels extracted at wavelengths
 310 aside the CuF absorption, i.e. around 490 nm and 496 nm) and the transmission, integrated over the
 311 spectral range. The AUC is plotted as the curve with black open circles in the lower part of Figure 9.

312 Additionally, a normalization of the AUC was carried out by division by the (temporally increasing)
313 intensity of the background signal. The normalized AUC is represented by the curve with red filled
314 squares. The spectrum 0.2 ms after CZ was chosen as starting point and the according value was set to
315 1 for better comparison. Within half a millisecond, the AUC decreases by 60%. The decrease of the
316 normalized AUC is even more significant, namely down to 20% (factor of 5). Few other shots that
317 were carried out confirmed this result. However, due to the exponential nature of this decrease the
318 absolute values are sensitive to the starting point. Summarizing it can be stated that the CuF absorption
319 and thus, also the CuF density decreases after current zero on a timescale of several hundreds of
320 microseconds.

321 *3.3. CuF during high-current phase*

322 As mentioned above, overview OES spectra in Figure 3 gave hint on a possible absorption of
323 the CuF molecule even during the arc discharge though the effect might be considerable lower in
324 absolute intensity than the atomic line emission. Thus, the spectral range around the 493 nm-peak was
325 investigated with video OES of higher resolution (grating 18001/mm instead of 1501/mm, exposure
326 time 98 μ s). An example is shown in Figure 10 acquired with setup (b) and 5.3 kA peak current.

Figure 10. Temporal evolution of the spectral range around 493 nm with CuF absorption (Time to CZ is from bottom to top, the color scale reaches from black for lowest emission to blue, green, and red for highest intensities).

327 In the upper part, all about 110 optical emission spectra (spatially integrated) are plotted line
 328 by line vs. time to CZ, forming a two-dimensional contour plot. In the lower part of Figure 10 a
 329 selection of four instants of time with characteristic spectral features are shown. Additionally, several
 330 atomic and ionic lines were labeled that helped for fine adjustment and control of exact wavelength
 331 positions. The ignition phase the spectra were dominated by atomic and ionic copper line emission. At
 332 first, i.e. 10.7 ms before current zero, an atomic copper line Cu I 486.61 nm was observed which was
 333 followed by several ionic copper lines. As known from overview OES spectra, the ablation of PTFE
 334 was usually initialized about 1 ms after ignition. In the spectral range of Figure 10 no atomic fluorine
 335 lines can be observed. However, occurrence of the hydrogen line H_{β} at 486.13 nm (starting about 9 ms
 336 before CZ) can be regarded as an early sign of nozzle ablation, probably caused by a thin remaining

337 water film on the nozzle surface. Within several hundred microseconds the spectrum is changed from
338 being dominated by copper lines (more probable originating from the W–Cu electrodes than from
339 the ignition wire) to being ablation–dominated. CuF absorption pattern is observed during the full
340 high–current phase, at least from about 8 to 2 ms before CZ. In the spectral range below 500 nm this is
341 basically visible by a broad continuum, starting about 2–3 ms after ignition (or 8 ms before CZ) and
342 lasting at least until about 2 ms before CZ. As can be clearly seen from the top spectrum in Figure 10
343 the characteristic absorption pattern of CuF can be observed for these 5–6 ms, i.e. during the whole
344 high–current phase of the discharge. Comparable to the case of absorption of the C₂ Swan bands,
345 the CuF absorption is enabled by background continuum from the arc plasma. Observed temporal
346 fluctuation of the intensity has been found to be caused mainly by changes of background intensity,
347 e.g. fluctuation of transmission or reflection due to droplets. Hence, even during the high–current
348 phase a considerable amount of absorbing CuF molecules must be existent in the plasma at nozzle
349 position, i.e. 8 mm away from the electrode. This might be unexpected but leads to the conclusion that
350 the gas flow into the heating channel is strong enough to pull electrode material into the region of
351 optical investigation.

352 4. Discussion

353 An ablation-dominated arc of 5 kA peak current was operated in a model circuit breaker with CO₂
354 atmosphere. Application of a slit over the full radius of the PTFE nozzle enabled direct investigation
355 inside the nozzle. Sealing by thin quartz plates was proved to be an useful method to obtain
356 reproducible conditions of discharges without significant changes of material flow or plasma conditions.
357 Consequent exchange of the plates after each shot yielded to high window transmission with moderate
358 blackening. Only very few cases of reduced sealing quality occurred, easily noticeable after discharges
359 due to increased blackening at the plate's corners. These shots could be repeated with better sealing.

