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Abstract: Chronic obstructive pulmonary disease (COPD) is associated with high morbidity
and mortality globally. Studies show that airway mucus hypersecretion strongly compromises
lung function, leading to frequent hospitalization and mortality, highlighting an urgent need for
effective COPD treatments. MUCS5AC is known to contribute to severe muco-obstructive lung
diseases, worsening COPD pathogenesis. Various pathways are implicated in the aberrant
MUCS5AC production and secretion MUCS5AC. These include signaling pathways associated
with mucus-secreting cell differentiation [ nuclear factor-kB (NF-kB)and IL-13-STAT6- SAM
pointed domain containing E26 transformation-specific transcription factor (SPDEF), as well
as epithelial sodium channel (ENaC) and cystic fibrosis transmembrane conductance
regulator (CFTR)], and signaling pathways related to mucus transport and
excretion-ciliary beat frequency (CBF). Various inhibitors of mucus hypersecretion are in
clinical use but have had limited benefits against COPD. Thus, novel therapies targeting

airway mucus hypersecretion should be developed for effective management of
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muco-obstructive lung disease. Here, we systematically review the mechanisms and
pathogenesis of airway mucus hypersecretion, with emphasis on multi-target and multi-link

intervention strategies for the elucidation of novel inhibitors of airway mucus hypersecretion.

Keywords: COPD; muco-obstructive lung diseases; airway mucus hypersecretion; MUC5AC;

cell differentiation

1. Introduction

COPD is characterized by high mortality and morbidity globally. The World Health
Organization (WHO) predicts that COPD will become the third among the top causes of
deaths by 2030[1]. In 2017, 3.2 million deaths were attributed to COPD, globally. A
2012-2015 Chinese epidemiological survey found the prevalence of COPD in individuals
older than 40 years to be 13.7%[2]. COPD progression leads to a significant reduction in the

quality of life, worsening the healthcare burden.

COPD is considered a treatable and preventable disease which often presents with
unyielding airflow limitation. It is often driven by chronic inflammatory response of the airways
and lung tissue. The complex pathogenesis of COPD involves protease-antiprotease
imbalance, oxidative stress and chronic inflammation. The disease is characterized
by irreversible airway remodeling that involves thickening of the airway wall and the airway
smooth muscle (ASM) layer, mucus hypersecretion and epithelial cells metaplasia[3]. Thus,
COPD is also regarded as a muco-obstructive disease accompanied by increased amounts

of mucin, particularly MUC5AC that may uniquely modify mucus properties[4].
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COPD risk factors include air pollution (PM2.5), exposure to biomass tobacco smoking,
fuel, and genetic susceptibilty. The 2018 China pulmonary health [CPH]
epidemiological survey found that a smoking rate exceeding 20 pack-years increases the
prevalence of COPD by 2-fold. Air pollution affects the health of populations in developing
countries, such as China. Long-term and short-term exposure to PM2.5 contributes to the
development of COPD. Heavy exposure to PM2.5 increases the occurrence of COPD by
2-fold in never-smokers and in the general population in China[2]. Consumption of biomass
fuels increases indoor air pollution which contributes to the development of COPD, according
to other studies. Additionally, epigenetic and genetic factors have been implicated in the

pathogenesis COPD.

Efforts to control the public health effects of COPD include developing preventive or
mitigation measures to improve patients’ quality of life[5]. Treatment of patients
with stable COPD include long-term oxygen therapy, pulmonary rehabilitation, and
smoking cessation. However, pharmacological agents are still the main for treatments for
all COPD patients after smoking cessation, which are mainly inhaled. The long-acting
muscarinic antagonist (LAMA) is the recommended initial treatment choice for patients with
mild disease and no exacerbations[6]. In case of more severe dyspnea, severe airflow
obstruction, and lung hyperinflation, combining LAMA with a selective long-acting
beta2-agonist (LABA) is recommended[7-10]. If the symptoms and exacerbations persist
(more than two exacerbations per year or one hospitalization for COPD), a LAMA, a LABA,
and an inhaled corticosteroid (ICS) may be prescribed[11-14]. An array of other systemic

therapies (azithromycin, roflumilast, xanthines, and antioxidants) may be considered as
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third-line treatments[1]. The use of antibioticsin for COPD exacerbations remains

controversial[15].

