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Abstract: We report the results of our study of approved drugs as potential treatments for 11 

COVID-19, based on the application of various bioinformatics predictive methods. The drugs 12 

studied include chloroquine, ivermectin, remdesivir, sofosbuvir, boceprevir, and α-13 

difluoromethylornithine (DMFO). Our results indicate that these small molecules selectively 14 

bind to stable, kinetically active residues and residues adjoining them on the surface of 15 

proteins and inside protein pockets, and that some prefer hydrophobic over other active 16 

sites. Our approach is not restricted to viruses and can facilitate rational drug design, as well 17 

as improve our understanding of molecular interactions, in general. 18 
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 21 

Introduction 22 

The Coronaviridae positive stranded RNA virus family includes a substantial number of 23 

members, many of whom are known to cause a broad range of illnesses from common cold 24 

to sever diseases like Severe Acute Respiratory Syndrome (SARS), Middle East Respiratory 25 

Syndrome (MERS), etc. [1, 2]. The latest worldwide rapidly spreading disease, COVID-19, 26 

is caused by a new member of this virus family, SARS-COV-2. The disease originally 27 

emerged in China in December 2019 with most common symptoms being fever and cough, 28 

as well as shortness of breath, sore throat, headache, muscles ache, nausea, and diarrhea 29 

[1]. In some cases symptoms also involve a still unexplained loss of smell and taste [3]. It is 30 

assumed that the SARS-COV-2 virus spreads through respiratory droplets, directly via 31 

physical contact, or through contact with contaminated objects, and can severely affect 32 

patients with immune systems weakened by pre-existing conditions, such as hypertension, 33 

diabetes mellitus or cardiovascular diseases [4]. The virus spreads more easily than SARS 34 

and MERS due to high binding affinity between the virus spike glycoprotein (S) and the host 35 
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receptor [5-8], making it more deadly. By forcing countries to restrict access to work and 36 

thus slowing down supply lines the virus directly affects the global economy, which 37 

experiences a significant decline in gross national products worldwide not encountered since 38 

the Great depression. 39 

 40 

There are a number of efforts and clinical trials underway to develop a vaccine and evaluate 41 

potential drugs for COVID-19, but such investigations usually take many months or even 42 

years to yield a successful treatment. Drug repurposing, on the other hand, may offer an 43 

immediate solution, because it considers already approved compounds as potential 44 

treatments for COVID-19. There are two paths toward a viral treatment. One path directly 45 

attacks the virus and interrupts its replication machinery or its ability to attack host cells [9]. 46 

This path is often hard to implement due to rapid emergence of new viral strains with 47 

acquired resistance to implemented drugs. The second path should therefore aim to block 48 

the host-viral interactions on the host side due to difficulties viral single point mutations 49 

should have in recovering the loss of host factors [10]. A recent study of human-virus protein-50 

protein interactions (PPIs) detected 332 high-confidence SARS-CoV-2-human PPIs [11]. 51 

The study showed that 40% of SARS-CoV-2 proteins interact with endomembrane 52 

compartments or vesicle trafficking pathways, and that viral proteins also interact with 53 

multiple innate immune pathways, the host translation machinery, bromodomain proteins, 54 

enzymes involved in ubiquitination regulation, and Cullin ubiquitin ligase complex. 55 

Importantly, it showed that the SARS-COV-2 human PPI map is very similar to the 56 

interaction maps of West Nile Virus (WNV) and Mycobacterium tuberculosis (Mtb). Among 57 

the human proteins involved in interactions with viral proteins, the study detected 66 58 

druggable human (host) proteins targeted by 69 compounds (29 FDA-approved drugs, 12 59 

drugs in clinical trials, and 28 preclinical compounds). It identified two groups of compounds 60 

with noticeable antiviral activity: inhibitors of mRNA translation/protein biogenesis (zotatifin, 61 

ternatin-4, PS3061, and plitidepsin), and predicted regulators of the Sigma1 and Sigma2 62 

receptors (Haloperidol, PB28, PD-144418, Hydroxychloroquine, Clemastine, Cloperastine, 63 

Progesterone, and the clinical molecule Siramesine). The first group of compounds directly 64 

affects the viral cap-dependent mRNA translation because coronaviruses use the host 65 

translation machinery for their own mRNA translation. The compounds affecting the second 66 

group of proteins are approved and long established human therapeutics [11]. As much as 67 

they are informative, such screening associative studies rarely offer detailed insights into 68 

mechanisms of molecular interactions, whereas structural studies [5-8, 12] give snapshots 69 

into residue and atom level physical interactions between molecules, but cannot offer 70 

general principles of molecular interactions.  71 

 72 

In-silico studies are widely used to screen potential drug candidates against Covid-19. 73 

Recently, Calligari et al. reported a molecular docking study binding affinities between 74 

different viral proteins and several inhibitors, originally developed for other viral infections 75 

(HCV, HIV) [13]. The examined drugs include Simeprevir, Saquinavir, Indinavir, Tipranavir, 76 

Faldaprevir, Ritonavir, Lopinavir, Asunaprevir, Atazanavir, Nelfinavir, Amprenavir, Darunavir 77 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 August 2020                   



 3 of 28 

and Fosamprenavir. They docked them with the 3C-like protease from SARS–CoV-2, the 78 

spike S SARS-Cov-2 protein, SARS-Cov-2 RdRp, and nucleocapsid protein from SARS-79 

Cov-2, and reported the crorresponding binding free energies. The authors were able to 80 

select 5 of the 13 as potential inhibitors of SARS-Cov-2 protease. The three drugs tested 81 

with the Spike S protein showed promise and one presumably binds between the two 82 

monomers and interrupts transition between opened and closed states. A.A. Elfiky used 83 

molecular modeling, docking, and dynamics simulations to build a model for the viral RdRp 84 

proteins and test its binding affinity to some clinically approved drugs and drug candidates 85 

[14]. The author concludes that sofosbuvir, ribavirin, galidesivir, remdesivir, favipiravir, 86 

cefuroxime, tenofovir, and hydroxychloroquine can tightly bind to the RdRp active site and 87 

can be good candidates for clinical trials. The author also noticed that the compounds 88 

setrobuvir, YAK, and IDX-184 can tightly wrap to the SARS-CoV-2 RdRp, and thus interrupt 89 

its function. That study also showed the IDX-184 derived compounds (3,5-90 

dihydroxyphenyl)oxidanyl and (3-hydroxyphenyl)oxidanyl can be effectively used to target 91 

SARS-CoV-2 RdRp. Yu et al. used AutoDock Vina software to screen potential drugs by 92 

molecular docking with the structural protein and non-structural protein sites of Covid-19 93 

virus [15]. They tested ribavirin, remdesivir, chloroquine, and luteolin, a compounds present 94 

in Honeysuckle. In traditional Chinese medicine honeysuckle is generally believed to have 95 

antiviral effects. In this study, luteolin (the main flavonoid in honeysuckle) was found to bind 96 

with a high affinity to the same sites of the main protease of SARS-CoV-2 as the control 97 

molecule. De Oliveira et al. tested 9091 drug candidates by molecular docking against 98 

equilibrated SARS-Cov-2 Spike S protein [16]. 24 best-scored ligands, ivermectin among 99 

them, 14 of them are traditional herbal isolates and 10 are approved drugs, exhibited binding 100 

energies below -8.1 kcal/mol, and were thus suggested as potential candidates. O. Santos-101 

