
Mining Stack Overflow: a Recommender

Systems-Based Model

Fouzi Harrag

Computer Sciences Department,

College of Sciences,

Ferhat Abbas University,

Setif, Algeria,

fouzi.harrag@univ-setif.dz

Mokdad Khamliche

Computer Sciences Department,

College of Sciences,

Ferhat Abbas University,

Setif, Algeria,

khemliche.mokdad@gmail.com

Abstract – In software development, developers received bug reports that describe the software bug.

Developers find the cause of bug through reviewing the code and reproducing the abnormal behavior that can

be considered as tedious and time-consuming processes. The developers need an automated system that

incorporates large domain knowledge and recommends a solution for those bugs to ease on developers rather

than spending more manual efforts to fixing the bugs or waiting on Q&A websites for other users to reply to

them. Stack Overflow is a popular question-answer site that is focusing on programming issues, thus we can

benefit knowledge available in this rich platform. This paper, presents a survey covering the methods in the

field of mining software repositories. We propose an architecture to build a recommender System using the

learning to rank approach. Deep learning is used to construct a model that solve the problem of learning to

rank using stack overflow data. Text mining techniques were invested to extract, evaluate and recommend

the answers that have the best relevance with the solution of this bug report.

Keywords – Recommender System, learning to rank, Mining software repositories, Text Mining, Deep learning,

Stack Overflow.

1. INTRODUCTION

In software development area, there is huge
amount of unstructured data that grows fastly
every day. This data exists in different levels and
systems used in the software development
process such as versioning systems, issue
trackers, achieved communications systems and
many other repositories. Mining the rich software
engineering data represents a modern field for
data mining domain that will open big doors for
researchers and developers. In fact, the
investigating in such data will make revolution in
development and maintenance activities.

This paper represent a state of the art for this
research topic. Section 2 of this paper covers the
definitions and the overview of software
repositories and describe as well each type of
these repositories. We will also give a global
presentation of Stack overflow platform

considered in our study case as a knowledge
repository.

Section 3 summarizes the state of modern mining
software repositories area and gives definition of
data mining, recommender System, NLP
techniques. Section 4 presents an overview of
related works in the field of mining software
repositories with discussion of different proposed
approaches. Section 5 is dedicated to the
presentation of our proposed approach. We focus
the concepts and techniques of machine and
deep learning that will be considered in the
construction of our framework.

2. Software data

Unstructured data refer to information that is not
organized by following a precise schema or
structure. Such data often include text (e.g., email
messages, software documentation, and code
comments) and multimedia (e.g., video tutorials,

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2020 doi:10.20944/preprints202008.0265.v1

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

mailto:1fouzi.harrag@univ-setif.dz
mailto:khemliche.mokdad@gmail.com
https://doi.org/10.20944/preprints202008.0265.v1
http://creativecommons.org/licenses/by/4.0/

presentations) contents. These kinds of data are
estimated to represent 80% of the overall
information created and used by enterprises in
software projects [1]. Large amount of artefacts
are generated in development process. This huge
data is continuously growing over time. It is called
software repositories.

2.1. Software repositories

Ahmed E. Hassan define software repositories [1]
as a record-keeping database that stores data
about artifacts of a complex computer based
system. It tracks changes applied to the artifact
and stores corresponding Meta data. Source
control repositories, bug repositories, archived
communications, deployment logs, and code
repositories are examples of software
repositories that are commonly available for most
software projects.

2.1.1 Type of software repositories

Through the type of information and their purpose
in this repositories. We can divide them to the
following types:

 Historical repositories: record
information about the evolution and progress of
project. This type of repositories can contain
tracks of all changes of the source code, the
historical bug reports, the communication
between team of development Such as: Version
control systems (CVS, SVN, Git, Mercurial), Bug
repositories (Bugzilla, JIRA), Mailing lists (e-
mails, wiki pages) and Development
collaboration sites (Stack Overflow).

 Code repositories: contain source code
of various applications Developed by several
teams of developments Such as Code bases
(Source Forge, Google Code) and Project
ecosystems (GitHub).

 Runtime repositories: contain
information about the execution and usage of an
application Such as Crash reports, Field logs, and
Execution traces.