Although smoking cessation, lung volume reduction surgery, oxygen inhalation, and drug
therapy improve pulmonary function to an extent, reduce the frequency of acute exacerbation
of chronic obstructive pulmonary disease (AECOPD) and enhance quality of life, they do not
halt COPD progression[16]. Multiple studies indicate that airway mucus hypersecretion
contributes to the rapid deterioration of lung function and progression of COPD, including
hospitalization and mortality. COPD with airway mucus hypersecretion increases the risk of

deaths by 3.5-fold relative to non-airway mucus hypersecretion disease[17].

Mucins have been linked to mucus hypersecretion[18,19]. Among them, MUC5AC is
considered the most important one as it is overproduction in COPD results in mucus
obstruction. Thus, MUC5AC is essential to the pathogenesis of COPD[20-22]. In this review,
we discuss MUCS5AC function, regulatory mechanisms, pathophysiological effects, and

clinical significance in COPD.

2. The biological characteristics of mucins

2.1. Classification of mucins

The main airway mucus secretory cells are airway goblet cells, submucosal glands, and
Clara cells. Ciliated cells are responsible for mucociliary clearance. All airway secretory cell
types differentiate from airway epithelial cells[23-25]. The airway mucus consists of a sol layer
and a gel layer that together form a defense barrier termed the "cilia-mucus blanket"[26,27].

The sol layer is mainly comprised of water and is close to the surface of epithelial cells. The

4
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gel layer, which lies above the sol layer, consists of water, mucins, lysozyme, lactoferrin, and
various peptides, including mucin; the main source of mucoelasticity. Mucin may be
membrane-bound or secreed[28]. Mucins fall into 4 classes based on structure (Table 1):1)
membrane-constrained mucins which contain tandem repeats (TR) include Muc20, Muc17,
Muc18, Muc16, Muc15, Muc13, Muc12, Muc3B, Muc1, Muc3 and Muc4[29-31].
2)Cysteine-rich secretory mucins (containing TR sequences and include Muc6, Muc19,
Muc5B, Muc5AC, and Muc2[32,33]. 3) Cysteine deficient secretory mucins (containing TR
sequences) consist of Muc7, Muc8 and Muc9[30]. 4) Mucins without TR sequence include

Muc18, Muc15, and Muc14[33-36].

Table 1. Mucin-type classification.

Character Mucin Reference

Membrane-constrained mucins (containing Muc16, Muc15, Muc13, Muc12, Muc3B, Muc1, [29-31]

tandem repeats, tandem repeats TR) Muc3, Muc4. Muc17, Muc18 and Muc20

Cysteine-rich secretory mucins (containing Muc19, Muc5B, Muc6, Muc5AC, and Muc2 [32, 33]

TR sequences)

Cysteine  deficient secretory mucins Muc7, Muc8 and Muc9 [30]

(containing TR sequences)

Mucins without TR sequence mucins Muc14, Muc15 and Muc18 [33-36]
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Cysteine-rich secretory, or gelatinous secretory mucin gives mucus its characteristic
viscoelasticity and this property is critical to clearance of xenobiotics by ciliated cells.
MUCS5AC and MUCS5B are the most important and abundant mucins, comprising about 75%
of mucins[4,37]. These mucins are abundantly expressed in normal and stressed states.
MUCS5AC is the 1% line macromolecular substance, and represents 95% of total mucin
secretion in the airway epithelium. However, abnormal quantity and quality of MUC5AC
negatively affects airway function and may cause serious airway disease. MUC5AC is mainly
secreted by the goblet airway epithelium, and its expression changes significantly under

stress[30,38].

2.2. Mucin secretion and transport

2.2.1. Airway epithelial cell differentiation

The airway epithelium is comprised of the cartilaginous trachea that branches into
primary bronchi, bronchioles, and alveoli, which gaseous exchange sites[39]. The
tracheobronchial epithelium consists of multiple cell types, such as secretory, basal, and
ciliated cells covering the basement membrane[40].(Figure 1) Under normal physiological
conditions, the pseudostratified ciliated bronchial epithelium is comprised of normal
proportions of goblet, ciliated and basal cells[40,41]. External insult, for example by tobacco
smoke or microbial invasion, triggers a hyperplastic response by goblet cells,a decline in the
number of ciliated cells, and ciliated cell dysfunction[42]. This transformation results in

over-production of mucus and plays an important role in the COPD development.