Filho used molecular docking to test HIV protease inhibitors against Covid-19 main protease 102 

[17]. The author’s study showed that two non-natural compounds, danoprevir and lopinavir, 103 

and one herbal compound, corilagin, produced strong interactions with the inhibitor binding 104 

site of SARS-CoV-2 main protease. A modeling study by Pachetti et al. recognized a number 105 

of Covid-19 RdRp mutations that can affect drug treatments against Covid-19 RdRp [18]. B. 106 

R Beck et al. used pre-trained deep neural network to identify commercially available drugs 107 

that could be used as treatments against SARS-CoV-2 [19]. They showed that atazanavir, 108 

an antiretroviral medication used to treat and prevent the human immunodeficiency virus 109 

(HIV), is the best compound against the SARS-CoV-2 3C-like proteinase, followed by 110 

remdesivir, efavirenz, ritonavir, dolutegravir, lopinavir and darunavir.  111 

 112 

To facilitate the drug screening we undertook a comparative in-silico study of binding modes 113 

of six antiviral candidate drugs. We analyzed compounds that bind to parasitic and to human 114 

proteins. We use those results to anticipate their binging affinities. The drugs we have 115 

studied so far include (hydroxyl)chloroquine, ivermectin, remdesivir, sofosbuvir, boceprevir, 116 

and α-difluoromethylornithine (DMFO) (see Table 1).  117 

 118 
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Chloroquine [20] and its less toxic derivative hydroxychloroquine [21] are drugs used to 119 

prevent and treat acute attacks of malaria. They are also used to treat discoid or systemic 120 

lupus erythematosus and rheumatoid arthritis in patients whose symptoms have not 121 

improved with other treatments. These drugs are subject of a number of clinical trials 122 

worldwide as potential treatment for Covid-19 [22, 23]. Interestingly, the above mentioned 123 

study [11] shows that PB28 is ~20 times more potent viral inhibitor than hydroxychloroquine. 124 

 125 

Ivermectin is a medication used to treat many various types of parasite infestations [24]. 126 

They include, but are not limited to, head lice, scabies, river blindness (onchocerciasis), 127 

strongyloidiasis, trichuriasis, ascariasis, and lymphatic filariasis. Depending on the kind of 128 

treatment, the drug is taken by mouth or applied to the skin for external infestations. 129 

Ivermectin molecular structure is rather complex and made of a set of macrocyclic lactone 130 

isomers. Ivermectin binds to glutamate-gated chloride channels and increases the 131 

permeability of chloride ions. The drug was shown to inhibit the replication of SARS-COV-2 132 

in vitro [25] and is currently the subject of clinical trials as a potential COVID-19 treatment 133 

[26].  134 

 135 

Remdesivir is a nucleoside analog RNA-dependent RNA Polymerase (RdRp) inhibitor 136 

initially developed to treat Ebola and Marburg virus diseases [9, 27]. The drug decreases 137 

the viral RNA production by affecting the function of RdRp and proofreading by viral 138 

exoribonuclease (ExoN). Remdesivir is a subject of clinical trials as a potential COVID-19 139 

treatment [28], as it was shown to reduce the lung viral load and improve pulmonary function 140 

with SARS infection [9].   141 

 142 

Sofosbuvir is a medication used to treat HCV mono-infection and HCV/HIV-1 coinfection 143 

as component of a combination antiviral regimen [29]. Sofosbuvir is nucleotide prodrug that 144 

metabolically gets modified to the active uridine analog triphosphate, an inhibitor of HCV 145 

NS5B RNA-dependent polymerase. The inhibition of HCV NS5B RNA-dependent 146 

polymerase in turn suppresses viral replication. A. Sadeghi presented a tentative results on 147 

the effectiveness of sofosbuvir and daclatasvir agains Covid-19 [30].  148 

 149 

Boceprevir is a medication used to treat chronic hepatitis C in untreated people or who do 150 

not react to ribavirin and peginterferon alfa alone [31]. It is used in combination with ribavirin 151 

(Copegus, Rebetol) and peginterferon alfa (Pegasys). It was shown to inhibit the Covid-19 152 

(SARS-Cov-2) replication by inhibiting the virus main protease [32].  153 

 154 

α-difluoromethylornithine (DMFO) (Eflornithine), is a medication primary used to treat 155 

African trypanosomiasis (sleeping sickness) and excessive facial hair in women [33].  156 

Specifically, it is used for the second stage of sleeping sickness caused by T. b. gambiense 157 

and may be used with nifurtimox [34]. It is used by injection or applied to the skin. The drug 158 

prevents binding of the natural product ornithine to the active site of ornithine decarboxylase. 159 

We did not find any record of this drug ever being tried, so far, for COVID-19. However, 160 
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since it is a halogenated organic molecule with somehow similar active sites as Chloroquine 161 

we decided to study it towards treatment of COVID-19. 162 

 163 

 164 

Drug Indication 

Dosage in 

individuals 

aged ≥ 12 

years 

Effectiveness 
Side 

effects  

Precautions in patients with complications 

Cardio-

Pulmonary 
Renal Hepatic Retinal 

Chloroquine 
Treatment 

Prevention 

500-600 mg 

weekly 

Malaria, 

Amebiasis, 

Porphyria 

Cutanea Tarda 

Serious Yes Yes Yes Yes 

Ivermectin 
Treatment 

Prevention 

3-15 mg 

once 

Parasitic 

infestations 

Mild-

Serious 
No Yes Yes No 

Remdesivir Treatment 
100-200 mg 

daily 

Ebola, Marburg 

virus diseases 
Mild No Yes No No 

Sofosbuvir Treatment 400 mg daily Hepatitis-C, HIV 
Mild - 

Moderate 
Yes Yes Yes Yes 

Boceprevir Treatment 200 mg daily Hepatitis-C 
Mild-

Serious 
Yes No Yes Yes 

α-

Difluoromethylornithine 
Treatment 

300-400 

mg/kg/day, 

cream 

Trypanosomiasis

, reduction of 

facial hair in 

women 

Mild-

Serious 
No No Yes No 

Table 1. Comparison of existing drugs currently being tested for the antiviral treatment and prevention 165 

of Covid-19 through drug repurposing. 166 

 167 

Here we report our research findings based on the method which we have implemented to 168 

recognize protein-protein binding patterns, the Self-Adjustable Gaussian Network Model 169 

(SAGNM) [35], and on the existing bioinformatics predictive methods and tools, Chimera 170 

and VMD [36, 37].  Our SAGNM method predicts binding areas without any information on 171 

the binding partner’s properties, position or orientation. 172 

 173 

The analysis of drug binding spots on the surfaces of protein targets is based on the 174 

