

Article

A Decision Support Tool for Multi-Objectives

Teaching Assignment Problem

Ngo Tung Son1,*, Bui Ngoc Anh1, Jafreezal Jaafar2

1 Information and Communication Technology Department, FPT University, Hanoi 100000, Vietnam;

sonnt69@fe.edu.vn; anhbn5@fe.edu.vn;
2 Department of Computer and Information Sciences, Center for Research in Data Science, Universiti

Teknologi PETRONAS, Tronoh 32610, Malaysia; jafreez@utp.edu.my;

* Correspondence: sonnt69@fe.edu.vn

Abstract: The problem of scheduling is an area that has attracted a lot of attention from researchers

for many years. Its goal is to optimize resources in the system. The assigning task to the lecturer is

an example of the timetabling problem, a class of scheduling. This study introduces a mathematical

model to assign fixed tasks (the time and required skills to be fixed) to university lecturers. Our

model is capable of generating a calendar that maximizes faculty expectations. The formulated

problem is in the form of a multi-objective problem that optimal makes decisions require the trade-

off presence of trade-offs between two or more conflicting objectives. To solve this, we use the

Compromise Programming approach to multi-objective programming. We then proposed the new

version of the Genetic Algorithm to solve the introduced model. Finally, the model and algorithm

tested with real scheduling data collected at the Computing Fundamental Department, FPT

University, Hanoi, Vietnam.

Keywords: Timetabling, Task Assignment, MOP, Combinatory Optimization, Compromise

Programming, Genetic Algorithm.

1. Introduction

1.1. Background

The need to optimize types of resources is as much a requirement in training organizations as in

any other kind of institution. The university timetabling problem's goal is to find a method to allocate

the predefined resources that minimize the cost where all constraints within the problem must be

satisfied. The resources here consist of classes meant to be a group of students with the same schedule,

a subject that requires one or more specific skills and knowledge, time slots that determine when a

particular class and subject attached. The university usually performs a scheduling task before a

semester begins [1, 2, 3, 4, 5]. The scheduling / timetabling problem comes in many forms. Each of

them requires a different strategic approach.

This research was conducted on a practical case study at FPT University in Vietnam. Currently,

the university's scheduling process is a manual process. In our situation, the student can register for

their studies very soon before the department head has enough resources to determine the final

schedule (of course, some classes could be canceled due to lack of resources later). The training

department creates groups of students who would like to study the same subject based on the

registrations and select the time slots. However, the department heads still need to assign their

lecturer to teach these classes later. The reason for this is that we are student-centered, other resources

revolve around students to support them. In short words, the lecturers' timetables considered last.

The project aims to provide an automated task assignment tool to replace the manual process of

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2020

© 2020 by the author(s). Distributed under a Creative Commons CC BY license.

http://creativecommons.org/licenses/by/4.0/

 2 of 13

matching lecturers to their courses, as shown in Figure 1. The problem becomes an instance of the

teaching assignment problem [6].

Task
Assignment

Course ID

1

2

3

Skill

Java Web

J2SE

D&A

Time Slot

M1

E5

M1

List of Courses (Tasks)

Interests of Lecturers Slot

1

2

3

4

5

6

Mon

1

2

3

4

5

6

Tue

1

2

3

4

5

6

Wed

1

2

3

4

5

6

Thu

1

2

3

4

5

6

Fri

1

2

3

4

5

6

Slot

1

2

3

4

5

6

Mon

1

2

3

4

5

6

Tue

1

2

3

4

5

6

Wed

1

2

3

4

5

6

Thu

1

2

3

4

5

6

Fri

1

2

3

4

5

6

Slot

1

2

3

4

5

6

Mon

1

2

3

Tue

4

4

5

Wed

1

2

3

Thu

4

5

5

Fri

1

2

3

Timetable for Lecturers

Figure 1: The teacher assignment problem.