 Mobile Application repositories:
contains the logs and bug report of applications
mobile, feedbacks of users Such as: App Stores
(Google Play Store, Apple App Store), mobile
apps user feedbacks (reviews, ratings).
Figure 1 shows examples of the current and

historical artifact and interaction that are

registered in software repositories.

Figure 1 Types of Software Repositories [2]

2.1.2 Importance of Software repositories:

 Software repositories contain a wealth of
valuable information about software projects,
that’s why they are considered as a first class
source of information.
 Software engineering becomes as a
more and more data-driven discipline lowering
the dependency on intuition and experience of
developers.
 When we applies mining techniques on
software repositories, we win a lot of time and
costs and we will increase the productivities of
development and maintenance software projects.

2.1.3 Stack Overflow as a Knowledge
Repository

Social media, unlike traditional media, gives

people an easy way to communicate, collaborate

and share information with each other’s. There

are many types of social media such as blogs,

micro blogs, bookmarking sites, social news,

media sharing and social networks. In the present

time, Social media turns into social productivity

through the participation of individuals in their

ideas, experiences and skills to generate content.

This collective work is called crowd sourcing.

D.Brayvold [3] defined crowd sourcing as "the

process of getting work or funding, usually online,

from a crowd of people". It generates content by

participation of a large group of people in their

skills, ideas, and knowledge. The usage of crowd

sourcing can help companies and individual in

doing their tasks with low cost compared to

employing specialists as well providing a high

number of people who are ready to work anytime.

One of the most important crowd sourcing

platforms is stack overflow.

Stack overflow depends on the crowd to provide

accumulated and to construct quality developer-

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2020 doi:10.20944/preprints202008.0265.v1

https://doi.org/10.20944/preprints202008.0265.v1

related knowledge. Extracting knowledge from

Stack Overflow by using data mining will be a

great success of major interest for the

community. In the next section, we will outline

and clarify the concept of mining software

repositories.

2.1.4 What is Stack overflow?

Ahasanuzzaman et al [4] define Stack Overflow

as "a popular question answering site that is

focused on programming problems». In this

community, Users can ask questions, provide

answers to the questions asked, mark the

questions as favorite, up vote / down vote an

answer, tag questions, and carry out other

community related tasks. Programmers have

actively used it to ask questions from January

2009. Today there is more than 18 million

questions, 27 million answers, and 10 million

users.

In addition to the above, Stack Overflow makes

some mechanisms of tagging and earning

reputation, badges to have more privileges in the

community. These mechanisms are explained in

the following lines:

Tags: Stack Overflow allows users to tag each

question, with up to a maximum of five tags.

Users can select an existing tag provided in the

autocomplete text box or create a new one. To

create a new tag, users need to have a minimum

level of reputation on Stack Overflow. This makes

sure that only expert users can create new tags,

which is maintaining consistency among tags

found on Stack Overflow. Expert users can also

change the question tags, in case they found

them incorrectly tagged.

User Reputation: Stack Overflow provides a

metric called Reputation to rank their users.

Reputation is an approximate measurement of

how much the community trusts a user; it is

earned when the peers appreciate what a user is

contributing. Users do not need reputation for

basic site functionalities such as asking questions

and providing answers, however users with high

reputation score gain more privileges. The

primary way to gain reputation is by posting good

questions and useful answers. Votes on these

posts cause user to gain (or sometimes lose)

reputation. The maximum number reputation

points that can be earned in a day is 200, thus

making sure that the reputation gained by a user

is by actively and consistently participating in the

site activities.

Privileges: are the accesses that user unlock

each time it win a certain reputation. For example,

user can negatively vote a position only if it has

at least 15 reputations. The last privilege is that

which will allow user to have access to the

Google analytics data of the site.

Badges: user can earn badges when it perform a

specific predefined operation. For example,

earning the Supporter badge when user vote

positively for the first time.

3. Mining Software repositories (MSR)

The field of mining software repositories aims at

examining and analyzing “the rich data available

in software repositories to uncover interesting

and actionable information in about software

projects and systems” [5].

3.1. Application of MSR

 Prediction and identifying bugs: Predicting

the occurrence of bugs remains one of the

most active areas in software engineering

research. By using MSR, it is possible to

predict and localize the bugs, so managers

can allocate testing resource appropriately,

developers can review risky code more

closely, and testers can prioritize their testing

efforts.