Gaussian Network Model formalism [38-43]. The GNM produces a set of vibrational modes 175 

via the eigenvalues and eigenvectors of the protein Kirchhoff contact matrix . The fastest 176 

modes (with largest eigenvalues λ) are more localized and have steeper energy walls with 177 

a larger decrease in entropy and they are, therefore, referred to as kinetically hot residues. 178 

For more details on Phantom network and GNM, see the Supplementary Materials in [35].  179 

 180 
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The connection between kinetically hot residues and interfacial residues involved in protein-181 

protein interactions has already been established [44]. The methodology introduced in [35], 182 

and used here is based on a self-adjusting approach. It is able to accurately and effectively 183 

determine binding pockets for peptides and small, drug-like molecules.  184 

 185 

The term “kinetically hot residues” is linguistically close, but does not carry the same 186 

meaning as the term “hot spots” that is often used in protein science. Hot spots are residues 187 

that often appear in structurally preserved interfaces (in more than 50% of cases). They are 188 

important, because they are general contributors to the binding free energy. They are 189 

defined as spots where alanine mutation increases the binding free energy at least 2.0 190 

kcal/mol [45-51]. 191 

 192 

Methods and Materials 193 

Our aim was to analyze presently available structures existing drugs bound to parasitic and 194 

human proteins and predict their binding patterns, as well as the binding patterns of SARS 195 

and SARS-COV-2 binding patterns to the human ACE2 receptor. To predict binding residues 196 

in protein we applied our Self Adjustable interpretationof Gaussian Network Model (SAGNM) 197 

[35]. The structure alignment, hydrophobicity calculation, and visualization and analyses 198 

were performed with the programs Chimera [36] and VMD [37].  199 

 200 

The software for the Self Adjustable Gaussian Network Model code is composed of several 201 

different programs. The first program calculates contact maps and the corresponding 202 

eigenvectors and eigenvalues [52] for both protein chains forming a protein dimer (given as 203 

a PDB file). To accomplish that the program first calculates the Kirchhoff contact matrix  204 

for each protein. The matrix  calculation is based on the distances between C atoms only, 205 

and those distances have to be lesser or equal to 7 Å to consider two residues in a contact 206 

[38-40]. The code then calculates and sorts  matrix eigenvalues and eigenvectors. The 207 

eigenvectors are sorted according to their corresponding eigenvalues. Those eigenvalues 208 

and eigenvectors are used in the second part that (iteratively) calculates the weighted sum 209 

of modes [41] as  210 
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ikkB
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i Tk  uR                      (1) 211 

where λk are eigenvalues and uk are eigenvectors. See the Supplementary material in [35] 212 

for details on phantom network and GNM.  213 

This equation, normalized by dividing the sum by ( )/3 TkB
  produces mean square 214 

fluctuations of each residue by a given set of modes (k1 to k2). The equation produces an 215 

estimate of a kinetic contribution of each residue for that set of modes. The above equation 216 
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is very similar to the singular value decomposition method [53] used in the linear least 217 

squares optimization method.  218 

An additional code extracts contact and first layer residues. Finally, the third set of routines 219 

extracts neighboring residues and their distances for each residue per protein chain. That 220 

information is later used in the spatial spreading of the influence of kinetically hot residues.  221 

 222 

The first step in the SAGNM procedure is the calculation of the weighted sum (Eq. 1). The 223 

procedure starts with a number of modes that corresponds to the top 10% of eigenvalues 224 

range of the analyzed protein. With normalized sum only residues with a normalized 225 

amplitude higher than 0.05 are perceived as hot residues. The number of hot residues is 226 

usually smaller than the number of potential contact or first layer residues (not contact 227 

residues with a spatial atom-atom distance of less than 4.5 Å from contact residues). To 228 

account for that the influence of hot residues is spread to their sequential neighbors using 229 

the sequence information obtained from protein structure PDB files (to account for possible 230 

missing residues). The influence of hot residues is first spread linearly, to sequential 231 

neighbors only, because proteins are polymer chains with physically connected residues. 232 

That implies that sequentially neighboring residues should exhibit correlated behavior. For 233 

chains longer than 100 amino acids (aa), hot residues and 8 their sequential neighbors 234 

upstream and downstream are labeled as predictions (four upstream, four downstream). For 235 

shorter chains the influence is spread to 6 neighboring residues.  236 

 237 

The prediction is then expanded to spatial neighbors. This approach is much closer to the 238 

true nature of the GNM algorithm that uses only spatial distances between C atoms and 239 

disregards any sequential/connectivity information. To apply this approach, the maximum 240 

cutoff C-C distance from the center of a hot residue was introduced to which its influence 241 

can be spread. The cutoff distance of 6 Å was applied with for shorter protein chains (for 242 

sequence lengths shorter than 250 aa) and the cutoff of 8 Å for longer protein chains. All 243 

residues with C atoms within the sphere centered at the C atom of the hot residue, and 244 

within the assigned cutoff distance, are considered to be predictions. The two cutoff values 245 

were estimated empirically [35]. To extract spatial neighbors, distances between residues 246 

(C-C distances) were calculated for each particular protein and sorted in ascending order.  247 

 248 

The Self Adjustment GNM scheme is performed as follows: 249 

 250 

Step 1: Calculate the number of fast modes that correspond to the top 10% of eigenvalues 251 

range. 252 

Step 2: Calculate the weighted sum (Eq. 1) and spread the influence of hot residues to 253 

sequential and spatial neighbors. 254 
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Step 3a: If the overall percent of predictions is larger than expected (for example, if the 255 

percent of predictions is larger than the previously set value of the 30% of the total number 256 

of residues), the SAGNM procedure reduces the number of fast modes by one and goes to 257 

the Step 2. 258 

Step 3b: If the percent of predictions is too small (e.g. less than the predetermined value of 259 

15% of all residues), the SAGNM procedure increases the number of fast modes by one and 260 

goes to the Step 2.   261 

 262 

The Self Adjustable procedure repeats the Steps 2 and 3 until the percent of predictions fits 263 

between the maximum and minimum expected percentages for a given chain.  264 

 265 

To avoid infinite loops, only one increase followed by a decrease is allowed, and vice versa. 266 

Multiple consecutive increases or decreases are allowed. This approach ensures that longer 267 

proteins have enough predictions, and that shorter ones are not saturated with too many 268 

false positives.  269 

 270 

We focused our study on pdb structures with the listed drugs present as ligands. For 271 

chloroquine we analyzed 2 structures (pdb ids 1cet [54] and 4v2o [55]). For Ivermectin we 272 

analyzed the binding pattern of the drug to the human glycine receptor alpha-3 (pdb id 5vdh 273 