2.2.2. Mucus hydration
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To maintain viscoelasticity, mucus secreted into the extracellular space through
exocytosis must absorb >100 times its mass in water. Because water passively shuttles
through the cell membrane along the ion current, its amounts are determined by CI release
and Na* uptake in the airway. In human airways, ENaC)-mediated Na* absorption is a critical
regulator of mucosal hydration, leading to effective mucus clearance[43]. In healthy
individuals (left), well balanced epithelial Na*® absorption and CI~ secretion hydrates airway
surfaces, promoting efficient mucociliary clearance (MCC)[44]. In the presence of
muco-obstructive lung disease (middle), an ion transport imbalance coupled with mucin
hypersecretion elevates mucin concentration in the mucus layer, osmotically compresses the
periciliary layer (PCL), and compromises MCC[45,46]. Moreover, other ion channels,
including CFTR, Ca?"-activated CI~ channel (CaCC) and SIc26A9, affect ClI- release[47].
Additionally, oxidative stress is known to have acute and chronic effects on airway ion

transport[48].(Figure 2)

2.2.3. Mucus transport

Ciliated cells are responsible for the proper mucus transport. This process depends on
the number of ciliated cells and adequate ciliated cells function,
including CBF, ciliary waveform, and cilia orientation[49]. Ciliated cells, which have about 200
cilia each, swing cilia in forward in a directionally coordinated manner, driving the removal of
microorganisms and particulate matter trapped by the mucus layer from airways. Thus,
ciliated cells are constantly beating, pushing mucus up and out through throat (center).
Hence, cell differentiation, hydration and ciliary activity are the main determinants

of mucus clearance[50]. (Figure 2)
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3. Clinical significance of mucin in COPD

3.1. Mucus constitutes a natural physical barrier

Airway epithelial cells (AEC) protect the lung by acting both as a mechanical and an
immunological barrier. The epithelial mucus layer is the 1% line of defense against bacterial,
viral and other toxicants(tobacco smoke, biomass fuel, air pollution) invasion[51,52]. Through
its dense network of tight junctions and transcellular adherens, AEC function as a physical
barrier between the body and the environment. Hydration and cross-linking of mucins and
mucin concentration determine mucus viscoelasticity and thus the firmness of the mucus
mechanical barrier. Alterations in mucus surface hydration and mucus concentration occur
with inhalation of large particles, as well as bacterial and viral infections. Mucus traps
particles and a ciliary escalator that transports it towards the oropharynx for elimination
through expectoration or swallowing. This system constitutes the 1% line of innate defense,
and is considered the host defense mechanism for the lungs. This process is called

mucociliary clearance[53,54].

3.2. Mucus hypersecretion increases airway resistance

Since airway area is the main determinant of airway resistance, the larger conducting
airways are the chief site of airway resistance. Mucus hypersecretion increases the size of
the mucus plug and causes its retention in the airways, reducing airway area. Along with the
thickened airway walls, the mucus plugs increase airway resistance and decrease airflow
through the lungs[55,56]. COPD patients manifest with elevated mucus secretory cells in the

large airways and mucus accumulation in the epithelium and lumen of small airways. The
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level of mucus accumulation in the lumen of small airways closely correlates with the severity
of airflow limitation in most COPD patients. Retention of small airway mucus and even
formation of mucus plugs have been observed in the lung tissue of patients who have
succumbed to COPD[57,58]. Patients with small airway mucus obstruction do not exhibit
symptoms like chronic cough and expectoration, probably because they lack cough
receptors[47]. Thus, all COPD patients exhibit airway mucus hypersecretion, aggravated

airflow obstruction, high airway resistance, chronic cough, and expectoration.