360 Information was obtained from spatially and temporally resolved video spectroscopy using HSC.
361 That comprised the different phases of discharge and the occurrence of Swan band emission from
362 C₂ molecules. These Swan bands could be observed under varying conditions. Different amount of
363 ablated PTFE from the nozzle wall and plasma temperature were generated depending on nozzle
364 geometry and current density. Firstly, there was an occurrence very close to the nozzle walls as
365 typical behavior for cases of moderate PTFE influence, i.e. when current density was not too high
366 and the temperature close to the wall was rather low, allowing existence of carbon dimers. Although
367 it might be often neglected when the temperature distribution in the arc is investigated, the Swan
368 bands represents the existence of carbon molecules due to wall ablation and thus, an important effect
369 of cooling and change of plasma composition. Secondly, with higher current densities, Swan band
370 pattern were also distributed over the full vertical axis of the side-on 2D-spectra. However, it was
371 found by Abel inversion that the Swan bands are emitted in a thin sheath at the nozzle wall. Thirdly,
372 a different distribution was found under extreme conditions, i.e. with single long PTFE nozzle and
373 high peak currents. The arc plasma was completely dominated by PTFE material and temperatures
374 were moderate in the arc center, proved by weak or non-visible ionic and atomic carbon line emission.
375 The Swan band pattern was emitted with highest intensity in central position though emission was
376 extended to radial positions of the nozzle wall. Finally, Swan bands also appeared as an absorption
377 pattern at moderate currents with setup (b). Emission from hot plasma in the arc center (proved by
378 C II line emission) served as an internal background radiator that was absorbed by the much cooler
379 carbon dimers near to the nozzle wall.

380 A considerable amount of CuF molecules in the high–current arc as well as near CZ was found
381 from absorption spectra. This was not expected before for several reasons, especially regarding that
382 no other molecules were observed around CZ. A possible explanation is as follows: Around CZ it is
383 expected that convective fluxes are significantly reduced due to equalization of pressures. This allows
384 diffusive expansion of copper from the hot electrode along the nozzle towards the slit position. At
385 the same time there is still some release of fluorine from the PTFE nozzle wall. The chemical reaction

386 of the fluorine and copper atoms forming CuF molecules could happen at the hot electrode surface
387 followed by evaporation of molecules or in the gas phase with copper atoms evaporated from the
388 electrode. Similarly, the observed absorption during high-current phase might be explained by the
389 gas flow out of the nozzle into the heating chamber. In this case, copper atoms eroded or evaporated
390 from the W-Cu electrode might be flushed with the stream towards the heating channel, reacting on
391 its way with fluorine from the wall, and being detected at the observation slit by absorption with the
392 arc plasma as background radiator. However, during the time immediately after flow reversal, i.e.
393 about 1 ms before CZ, the situation is very different: the gas flow is directed from the heating channel
394 towards the electrodes. Thus, no copper from the electrodes should reach the observation area with
395 the slit and react with fluorine. That means that probably no CuF should be produced at this period;
396 any detected CuF should be survivor from the heating chamber. As a pity, at the moment database is
397 not sufficient to answer the question if there is a lower CuF concentration after flow reversal or not. In
398 the video spectra there is simply not enough background emission to enable sufficient signal for an
399 absorption.

400 Within the described experiments, limitations of reproducibility, fluctuation in transmission
401 due to particles, film layers on windows, and dust did not allow temporally and spatially resolved
402 determination of the absorption by CuF, e.g. using two-dimensional inverse Abel transformation of
403 video spectra with higher spectral resolution. Nevertheless, this would be the next step if significant
404 technical improvements were done. On the one hand, further optimization of the nozzle slit, its
405 position and manufacturing technique might provide even less changes of the gas and droplet flow
406 conditions, thus allowing measurements still closer to the undisturbed conditions at the nozzle. On
407 the other hand, the observation technique itself might be improved, too. Nowadays, the advantages of
408 intensified and high-speed video cameras can be combined in new generations of cameras or boosters.
409 The background illumination could be improved, too. Beside improvements in the optical path in
410 order to enhance the intensity and homogeneity, the pulsed xenon lamp might also be replaced by
411 a laser-driven light source with extended pulse duration. As a consequence, quantification of the
412 CuF absorption after CZ as well as during the arc discharge might be possible. Furthermore, OAS
413 regarding Swan bands could be tackled. Last not least, tests with other electrodes should be carried
414 out to finally proof the origin of absorption by CuF-molecules, e.g. made of pure tungsten.