The input data for the decision-making stage described as Every course/class established for a

particular subject and took place in 30-time slots (equivalent to 45 hours of study, 1-time slots equals

1.5 hours). A student can join a maximum of ten classes, but only one class per time-slot. The duration

of a semester is ten weeks. Every class has three slots of the same subject per week and must not occur

for two consecutive days, giving the student time to prepare for the next sections. Each semester the

university opens about 1000 classes. Lecturers can teach a maximum of 6 slots per day. Table 1

illustrates ten available time-slots for a teacher/student for every week in the semester. The system

assigns these courses to the lecturers based on their skills and expectations (more detail in section 2).

Table 1: The details of 10-time slots defined at the FPT University for a week.

 DoW

Time-Slot

Monday Tuesday Wednesday Thursday Friday Part of the day

1 M1 M4 M1 M4 M1 Morning

2 M2 M4 M2 M5 M2

3 M3 M5 M3 M5 M3

4 E1 E4 E1 E4 E1 After Noon

5 E2 E4 E2 E5 E2

6 E3 E5 E3 E5 E3

1.2. Related Work

There have been many studies on the problem of university scheduling. Many of them have used

an integer programming (IP) model to formulate the problem. For example, Andrade et al. have built

a Non-Linear Binary Integer Programming mathematical model to develop the school timetabling

problem, which is used to assign teaching tasks to teachers at a defined time frame [1]. Gianpaolo et

al. proposed an Integer Programming formulation of selecting the training offer and the related

timetabling for high-school remedial courses subject to constraints on budget and business operations

[3]. Daskalaki et al. presented a binary integer programming model of the university timetabling

problem, which they try to minimize the linear cost function [7]. Feng et al. developed a mixed-integer

linear program for the university timetabling problem. The original problem converted to the three-

dimensional container packing problem. They consider day, period, and room as the three

dimensions of one container and the lectures as different sized items then assign them into the

container [8].

The task assignment problems exist in many different forms. While some of them like the classical

problem have polynomial-time solutions [9], others are NP-hard combination optimization problems

[10] that requires approximation approaches, especially metaheuristic [11]. In [12], Lewis classifies

several metaheuristic-based techniques into three classes for University Timetabling problems in

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2020

 3 of 13

their survey. Muthuraman and Venkatesan also conducted a survey of meta-heuristic algorithms for

solving combinatorial optimization problems [13]. They reviewed several algorithms, such as ant

colony optimization, evolutionary computation, particle swarm optimization, etc. Related to the

scheduling problem, many researchers used genetic algorithms, an evolutionary algorithm to solve

scheduling problems, and task assignment problems [14,15,16]. Genetic Algorithm generates high-

quality solutions to optimization and search problems. A particular researcher can have different

designs of the Genetic Algorithm to solve specific problems. Feng et al. combine genetic algorithms

and search strategies to create offspring in populations based on information collected from the best

individuals of previous generations and with a local search that improves the efficacy of the proposed

Genetic Algorithm [17]. Yang develops an efficient hybrid genetic algorithm based on algorithms for

the converted problem [8]. This study introduces a multi-objective optimization problem that used

binary integer decision variables, and a version of the Genetic Algorithm to solve the task assignment

problem mentioned in section 1.1.

1.3. Contribution

In this study, we present an approach to construct a task assignment support system for the

university. The work we perform is a stage in the automatic scheduling solution at FPT University

and a new approach for the fixed-tasks assignment problem. The related researches to the scheduling

may benefit from our study. Due to the fixed schedule that respects the business requirement, the

considered events such as classes, time-slots, and subjects determined. Our mission is to arrange the

available works for available human resources. We built a multi-objectives model that accesses each

individual's level of interest assigned to the job, which still provides a binding compliance solution.

Our proposed model covers more business requirements rather than previous works—the

optimization model of the problem described in section 2.

There are many ways to solve the proposed optimization model. We choose Compromising

Programming to transform the multi-objective problem into a single-objective problem. Each MOP

approach has its advantages and disadvantages and is suitable for different decision-maker groups,

but Compromise Programming works extremely better if no preference is indicated. We have

implemented a Genetic Algorithm that solves both optimal models of a target mentioned above—the

detail of the implementation described in section 3. In the following sections of this paper, we present

our experiments using the scheduling data of Computer Fundamentals at FPT University. A review

of the algorithm is also discussed in section 4. The remaining are discussion and conclusion.