3.3. Mucus hypersecretion contributes to microbial resistance

Mucins are highly glycosylated, which not only contributes to the viscoelasticity of mucins but
is also though to mediate host-pathogen interactions. Alterations in mucin glycan pattern may
result in bacterial colonization[59,60]. MUCS5AC is a huge multidomain oligomeric secretory
molecule. It consists of a heavily O-glycosylated apoprotein core and extensive
intramolecular disulfide bonds between the cysteine-rich amino and carboxy-sequence, and 7
potential N-glycosylation sites. This structure facilitates easy MUC5AC coupling with unique
sialylation and sulfation patterns that contribute to host immunity and bacterial colonization.
Highly sulfated mucus causes acidification of the airway microenvironment, which
significantly reduces the bactericidal efficacy of commonly used antibiotics[61]. This makes it
difficult to clear pathogenic bacteria following lower respiratory tract infection, resulting in
colonization by the pathogen, persistent infection, and further mucus hypersecretion. These
events promote airway mucus retention and viscosity, making hypersecretion an independent

risk factor for COPD progression and mortality[62].
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4. Signaling pathways associated with airway mucus hypersecretion

Various signaling pathways have been implicated in the aberrant secretion and
production of MUC5AC and can be grouped into the following based on mucin secretion and
transport process: 1) signaling pathways associated with mucus secretion of cell
differentiation. These include NF-kB and IL-13-STAT6-SPDEF signaling[63-65]. 2)lon channel
signaling pathways associated with mucus components. These include ENaC, CFTR, and
oxidative stress pathways[66-68]. 3) Signaling pathways associated with mucus transport and

excretion- CBF[69].

4.1. Signaling pathways associated with mucus secretion of cell differentiation

4.1.1. NF-kB pathway

In COPD, extracellular signaling factors such as tumor necrosis factor-a (TNF-a) bind to
cell surface receptors to induce a cascade of downstream responses. Receptor stimulation
triggers IkB kinase (IKK) activation. IKK then phosphorylates serine at the regulatory site of
the IkB subunit of the intracellular NF-kB, allowing the IkB subunit to be ubiquitinated and
degraded[70-72]. This in turn liberates NF-kB dimers, followed by translocation of the free

NF-kB into the nucleus, where it drives the expression of target genes, including MUCS5AC.

A study on a mucus hypersecretory cell model by Su Ui Lee et al found that verproside
significantly antagonizes the TNF-a-induced MUCS5AC expression by inhibiting NF-«kB
expression and phosphorylation of its upstream effectors, including IKKB, TGF-B-activated
kinase 1 (TAK1) and IkBa in NCI-H292 cells[73]. A study Soyoung Kwa et al revealed that

resistin modulated the expression of mucin in human airway epithelial cells through

1
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mitogen-activated protein kinase (MAPK) /NF-kB signaling. However, NF-kB inhibition

suppressed resistin-induced MUCS5AC expression, but not MUC5B expression[74]. (Figure 3)

4.1.2. IL-13-STAT6-SPDEF pathway

SPDEF is an important member of the E26 transformation-specific (ETS) family of
transcription factors. SPDEF was initially thought to regulate prostate development and
prostate cancer development[75]. However, recent studies show that SPDEF is also
expressed in the respiratory system, where it modulates the differentiation of airway epithelial
cells[76]. The IL-13-STAT6-SPDEF-MUCS5AC signaling pathway is the main signaling
pathway driving cell differentiation of epithelial cells into goblet cells. A study by Hongmei yu
et al found that SPDEF knockdown decreased IL-13-induced MUC5AC expression in human
airway epithelial cells and enhanced Forkhead box A2 (FOXA2) expression, a transcription
factor known to prevent mucus production[77]. A high throughput screening for transcriptional
networks modulating differentiation of cultured airway epithelial cells identified RCM-1, a
small nontoxic molecule as an inhibitor of excessive mucus production and goblet cell
metaplasia in mice after exposure to allergens. This molecule suppressed signaling by IL-13
and STAT6, downmodulating expression of the STAT6 target genes FOXA2 and SPDEF,

which modulate goblet cell differentiation[78]. (Figure 3)

4.2. lon transport pathways associated with mucus hypersecretion

The main determinants of effective clearance of airway mucus are sufficient ciliary beat
frequency and adequate mucus hydration. Airway surface hydration is mainly governed by

ENaC and CFTR ion transport pathways[44,66]. Oxidative stress has been found to cause

1
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acute and chronic alterations to airway ion transport. Numerous studies have implicated
physiological responses oxidation as a contributor to the damaging effects of oxidation.
Antioxidant drugs that reduce mucus viscosity by acting on the disulfide bonds of respiratory

mucin oligomers, facilitate ion transport[79].