 Understanding Software Systems:

Understanding large software systems

remains a challenge for most software

organizations. Documentations for large

systems rarely exist and if they exist, they are

often not up-to-date. Information stored in

historical software repositories, such as

mailing lists and bug repositories, represent a

group memory for a project. Such information

is very valuable for current members of a

project.

 Understanding Team Dynamics: Many

large projects communicate through mailing

lists, IRC channels, or instant messaging.

These discussions over many important topics

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2020 doi:10.20944/preprints202008.0265.v1

https://doi.org/10.20944/preprints202008.0265.v1

such as plans, design decisions, project

policies, and code or patch reviews. These

discussions represent a rich source of

historical information about the inner workings

of large projects. The mining of these

discussions can help better understand the

dynamics of large software development

teams.

 Propagating Changes: Change propagation

is the process of propagating code changes to

other entities of a software system to ensure

the consistency of assumptions in the system

after changing an entity. For example, a

change to an interface may require the

change to propagate to all the components,

which use that interface. Instead of using

traditional dependency graphs to propagate

changes, we could make use of the historical

co-changes. The intuition is that entities co-

changing frequently in the past are very likely

to co-change in the future.

3.2. Data mining for Software Engineering

Data mining is the science of extracting useful

knowledge from such huge data repositories, to

use this knowledge in the decision process [6].

Data mining is aims to discover hidden and useful

patterns in huge data sets. Data Mining is all

about discovering unsuspected and unknown

relationships amongst the data. Data mining uses

machine learning, statistics, AI and database

technology to provide reliable results.

3.2.1 Machine Learning

Tom Mitchell in his book Machine Learning [7]

provides another definition: “The field of machine

learning is concerned with the question of how to

construct computer programs that automatically

improve with experience”. Like Humans have the

ability to learn by experience. Machines with

machine learning can do the same. The goal of

machine learning processes is to generate in

output a predictive Model based on data used in

training. Depending on the nature of the business

problem being addressed, there are different

approaches based on the type and volume of the

data: supervised learning, unsupervised learning

and reinforcement learning [8].

3.2.2 Deep Learning

Deep learning focuses on a specific category of

machine learning called Artificial Neural

Networks that is inspired from the functionality of

the human brain. Modern deep learning provides

a very powerful framework for supervised

learning. By adding more layers and more units

within a layer, a deep network can represent

functions of increasing complexity. Most tasks

that consist of mapping an input vector to an

output vector, and that are easy for a person to

do rapidly, can be accomplished via deep

learning, given sufficiently large models and

sufficiently large datasets of labeled training

example [9].

3.2.3 NLP Techniques for Data Preprocessing

NLP is the capacity of a computer program to

comprehend human language [10]. Researchers

use NLP techniques to preprocess data before

applying IR models to the data. Preprocessing

steps include tokenization, splitting, stop word

removal, stemming and pruning. IR overlaps with

other fields, especially database technology and

natural language processing (NLP). Information

Retrieval techniques and algorithms are also

used in the recommender systems research field.

4. Related Works

Many researchers have discussed the

effectiveness of using data mining techniques to

facilitate the debugging process for software

engineering developers. This section presents an

overview of the state of the art of this research

area.

Xin et al [11] presented a ranking approach that

simulates the bug locating process used by

developers. The ranking model benefited from

domain knowledge such as API specifications,

the bug-fix history, and code-change history.

"The ranking score of each source file is

calculated as a weighted combination of an array

of features ". Evaluation of experimental results

was done on six open sources java projects

which are Eclipse, JDT, Birt ,SWT. Tomcat and

AspectJ. Results showed that the ranking

approach is better than BugLocator, VSM, and

Usual suspect approaches. Their method assigns

the relevant files for over 70 % of the bug reports

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2020 doi:10.20944/preprints202008.0265.v1

https://doi.org/10.20944/preprints202008.0265.v1

within the top 10 recommendations in Eclipse and

Tomcat projects.

Rafi et al. [12] proposed an automated approach

for finding and ranking potential relevant classes

for bug reports. Their approach used a multi-

objective optimization algorithm to find balance

between minimizing the number of recommended

classes and maximizing the correctness of the

proposed solution. Based on the use of the

history of changes and bug-fixing, and the lexical

similarity between the bug report description and

the API documentation estimated the correctness

of the recommended classes. They evaluated

their system on six large open-source Java

projects. The experimental results showed that

the search-based approach was better than

mono-objective formulations (LS and HS). Their

search-based approach can find the true buggy

methods for over 87% of the bug reports within

the top 10 recommendations.