415 Altogether, the possibilities of a recording of molecule radiation emission and absorption in the
416 visible spectral range have been demonstrated for the case of high-current ablation dominated arcs.
417 Using PTFE nozzles, tungsten-copper electrodes and an operation in air or CO₂, the Swan bands of
418 the carbon dimer C₂ and absorption of the CuF molecule were the only detectable radiation patterns.
419 However, these patterns open up ways for a study of interesting ranges in high-current breaking
420 processes like the colder plasma ranges near the nozzle walls and the time around CZ.

421 **Author Contributions:** Conceptualization, R.M. and D.U.; methodology, validation, and formal analysis, R.M.;
422 investigation with setup (a), R.M.; investigation with setup (b), R.M. and N.G.; writing—original draft preparation,
423 R.M. and D.U.; project administration, D.U. All authors have read and agreed to the published version of the
424 manuscript.

425

426 **Funding:** This research was funded by Deutsche Forschungsgemeinschaft grant numbers UH 106/13-1 and
427 SCHN 728/16-1.

428 **Acknowledgments:** The authors would like to thank Steffen Franke and Alireza Khakpour for experimental help
429 and fruitful discussions. The calculation of plasma composition was realised by Sergey Gortschakow (all Leibniz
430 Institute for Plasma Science and Technology).

431 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
432 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
433 publish the results.

434 **Abbreviations**

435 The following abbreviations are used in this manuscript:

436	AUC	area under curve
	CO ₂	carbon dioxide
	CuF	copper fluoride
	CZ	current zero
	ICCD	intensified charge coupled device
	HSC	high-speed camera
437	MoS ₂	molybdenum disulfide
	OAS	optical absorption spectroscopy
	OES	optical emission spectroscopy
	PTFE	polytetrafluoroethylene
	SF ₆	sulfur hexa-fluoride
	W–Cu	tungsten–copper

438 **References**

- 439 1. Ruchti, C.B.; Niemeyer, L. Ablation controlled arcs. *IEEE Trans. Plasma Sci.* **1986**, *14*, 423–434.
- 440 2. Seeger, M.; Tepper, J.; Christen, T.; Abrahamson, J. Experimental study on PTFE ablation in high voltage
- 441 circuit-breakers. *J. Phys. D: Appl. Phys.* **2006**, *39*, 5016–5024.
- 442 3. Eichhoff, D.; Kurz, A.; Kozakov, R.; Gött, G.; Uhrlandt, D.; Schnettler, A. Study of an ablation-dominated
- 443 arc in a model circuit chamber. *J. Phys. D: Appl. Phys.* **2012**, *45*, 305204.
- 444 4. Franke, S.; Methling, R.; Uhrlandt, D.; Gorchakov, S.; Reichert, F.; Petchanka, A. Arc temperatures in
- 445 a circuit breaker experiment from iterative analysis of emission spectra. *J. Phys. D: Appl. Phys.* **2020**,
- 446 *53*, 385204.
- 447 5. Bort, L.; Schultz, T.; Franck, C.F. Determining the time constant of arcs at arbitrary current levels. *Plasma*
- 448 *Phys. Technol.* **2019**, *5*, 175–179.
- 449 6. Tanaka, Y.; Yokomizu, Y.; Matsumura, T.; Kito, Y. The opening process of thermal plasma contacts in a
- 450 post-arc channel after current zero in a flat-type SF₆ gas-blast quenching chamber. *J. Phys. D: Appl. Phys.*
- 451 **1997**, *30*, 407–16.
- 452 7. Hartinger, K.T.; Pierre, L.; Cahen, C. Combination of emission spectroscopy and fast imagery to characterize
- 453 high-voltage SF₆ circuit breakers. *J. Phys. D: Appl. Phys.* **1998**, *31*, 2566–76.
- 454 8. Kozakov, R.; Kettlitz, M.; Weltmann, K.D.; Steffens, A.; Franck, C.M. Temperature profiles of an ablation
- 455 controlled arc in PTFE: I. Spectroscopic measurements. *J. Phys. D: Appl. Phys.* **2007**, *40*, 2499–2506.
- 456 9. Methling, R.; Khakpour, A.; Götte, N.; Uhrlandt, D. Ablation-Dominated Arcs in CO₂ atmosphere - Part I:
- 457 Temperature Determination near Current Zero.
- 458 10. Paul, K.C.; Sakutay, T.; Takashimay, T.; Ishikawa, M. The dynamic behaviour of wall-stabilized SF₆ arcs
- 459 contaminated by Cu and PTFE vapours. *J. Phys. D: Appl. Phys.* **1997**, *30*, 103–112.
- 460 11. Khalid, R.; Yaqub, K.; Yaseen, S.; Javeed, S.; Ashraf, A.; Janjua, S.A.; Ahmad, S. Sputtering of graphite in
- 461 pulsed and continuous arc and spark discharges. *Nucl. Instr. and Meth. in Phys. Res. B* **2007**, *263*, 497–502.
- 462 12. Bystrzejewski, M.; Łabędź, O.; Lange, H. Diagnostics of carbon arc plasma under formation of
- 463 carbon-encapsulated iron nanoparticles by optical emission and absorption spectroscopy. *J. Phys. D: Appl.*
- 464 *Phys.* **2013**, *46*, 355501.
- 465 13. Vekselman, V.; Feurer, M.; Huang, T.; Stratton, B.; Raitses, Y. Complex structure of the carbon arc discharge
- 466 for synthesis of nanotubes. *Plasma Sources Sci. Technol.* **2017**, *26*, 065019.
- 467 14. Becerra, M.; Friberg, A. Arc jets blown by outgassing polymers in air. Proc. XIXth Int. Conf. on Gas
- 468 Discharges and Their Applications, 2014, Vol. 1, pp. 1–4.
- 469 15. Harilal, S.S.; Issac, R.C.; Bindhu, C.V.; Nampoori, V.P.N.; Vallabhan, C.P.G. Optical emission studies of C₂
- 470 species in laser-produced plasma from carbon. *J. Phys. D: Appl. Phys.* **1997**, *30*, 1703–1709.
- 471 16. Park, H.S.; Nam, S.H.; Park, S.M. Optical emission studies of a plume produced by laser ablation of a
- 472 graphite target in a nitrogen atmosphere. *Bull. Korean Chem. Soc.* **2004**, *25*, 620–626.
- 473 17. Camacho, J.J.; Diaz, L.; Santos, M.; Reyman, D.; Poyato, J.M.L. Optical emission spectroscopic study of
- 474 plasma plumes generated by IR CO₂ pulsed laser on carbon targets. *J. Phys. D: Appl. Phys.* **2008**, *41*, 105201.