Cigarette smoke contributes to COPD pathogenesis by modifying CFTR function. The
CFTR protein functions as an anion channel on the apical surface of airway epithelia and
mutation in CFTR cause aberrant ClI- and Na* transport, leading to airway mucus dehydration
and hypersecretion. Impaired CFTR function compromises mucociliary clearance, leads to
airway obstruction and chronic airway infection Gram-negative bacteria such as P
aeuroginosa causing respiratory failure[80]. CFTR belongs to the ATP-binding cassette (ABC)
subfamily of transporters. ABC proteins bind ATP and use the energy to drive the transport of
various molecules across cell membranes. In CFTR, the interactions of ATP and CFTR’s
nucleotide-binding domains control the opening and closing of the channel, rather than
driving solute transport. Deletion of F508 on CFTR causes its retention in the endoplasmic
reticulum, reducing CFTR open probability, and its residence time in the plasma
membrane[81,82]. Upon CFTR activation, Cland HCOsare extruded into the airway lumen,

with Na* and HO following passively through the paracellular pathway. (Figure 2)

Recent studies suggest that aberrant electrolyte transport as a result of impaired CFTR
channel function fails to create the acidic environment needed for phagolysosome activity,

providing conducive conditions for bacteria reproduction[83,84].
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ENaC-mediated Na* absorption across the apical plasma membrane modulates mucosal
hydration, directly contributing effective mucus clearance. ClI™ secretion is facilitated by either
CFTR, or CaCCs, including Anoctamin-1/TMEM16A. Ciliated cells co-express Anoctamin-1,
CFTR, and ENaC, which clear mucus and maintain lung sterility[85]. ENaC is a heterotrimer
of a, B, and y-subunits. The a- and y-subunits must undergo proteolytic cleavage to enable
ENaC activation and Na* conductance[86]. Ubiquitination of the a and y ENaC subunits on
their N-termini by the E3 ubiquitin ligase Nedd4-2 (NEDDA4L) limits the channel’s half-life.
Knockdown of NEDD4-2 in mice has been shown to upregulate ENaC, resulting in lung
pathology. Upon ENaC activation, Na* enters the blood from the airway lumen and CI7/H20
moves in the same direction, reducing mucus volume[87]. CI” is the most abundant anion in
mucus, at about 120mM, and provides the driving force for osmotic-induced changes in
mucus volume. In contrast, HCOsconcentration is about 30mM and may proportionally affect
mucus volume. Additionally, HCOs'may play an important role in buffering mucus pH. Mouse
models with airway-specific overexpression of ENaC or exhibiting airway surface dehydration
(mucus hyper concentration), impaired MCC and mucus plugging, mimic muco-obstructive

lung disease sharing key features of CF and COPDJ88].

Oxidative stress also influences COPD pathogenesis. Unlike lightly cross-linked mucus
gels, the pathologic mucus in lung disease is not easily transported by the mucociliary
escalator, causing its build up, lung infection atelectasis, and airflow obstruction[68,89]. In
addition to the aforementioned cysteine-rich domains in mucin N and C termini, cysteine-rich
regions are also abundant within internal domains. These internal cysteine thiols add to the

antioxidant effects of mucins. High levels of oxidative stress in COPD mucus might increase

1
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mucin oxidative cross linkage through disulfide bonds, resulting in highly cross linked, elastic

mucus[90]. Thus, antioxidant therapy may be effective against airway mucus hypersecretion.