[56]). For Remdesivir we analyzed its binding patterns in the recently released structure (pdb 274 

id 7bv2 [12]). We also performed the analysis of binding pattern of drug Sofosbuvir to the 275 

hepatitis C virus (HCV) RdRp (pdb id 4wtg [57]) and compared them to the Covid-19 RdRp 276 

predictions (pdb id 6m71 [58]). Sofosbuvir was already analyzed in light of similarities 277 

between HCV and SARS-COV-2 RdRp and similarities between Remdesivir’s and 278 

Sofosbuvir’s [59]. For boceprevir we analyzed the structure SARS-Cov-2 main protease 279 

bound to the drug (pdb id 6wnp). For α-Difluoromethylornithine we analyzed a structure of 280 

Trypanosoma brucei ornithine decarboxylase (ODC) with D-ornithine bound to it (pdb id 1njj 281 

[60]). α-Difluoromethylornithine binds to the active site of ODC and inhibits ornithine binding 282 

to it. We performed the comparative analysis of the binding patterns between the ACE2 283 

human receptor and the spike glycoproteins from SARS (pdb id 6cs2 [61]) and SARS-COV-284 

2 (pdb id 6m0j [7]). We also analyzed the binding patterns between the SARS RBD with 285 

S230 human neutralizing antibody, and between SARS RBD and glycan shield (pdb id 6nb6 286 

[62]). 287 

 288 

Results 289 

Chloroquine 290 

The analysis of chloroquine binding patterns to Plasmodium Falciparum Lactate 291 

Dehydrogenase (pdb id 1cet [54]) and human Lysosomal protein Saposin B (pdb id 4v2o 292 

[55]) reveals that chloroquine binds to kinetically active sites recognized by the SAGNM 293 

algorithm which are mostly hydrophobic (Figure 1).  294 
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 295 

Figure 1. Chloroquine and its target proteins. Images on the left depict chloroquine bound to cofactor 296 

binding site of Plasmodium Falciparum Lactate Dehydrogenase (pdb id 1cet). Images on the right 297 

depict chloroquine bound to Saposin B (pdb id 4v2o). a) Lactate Dehydrogenase is depicted as blue 298 

ribbon, SAGNM predictions are yellow and Chloroquine green atoms. b)  Lactate Dehydrogenase is 299 

depicted as transparent hydrophobic surface (chain is visible as ribbon inside surface). SAGNM 300 

predictions are depicted as yellow atoms and Chloroquine as green atoms. c) Lactate Dehydrogenase 301 

is depicted as opaque hydrophobic surface and chloroquine as green balls and sticks. d) The inset 302 

shows Chloroquine within the hydrophobic pocket. e) Saposin B chains depicted as blue (chain A), 303 

pink (chain B) and red (chain C) ribbons. SAGNM predictions are depicted as blue, pink and red 304 

atoms. Chloroquine molecules are shown as green atoms. f) Saposin B is depicted as transparent 305 

hydrophobic surface. SAGNM predictions are depicted as yellow atoms and Chloroquine green 306 

atoms. g) Saposin B is depicted as opaque hydrophobic surface and Chloroquine as green balls and 307 

sticks. h) The two insets show Chloroquine molecules within the hydrophobic pockets on the surface 308 

of the Saposin B trimer. The figure is produced with the UCSF Chimera program [36]. 309 

 310 
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 311 

With Lactate Dehydrogenase chloroquine binds selectively and competitively to the 312 

Nicotinamide adenine dinucleotide (NADH) binding pocket of the enzyme, and occupies a 313 

position similar to that of the adenyl ring of the cofactor. It is thus a competitive inhibitor for 314 

this critical glycolytic enzyme of malaria [54]. The SAGNM algorithm recognizes residues 315 

Val-24, Leu-25, Val-48, Leu-51, Ala-63 and Val-94 as hot. Their influence is spread to the 316 

residues Lys-20, Ala-21, Lys-22, Ile-23, Val-24, Leu-25, Val-26, Gly-27, Ser-28, Gly-29, Gly-317 

32, Ala-37, Ile-40, Asn-44, Leu-45, Gly-46, Asp-47, Val-48, Val-49, Leu-51, Phe-52, Asp-53, 318 

Ile-54, Val-55, Pro-59, His-60, Gly-61, Lys-62, Ala-63, Leu-64, Asp-65, Thr-66, Ser-67, Cys-319 

76, Lys-77, Val-78, Ser-79, Gly-80, Ser-81, Asp-87, Leu-88, Gly-90, Ser-91, Asp-92, Val-93, 320 

Val-94, Ile-95, Val-96, Thr-97, Ala-98, Ala-133, Phe-134, Ile-135, Ile-136. See Figure 1a-d 321 

and Figure S1a in the Supplementary material. The drug interacts with residues Val-26, Gly-322 

27, Phe-52, Asp-53, Ile-54, Tyr-85, Ala-98, Phe-100, Ile-119 and Glu-122 and the SAGNM 323 

algorithm correctly recognized residues 26, 27, 52, 53, 54 and 98. Other sites although 324 

exposed to solvent are not binding targets. The Chloroquine molecule binds preferentially to 325 

hydrophobic sites (see Figs 1c-d) and avoids neutral and hydrophilic areas.  326 

 327 

The lysosomal protein Saposin B is a trimer formed by chains A, B and C. It selectively 328 

degrades lipids and is one of the most studied members of the saposin protein family [55]. 329 

Its deficiency or malfunctioning leads to the accumulation of lipids in the lysosome and 330 

results in the lysosomal storage disease metachromatic leukodystrophy ([55] and references 331 

therein). The SAGNM algorithm recognizes the residues Ile-8 and Cys-71 in chain A, Ile-8 332 

and Cys-71 in chain B and Cys-71 in chain C as hot. Their influence is spread to the residues 333 

Gln-5, Asp-6, Cys-7, Ile-8, Gln-9, Met-10, Val-11, Pro-67, Lys-68, Glu-69, Ile-70, Cys-71, 334 

Ala-72, Leu-73, Val-74, Phe-76 and Cys-77 in chain A; to the residues Gln-5, Asp-6, Cys-7, 335 

Ile-8, Gln-9, Met-10, Val-11, Pro-67, Lys-68, Glu-69, Ile-70, Cys-71, Ala-72, Leu-73, Val-74, 336 

Phe-76 and Cys-77 in chain B, and to the residues Lys-68, Glu-69, Ile-70, Cys-71, Ala-72, 337 

Leu-73, Val-74, Phe-76 and Cys-77 in chain C. See Figure 1e-h and Figure S1b in the 338 

Supplementary material. The SAGNM recognizes that the chloroquine molecules interact 339 

with residues Glu-69 and Leu-73 from chain B, out of residues Ala-58, Met-61, Met-65, Glu-340 

69 and Leu-73. With chain C, it recognizes residues Glu-69 and Leu-73, out of residues Met-341 

61, His-64, Met-65, Glu-69 and Leu-73. With chain A it does not emphasize the residue Arg-342 