475 18. Parigger, C.G.; Hornkohl, J.O.; Nemes, L. Time-resolved spectroscopy diagnostic of laser-induced optical
476 breakdown. *Int. J. Spectroscopy* **2010**, *2010*, 593820.

477 19. Witte, M.J. Diatomic Carbon Measurements with Laser-Induced Breakdown Spectroscopy. Masters theses,
478 University of Tennessee, 2015.

479 20. Reynaud, O.; Picard, J.P.; Parizet, M.J. Rotational Temperatures Determined from C₂ Molecular Band
480 Spectra in a Thermal Argon Plasma Interacting with Insulating Materials. *Spectroscopy Letters* **1995**,
481 *28*, 1007–1014.

482 21. Sakuyama, T.; Amitani, K.; Tanaka, Y.; Uesugi, Y.; Kaneko, S.; Okabe, S. Investigation on Spatial
483 Temperature Decay of Thermal Plasma with Polymer Ablation. *J. Plasma Fusion Res. SERIES* **2008**,
484 *8*, 732–735.

485 22. Hong, D. Sandolache, G.; Lan, K.; Bauchire, J.M.; Le Menn, E.; Fleurier, C. A radiation source developed
486 for broad band optical absorption spectroscopy measurements. *Plasma Sources Sci. Technol.* **2003**, *12*, 1–7.

487 23. Günther, K.; Radtke, R. A proposed radiation standard for the visible and UV region. *J. Phys. E: Sci. Inst.*
488 **1975**, *8*, 371–376.

489 24. Cheon, J.; Kang, H.K.; Zink, J.I. Spectroscopic identification of gas phase photofragments from coordination
490 compound chemical vapor deposition precursors. *Coordination Chem. Rev.* **2000**, *200*–*202*, 1009–1032.

491 25. Pearse, R.W.B.; Gaydon, A.G. *The identification of molecular spectra*, 3rd edition ed.; The Whitefriars Press,
492 Ltd., 1963.

493 26. SpecLine - Spectral line idenfication for atoms and molecules. [Online]. Available: <https://www.plasus.de>
494 [retrieved December 2019], Smithsonian Astrophysical Observatory, 2018.

495 © 2020 by the authors. Submitted to *Energies* for possible open access publication under the terms and conditions
496 of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).