2. Problem Formulation

2.1. Multi-Objective Task Assignment Problem

Many researchers have used the integer programming (IP) model to solve this problem, such as

[1, 3]. In this research, we also define our timetable problem in the form of IP as follows:

 Let 𝐺 is the number of lecturers.

 Denote 𝑆 is the number of subjects.

 𝑇 is the number of available time slots, in our case, 𝑇 = 10 as described in Table 1.

 𝐻 is the number of section, a section represents a particular class studies a specific subject at

a timeslot.

 𝑐ℎ, 𝑠ℎ , 𝑡ℎ are class, subject and time slot of section ℎ𝑡ℎ respectively.

 𝐷𝑔 is a number of classes that lecturer 𝑔𝑡ℎ prefer to teach.

 𝑀𝑔 is a minimum number of classes that the lecturer 𝑔𝑡ℎ has to teach.

 𝑎𝑠,𝑔 ≥ 0 as integer for every 𝑠 = 1…𝑆, 𝑔 = 1. . 𝐺 represent the rating of the lecturer 𝑔𝑡ℎ to

teach subject 𝑠𝑡ℎ. The value 0 indicates that the lecturer does not want to teach the subject.

Other values respectively mean “like a little” to “like very much”.

 𝑏𝑡,𝑔 ≥ 0 as integer for every 𝑡 = 1…𝑇, 𝑔 = 1. . 𝐺 denote the rating of the lecturer 𝑔𝑡ℎ to

teach at time slot 𝑡𝑡ℎ. The value 0 indicates that the lecturer does not want to teach at the

time slot. Other values respectively mean “like a little” to “like very much”.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2020

 4 of 13

 𝑥ℎ,𝑔 is the decision variable for every ℎ = 1…𝐻, 𝑔 = 1…𝐺 . 𝑥ℎ,𝑔 = 1 if the lecturer 𝑔𝑡ℎ is

assigned to section ℎ𝑡ℎ, 𝑥ℎ,𝑔 = 0 otherwise.

In [18], Corne suggested some of timetabling constraints such as (1) Unary constraints, (2) Binary

constraints, (3) Capacity constraints, (4) Event spread constraints, (5) Agent constraints. Based on

those suggestions, we also define several constraints to the problem as follows:

 All section must be assigned lecturer and at most one lecturer is assigned to a section.

∑𝑥ℎ,𝑔

𝐺

𝑔=1

= 1 ∀𝑠𝑠 = 1…𝐻 (𝐻1)

 A particular lecturer does not teach the subject that he/she does not have skill.
𝑎𝑠ℎ,𝑔 ≥ 𝑥ℎ,𝑔 ∀ℎ = 1…𝐻, 𝑔 = 1…𝐺 (𝐻2)

 A particular lecturer does not teach at the time-slot that he/she is not available.
𝑏𝑡ℎ,𝑔 ≥ 𝑥ℎ,𝑔 ∀ℎ = 1…𝐻, 𝑔 = 1…𝐺 (𝐻3)

 All lecturers have to satisfy the quota for the number of sections they have to teach.

∑𝑥ℎ,𝑔

𝐻

ℎ=1

≥ 𝑀𝑔 ∀𝑔 = 1…𝐺 (𝐻4)

In the past, several researchers proposed models focused on assignments for rooms and time

slots to achieve workable schedules while optimizing the lecturer's interests. For example, Nouri and

Driss [19, 20] use the multi-agent approach, where the agents represent teachers of different levels

and seek to assign their lectures according to their interests. Higher-ranking teachers are given

priority in meeting their interests. Malik et al. build a model for mapping the task to the lecturer that

maximizes their preference on the time-slot [21]. There are many different views about the compact

schedule. The goal is to avoid idle time on the teacher's plan and minimize working days [22,23]. In

this research, we have defined some objectives functions that maximize the lecturer's preference level

on time-slots, subjects, and the number of classes that the lecturer expects to teach. The objective

functions described as follows:

 Maximize the expectations of the lecturers on the subject they want to teach.

max {∑𝑥ℎ,𝑔 ∗ 𝑎𝑠ℎ,𝑔

𝐻

ℎ=1

} ∀𝑔 = 1…𝐺 (O1)

 Maximize the expectations of the lecturers on the time slots they want to teach.

max {∑𝑥ℎ,𝑔 ∗ 𝑏𝑡ℎ,𝑔

𝐻

ℎ=1

} ∀𝑔 = 1…𝐺 (O2)

 Minimize the errors on the number of classes that the lecturers want to teach.

min {|∑𝑥ℎ,𝑔 − 𝐷𝑔

𝐻

ℎ=1

|} ∀𝑔 = 1…𝐺 (03)

 Minimize the number of parts of the day, which lecturers have to work (morning, afternoon

every day). The lecturer would register three classes, even if he expressed his interest in all

of the time-slots. It is better to assign him/her to work in the slot-times (E1, E2, E3) instead

of (E1, E4, M1):

max{𝑝𝑜𝑑({𝑥ℎ,𝑔| ℎ = 1. . 𝐻})} ∀𝑔 = 1…𝐺 (𝑂4))

Where 𝑝𝑜𝑑 is a fuzzy logic membership function that returns the rating for the number of

parts of the day, which lecturers have to work, the detailed implementation can be different

in different situations. We show our implementation in the part of the experiment to suit the

context of FPT University.

The proposed model is in the form of a multi-objective programming problem (MOP) [24]. Since

there are often many Pareto optimization solutions for MOP problems, solving such a problem is not

as simple as a typical single goal optimization problem. In the following sections, we present an

approach to transform the optimal problem into a more suitable form to find the optimal solution in

the decision space.

2.2. Compromise Programming for MOP

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2020

 5 of 13

Our proposed scheduling problem becomes MOP. There are two main approaches to solving the

MOP problem: preference method and non-preference method, as mentioned in Hwang's survey [25].

The most useful solution is found using different philosophies that depending on the subjective

preferences of the decision-makers. In the decision-making process, decision-makers can place

interest in each criterion according to his / her subjective preferences. Here, the decision-maker

should be an expert in the domain. It is challenging to find the desired weights for different objectives.

This section of this paper discusses the Compromise Programming approach that requires no pre-

defined decision-maker preferences.

The problem of 4*g objective functions is complicated for decision-makers to define the weights

corresponding to each lecturer. There are many proposed methods to solve multi-objective problems.

Zeleny [26] introduced the ideal solution defined as the best-compromise solution that is the nearest

to perfection. Ngo et al. [27, 28, 29] applied compromise programming to solve the problem of the

binary objective in team selection, where they introduced the idea point E and try to find the solution

that has minimum distance to E. When the decision-maker stands in the view of lecturers, they

declare their preferences on subjects and time-slots. It is hard to find the solution to archive the best,

but we can define the best schedule they expect. The only goal left is to find a solution that is closest

to this predefined point. The question we may ask decision-maker and predictable answer for them

is as follows:

 How much faculty satisfaction on preferred time-slot and skill is good? Ideally, what they

receive should be what they expect.

The decision-maker mostly provides this pair of the above question and answer for the time-slot,

skill, number of courses, and part of the days they have to work. The objective function now

expressed as follow:

 Denote 𝐸 ∈ ℝ𝐺×(𝑇+2) = {𝐸1, 𝐸2, … , 𝐸𝐺} is the matrix of idea timetable.

Where 𝐸𝑔 = {𝐸𝑔,1, 𝐸𝑔,2, … , 𝐸𝑔,𝑇 , 𝐸𝑔,𝑇+1, 𝐸𝑔,𝑇+2} is the vector of expected timetable for lecturer

𝑔𝑡ℎ, such that

𝐸𝑔,𝑗 = {

max
ℎ=1..𝐻∣𝑡ℎ=𝑗

(𝑎𝑠ℎ,𝑔 ∗ 𝑏𝑗,𝑔) 𝑖𝑓 𝑗 ≤ 𝑇

𝑛𝑜𝑟𝑚(𝐷𝑔) 𝑖𝑓 𝑗 = 𝑇 + 1

ℶ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where 𝑛𝑜𝑟𝑚 denotes the normalization function, ℶ is max rating for the number of parts

of the days that a lecturer has to work.