4.3. Ciliophagy and CBF

Ciliophagy is a cilia-specific form of autophagy that mediates lung damage from cigarette
smoking. It causes cilia shortening and mucus hypersecretion, hence airway epithelial
damage[91]. Significant ciliary shortening has been seen in COPD patients with a history of
chronic smoking, resulting in impaired mucociliary clearance. Previous studies have shown
that lung tissue from COPD patients accumulates autophagy which negatively regulates the
formation in cilia[92]. Lam and colleagues showed that elevated autophagy in primary
cultured epithelial cells under cigarette smoke (CS) exposure was accompanied by cilia
shortening and increased localization of ciliary proteins, including Ift88, Arl13, centrin 1, and
pericentrin, to autophagosomes in mouse airways demonstrating that autophagy is increased
in COPD cells under CS exposure, and that cilia shortening is caused by increased
autophagic degradation of ciliogenic proteins. Additionally, genetic suppression of autophagy

was found to be protective against CS-induced cilia shortening invitro and invivo[93].

5. Therapeutic approaches and targets of mucus hypersecretion

Table 2. Representative drugs and targets for the treatment of mucus hypersecretion.

d0i:10.20944/preprints202008.0260.v1

Link acting on airway Representative compounds Target or mechanism Reference

mucus hypersecretion



https://doi.org/10.20944/preprints202008.0260.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2020 d0i:10.20944/preprints202008.0260.v1

Epithelial Differentiation S-Allylmercapto-L-cysteine* NF-kB [64]
Obtusifolin * [95]
Flavonoid 7,4'-Dihydroxyflavone [96]
Luteolin*® [63]
Platycodin D(3) * [97]
Tiotropium** IL-13-STAT6-SPDEF [65,100]
lon Transport to Improve Roflumilast** CFTR [101]
Hydration Ivacaftor ** [67]
Hypertonic saline** ENaC [104]
N-acetylcysteine ** Antioxidant [105]
Carbocisteine ** Thiol mucolytics [79]
Mucus transport Salmeterol and Formoterol** Alter ciliary beat frequency [69,106,107]

Note: *drugs in study phase **most commonly used drugs.

5.1. Mucus hypersecretion inhibitors targeting cell differentiation

Various natural products exhibit potential therapeutic benefit against mucus
hypersecretion. Most studies seeking to identify inhibitors of mucus hypersecretion target

NF-kB[94]. Among natural mucoregulatory agents, S-Allylmercapto-L-cysteine (SAMC),
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Obtusifolin, Flavonoid 7,4'-Dihydroxyflavone(Flavonoid 7,4'-DHF), Luteolin and Platycodin D
have been reported to be the most potent suppressors of MUC5AC expression in airway
epithelial cells. A study by Min et al. found that SAMC, an organosulfur compound in garlic,
modulates MUC5AC and aquaporin 5 (AQP5) expression in a COPD model by regulating
the NF-kB signaling. SAMC treatment in the 20-100uM range restored lipopolysaccharides
(LPS) -induced suppression of IkBa expression levels in SPC-A1 cells in a dose-dependent
manner[64]. A study by Byung-Soo Choi and colleagues using NCI-H292 cells found that
10-50uM obtusifolin inhibits phorbol 12-myristate 13-acetate (PMA)-induced NF-kB nuclear
translocation[95]. Moreover, Flavonoid 7,4'-DHF, a triterpenoid found in G. uralensis, and
Luteolin, a flavonoidal found in L. japonica Thunb have have exhibited similar effects on cell
models, and significantly suppress MUC5AC expression and mucus production in PMA

stimulated NCI-H292 airway epithelial cells[63,96].

The root of P. grandiflorum, a common medicinal and edible plant in East Asian, is widely
used to calm panting in traditional Chinese medicine(TCM). Among its multiple active
ingredients, including steroidal saponins, flavonoids, phenolic acids, and sterols, platycodin
D(3) is thought to be main active compound against COPD. A Korean study by Jiho et al.
compared the effects of P grandiflorum de Candolle (APG), platycodin D(3) and
deapi-platycodin against airway mucin hypersecretion in PMA-stimulated NCI-H292 cells and
sulfur dioxide-stimulated rat bronchitis pulmonary mucin hypersecretion in vivo. This study
found that Platycodin D(3) significantly inhibits PMA-induced MUC5AC production while

promoting PMA-induced MUCS5AC secretion in NCI-H292 cells. Indicating that Platycodin D(3)

d0i:10.20944/preprints202008.0260.v1
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may inhibit airway mucus hypersecretion by simultaneously suppressing mucus production

and promoting mucus secretion[97].

