
Mining Stack Overflow: a Recommender 

Systems-Based Model

Fouzi Harrag 

Computer Sciences Department, 

College of Sciences, 

Ferhat Abbas University, 

Setif, Algeria, 

fouzi.harrag@univ-setif.dz

Mokdad Khamliche 

Computer Sciences Department, 

College of Sciences, 

Ferhat Abbas University, 

Setif, Algeria,  

khemliche.mokdad@gmail.com

 

Abstract – In software development, developers received bug reports that describe the software bug. 

Developers find the cause of bug through reviewing the code and reproducing the abnormal behavior that can 

be considered as tedious and time-consuming processes. The developers need an automated system that 

incorporates large domain knowledge and recommends a solution for those bugs to ease on developers rather 

than spending more manual efforts to fixing the bugs or waiting on Q&A websites for other users to reply to 

them. Stack Overflow is a popular question-answer site that is focusing on programming issues, thus we can 

benefit knowledge available in this rich platform. This paper, presents a survey covering the methods in the 

field of mining software repositories. We propose an architecture to build a recommender System using the 

learning to rank approach. Deep learning is used to construct a model that solve the problem of learning to 

rank using stack overflow data.  Text mining techniques were invested to extract, evaluate and recommend 

the answers that have the best relevance with the solution of this bug report. 

Keywords – Recommender System, learning to rank, Mining software repositories, Text Mining, Deep learning, 

Stack Overflow. 

1. INTRODUCTION 

In software development area, there is huge 
amount of unstructured data that grows fastly 
every day. This data exists in different levels and 
systems used in the software development 
process such as versioning systems, issue 
trackers, achieved communications systems and 
many other repositories. Mining the rich software 
engineering data represents a modern field for 
data mining domain that will open big doors for 
researchers and developers. In fact, the 
investigating in such data will make revolution in 
development and maintenance activities. 

This paper represent a state of the art for this 
research topic. Section 2 of this paper covers the 
definitions and the overview of software 
repositories and describe as well each type of 
these repositories. We will also give a global 
presentation of Stack overflow platform 

considered in our study case as a knowledge 
repository. 

Section 3 summarizes the state of modern mining 
software repositories area and gives definition of 
data mining, recommender System, NLP 
techniques. Section 4 presents an overview of 
related works in the field of mining software 
repositories with discussion of different proposed 
approaches. Section 5 is dedicated to the 
presentation of our proposed approach. We focus 
the concepts and techniques of machine and 
deep learning that will be considered in the 
construction of our framework. 

2. Software data 

Unstructured data refer to information that is not 
organized by following a precise schema or 
structure. Such data often include text (e.g., email 
messages, software documentation, and code 
comments) and multimedia (e.g., video tutorials, 
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presentations) contents. These kinds of data are 
estimated to represent 80% of the overall 
information created and used by enterprises in 
software projects [1]. Large amount of artefacts 
are generated in development process. This huge 
data is continuously growing over time. It is called 
software repositories. 

2.1. Software repositories 

Ahmed E. Hassan define software repositories [1] 
as a record-keeping database that stores data 
about artifacts of a complex computer based 
system. It tracks changes applied to the artifact 
and stores corresponding Meta data. Source 
control repositories, bug repositories, archived 
communications, deployment logs, and code 
repositories are examples of software 
repositories that are commonly available for most 
software projects. 

2.1.1 Type of software repositories 

Through the type of information and their purpose 
in this repositories. We can divide them to the 
following types: 

 Historical repositories: record 
information about the evolution and progress of 
project. This type of repositories can contain 
tracks of all changes of the source code, the 
historical bug reports, the communication 
between team of development Such as: Version 
control systems (CVS, SVN, Git, Mercurial), Bug 
repositories (Bugzilla, JIRA), Mailing lists (e-
mails, wiki pages) and Development 
collaboration sites (Stack Overflow). 
 
 Code repositories: contain source code 
of various applications Developed by several 
teams of developments Such as Code bases 
(Source Forge, Google Code) and Project 
ecosystems (GitHub). 
 
 Runtime repositories: contain 
information about the execution and usage of an 
application Such as Crash reports, Field logs, and 
Execution traces. 
 