 Let 𝐹 is the matrix of the solution. 𝐹 ∈ ℝ𝐺×(𝑇+2) = {𝐹1, 𝐹2, … , 𝐹𝐺} where 𝐹𝑔 =

{𝐹𝑔,1, 𝐹𝑔,2, … , 𝐹𝑔,𝑇 , 𝐹𝑔,𝑇+1, 𝐹𝑔,𝑇+2} is the vector of final timetable for lecturer 𝑔𝑡ℎ, such that:

𝐹𝑔,𝑗 =

{

 ∑ 𝑥ℎ,𝑔 ∗ 𝑎𝑠ℎ,𝑔 ∗ 𝑏𝑗,𝑔

𝐻

ℎ=1∣𝑡ℎ=𝑗

 𝑖𝑓 𝑗 ≤ 𝑇

𝑛𝑜𝑟𝑚 (∑𝑥ℎ,𝑔

𝐻

ℎ=1

) 𝑖𝑓 𝑗 = 𝑇 + 1

𝑝𝑜𝑑({𝑥ℎ,𝑔| ℎ = 1. . 𝐻}) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

The original multi-objective functions (O1), (O2), (O3) and (O4) rewritten in form of compromise

problem (CP):

min(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒([𝐸1, 𝐸2, … , 𝐸𝐺], [𝐹1, 𝐹2, … , 𝐹𝐺])) = √∑∑(𝐸𝑖,𝑗 − 𝐹𝑖,𝑗)
2

𝑇+2

𝑗=1

𝐺

𝑖=1

3. Proposed Algorithm

3.1. Introduction to Genetic Algorithm

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2020

 6 of 13

The Genetic Algorithm [30] is a population-based metaheuristic method extensively used in

scheduling problems. It searches a solution space for the optimal solution to a problem. This search

is done in a fashion that mimics the operation of evolution. In essence, a “population” of possible

solutions formed, and new solutions are created by “breeding” the best individual from the

population’s members to build a new generation. When the algorithm converged after several

generations, the best solution returned. Genetic algorithms are particularly useful for problems

where it is extremely difficult or impossible to get an exact answer or severe problems where a correct

solution may not be required. They offer an exciting alternative to the typical algorithmic solution

methods and are highly customizable. This notion can apply to a search problem. We consider a set

of solutions for a challenge and select the set of best ones out of them. There are five phases

considered in a genetic algorithm. This study introduces a version of the Genetic Algorithm to solve

the MOP model Compromise Programming approach with a new added phase called “repair” to

correct the errors. The flow of the proposed scheme displays in Figure 2.

Start

End

Generate the initial Population

Compute Fitness

Is Converged

Selection

Crossover

Mutation

Repair

Compute Fitness

Generate new

Generation

Yes No

Figure 2: basic workflow of the proposed Genetic Algorithm’s Scheme

3.2. Genetic Algorithm Scheme

3.2.1. Genetic representation

Chromosome is represented as a matrix of 𝐺 rows and 𝑇 columns, rows 𝑖𝑡ℎ represent the

section assignment for lecturer 𝑖𝑡ℎ. Cell (𝑔, 𝑡) contains section lecturer 𝑔𝑡ℎ assigned to at time-slot

𝑡𝑡ℎ, or 0 if lecturer 𝑔𝑡ℎ is not assigned to any section at time-slot 𝑡𝑡ℎ.

3.2.2. Fitness function

The fitness function contains two components: the penalty function and objective function.