Acetylcholine, which is released by parasympathetic nerve fibers, is a classical
neurotransmitter in airways that induces mucus secretion and bronchoconstriction via
muscarinic receptors[98]. For this reason, anticholinergics are applied in the treatment of
obstructive airway diseases[99]. The long-acting anticholinergic agent, tiotropium, has been
proven to be effective against COPD. A role for acetylcholine in epithelial cell differentiation
and goblet cell metaplasia has been proposed. Tiotropium inhibits ovalbumin-induced goblet
cell metaplasia in mice and guinea pigs. Inhibition of endogenous acetylcholine by tiotropium
does not affect epithelial cell differentiation after air exposure but inhibits and reverses
IL-13-induced goblet cell metaplasia and MUC5AC expression. This effect of tiotropium is
thought to be mediated via FOXA2 and FOXA3[65]. A Chinese multicenter, randomized,
double-blind, placebo-controlled clinical trial on patients with mild or moderate COPD treated
with tiotropium, found that the annual forced expiratory volume in 1 second (FEV1) decline
after bronchodilator use was significantly lower in the tiotropium-treated group relative to the

placebo-treated group (29+5ml /year vs. 51+6ml/year)[100].

5.2. Mucus hypersecretion inhibitors targeting ion transport

CFTR mutations cause cystic fibrosis (CF), an airway disease that phenotypically
resembles COPD and is characterized by chronic bronchitis. Acquired CFTR dysfunction may
influence COPD pathogenesis, making CFTR a potential anti-COPD target[81,82]. lvacaftor,

a CFTR activator reverses CFTR dysfunction in vitro by activating wild-type CFTR-dependent,
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short circuit current following chronic exposure. A study by Raju et al. found that cigarette
smoke extract (CSE) exposure reduces CFTR-dependent current in human bronchial
epithelial (HBE) cells and human bronchi via a mechanism that may involve CSE-induced
reduction of CFTR gating, decreasing CFTR open-channel. Ivacaftor, which reverses these
adverse effects in vitro, is potentially beneficial for COPD patients with chronic bronchitis[67].
Roflumilast, a phosphodiesterase |V inhibitor, was the first oral COPD drug approved by U.S.
Food & Drug Administration (FDA). This drug was approved on October 5, 2018 for the
treatment of COPD at all severities. Roflumilast significantly reduced the frequency of
moderate and severe attacks in patients with previous hospitalization in large clinical
trials[101]. An in vitro study by Schmid A et al. on differentiated, primary human bronchial
epithelial cells found that roflumilast acts on CFTR to enhance the effects of salbutamol
against reduced functional ClI" conductivity caused by smoke. Moreover, roflumilast enhances
forskolin-induced CBF stimulation in airway surface liquid (ASL) volume supplemented

smoked[102].

Inhaled hypertonic saline (HS) is an effective therapy for muco-obstructive lung diseases.
It aids epithelial lining fluid (ELF) hydration, which aids in mucocilliary clearance, improving
MCC, FEV1, and quality of life[103]. Aclinical study by Ramsey et al. showed that HS
inhalation acutely reduces non-cystic fibrosis bronchiectasis mucus concentration by up to
25%[104]. Some anti-inflammatory and antioxidation mucolytics, including carbocisteine and
N-acetylcysteine are widely used to treat respiratory diseases with phlegm production due to
their ability to facilitate sputum elimination. A Chinese, multicenter, randomized, double-blind,

placebo-controlled clinical trial by Zhong NS et al., involving 709 patients, found that relative

1
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to placebo, administration of 1500mg carbocisteine daily for a year significantly reduced the
number of exacerbations per (1.01 [SE 0.06] vs 1.35 [SE 0.06]). Indicating that carbocisteine
can reduce yearly exacerbation rates in COPD patients, which is more critical than mucolysis
for long-term management of COPD[79]. A different Chinese, multicenter, prospective,
randomized, double-blind, placebo-controlled, parallel-group study by Zhong NS et al,
involving 1006 patients found that in patients with moderate-to-severe COPD, long-term use
of 600mg N-acetylcysteine, twice daily, significantly reduces the frequency of AECOPD,

especially moderately severe[105].