 Mobile Application repositories: 
contains the logs and bug report of applications 
mobile, feedbacks of users Such as: App Stores 
(Google Play Store, Apple App Store), mobile 
apps user feedbacks (reviews, ratings). 
Figure 1 shows examples of the current and 

historical artifact and interaction that are 

registered in software repositories. 

 
Figure 1 Types of Software Repositories [2] 

 

2.1.2 Importance of Software repositories: 

 Software repositories contain a wealth of 
valuable information about software projects, 
that’s why they are considered as a first class 
source of information. 
 Software engineering becomes as a 
more and more data-driven discipline lowering 
the dependency on intuition and experience of 
developers. 
 When we applies mining techniques on 
software repositories, we win a lot of time and 
costs and we will increase the productivities of 
development and maintenance software projects. 

2.1.3 Stack Overflow as a Knowledge 
Repository 

Social media, unlike traditional media, gives 

people an easy way to communicate, collaborate 

and share information with each other’s. There 

are many types of social media such as blogs, 

micro blogs, bookmarking sites, social news, 

media sharing and social networks. In the present 

time, Social media turns into social productivity 

through the participation of individuals in their 

ideas, experiences and skills to generate content. 

This collective work is called crowd sourcing. 

D.Brayvold [3] defined crowd sourcing as "the 

process of getting work or funding, usually online, 

from a crowd of people". It generates content by 

participation of a large group of people in their 

skills, ideas, and knowledge. The usage of crowd 

sourcing can help companies and individual in 

doing their tasks with low cost compared to 

employing specialists as well providing a high 

number of people who are ready to work anytime. 

One of the most important crowd sourcing 

platforms is stack overflow. 

Stack overflow depends on the crowd to provide 

accumulated and to construct quality developer-
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related knowledge. Extracting knowledge from 

Stack Overflow by using data mining will be a 

great success of major interest for the 

community. In the next section, we will outline 

and clarify the concept of mining software 

repositories. 

2.1.4 What is Stack overflow? 

Ahasanuzzaman et al [4] define Stack Overflow 

as "a popular question answering site that is 

focused on programming problems». In this 

community, Users can ask questions, provide 

answers to the questions asked, mark the 

questions as favorite, up vote / down vote an 

answer, tag questions, and carry out other 

community related tasks. Programmers have 

actively used it to ask questions from January 

2009. Today there is more than 18 million 

questions, 27 million answers, and 10 million 

users.                             

In addition to the above, Stack Overflow makes 

some mechanisms of tagging and earning 

reputation, badges to have more privileges in the 

community. These mechanisms are explained in 

the following lines: 

Tags: Stack Overflow allows users to tag each 

question, with up to a maximum of five tags. 

Users can select an existing tag provided in the 

autocomplete text box or create a new one. To 

create a new tag, users need to have a minimum 

level of reputation on Stack Overflow. This makes 

sure that only expert users can create new tags, 

which is maintaining consistency among tags 

found on Stack Overflow. Expert users can also 

change the question tags, in case they found 

them incorrectly tagged. 

User Reputation: Stack Overflow provides a 

metric called Reputation to rank their users. 

Reputation is an approximate measurement of 

how much the community trusts a user; it is 

earned when the peers appreciate what a user is 

contributing. Users do not need reputation for 

basic site functionalities such as asking questions 

and providing answers, however users with high 

reputation score gain more privileges. The 

primary way to gain reputation is by posting good 

questions and useful answers. Votes on these 

posts cause user to gain (or sometimes lose) 

reputation. The maximum number reputation 

points that can be earned in a day is 200, thus 

making sure that the reputation gained by a user 

is by actively and consistently participating in the 

site activities. 

Privileges: are the accesses that user unlock 

each time it win a certain reputation. For example, 

user can negatively vote a position only if it has 

at least 15 reputations. The last privilege is that 

which will allow user to have access to the 

Google analytics data of the site. 

Badges: user can earn badges when it perform a 

specific predefined operation. For example, 

earning the Supporter badge when user vote 

positively for the first time. 

3. Mining Software repositories (MSR) 

The field of mining software repositories aims at 

examining and analyzing “the rich data available 

in software repositories to uncover interesting 

and actionable information in about software 

projects and systems” [5]. 

3.1. Application of MSR 

 Prediction and identifying bugs: Predicting 

the occurrence of bugs remains one of the 

most active areas in software engineering 

research. By using MSR, it is possible to 

predict and localize the bugs, so managers 

can allocate testing resource appropriately, 

developers can review risky code more 

closely, and testers can prioritize their testing 

efforts. 