While the objective function focuses on optimizing lecturer’s satisfaction, the penalty function deals

with constraints. We separate constraints into 2 groups, group 1𝑠𝑡 includes constraint (H4) handled

by penalty function and group 2𝑛𝑑 includes the remaining constraints (H1),(H2),(H3) handled by

repair mechanism described in section 3.2.4. So, we have the fitness function:

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2020

 7 of 13

𝑓 = 𝑤𝑝𝑒𝑛 ∗ 𝑝𝑒𝑛 + 𝑤𝑜𝑏𝑗 ∗ 𝑜𝑏𝑗

Where 𝑝𝑒𝑛, 𝑜𝑏𝑗, 𝑤𝑝𝑒𝑛 , 𝑤𝑜𝑏𝑗 denote penalty function, objective function, penalty function weight and

objective function weight respectively. We normalize the penalty function, objective function and

weights to 0-1 range. So we have the constraints: 0 ≤ 𝑤𝑝𝑒𝑛 , 𝑤𝑜𝑏𝑗 ≤ 1 and 𝑤𝑝𝑒𝑛 +𝑤𝑜𝑏𝑗 = 1. Let 𝑉 be

the number of lecturer violate constraint (𝐻4), the penalty function is normalized as follow:

𝑝𝑒𝑛 =
1

1 + 𝑉

The objective function defined for Compromise Programming as:

1 −
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒([𝐸1, 𝐸2, … , 𝐸𝐺], [𝐹1, 𝐹2, … , 𝐹𝐺])

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒([𝐸1, 𝐸2, … , 𝐸𝐺], [𝑄1, 𝑄2, … , 𝑄𝐺])
= 1 − √

∑ ∑ (𝐸𝑖,𝑗 − 𝐹𝑖,𝑗)
2𝑇+1

𝑗=1
𝐺
𝑖=1

∑ ∑ (𝐸𝑖,𝑗 − 𝑄𝑖,𝑗)
2𝑇+1

𝑗=1
𝐺
𝑖=1

With 𝑄 is the matrix of the worse possible solution. 𝑄 ∈ ℝ𝐺×(𝑇+1) = {𝑄1, 𝑄2, … , 𝑄𝐺} where 𝑄𝑔 =

{𝑄𝑔,1, 𝑄𝑔,2, … , 𝑄𝑔,𝑇 , 𝑄𝑔,𝑇+1, 𝑄𝑔,𝑇+2} is the vector of the worse timetable for lecturer 𝑔𝑡ℎ, such that:

𝑄𝑔,𝑗 =

{

 {
0 𝑖𝑓 max

𝑠𝑠=1..𝑆𝑆∣𝑡𝑚𝑠𝑠=𝑗
(𝑎𝑠𝑏𝑠𝑠,𝑔 ∗ 𝑏𝑗,𝑔) ∗ 2 > max_𝑟𝑎𝑡𝑖𝑛𝑔

max_𝑟𝑎𝑡𝑖𝑛𝑔 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
𝑖𝑓 𝑗 ≤ 𝑇

{
0 𝑖𝑓 𝐷𝑔 ∗ 2 > 𝑇

𝑇2 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 𝑖𝑓 𝑗 = 𝑇 + 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

3.2.3. Algorithm Operations

Denote:

 𝑈 represents the size of the population.

 𝑃𝑒 = {𝑝𝑖
𝑒| 𝑖 = 1. . 𝑈} as the population at generation 𝑒𝑡ℎ.

 𝑝𝑖
𝑒 as the individual ith of the population at generation 𝑒𝑡ℎ, represented as chromosome

matrix described in section 3.2.1. 𝑝𝑖
𝑒
𝑛,𝑚

 denote the value of the cell at row 𝑛𝑡ℎ and

column 𝑚𝑡ℎ.

 𝜕𝑡 as the set of sections that learn at time-slot 𝑡𝑡ℎ.

 𝜑 as the tournament size for selection.

 Β as the mutation rate

1. Generate the initial population: Columns 𝑘𝑡ℎ of an individual 𝑝𝑖
𝑒 contain 𝜕𝑘 and exactly

𝐺 − |𝜕𝑘| number 0. So, for each column 𝑘 ∣ 𝑘 = 1…𝑇 , fill 𝜕𝑘 and 𝐺 − |𝜕𝑘| number 0 to

that column, and shuffle its element to ensure the randomness of the initialized population.