Lam et al., [13] presented an integrating

approach between deep neural network (DNN)

and rVSM, and an information retrieval (IR)

technique to locating and ranking potential

relevant classes for bug reports. rVSM gathers

the textual similarity feature between bug reports

and source files. DNN is used to learn to relate

the terms in bug reports to potentially different

code tokens and terms in source files. The

Evaluation of their approach was on real-world

bug reports in open-source projects. Combining

DNN with their new model achieved high

accuracy of bug localization than the state-of-art

IR and machine learning techniques.

The approach that was used to benefit from the

"crowd knowledge" available in stack overflow to

aid developers in their activities was presented in

[14]. This strategy recommended a ranked list of

question-answer pairs from stack overflow based

on a query. The ranking criteria was based on the

textual similarity of the pairs with respect to the

query, the quality of the pairs, and a filtering

mechanism that considers only “how-to” posts.

They conducted an experiment about

programming problems on three different topics

(Swing, Boost and LINQ) frequently used by the

software development community. The results

showed that for Lucene+Score+How-to

approach, 77.14% of the assessed activities have

at least one recommended pair proved to be

useful to solve a programming problem.

Fabio et al. [15] discussed developers

abandoned from legacy developer forums to

stack overflow platform, a lot of crowd-sourced

knowledge is at risk of being left behind. They

aimed to add to the body of evidence of existing

research on best-answer predication. They did an

experiment by using data from Stack Overflow to

train a binary classifier. After that, they tested a

classifier on a dataset retrieved from the legacy

Doc using support forum. The findings showed

that their model could find best answers with a

good accuracy when all features are enabled e.g.

answer up votes, number of sentences and

answer length. Results gave a positive proof

towards the automatic migration of crowd-

sourced knowledge from legacy forums to

modern Q&A sites.

Jacob Perricone [16] utilizes the network

structure of Stack Overflow to recommend a set

of related questions for a given input question. In

particular, the project employs a modified guided

Personalized Page Rank algorithm to generate

candidate recommendations and compares the

results to those recommended by Stack

Overflow. Semantic similarity and tag-overlap

were used to assess candidate

recommendations. For a given recommendation

set, the average text, title, and tag-overlap scores

were calculated. These scores were then

averaged across all trials of the experiment to

yield a final score.

Daniel S. Weld et al., [17], investigate a new

problem of systematically mining question-code

pairs from Stack Overflow (in contrast to

heuristically collecting them). They formulated

the problem as predicting problem whether a

code snippet is a standalone solution to a

question. They proposed a novel Bi-View

Hierarchical Neural Network that can capture

both the programming content and the textual

context of a code snippet (i.e., two views) to make

a prediction. On two manually annotated datasets

in Python and SQL domain, the framework

substantially outperforms heuristic methods with

at least 15% higher F1 and accuracy.

Furthermore, they presented StaQC (Stack

Overflow Question-Code pairs), the largest

dataset to date of ∼148K Python and ∼120K SQL

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2020 doi:10.20944/preprints202008.0265.v1

https://doi.org/10.20944/preprints202008.0265.v1

question-code pairs, automatically mined from

SO using this framework.

Stefanie Beyer et al., [18] aim to automate such

a classification of SO posts into seven question

categories. As a first step, they have manually

created a curated data set of 500 SO posts,

classified into the seven categories. Using this

data set, they applied machine-learning

algorithms (Random Forest and Support Vector

Machines) to build a classification model for SO

questions. They then experimented with 82

different configurations regarding the

preprocessing of the text and representation of

the input data. The results of the best performing

models show that their models can classify posts

into the correct question category with an

average precision and recall of 0.88 and 0.87

when using Random Forest and the phrases

indicating a question category as input data for

the training. The obtained model can be used to

aid developers in browsing SO discussions or

researchers in building recommenders based on

SO.