38, but it recognizes the binding patch with the chain C (see Figure 1e). 343 

 344 

With both chloroquine examples the expected number of predictions for the SAGNM 345 

algorithm was set to be between 10% and 15%, and that corresponds to the fastest normal 346 

mode. Our results suggest that chloroquine’s binding to Covid-19 proteins should follow the 347 

same patterns as with Lactate Dehydrogenase and Saposin B. Namely it should attach to 348 

residues which are both hydrophobic and kinetically active (or very close to kinetically active 349 

sites).   350 
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The analysis of chloroquine’s nondiscriminatory binding to human and parasitic proteins may 351 

offer an explanation of its efficiency against parasitic infections as well offer a glimpse into 352 

its toxicity.  353 

 354 

Ivermectin 355 

The drug ivermectin binds glutamate-gated chloride channels and thus increases their 356 

permeability to chloride ions. We analyzed the ivermectin’s binding to the human glycine 357 

receptor alpha-3 (pdb id 5vdh [56]). This structure, besides ivermectin, also has glycine and 358 

the potentiator AM-3607 (7c6) bound to the glycine receptor. The comparison of the crystal 359 

structure used in this research to previously determined structures revealed that the 360 

ivermectin binding expands the ion channel pore [56].  361 

 362 

The receptor is a pentamer, so we only analyzed the binding to its chain A (Figure 2). The 363 

SAGNM algorithm recognized the residues Glu-157, Ser-158, Phe-168, Phe-207, Thr-208, 364 

Cys-209, Ile-210, Glu-211, Ser-238, Gly-256, Thr-259, Val-260, Val-294 and Leu-298 as 365 

kinetically hot. For the list of residues their influence is spread to see the list below Figure 366 

S2 in the Supplementary material. The expected number of predictions for the SAGNM 367 

algorithm was set to be between 25% and 30%, and that corresponds to 3 fastest modes. 368 

The three compounds bind to the residues Arg-27, Ile-28, Arg-29, Phe-32, Phe-159, Gly-369 

160, Tyr-161, Asp-165, Tyr-202, Thr-204, Phe-207, Ser-267, Ser-268, Ser-278, Val-280, 370 

Asp-284, Ala-288, Leu-291, Leu-292 and Phe-295. The SAGNM algorithm recognized 371 

residues Phe-159, Gly-160, Tyr-161, Asp-165, Tyr-204, Phe-207, Leu-291, Leu-292 and 372 

Phe-295. The analysis (Figure 2) reveals that all three compounds (ivermectin, glycine and 373 

AM-3607 (7c6)) bind to kinetically active and adjoining residues [35], some of which are 374 

highly hydrophobic, with ivermectin binding almost exclusively hydrophobic residues. That 375 

means that this drug well seek similar sites on the surface of the Covid-19 proteins. 376 

 377 
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 378 

Figure 2. Ivermectin and its target protein, Human glycine receptor Alpha-3 (pdb id 5vdh). a) Five 379 

pentamer chains (A to R) represented as ribbons. Glycine molecules are brown and represented as 380 

atoms. 7C6 molecules are represented as purple atoms. Ivermectin is represented via green atoms. 381 

b) Chain A from Human glycine receptor Alpha-3 represented as blue ribbon. SAGNM predictions are 382 

depicted as yellow atoms. Glycine molecule is brown and represented vias atoms. 7C6 molecule is 383 

represented as purple atoms. Ivermectin is represented via green atoms. c) Chain A from Human 384 

glycine receptor Alpha-3    depicted as transparent hydrophobic surface. SAGNM predictions are 385 

yellow, glycine molecule are brown atoms, 7C6 molecule is represented as purple atoms and 386 

Ivermectin as green atoms. d) Chain A from Human glycine receptor Alpha-3 depicted as opaque 387 

hydrophobic surface. Glycine molecule are brown balls and sticks, 7C6 molecule is represented as 388 

purple and Ivermectin as green balls and sticks. e) The three insets show Glycine, 7C6 and ivermectin 389 

molecules inside the hydrophobic pockets on the surface of the chain A of Human glycine receptor 390 

Alpha-3. The figure is produced with the VMD and UCSF Chimera programs [36, 37]. 391 
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Remdesivir 392 

We used the recently cryo-EM determined structure of SARS-COV-2 RdRp with double-393 

stranded template-primer RNA and remdesivir (pdb id 7bv2 [12]) to analyze the RNA and 394 

drug binding to residues in RdRp. The structure reveals that the double stranded RNA is 395 

inserted into RdRp’s central channel and that the active triphosphate form of remdesivir is 396 

covalently bound to the primer strand at the first replicated base, which effectively terminated 397 

the chain elongation. It should be noted that the prodrug form of remdesivir does not have 398 

any inhibitory effect on the polymerization activity of the purified enzyme [12]. The SAGNM 399 

algorithm recognized the residues Gly-503, Thr-538, Ile-539, Thr-540, Gln-541, Ala-558, 400 

Val-560, Ser-561, Val-609, His-613, Glu-665, Met-666, Val-667, Met-668, Ala-702, Ala-706, 401 

Phe-753, Cys-765 and Asn-767 in chain A as hot, the residues Asp-161 and Ile-185 in chain 402 

B as hot, and the residues Lys-7, Ser-10, His-36, Ile-39, Ala-48 and Lys-51 in chain C as 403 

hot, see Figure 3. For the predictions see the list below Figure S3 in the Supplementary 404 

materials. 405 

 406 

 407 

Figure 3. Remdesivir bound to the primer RNA inside the central channel of SARS-COV-2 RNA 408 

dependent RNA polymerase (RdRp), NSP12) (pdb id 7bv2 described in [12]). a) Three RNA 409 

polymerase chains, NSP 12, NSP7 and NSP8, represented as blue, cyan, and dark cyan ribbons. 410 

Remdesivir is represented via green atoms, and pyrophosphate as dark green atoms. The dashed 411 
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lines represent protein segments missing from the deposited structure. b) The same structure rotated 412 

approximately 180o around the vertical axis. c) Remdesivir and pyrophosphate inside the binding 413 

pocket, surrounded by the yellow SAGNM predictions (Left), and inside the pocket with contact 414 

residues colored by hydrophobicity.  415 

 416 

Our analysis reveals that the residues recognized via the fastest two normal modes 417 

(corresponding to kinetically active residues [35]) delineate the central channel (Figure 3a-418 

b). The enzymatically important residues Lys-500, Ser-501, Lys-545 and Arg-555 are all 419 

recognized by the SAGNM algorithm using just the fastest normal mode, while the residue 420 

Asp-761 of the catalytic center (out of residues Ser-759, Asp-760 and Asp-761 that form the 421 

catalytic center) is also emphasized with the two fastest modes. Residues Lys545 and Arg-422 

555 are important because they stabilize the incoming nucleotide in the correct position for 423 

catalysis. The crystal structure shows that the catalytic center of RdRp, NSP12 protein (Non 424 

Structural Protein 12), does not have any contacts with base pairs of RNA emphasizing 425 

RdRp’s sequence-agnostic polymerization ability [12]. This is in concordance with our 426 

coarse grained analysis, based on the positions of C-α atoms only, that shows that stable, 427 

kinetically active residues outline the enzyme’s central channel. 428 

 429 

Sofosbuvir 430 

We performed a comparative analysis of the Hepatitis C virus (HCV) RdRp (chain A in pdb 431 

id 4wtg [57]; the structure is given with the drug sofosbuvir bound to it) and the Covid-19 432 