After filling all column to chromosome matrix, apply repair operator to ensure the created

chromosome respects constraints (𝐻1), (𝐻2), and (𝐻3).

2. Selection: we implemented the selection process based on Tournament Selection [32].

randomly select 𝜑 individuals from 𝑃𝑒 and perform a tournament that return the best

individuals base on fitness value amongst them.

3. Crossover: Denote 𝑝𝑓𝑎𝑡ℎ𝑒𝑟
𝑒 and 𝑝𝑚𝑜𝑡ℎ𝑒𝑟

𝑒 are parents to crossover. The set of numbers in each

column of 𝑝𝑓𝑎𝑡ℎ𝑒𝑟
𝑒 and 𝑝𝑚𝑜𝑡ℎ𝑒𝑟

𝑒 is permutation of each other, so we can choose any Ordered

Crossover method to apply. Partially-mapped crossover (PMX) [33] is one of the most

effective crossover technique for ordered list, so it is chosen in this study.

4. Mutation: For each individual 𝑝𝑖
𝑒, have rate 𝐵 to swap only once for any 2 elements in any

column. Similar to generating initial population process, the created chromosome after

performing crossover and mutation must be applied repair operator to ensure there are no

invalid results during the processing.

3.2.4. Repair Process

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2020

 8 of 13

Input a chromosome matrix 𝑝 which may violate constraints (𝐻1), (𝐻2) and (𝐻3) , genetic

repair operator rearrange elements in 𝑝 so that new chromosome 𝑝′ satisfy all these constraints.

Moreover, 𝑝′ should retain as many 𝑝’s genes as possible.

The purpose we combine constraints (𝐻1), (𝐻2), (𝐻3) into one group is because it’s very easy

to convert them into the maximum matching problem in bipartite graph. In this study, we use

Hopcroft-Karp algorithm [34], a polynomial algorithm to find the maximum matching.

The repair process is performed in 3 steps as follows:

1. Build a graph 𝒢 = (𝒱, ℰ), with vertex set 𝒱 = 𝒳 ∪ 𝒴, 𝒳 represents vertex set of 𝐺 × 𝑇

items for each lecturer in each timeslot, 𝒴 represents vertex set of 𝐻 items represent for

sections. For each vertex ℊ𝓉 ∈ 𝒳 (ℊ𝓉 is the vertex represents for lecturer ℊ𝑡ℎ at timeslot

𝑡𝑡ℎ), ℎ ∈ 𝒴 (ℎ is the vertex represents for section ℎ𝑡ℎ), we add an edge from ℊ𝓉 to ℎ if

and only if 𝑡 = 𝑡ℎ, 𝑎𝑠ℎ,𝑔 > 0 and 𝑏𝑡,𝑔 > 0.

2. For each lecturer 𝑔 ∣ 𝑔 = 1…𝐺 at each timeslot 𝑡 ∣ 𝑡 = 1…𝑇, pair the vertex 𝑢 ∈ 𝒳 (u is the

vertex represents for lecturer 𝑔𝑡ℎ at timeslot 𝑡𝑡ℎ) to vertex 𝑣 ∈ 𝒴 (𝑣 is the vertex represents

for section 𝑝𝑔,𝑡
 𝑡ℎ) if 𝑝𝑔,𝑡 > 0 and the pairing does not violate any constraints in

(𝐻1), (𝐻2), (𝐻3). This step aim to retain the good genes from 𝑝.

3. Apply the Hopcroft-Karp algorithm [34] to graph 𝒢 built in step 1 with pre matching in

step 2, we get the final matching which represents for repaired chromosome 𝑝′.