Yun Zhang et al., [19] proposed a novel approach

named RFEB, which recommends frequently

encountered bugs (FEBugs) that may affect

many other developers. RFEB analyzes Stack

Overflow, which is the largest software

engineering-specific Q&A communities. Among

the plenty of questions posted in Stack Overflow,

many of them provide the descriptions and

solutions of different kinds of bugs. Unfortunately,

the search engine that comes with Stack

Overflow is not able to identify FEBugs well. To

address the limitation of the search engine of

Stack Overflow, they propose RFEB, which is an

integrated and iterative approach that considers

both relevance and popularity of Stack Overflow

questions to identify FEBugs. To evaluate the

performance of RFEB, they performed

experiments on a dataset from Stack Overflow,

which contains more than ten million posts.

Finally, they compared this model with Stack

Overflow’s search engine on 10 domains, and the

experiment results show that RFEB achieves the

average 𝑁𝐷𝐶𝐺10 score of 0.96, which improves

Stack Overflow’s search engine by 20%.

Table 1: Summary of related studies

Ref Year Method used Data set Results
Performances
Evaluation

Xin et al.[11]

2016

- Ranking model

- VSM

Benchmark datasets

from open source

projects:

Eclipse

-JDT

- Birt

- SWT

The learning rank

approach

achieved better

results than the

BugLocator ,

VSM, Ususl

suspects on all six

projects.

1) Eclipse :

accuracy =80%

,MAP= 0.44

,MAR=0.51 .

2)JDT: accuracy

=80% ,MAP=0.39

,MRR=0.51 .

3) Birt

:accuracy=50%

,MAP=0.16

,MRR=0.21.

Rafi et al., [12]

2016

- Multi-objective

algorithms called

NSGA-II

- search-based

algorithms

Benchmark datasets

form open-source

systems :

- EclipseIU

NSGA-II is better

than random

search and the

three mono

objective

formulations (

lexical-based

1) EclipseIU :

precision=82%,re

call=79%,

accuracy=80%.

2) Tomcat:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2020 doi:10.20944/preprints202008.0265.v1

https://doi.org/10.20944/preprints202008.0265.v1

4.1. Discussion

We noted from the previous state of the art that
the most of studies like [11] [12] and [13] provide
a ranking approach that leverages domain
knowledge to locate a bug by ranking all the
source files likely to contain the cause of the bug.

The researchers used the same benchmark
datasets for evaluation in [11] [12] [13]. There is
a similarity between [13] and [14], both of them
used vector space model for ranking whereas
[12] used Multi-objective algorithms called
NSGA-II while [13] used Revised Vector Space
Model (rVSM) and Deep Neural Network (DNN).

-Tomcat

-AspectJ

-Birt

-SWT

- JDT.

similarity (LS) ,

history-based

similarity (HS,.and

(GA) on all the 6

systems.

precision=91%,re

call=81%

accuracy=90%.

3) AspectJ

:precision=79%

,recall=86%

,accuracy =88%.

Lam et al.,

[13]

2017

Revised Vector

Space Model

(rVSM) + Deep

Neural Network

(DNN)

Benchmark datasets

from open-source

projects: Aspectj

,Birt ,Eclipe platform

,JDT,SWT,Tomcat .

DNNLOC

achieves highest

accuracy with the

combination of

relevancy via

DNN, textual

similarity via

rVSM, and the

metadata

features.

1) TomCat

:accuracy=80.4%,

MRR=0.60,MAP=

0.52

2) AspectJ :

accuracy=85%,M

RR=0.52,MAP=0.

32.

3)

Eduardo et

al., [14]

2016

Logistic

regression

classifier (LR)+

Normalized

Discounted

Cumulative Gain

(NDCG)

Dataset from Stack

Overflow (the

version of March

2013)

The Lucene+

Score+ Howto

approach

achieved better

performance than

Google on Boost.

NDCGRelev=0.35

83

NDCGReprod=0.5

243

Fabio et al., [

15]

6102

Alternating

Decision Trees

(ADT) classifier

+

information gain

(IG)

1). Dataset from

Docusign , it is a

legacy forum.