 Understanding Software Systems: 

Understanding large software systems 

remains a challenge for most software 

organizations. Documentations for large 

systems rarely exist and if they exist, they are 

often not up-to-date. Information stored in 

historical software repositories, such as 

mailing lists and bug repositories, represent a 

group memory for a project. Such information 

is very valuable for current members of a 

project. 

 Understanding Team Dynamics: Many 

large projects communicate through mailing 

lists, IRC channels, or instant messaging. 

These discussions over many important topics 
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such as plans, design decisions, project 

policies, and code or patch reviews. These 

discussions represent a rich source of 

historical information about the inner workings 

of large projects. The mining of these 

discussions can help better understand the 

dynamics of large software development 

teams. 

 Propagating Changes: Change propagation 

is the process of propagating code changes to 

other entities of a software system to ensure 

the consistency of assumptions in the system 

after changing an entity. For example, a 

change to an interface may require the 

change to propagate to all the components, 

which use that interface. Instead of using 

traditional dependency graphs to propagate 

changes, we could make use of the historical 

co-changes. The intuition is that entities co-

changing frequently in the past are very likely 

to co-change in the future. 

3.2. Data mining for Software Engineering 

Data mining is the science of extracting useful 

knowledge from such huge data repositories, to 

use this knowledge in the decision process [6]. 

Data mining is aims to discover hidden and useful 

patterns in huge data sets. Data Mining is all 

about discovering unsuspected and unknown 

relationships amongst the data. Data mining uses 

machine learning, statistics, AI and database 

technology to provide reliable results. 

3.2.1 Machine Learning 

Tom Mitchell in his book Machine Learning [7] 

provides another definition: “The field of machine 

learning is concerned with the question of how to 

construct computer programs that automatically 

improve with experience”. Like Humans have the 

ability to learn by experience. Machines with 

machine learning can do the same. The goal of 

machine learning processes is to generate in 

output a predictive Model based on data used in 

training. Depending on the nature of the business 

problem being addressed, there are different 

approaches based on the type and volume of the 

data: supervised learning, unsupervised learning 

and reinforcement learning [8]. 

3.2.2 Deep Learning  

Deep learning focuses on a specific category of 

machine learning called Artificial Neural 

Networks that is inspired from the functionality of 

the human brain. Modern deep learning provides 

a very powerful framework for supervised 

learning. By adding more layers and more units 

within a layer, a deep network can represent 

functions of increasing complexity. Most tasks 

that consist of mapping an input vector to an 

output vector, and that are easy for a person to 

do rapidly, can be accomplished via deep 

learning, given sufficiently large models and 

sufficiently large datasets of labeled training 

example [9]. 

3.2.3 NLP Techniques for Data Preprocessing 

NLP is the capacity of a computer program to 

comprehend human language [10]. Researchers 

use NLP techniques to preprocess data before 

applying IR models to the data. Preprocessing 

steps include tokenization, splitting, stop word 

removal, stemming and pruning. IR overlaps with 

other fields, especially database technology and 

natural language processing (NLP). Information 

Retrieval techniques and algorithms are also 

used in the recommender systems research field. 

4. Related Works  

Many researchers have discussed the 

effectiveness of using data mining techniques to 

facilitate the debugging process for software 

engineering developers. This section presents an 

overview of the state of the art of this research 

area. 

Xin et al [11] presented a ranking approach that 

simulates the bug locating process used by 

developers. The ranking model benefited from 

domain knowledge such as API specifications, 

the bug-fix history, and code-change history. 

"The ranking score of each source file is 

calculated as a weighted combination of an array 

of features ".  Evaluation of experimental results 

was done on six open sources java projects 

which are Eclipse, JDT, Birt ,SWT. Tomcat and 

AspectJ. Results showed that the ranking 

approach is better than BugLocator, VSM, and 

Usual suspect approaches. Their method assigns 

the relevant files for over 70 % of the bug reports 
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within the top 10 recommendations in Eclipse and 

Tomcat projects. 