RdRp (chain A in pdb id 6m71 [58]). We followed the steps of Y. Gao and collaborators [59] 433 

and attempted to compare predictions of the binding residues in HCV RdRp to sofosbuvir, 434 

to binding residues predictions in Covid-19 RdRp. The binding residues in HCV are buried 435 

deep inside the polymerase catalytic core. Our analysis shows that they are generally 436 

delineated by the kinetically active residues and are thus stable and characterized by the 437 

two fastest normal modes (Figure 4a), but they are not explicitly hydrophobic (Fig. 4b-c). 438 

The SAGNM algorithm recognized the residues Met-139, Ala-157, Met-266, Asn-268, Cys-439 

279, Lys-298, Phe-339 and Met-343 of the HCV RdRp (pdb id 4wtg) as hot. The algorithm 440 

recognized the residues Met-139, Ala-157, Met-266, Asn-268, Cys-279, Lys-298, Phe-339 441 

and Met-343 of the main enzymatic unit of Covid-19 RdRp (pdb id 6m71) as hot. For the full 442 

list of hot residues and predictions for HCV RdRp see Figure S4 and the list below it, and 443 

for Covid-19 RdRp see Figure S5 and the list below it in the Supplementary material. 444 

 445 
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 446 

Figure 4. Comparative analysis of HCV (pdb id 4wtg, chain A, left) and Covid-19 RNA directed RNA 447 

polymerase (RdRp, pdb id 6m71, chain A, right). a) HCV RNA directed RNA polymerase is depicted 448 

as blue ribbon, RNA is purple, and sofosbuvir is green molecule (full atom representation). b) HCV 449 

RdRp is represented as a transparent hydrophobic surface, SAGNM predictions are yellow and 450 

Sofosbuvir is represented via green atoms. c) HCV RdRp is represented as an opaque hydrophobic 451 

surface and Sofosbuvir is represented via green sticks. d) The inset shows Sofosbuvir inside the 452 

polymerase catalytic core. e) HCV RdRp (blue ribbon) structurally aligned with Covid-19 RdRp (light 453 

blue ribbon). Sofosbuvir is green molecule inside the HCV RdRp catalytic core. f) Covid-19 RdRp as 454 

light blue ribbon. SAGNM predictions are dark yellow atoms. Sofosbuvir is green molecule inside the 455 

catalytic core. The position stems from the structurally aligned HCV RdRp. g) Covid-19 RdRp as 456 

hydrophobically colored atoms (residues hydrophobicities). Sofosbuvir is green molecule inside the 457 

catalytic core. The position stems from the structurally aligned HCV RdRp. With Covid-19 RNA 458 

polymerase sofosbuvir’s position corresponds to the position it has when bound to HCV RNA 459 

polymerase. 460 

 461 

 462 

The structural alignment of HCV and Covid-19 RdRp (Figure 4e) using the Chimera program 463 

[36] shows that they share the structure of the binding pocket, and also reveals that the 464 

catalytic cores in both proteins is bounded by kinetically active residues, but the overall 465 

distribution of residues is only partially similar between the two proteins (Figure 4f). In both 466 

cases the expected number of targets is between 15 and 20%. With HCV RdRp that 467 

corresponds to the two fastest modes, and with Covid-19 RdRp and the main catalytic unit 468 

NSP12, that corresponds to 7 fastest modes. The similarities suggest that the interior of the 469 

RdRp in coronaviruses are attractive binding spot for small compounds in general.  470 

 471 
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The main enzymatic unit of Covid-19 RdRp, NSP12, mostly keeps its conformation between 472 

RNA free and RNA bound structures [12]. Figure 5 shows that cofactors NSP7 and NSP8 473 

seek patches with kinetically active residues on the surface of NSP12. However, they are 474 

also in contact with kinetically less active areas. This should be analyzed in the light of fact 475 

that SARS-COV-2 RdRp (NSP12) cannot perform its function without NSP7 and NSP8 [12]. 476 

The distribution of kinetically very active and kinetically dormant residues may be important 477 

for the overall stability of NSP12, and also act as stochastic oscillator/transformer that 478 

translates random fluctuations of solvent and proteins into a regular vibrations that produce 479 

a regular rhythm of translation (i.e. act as a regular clock/oscillator). 480 

 481 

 482 

Figure 5. Covid-19 RNA directed RNA polymerase with cofactors NSP7 and NSP8 (pdb id 6m71). 483 

The NSP 12 chain is cyan, and its SAGNM predictions are yellow. The NSP 7 chain is pink and its 484 

SAGNM predictions are purple. The NSP 8 chain is orange and it SAGNM predictions are dark red. 485 

The dashed lines represent segments missing from the coordinates file. 486 

 487 

 488 

Spike glycoproteins and their interactions 489 

ACE2 binding patterns to SARS and Covid-19 Spike glycoproteins 490 

The analysis of the contact patterns between the ACE2 receptor and the spike glycoprotein 491 

receptor binding domains (RBD) in SARS (pdb id 6cs2 [61]) and SARS-COV-2 (pdb id 6m0j 492 

[7]) reveals a difference in the distribution of kinetically active residues important for binding 493 

between RBD and ACE2 (Figure 6). The conformationally stable SARS-RBD has a smaller 494 

number of kinetically active and adjoining residues in direct contact with ACE2 (Figure 6a-495 

c), while kinetically active residues in Covid-19 RBD are directly oriented and are in contact 496 

with the active residues in ACE2 (Figure 6d-f). In SARS active residues are mostly 497 
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perpendicular to the interfacial plane (compare the distributions of C-alpha atoms in Figs. 6a 498 

and 6d). That should make the binding affinity between the Covid-19-RBD and ACE2 499 

receptor stronger than between the SARS-RBD and ACE2 receptor. In both cases the 500 

predicted residues are recognized via the fastest vibrational mode (see [35]). For the list of 501 

hot residues and predictions see Figure S6 in the Supplementary material and the list below 502 

it. For 6cs2 the expected number of targets was between 22 and 25%, and that corresponds 503 

to the first, fastest mode for SARS Spike glycoprotein (chain B), and the fastest six modes 504 

for ACE2 (chain D). For 6m0j the expected number of targets was between 20 and 22%, 505 

and that corresponds to the first, fastest mode for Covid-19 Spike glycoprotein receptor 506 

binding domain (chain E), and fastest six modes for ACE2 (chain A).  507 

 508 

 509 
Figure 6. SARS Spike glycoprotein chain B RBD and ACE2 receptor (pdb id 6cs2) in comparison to 510 

Covid-19 Spike glycoprotein chain A RBD and ACE2 receptor (pdb id 6m0j). a) ACE2 receptor is 511 

represented via blue atoms and its SAGM predictions are yellow atoms. SARS Spike glycoprotein is 512 

represented via red atoms, and its SAGNM predictions and green atoms. b) ACE2 receptor is 513 

represented as a blue ribbon and its SAGM predictions are yellow atoms. SARS Spike glycoprotein 514 

is the red ribbon, and its SAGNM predictions and green atoms. c) Contact areas for both chains 515 

represented as hydrophobicity surfaces. The contact chains in each case are shown as ribbons, and 516 

predictions are represented via C-alpha atoms only. d) ACE2 receptor is represented via blue atoms 517 
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and its SAGM predictions are yellow atoms. Covid-19 Spike glycoprotein is represented via red 518 

atoms, and its SAGNM predictions and green atoms. e) ACE2 receptor is represented as a blue 519 

ribbon and its SAGM predictions are yellow atoms. Covid-19 Spike glycoprotein is the red ribbon, and 520 

its SAGNM predictions and green atoms. f) Contact areas for both chains represented as hydrophobic 521 

surfaces. The contact chains in each case are shown as ribbons, and predictions are represented via 522 