2) Dataset from

Stack Overflow

The model can

find best answers

with a good

performance,

when all features

are enabled

accuracy ~90%,

F=.86, AUC=.71.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2020 doi:10.20944/preprints202008.0265.v1

https://doi.org/10.20944/preprints202008.0265.v1

Data mining techniques that were used in these
studies are different such as [15] and [18] that
used classification, [16] that used a modified
version of page-rank, [17] that used a novel Bi-
View Hierarchical Neural Network algorithm and
[19] that used a novel RFEB approach to
recommends frequently encountered bugs. The
researchers suggested in [13] and [14] to improve
their approaches by leveraging additional types of
domain knowledge and using the SVM ranking
with nonlinear kernels. They evaluated their
approaches in different datasets of programming
languages codes. In this paper, we tried to take
benefits from these suggestions in the design and
the development of our proposed framework.
Table 1 is showing a summary of all these related
studies.

5. Proposed Approach

Our framework is using the concept of

recommender systems to model the problem of

mining stack overflow in order to find a solution

for a bug report.

5.1. Overall Framework

By looking to the architecture of our model, we find
that a bug report is issued as input and the ranked
list of related best answers is recommended as
output. First, when a new bug report is received,
the preprocessing step is then started. The
Information extracted from the bug report are then
formulated as query and issued to the index of
questions. A similarity measure between the
query and a set of answers is calculated. The N
best selected answers are then passed to the
kernel of our model. The list of proposed solutions
is then re-ranked by score. The learning to rank
approach is applied to train a ranking model that
use many features extracted from the Stack
Overflow dataset. Figure 2 shows the overall
architecture of our model framework.

Figure 2: The overall architecture of our model framework

5.2. Data Preprocessing

Data Preprocessing is the most important task in
data mining process particularly in text mining
field where we are dealing with a huge amount of
raw textual data. This phase has a great impact
on the performance of the model. In our

framework, text mining and NLP techniques are
applied on two kinds of data:
 SO data: containing a large amount of
textual data presented as posts (questions and
answers) and Meta data about users. The goals
from this preprocessing stage is to prepare this
posts’ data for the task of index building. This
index will be used to train the ranking model.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2020 doi:10.20944/preprints202008.0265.v1

https://doi.org/10.20944/preprints202008.0265.v1

 Bug report: contains a lot of information
about the software bug processed by any
developer or programmer. This data represent in
our system what we call context (or query).

5.2.1 Dataset Cleaning

Before performing any type of preprocessing on
the dataset, it is necessary to clean the data.We
filter our data by deleting the unwanted parts.

5.2.2 Tokenization

This process split the sequence of strings into
words. It removes all the punctuations marks from
the input text data and returns words as tokens.

5.2.3 Stop word elimination

One of the fundamental ideas in the context of
information retrieval is the removing of common
words that appear frequently in the documents,
but do not provide helpful information for the
users' needs. These words called stop words can
effectively decrease the retrieval rate.

5.2.4 Stemming

Refers to the procedure of transforming deferent
variations of the same word to their stem, usually
through stripping suffixes and prefixes such as
(ed, ize, s, ing in English Language). Although
stemming is a very commonly used process in
information retrieval, it might cause false
matching of some words with deferent stems to
the same root.

5.3. Building TF-IDF Index of questions

The vector-space representation is a framework
for representing raw or unstructured documents
as vectors of terms. Using this idea, Vectors of
term weights can be represented as one-row
matrix representing the textual features of each
bug report or question in Stack overflow dataset.
The goal from building this index is to calculate
the similarity between the bug report as a query
and a set of questions from the OS dataset. The
index of documents is searched to retrieve and
rank the N first questions with high similarity.
The vast majority of work using vector-space
representation makes use of the TFIDF
representation of documents. The TFIDF
representation is a heuristic metric that is used as
a weight to represent each term feature of a given
document.

TFIDF(t, D)=TF(t).IDF(t, D) (1)

TF(t) refers to the term t frequency in the current
document d.

IDF(t, D)=log(
𝐷

DF(t,D)
) (2)

DF(t, D) refers the number of document where
the term t appear and IDF(t, D) refers to the
inverse document frequency, or the frequency of
a term over the whole set of documents.

5.4. Similarity Calculation

Once a Bug report is submitted, the system will
search for the N most similar documents among
the knowledge bases. In order for our system to
rank the results, it needs to rely on a metric to
compare how similar a pair of documents (a bug
report and a question) are.
For scoring the similarity between bug report and
question, we used Cosine similarity, which is a
standard form of measuring document similarity
in vector space model. This measure is the
cosine of the angle between two vectors and can
be in the range of 0 (orthogonal vectors) to 1
(identical vectors). Cosine similarity between two
vectors is calculated by the dot product of those
two vectors and divide it by their magnitude.