5.3. Mucus hypersecretion inhibitors targeting ciliary wobble and mucus transport

Moderate-severe COPD is effectively managed using long-acting inhaled bronchodilators.
The long-acting beta-agonists, salmeterol and formoterol can clear mucus in patients or
increase ciliary beat frequency in animal models[106]. An open-label, single-center,
randomized, cross-over study by Thomas Meyer et al., involving 24 patients with
mild-moderate COPD, found that a single daily dose of 12mg formoterol enhanced mucus
clearance within 14 days of treatment[107]. A trial by Piatti et al. evaluating the effects of
salmeterol xynaphoate on CBF of nasal epithelium and rheological parameters of
tracheobronchial mucus, found that it induced ciliostimulation in COPD patients and

significantly faster CBF[69].

6. Challenges facing the use of mucus hypersecretion inhibitors in humans

and future directions in drug development
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Accumulating evidence shows that mucus hypersecretion is a critical player in COPD,
suggesting that drugs targeting mucus hypersecretion may be effective against COPD. Some
common drugs, including tiotropium, roflumilast, HS, N-acetylcysteine, carbocisteine,
salmeterol and formoterol are currently used to treat mucus hypersecretion in COPD.
However, mucus hypersecretion involves production, transport and secretion steps, that
present multiple potential targets. Current strategies have limited capacity to inhibit mucus
hypersecretion. For instance, several clinical trials have shown that carbocisteine
and N-acetylcysteine reduce the frequency of AECOPD by approximately 28% and 33.7%,
respectively[79,105]. However, side effects limit the widespread use of some drugs.
For example, atomized inhalation of HS is associated with mild and transient risks including

bronchospasm, cough, and breathlessness, limiting its use[108].

COPD causes high morbidity and mortality worldwide, highlighting the urgent need for
effective therapeutic strategies. Thus, the search for novel drugs and targets remains an
active area of research. Antibody therapies, such as human anti-IL-13 monoclonal antibody,

targeting IL-13-STAT6-SPDEF signaling, may be effective against mucus hypersecretion[77].

Small molecules from natural products are an important resource of pharmaceutical
ingredients. TCM or natural medicine is increasingly used and widely accepted for its
advantages, including multiple active components, links and targets. Thus, it is crucial to

explore TCM for mucus hypersecretion inhibitors.
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Figure 1. The structure of airway epithelium. It is a pseudostratified columnar epithelium
containing basal, secretory and ciliated cells. Airway epithelial cell differentiation is influenced by
factors such as bacterial infection, inflammatory factors and tobacco exposure.
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Figure 2. The process of mucin secretion and transport. There are three major steps in this
process: (D Goblet cell differentiation; @ Dysfunction of chloride and sodium channels
leads to mucus hydration; 3 Ciliated cell wobble and expel mucus.
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Figure3. IL-13-STAT6-SPDEF and NF-kB signaling pathways associated with mucus

hypersecretion.
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ENaC epithelial sodium channel

CFTR cystic fibrosis transmembrane conductance regulator


https://doi.org/10.20944/preprints202008.0260.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 August 2020 d0i:10.20944/preprints202008.0260.v1

CBF

WHO

ASM

CPH

LAMA

LABA

ICS

ciliary beat frequency

World Health Organization
airway smooth muscle

China pulmonary health
long-acting muscarinic antagonist
long-acting beta2-agonist

inhaled corticosteroid

AECOPD acute exacerbation of chronic obstructive pulmonary disease

TR

MCC

PCL

CaCC

AEC

TNF-a

IKK

TAKA1

MAPK

ETS

FOXA2

ABC

tandem repeats

mucociliary clearance
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Flavonoid 7,4'-DHF  Flavonoid 7,4'-Dihydroxyflavone
AQP5 aquaporin 5

LPS lipopolysaccharides

PMA phorbol 12-myristate 13-acetate
TCM traditional Chinese medicine
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HBE human bronchial epithelial

FDA Food & Drug Administration

ASL airway surface liquid
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