Rafi et al. [12] proposed an automated approach 

for finding and ranking potential relevant classes 

for bug reports. Their approach used a multi-

objective optimization algorithm to find balance 

between minimizing the number of recommended 

classes and maximizing the correctness of the 

proposed solution. Based on the use of the 

history of changes and bug-fixing, and the lexical 

similarity between the bug report description and 

the API documentation estimated the correctness 

of the recommended classes. They evaluated 

their system on six large open-source Java 

projects. The experimental results showed that 

the search-based approach was better than 

mono-objective formulations (LS and HS). Their 

search-based approach can find the true buggy 

methods for over 87% of the bug reports within 

the top 10 recommendations. 

Lam et al., [13] presented an integrating 

approach between deep neural network (DNN) 

and rVSM, and an information retrieval (IR) 

technique to locating and ranking potential 

relevant classes for bug reports. rVSM gathers 

the textual similarity feature between bug reports 

and source files. DNN is used to learn to relate 

the terms in bug reports to potentially different 

code tokens and terms in source files. The 

Evaluation of their approach was on real-world 

bug reports in open-source projects. Combining 

DNN with their new model achieved high 

accuracy of bug localization than the state-of-art 

IR and machine learning techniques. 

The approach that was used to benefit from the 

"crowd knowledge" available in stack overflow to 

aid developers in their activities was presented in 

[14]. This strategy recommended a ranked list of 

question-answer pairs from stack overflow based 

on a query. The ranking criteria was based on the 

textual similarity of the pairs with respect to the 

query, the quality of the pairs, and a filtering 

mechanism that considers only “how-to” posts. 

They conducted an experiment about 

programming problems on three different topics 

(Swing, Boost and LINQ) frequently used by the 

software development community. The results 

showed that for Lucene+Score+How-to 

approach, 77.14% of the assessed activities have 

at least one recommended pair proved to be 

useful to solve a programming problem. 

Fabio et al. [15] discussed developers 

abandoned from legacy developer forums to 

stack overflow platform, a lot of crowd-sourced 

knowledge is at risk of being left behind. They 

aimed to add to the body of evidence of existing 

research on best-answer predication. They did an 

experiment by using data from Stack Overflow to 

train a binary classifier. After that, they tested a 

classifier on a dataset retrieved from the legacy 

Doc using support forum. The findings showed 

that their model could find best answers with a 

good accuracy when all features are enabled e.g. 

answer up votes, number of sentences and 

answer length. Results gave a positive proof 

towards the automatic migration of crowd-

sourced knowledge from legacy forums to 

modern Q&A sites. 

Jacob Perricone [16] utilizes the network 

structure of Stack Overflow to recommend a set 

of related questions for a given input question. In 

particular, the project employs a modified guided 

Personalized Page Rank algorithm to generate 

candidate recommendations and compares the 

results to those recommended by Stack 

Overflow. Semantic similarity and tag-overlap 

were used to assess candidate 

recommendations. For a given recommendation 

set, the average text, title, and tag-overlap scores 

were calculated. These scores were then 

averaged across all trials of the experiment to 

yield a final score. 

Daniel S. Weld et al., [17], investigate a new 

problem of systematically mining question-code 

pairs from Stack Overflow (in contrast to 

heuristically collecting them). They formulated 

the problem as predicting problem whether a 

code snippet is a standalone solution to a 

question. They proposed a novel Bi-View 

Hierarchical Neural Network that can capture 

both the programming content and the textual 

context of a code snippet (i.e., two views) to make 

a prediction. On two manually annotated datasets 

in Python and SQL domain, the framework 

substantially outperforms heuristic methods with 

at least 15% higher F1 and accuracy. 

Furthermore, they presented StaQC (Stack 

Overflow Question-Code pairs), the largest 

dataset to date of ∼148K Python and ∼120K SQL 
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question-code pairs, automatically mined from 

SO using this framework. 

Stefanie Beyer et al., [18] aim to automate such 

a classification of SO posts into seven question 

categories. As a first step, they have manually 

created a curated data set of 500 SO posts, 

classified into the seven categories. Using this 

data set, they applied machine-learning 

algorithms (Random Forest and Support Vector 

Machines) to build a classification model for SO 

questions. They then experimented with 82 

different configurations regarding the 

preprocessing of the text and representation of 

the input data. The results of the best performing 

models show that their models can classify posts 

into the correct question category with an 

average precision and recall of 0.88 and 0.87 

when using Random Forest and the phrases 

indicating a question category as input data for 

the training. The obtained model can be used to 

aid developers in browsing SO discussions or 

researchers in building recommenders based on 

SO. 