Cosine (Q, D) = Q*D / |Q| * |D| (3)

Based on cosine similarity between the bug
report and each question, the top N questions are
ranked. The system collect the answers that are
directly related to the question from the SO
database and return the whole set of answers
which will be used again as input to the ranking
model. The learn to rank process generate a new
ordered set of answer after re-ranking them by
score of pertinence to the original bug report.

5.5. Features Extraction

To select the best N relevant answers, our
learning Model ranks answers based on a
heterogeneous set of dense and sparse features.
In our model, we focus on textual/embedding
features of question-answer pairs and dense
features based on three kinds of aspects: textual,
community and affective.

5.6. Learning to rank model

Learning to rank in the context of Information
Retrieval (IR) is a task used to automatically
construct a ranking model based on the training
data. This model is generally used to sort new
objects according to their degrees of relevance,
preference, or importance [20]. The ranking

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2020 doi:10.20944/preprints202008.0265.v1

https://doi.org/10.20944/preprints202008.0265.v1

problem is defined as a derivation of ordering
over a list of examples that maximizes the utility
of the entire list [21]. We can consider this
approach as very similar to classification and
regression problem but ranking problems are
fundamentally different. While the goal of
classification or regression is to predict a label or
a value for each individual document, the goal of
ranking is to optimally sort the entire example list
in a way that the examples with highest relevance
are presented first.
In this way, we can naturally apply learning to
rank to build ranking models to recommend
solution for bug report based on Stack Overflow
Data. We have two stage in learning to rank
algorithm, the learning stage and the deployment
(or testing) stage. The main task in this
recommendation system is to train a ranking
model f(Bri, Aj) where Br represents the bug
report and A represented the associated
Answers from stack overflow community.
recently, deep learning approaches were
achieving better results compared to previous
machine learning algorithms on tasks like image
classification, natural language processing, face
recognition and text mining field. Deep learning
techniques have high power and capacity to
resolve complex and non-linear problem . Neural
networks can effectively incorporate sparse
features like query or document text. Based on
these advantages, we opted for the use of deep
learning model to solve our ranking problem by
training it from the textual data of stack overflow
dataset.

6. Conclusion

This work aims to develop and propose a
recommender system based on learning to rank
approach and deep learning techniques. Our
main idea was to investigate the use of Data
mining on Stack Overflow to automatically
suggest relevant solutions that fix software bugs
and programming errors. This system will
decrease the time generally spent by developers
during the manual efforts for fixing bugs or during
the consultation of Q&A websites.

We started our research by discovering this new
area of data mining: mining software repositories.
This new field will have an important impact in the
future of software development. We also provided
an overview of Text mining, NLP, Recommender
Systems and Deep learning techniques.

In the part of contribution, we proposed an
architecture of recommender system that contain
baseline stage based on TF-IDF index and a

learning to rank model based on deep learning to
recommend relevant solutions for programing
error and bug report.

For future work, we will try to test the approach of
learning to rank using pair-wise or list-wise
techniques. We will also try to improve our model
performance using features that are more specific
in the training phase. Other deep learning
algorithms and techniques like CNN and LSTM
will be also considered for future testing and
comparison purposes.

7. REFERENCES

[1] A. E. Hassan, “The road ahead for Mining
Software Repositories,” in Frontiers of
Software Maintenance, Oct 2008, pp. 48–57.

[2] A. T. Nguyen, T. T. Nguyen, J. Al-Kofahi, H.
V. Nguyen, and T. N. Nguyen. A topic-based
approach for narrowing the search space of
buggy files from a bug report. In Proceedings
of the 26th International Conference on
Automated Software Engineering, pages
263–272, 2011.

[3] Crowdsourcing. Wikipédia [Online]. 2020.
[Accessed July,17 2020]. Available on:
https://en.wikipedia.org/wiki/Crowdsourcing.

[4] M. Ahasanuzzaman, M. Asaduzzaman, C. K.
Roy, and K. A. Schneider. Mining Duplicate
Questions in Stack Overflow. In Proc. of MSR
2016.