C-alpha atoms only. 523 

 524 

 525 

 526 

SARS-Cov spike glycoprotein and glycans 527 

The analysis of kinetically active and adjoining residues in the SARS-Cov spike glycoprotein  528 

monomer (pdb id 6nb6) reveals that they are attractive binding spots for glycans (Figure 7). 529 

Glycans form the glycan shield, which was already suggested to assist in immune evasion 530 

similarly to the HIV-1 envelope trimer [63]. The kinetically active residues recognized by the 531 

SAGNM algorithm [35] can be used as target areas for drugs aimed at removing/disrupting 532 

the viral glycan shield. Those residues are not particularly hydrophobic and should be 533 

targeted by drugs that bind to hydrophilic patches, and electrostatically complementary.  534 

 535 
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 536 

Figure 7. SARS-Cov spike glycoprotein (Chain B, pdb id 6nb6) with glycans (NAG, BMA, MAN) bound 537 

to it. a) Ribbon like representation of SARS spike glycoprotein. The SAGNM predictions are yellow 538 

atoms. BMA molecules are represented via purple atoms. MAN molecules are represented via orange 539 

atoms. NAG molecules are represented via green atoms. Cyan bars represent missing glycoprotein 540 

segments. b) SARS spike glycoprotein depicted via hydrophobicity colored atoms. Glycans (NAG, 541 

BMA, MAN) are represented via colored bonds (same colors as above). c) SARS spike glycoprotein 542 

depicted via transparent hydrophobicity colored atoms. Glycans (NAG, BMA, MAN) are represented 543 

via colored bonds (same colors as above). The SAGNM predictions are yellow atoms. Glycans (NAG, 544 

BMA, MAN) are represented via colored atoms. 545 
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SARS Spike Glycoprotein RBD and human antibody fragment 546 

We also analyzed the kinetically active residues in the structure formed by the SARS Spike 547 

Glycoprotein RBD and human neutralizing S230 antibody FAB fragment (pdb id 6nb6). The 548 

analysis reveals that S230 antibody binds to kinetically active residues in SRAS RBD, while 549 

heavy and light chains in S230 communicate via kinetically active residues (see Figure 8). 550 

The binding residues are mostly neutral to hydrophilic, thus any potential drug should be 551 

able to bind to similar surfaces (neutral/hydrophilic and stable).  552 

 553 

 554 
Figure 8. Receptor binding domain (RBD) of SARS-COV spike glycoprotein (Chain A, pdb id 6nb6) 555 

with human neutralizing S230 antibody FAB fragment. a) SARS-COV RBD (blue, chain A) with heavy 556 

(green, H and I) and light (red, L and M) chains. Predictions are cyan (SARS), yellow (S230 light) and 557 

light green (S230 heavy). b) Hydrophobic surface of SARS RBD bound to S230 (chains H and L). c) 558 

Transparent hydrophobic surface of SARS RBD and S230 (chains H and L) with predictions. 559 

 560 

 561 

Boceprevir 562 

With the expected number of targets between 15 and 20% of the total number of residues, 563 

which corresponds to the fastest normal mode, the SAGNM algorithm recognized the 564 

residues Val-20, Asn-28 and Cys-38 as kinetically hot in the SARS-Cov-2 main protease 565 
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(pdb id 6wnp). That corresponds to the predictions Cys-16, Met-17, Val-18, Gln-19, Val-20, 566 

Thr-21, Cys-22, Gly-23, Thr-24, Thr-25, Thr-26, Leu-27, Asn-28, Gly-29, Leu-30, Trp-31, 567 

Leu-32, Asp-34, Val-35, Val-36, Tyr-37, Cys-38, Pro-39, Arg-40, His-41, Val-42, Phe-66, 568 

Leu-67, Val-68, Gln-69, Val-86, Leu-87, Lys-88, Cys-117, Tyr-118, Asn-119, Gly-120, Gly-569 

143, Ser-144, Cys-145, Gly-146, Ser-147 and Met-162. Of all the residues in contact with 570 

boceprevir, the SAGNM algorithm recognized the residues Thr-25, Thr-26, Leu-27, His-41, 571 

Gly-143, Ser-144 and Cys-145, see Figure 9. See also Figure S8 in the Supplementary 572 

material for the distribution of hot and predicted residues. 573 

 574 

 575 

Figure 9. Boceprevir and its target protein Covid-19 (SARS-COV-2) main proease (pdb id 6wnp). a) 576 

Covid-19 Main protease is depicted as blue ribbon, SAGNM predictions are yellow and Boceprevir 577 

as green atoms. b) Covid-19 main protease is depicted as a transparent hydrophobic surface, 578 

SAGNM predictions are yellow and Chloroquine is green molecule. b) Covid-19 main protease is 579 

depicted as an opaque hydrophobic surface and Chloroquine is depicted via green balls and sticks. 580 

d) The inset shows Boceprevir inside the binding pocket. 581 

 582 

 583 

Eflornithine 584 

The drug α-difluoromethylornithine (DMFO, Eflornithine) prohibits binding of the natural non-585 

coded amino acid ornithine to the active site on the surface of Trypanosoma brucei Ornithine 586 

Decarboxylase (ODC, pdb id 1njj [60]). The binding of this drug should follow the binding 587 

patterns of ornithine. Figure 10 shows that SAGNM algorithm accurately detects binding 588 

sites for both ornithine and G418 (Geneticin), an aminoglycoside antibiotic. In contrast to 589 

chloroquine, both compounds bind preferably to the hydrophilic sites on the surface of ODC 590 

(Figure 10b-d). If applied to treat Covid-19, the drug eflornithine should bind to similar sites 591 

on the surface of Covid-19 proteins (hydrophobic and kinetically active, i.e. stable).  592 

With the expected number of targets between 10 and 15% of the total number of residues, 593 

which corresponds to the fastest normal mode, the SAGNM algorithm recognized the 594 

residues Asp-44, Ala-281 and Phe-284 of the chain A of 1njj as kinetically hot. The 595 

corresponding predictions are Thr-21, Phe-40, Phe-41, Val-42, Ala-43, Asp-44, Leu-45, Gly-596 
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46, Asp-47, Ile-48, Gly-240, Thr-241, Arg-277, Tyr-278, Tyr-279, Val-280, Ala-281, Ser-282, 597 