Yun Zhang et al., [19] proposed a novel approach 

named RFEB, which recommends frequently 

encountered bugs (FEBugs) that may affect 

many other developers. RFEB analyzes Stack 

Overflow, which is the largest software 

engineering-specific Q&A communities. Among 

the plenty of questions posted in Stack Overflow, 

many of them provide the descriptions and 

solutions of different kinds of bugs. Unfortunately, 

the search engine that comes with Stack 

Overflow is not able to identify FEBugs well. To 

address the limitation of the search engine of 

Stack Overflow, they propose RFEB, which is an 

integrated and iterative approach that considers 

both relevance and popularity of Stack Overflow 

questions to identify FEBugs. To evaluate the 

performance of RFEB, they performed 

experiments on a dataset from Stack Overflow, 

which contains more than ten million posts. 

Finally, they compared this model with Stack 

Overflow’s search engine on 10 domains, and the 

experiment results show that RFEB achieves the 

average 𝑁𝐷𝐶𝐺10 score of 0.96, which improves 

Stack Overflow’s search engine by 20%. 

Table 1: Summary of related studies 

 

Ref Year  Method used  Data set Results  
Performances 
Evaluation 

 

Xin et al.[ 11] 

 

2016  

 

- Ranking model 

- VSM 

 

Benchmark datasets 

from open source 

projects:  

Eclipse  

-JDT 

- Birt  

- SWT 

 

The learning rank 

approach 

achieved better 

results than the 

BugLocator , 

VSM, Ususl 

suspects on all six 

projects. 

 

 

1) Eclipse : 

accuracy =80% 

,MAP= 0.44 

,MAR=0.51 . 

2)JDT: accuracy 

=80% ,MAP=0.39 

,MRR=0.51 . 

3) Birt 

:accuracy=50% 

,MAP=0.16 

,MRR=0.21. 

Rafi et al., [12]  

2016 

- Multi-objective 

algorithms called 

NSGA-II   

- search-based 

algorithms 

Benchmark datasets 

form open-source 

systems :  

- EclipseIU 

NSGA-II is better 

than random 

search and the 

three mono 

objective 

formulations ( 

lexical-based 

1) EclipseIU : 

precision=82%,re

call=79%, 

accuracy=80%. 

2)  Tomcat: 
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4.1. Discussion  

We noted from the previous state of the art that 
the  most of studies like [11] [12] and [13] provide 
a ranking approach that leverages domain 
knowledge to locate a bug by ranking all the 
source files likely to contain the cause of the bug. 

The researchers used the same benchmark 
datasets for evaluation in [11] [12] [13]. There is 
a similarity between [13] and [14], both of them 
used vector space model for ranking whereas 
[12] used Multi-objective algorithms called 
NSGA-II while [13] used Revised Vector Space 
Model (rVSM) and Deep Neural Network (DNN). 

-Tomcat  

-AspectJ 

-Birt 

-SWT 

- JDT. 

similarity (LS) , 

history-based 

similarity (HS,.and 

(GA)  on all the 6 

systems. 

  

 

precision=91%,re

call=81% 

accuracy=90%. 

3)  AspectJ 

:precision=79% 

,recall=86% 

,accuracy =88%. 

 

 

Lam  et al., 

[13] 

 

2017 

 

Revised Vector 

Space Model 

(rVSM) + Deep 

Neural Network 

(DNN) 

 

Benchmark datasets 

from open-source 

projects: Aspectj 

,Birt ,Eclipe platform 

,JDT,SWT,Tomcat . 

 

 

DNNLOC 

achieves highest 

accuracy with the 

combination of 

relevancy via 

DNN, textual 

similarity via 

rVSM, and the 

metadata 

features. 

 

 

1)  TomCat 

:accuracy=80.4%,

MRR=0.60,MAP=

0.52  

2) AspectJ : 

accuracy=85%,M

RR=0.52,MAP=0.

32. 

3)  

 

Eduardo et 

al., [14 ] 

 

2016  

 

Logistic 

regression 

classifier (LR)+ 

Normalized 

Discounted 

Cumulative Gain 

(NDCG) 

 

Dataset  from  Stack 

Overflow (the 

version of March 

2013) 

 

 

 

The Lucene+ 

Score+ Howto 

approach 

achieved better 

performance than 

Google on Boost. 