[5] Mining Software Repositories. Wikipédia
[Online]. 2020. [Accessed July,17 2020].
Available on:
https://en.wikipedia.org/wiki/Mining_software
_repositories

[6] Data Mining Curriculum: A Proposal. KDD
[Online]. 2020. [Accessed July,17 2020].
Available on:
https://www.kdd.org/curriculum/index.html

[7] M. I. Jordan, T. M. Mitchell, Machine learning:
Trends, perspectives, and prospects.
Science 349, 255–260 (2015).

[8] Data science and machine learning. IBM
Analytics [Online]. 2020. [Accessed July,17
2020]. Available on:
https://www.ibm.com/analytics/machine-
learning.

[9] Jeff Heaton. “Ian Goodfellow, Yoshua
Bengio, and Aaron Courville: Deep learning -
The MIT Press, 2016, 800 pp, ISBN:
0262035618”. In: Genetic Programming and
Evolvable Machines 19.1-2 (2018).

[10] Manning, C. and Schütze, H. 1999.
Foundations of Statistical Natural Language
Processing, MIT Press. May 1999.

[11] Ye, Xin & Shen, Hui & Ma, Xiao & Bunescu,
Razvan & Liu, Chang. (2016). From Word
Embeddings To Document Similarities for
Improved Information Retrieval in Software
Engineering. The 38th International
Conference on Software Engineering, ICSE
’16, May 14-22, 2016, Austin, TX, USA.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2020 doi:10.20944/preprints202008.0265.v1

https://doi.org/10.20944/preprints202008.0265.v1

[12] Almhana, Rafi & Mkaouer, Mohamed Wiem
& Kessentini, Marouane & Ouni, Ali. (2016).
Recommending relevant classes for bug
reports using multi-objective search. ASE
2016: Proceedings of the 31st IEEE/ACM
International Conference on Automated
Software Engineering, August 2016 Pages
286–295, Singapore.

[13] N. Lam, A. T. Nguyen, H. A. Nguyen, and T.
N. Nguyen, “Bug localization with
combination of deep learning and information
retrieval,” in Program Comprehension
(ICPC), 2017 IEEE/ACM 25th International
Conference on. IEEE, 2017, pp. 218–229.

[14] Campos, Eduardo & de Souza, Lucas &

Maia, Marcelo. (2016). Searching Crowd
Knowledge to Recommend Solutions for API
Usage Tasks. Journal of Software: Evolution
and Process. 28. 1-32.

[15] Calefato, Fabio & Lanubile, Filippo & Novielli,
Nicole. (2016). Moving to Stack Overflow:
Best-Answer Prediction in Legacy Developer
Forums, 1-10, ESEM '16, September 08-09,
2016, Ciudad Real, Spain.

[16] Jacob Perricone, Question Recommendation
On the Stack Overflow Network, Stanford
University, 2017.

[17] Ziyu Yao, Daniel S Weld, Wei-Peng Chen,
and Huan Sun. 2018. StaQC: A
Systematically Mined Question-Code
Dataset from Stack Overflow. arXiv preprint
arXiv:1803.09371 (2018).

[18] Stefanie Beyer, Christian Macho, Martin
Pinzger, and Massimiliano Di Penta. 2018.
Automatically classifying posts into question
categories on stack overflow. In the 26th
Conference. ACM, Gothenburg, Sweden,
211–221.

[19] Y. Zhang, D. Lo, X. Xia, J. Jiang, and J. Sun.
Recommending frequently encountered
bugs. In International Conference on
Program Comprehension, Gothenburg,
Sweden, 2018.

[20] T. Y. Liu. Learning to rank for information
retrieval. Foundations and Trends in
Information Retrieval, 3(3):225–331, 2009.

[21] H. Li, Learning to Rank for Information
Retrieval and Natural Language Processing,
San Mateo, CA, USA:Morgan & Claypool
Publishers., 2011.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2020 doi:10.20944/preprints202008.0265.v1

https://dl.acm.org/doi/proceedings/10.1145/2970276
https://dl.acm.org/doi/proceedings/10.1145/2970276
https://dl.acm.org/doi/proceedings/10.1145/2970276
https://dl.acm.org/doi/proceedings/10.1145/2970276
https://doi.org/10.20944/preprints202008.0265.v1