Ala-283, Phe-284, Thr-285, Leu-286, Ala-287, Val-288, Glu-384, Asp-385, Met-386, Gly-598 

387, Ala-388, Tyr-407, Val-408, Val-409 and Ser-410. See Figure S9 in the Supplementary 599 

material for their distribution. 600 

 601 

 602 

Figure 10. D-ornithine and its target protein Trypanosoma brucei ornithine decarboxylase (pdb id 603 

1njj). a)  Ornithine decarboxylase chains A (red) and B (blue) depicted as ribbons, with D-ornithine 604 

and G-418 as green and dark green molecules, respectively. b) Ornithine decarboxylase chains A 605 

and B depicted as hydrophobicity surface, with D-ornithine and G-418 as green and dark green 606 

molecules, respectively. c) Ornithine decarboxylase chain A depicted as transparent hydrophobicity 607 
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surface, with SAGNM predictions are yellow atoms, and with D-ornithine and G-418 as green and 608 

dark green molecules. d) D-ornithine and G-418 molecules depicted as colored bonds&sticks, 609 

correspondingly to the atom type, inside pockets on the surface of ornithine decarboxylase. 610 

 611 

 612 

Discussion and conclusions 613 

Covid-19 is the first modern, severe global pandemic caused by a coronavirus, and there 614 

are no guarantees that it will be the last. Our society therefore needs not only to develop an 615 

effective and efficient treatment for the current disease, but also has to have a set of 616 

protocols to promptly address all future, similar pandemics. In this manuscript we presented 617 

our strategy to recognize potential drug binding residues in human and viral proteins. We 618 

analyzed four currently approved drugs (chloroquine, ivermectin, remdesivir, sososbuvir, 619 

boceprevir and eflornithine). Our results indicate that small, drug like compounds 620 

preferentially bind to kinetically active and adjoining residues, thus seeking stable residues 621 

characterized by fast normal modes with small amplitude of fluctuations [35]. Some drugs 622 

preferentially seek active patches that are hydrophobic (chloroquine, ivermectin), while 623 

others prefer hydrophilic surfaces (remdesivir, sofosbuvir, eflornithine). We can postulate 624 

that in water environment drugs binding to hydrophilic patches will be more stable, as their 625 

removal will lead toward the reduction in structural entropy, but a full account of this 626 

proposition will require calculations of binding free energy differences based on full atom 627 

molecular dynamics, using, for instance, steered molecular dynamics simulations (SMD) 628 

[64-66]. We can also propose that the drugs/small molecules that bind to deep pockets will 629 

be more stable, and thus more effective. Our algorithm accurately recognizes such pockets 630 

as binding spots for drugs (Figures 1a, 3 and 10), and small peptides (see, in particular, 631 

Figure 6a in [35]).  632 

 633 

Multidrug cocktails are frequently used to treat viral diseases [67]. Our analysis shows that 634 

in designing antiviral drug cocktails, binding affinity between drugs and kinetically active 635 

(stable) sites should be combined with the information on their hydrophobic and hydrophilic 636 

properties in attempt to avoid binding competition, increase drug cocktail efficiency, and 637 

reduce toxicity and other unwanted side effects.  638 

 639 

In our analysis we used both viral-parasitic, as well as human proteins. The analysis shows 640 

that kinetically active residues exist in both human and non-human proteins/enzymes and 641 

that drugs bind indiscriminately to them regardless of their origin. The compounds that bind 642 

to human proteins potentially offer longer lasting treatments as host cells and tissues have 643 

less chance of developing drug resistance through single point mutations. 644 

 645 

The procedure we described here is fast and effective, and can analyze a protein structure 646 

much faster than computationally demanding molecular dynamics simulations. Its 647 
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advantage is not in its efficiency, but also in its ability to suggest general binding patterns 648 

between proteins and drugs or small peptides. It can be used to filter binding areas on protein 649 

surfaces and thus facilitate preclinical stages in drug design. Binding spots in various 650 

proteins can be very effectively predicted with our SAGNM approach and accessed with 651 

other bioinformatics tools for charge and shape complementarity, binding affinity, atomic 652 

mass and other properties as well. However, the SAGNM algorithm cannot determine 653 

binding free energies, or binding orientations of small molecules. For that aim other docking 654 

tools or molecular dynamics should be applied as we explained above. Our results are 655 

concordant with full atom docking and simulations studies [13-19] that emphasized 656 

sofosbuvir, remdesivir, hydroxychloroquine and ivermectin, compounds that we also 657 

analyzed. This indicates that protein-ligand docking is a multistep process, guided both by 658 

coarse grained properties of a bigger binding partner, and detailed, atomic scale properties 659 

of binding pocket and a small ligand. 660 

 661 

Recent advances in machine learning helped advance our ability to predict and design 662 

protein structures [68], but the full theoretical foundations for protein folding and binding is 663 

still lacking. The quality of the machine learning protocol directly depends on the quality and 664 

size of training data sets and thus in many ways follows classical methods based on 665 

statistical potentials and homology modeling [69]. Our results can also help in that respect 666 

as they offer interpretation on how residue packing inside protein segments guides their 667 

assemblage.  668 

 669 

Our results depicted here show that in proteins that interact with small, drug-like molecules 670 

contacting scaffolds are surrounded by kinetically hot residues. Similar conclusion related to 671 

protein-protein interactions was given in [35], but, as we showed above, the full binding 672 

behavior is not accessible only through the analysis of kinetically active residues and their 673 

neighbors. The full atom analysis is still required for the detailed assessment of protein-drug 674 

binding. The coarse grained analysis (SAGNM algorithm) thus, perceives only the outline of 675 

the binding funnel, while the full atom analysis (binding free energy) sees finer patterns 676 

inside that outline. Their combination may offer an overall improvement in binding prediction. 677 

This approach should be in principle be similar to the current improvement in Deep Neural 678 

Networks (DNN) architectures aimed at image recognition and classification by Brendel and 679 

Bethge [70]. The improvement is based on the splitting images into small local image 680 

features (e.g. outlines) without taking into account their spatial ordering, a strategy closely 681 

related to the pre deep-learning bag-of-feature (BoF) models. This image classification 682 

improvement is based on the observation, that standard DNN architectures perceive images 683 

primarily through textures, as opposed to human perception, which is primarily based on the 684 

outlines and shapes of objects [71]. In our case, the outline is determined primarily by the 685 

protein, and fine binding features (“binding textures”) stem from the joint properties of the 686 

smaller binding partner and the binding outline determined by the protein. In that sense the 687 

SAGNM approach is similar to human vision, and molecular docking and dynamics studies 688 

to the machine, DNN based, vision. This observation opens a space for further work, where 689 
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molecular binding will be treated as a two-step process where the coarse-grained shape of 690 

binding funnel will be determined by the larger partner in the first step, and final binding 691 

position and orientation by the multiple and detailed features of the binding funnel and a 692 

smaller partner inside that funnel. 693 
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