 

 

NDCGRelev=0.35

83 

NDCGReprod=0.5

243 

 

Fabio et al., [ 

15 ]  

 

6102  

 

Alternating 

Decision Trees 

(ADT) classifier 

+ 

information gain 

(IG) 

 

1). Dataset from  

Docusign ,  it is  a 

legacy forum. 

2) Dataset  from  

Stack Overflow 

 

 

 

The model can 

find   best answers 

with a good 

performance, 

when all features 

are enabled 

  

accuracy ~90%, 

F=.86, AUC=.71. 
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Data mining techniques that were used in these 
studies are different such as [15] and [18] that 
used classification, [16] that used a modified 
version of page-rank, [17] that used a novel Bi-
View Hierarchical Neural Network algorithm and 
[19] that used a novel RFEB approach to 
recommends frequently encountered bugs. The 
researchers suggested in [13] and [14] to improve 
their approaches by leveraging additional types of 
domain knowledge and using the SVM ranking 
with nonlinear kernels. They evaluated their 
approaches in different datasets of programming 
languages codes. In this paper, we tried to take 
benefits from these suggestions in the design and 
the development of our proposed framework. 
Table 1 is showing a summary of all these related 
studies. 

5. Proposed Approach 

Our framework is using the concept of 

recommender systems to model the problem of 

mining stack overflow in order to find a solution 

for a bug report. 

5.1. Overall Framework 

By looking to the architecture of our model, we find 
that a bug report is issued as input and the ranked 
list of related best answers is recommended as 
output. First, when a new bug report is received, 
the preprocessing step is then started. The 
Information extracted from the bug report are then 
formulated as query and issued to the index of 
questions. A similarity measure between the 
query and a set of answers is calculated. The N 
best selected answers are then passed to the 
kernel of our model. The list of proposed solutions 
is then re-ranked by score. The learning to rank 
approach is applied to train a ranking model that 
use many features extracted from the Stack 
Overflow dataset. Figure 2 shows the overall 
architecture of our model framework. 
 

 
 

 
 

Figure 2: The overall architecture of our model framework 

 
 
 

5.2. Data Preprocessing 

Data Preprocessing is the most important task in 
data mining process particularly in text mining 
field where we are dealing with a huge amount of 
raw textual data. This phase has a great impact 
on the performance of the model. In our 

framework, text mining and NLP techniques are 
applied on two kinds of data: 
 SO data: containing a large amount of 
textual data presented as posts (questions and 
answers) and Meta data about users. The goals 
from this preprocessing stage is to prepare this 
posts’ data for the task of index building. This 
index will be used to train the ranking model. 
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 Bug report: contains a lot of information 
about the software bug processed by any 
developer or programmer. This data represent in 
our system what we call context (or query).  
 

5.2.1 Dataset Cleaning 

Before performing any type of preprocessing on 
the dataset, it is necessary to clean the data.We 
filter our data by deleting the unwanted parts. 

5.2.2 Tokenization 

This process split the sequence of strings into 
words. It removes all the punctuations marks from 
the input text data and returns words as tokens. 

5.2.3 Stop word elimination 

One of the fundamental ideas in the context of 
information retrieval is the removing of common 
words that appear frequently in the documents, 
but do not provide helpful information for the 
users' needs. These words called stop words can 
effectively decrease the retrieval rate. 

5.2.4 Stemming 

Refers to the procedure of transforming deferent 
variations of the same word to their stem, usually 
through stripping suffixes and prefixes such as 
(ed, ize, s, ing in English Language). Although 
stemming is a very commonly used process in 
information retrieval, it might cause false 
matching of some words with deferent stems to 
the same root. 

5.3. Building TF-IDF Index of questions 

The vector-space representation is a framework 
for representing raw or unstructured documents 
as vectors of terms. Using this idea, Vectors of 
term weights can be represented as one-row 
matrix representing the textual features of each 
bug report or question in Stack overflow dataset. 
The goal from building this index is to calculate 
the similarity between the bug report as a query 
and a set of questions from the OS dataset. The 
index of documents is searched to retrieve and 
rank the N first questions with high similarity.  
The vast majority of work using vector-space 
representation makes use of the TFIDF 
representation of documents. The TFIDF 
representation is a heuristic metric that is used as 
a weight to represent each term feature of a given 
document.  
 

TFIDF(t, D)=TF(t).IDF(t, D)        (1) 

 
TF(t) refers to the term t frequency in the current 
document d. 

IDF(t, D)=log(
𝐷

DF(t,D)
)      (2) 

DF(t, D) refers the number of document where 
the term t appear and IDF(t, D) refers to the 
inverse document frequency, or the frequency of 
a term over the whole set of documents. 

5.4. Similarity Calculation 

Once a Bug report is submitted, the system will 
search for the N most similar documents among 
the knowledge bases. In order for our system to 
rank the results, it needs to rely on a metric to 
compare how similar a pair of documents (a bug 
report and a question) are.  
For scoring the similarity between bug report and 
question, we used Cosine similarity, which is a 
standard form of measuring document similarity 
in vector space model. This measure is the 
cosine of the angle between two vectors and can 
be in the range of 0 (orthogonal vectors) to 1 
(identical vectors). Cosine similarity between two 
vectors is calculated by the dot product of those 
two vectors and divide it by their magnitude. 

Cosine (Q, D) = Q*D / |Q| * |D|   (3) 
 
Based on cosine similarity between the bug 
report and each question, the top N questions are 
ranked. The system collect the answers that are 
directly related to the question from the SO 
database and return the whole set of answers 
which will be used again as input to the ranking 
model. The learn to rank process generate a new 
ordered set of answer after re-ranking them by 
score of pertinence to the original bug report. 
 
 

5.5. Features Extraction  

To select the best N relevant answers, our 
learning Model ranks answers based on a 
heterogeneous set of dense and sparse features. 
In our model, we focus on textual/embedding 
features of question-answer pairs and dense 
features based on three kinds of aspects: textual, 
community and affective. 
 

5.6. Learning to rank model 

Learning to rank in the context of Information 
Retrieval (IR) is a task used to automatically 
construct a ranking model based on the training 
data. This model is generally used to sort new 
objects according to their degrees of relevance, 
preference, or importance [20]. The ranking 
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problem is defined as a derivation of ordering 
over a list of examples that maximizes the utility 
of the entire list [21]. We can consider this 
approach as very similar to classification and 
regression problem but ranking problems are 
fundamentally different. While the goal of 
classification or regression is to predict a label or 
a value for each individual document, the goal of 
ranking is to optimally sort the entire example list 
in a way that the examples with highest relevance 
are presented first.  
In this way, we can naturally apply learning to 
rank to build ranking models to recommend 
solution for bug report based on Stack Overflow 
Data. We have two stage in learning to rank 
algorithm, the learning stage and the deployment 
(or testing) stage. The main task in this 
recommendation system is to train a ranking 
model f(Bri, Aj) where Br represents the bug 
report and A represented the  associated 
Answers  from stack overflow community. 
recently, deep learning approaches were 
achieving better results compared to previous 
machine learning algorithms on tasks like image 
classification, natural language processing, face 
recognition and text mining field. Deep learning 
techniques have  high power and capacity to 
resolve complex and non-linear problem . Neural 
networks can effectively incorporate sparse 
features like query or document text. Based on 
these advantages, we opted for the use of deep 
learning model to solve our ranking problem by 
training it from the textual data of stack overflow 
dataset. 

6. Conclusion 

This work aims to develop and propose a 
recommender system based on learning to rank 
approach and deep learning techniques. Our 
main idea was to investigate the use of Data 
mining on Stack Overflow to automatically 
suggest relevant solutions that fix software bugs 
and programming errors. This system will 
decrease the time generally spent by developers 
during the manual efforts for fixing bugs or during 
the consultation of Q&A websites. 

We started our research by discovering this new 
area of data mining: mining software repositories. 
This new field will have an important impact in the 
future of software development. We also provided 
an overview of Text mining, NLP, Recommender 
Systems and Deep learning techniques. 

In the part of contribution, we proposed an 
architecture of recommender system that contain 
baseline stage based on TF-IDF index and a 

learning to rank model based on deep learning to  
recommend relevant solutions for programing 
error and bug report.   

For future work, we will try to test the approach of 
learning to rank using pair-wise or list-wise 
techniques. We will also try to improve our model 
performance using features that are more specific 
in the training phase. Other deep learning 
algorithms and techniques like CNN and LSTM 
will be also considered for future testing and 
comparison purposes. 
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