4. Experiment and Result

To evaluate the proposed model and algorithm, we use the data obtained in the spring semester

of 2020 of the Computing Fundamental department at FPT University. A total of H = 139 sections of

S=17 subjects were assigned to G=27 lecturers. We built a webpage to collect lecturer preferences of

the subjects, time-slots, and the number of time-slots they want to teach, as shown in figure 3. The

preferences received the values in the range of 𝑎𝑠,𝑔 ∈ [0…5] and 𝑏𝑡,𝑔 ∈ [0…5]. All experiments

mentioned in this report use a computer configured as follows: Processor: Intel(R) Xeon(R) CPU

X5650 @2.67GHz (4 CPUs), ~2.3GHz; Memory: 8096MB RAM; all code implemented in java 8.

The 𝑝𝑜𝑑 function is implemented as:

Function: 𝑝𝑜𝑑

Input: {𝑥ℎ,𝑔| ℎ = 1. . 𝐻}

1: ℶ = 100

2: 𝑟=𝑁𝑢𝑚𝑃𝑜𝑑({𝑥ℎ,𝑔| ℎ = 1. . 𝐻})

3:
𝑛 = ∑𝑥ℎ,𝑔

𝐻

ℎ=1

4: If (1 ≤ 𝑛 ≤ 3) and (𝑟 = 1) Return ℶ

5: If (1 ≤ 𝑛 ≤ 3) and (𝑟 = 2) Return ℶ/5

6: If (1 ≤ 𝑛 ≤ 3) and (𝑟 ≥ 3) Return 0

7: If (4 ≤ 𝑛 ≤ 6) and (𝑟 = 2) Return ℶ

8: If (4 ≤ 𝑛 ≤ 6) and (𝑟 = 3) Return ℶ/5

9: If (4 ≤ 𝑛 ≤ 6) and (𝑟 = 4) Return 0

10: If (1 ≤ 𝑛 ≤ 3) and (𝑟 = 1) Return ℶ

11: If (7 ≤ 𝑛 ≤ 8) and (𝑟 = 3) Return ℶ

12: If (7 ≤ 𝑛 ≤ 8) and (𝑟 = 4) Return ℶ/2

13: If (9 ≤ 𝑛 ≤ 10) Return ℶ

The 𝑁𝑢𝑚𝑃𝑜𝑑 function defined as:

Function: 𝑁𝑢𝑚𝑃𝑜𝑑

Input: {𝑥ℎ,𝑔| ℎ = 1. . 𝐻}

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2020

 9 of 13

1: 𝑁𝑢𝑚 = 0

2: If (∑ 𝑥ℎ,𝑔𝑡ℎ∈{𝑀1,𝑀2,𝑀3}
≥ 1) Then 𝑁𝑢𝑚 = 𝑁𝑢𝑚 + 1

3: If (∑ 𝑥ℎ,𝑔𝑡ℎ∈{𝐸1,𝐸2,𝐸3}
≥ 1) Then 𝑁𝑢𝑚 = 𝑁𝑢𝑚 + 1

4: If (∑ 𝑥ℎ,𝑔𝑡ℎ∈{𝑀4,𝑀5}
≥ 1) Then 𝑁𝑢𝑚 = 𝑁𝑢𝑚 + 1

5: If (∑ 𝑥ℎ,𝑔𝑡ℎ∈{𝐸4,𝐸5}
≥ 1) Then 𝑁𝑢𝑚 = 𝑁𝑢𝑚 + 1

6: Return 𝑁𝑢𝑚

Figure 3: webpage to collect the preferences of a particular lecturer on the subjects and time-slots

Genetic algorithms operate based on several parameters. They have a significant influence on

the results of the algorithm. In this section, we describe how the values of this parameter are selected.

To select the most suitable parameters for the genetic algorithm, we execute the algorithm multiple

times. Observed effects on the corresponding MOP approaches are listed in Table 2.

Table 2: The observation result of the algorithm for each set of parameters.

Param Value Observation Results

mutation 0.9 - 1 Stable results, processing time increased slightly

0.5 - 0.8 Stable results, processing time increased

0 - 0.5 Stable results, stable time execution

tournament size 2 Results decreased slightly, stable time execution

3 Stable results, processing time increased

5 Stable results, stable time execution

7 Stable results, processing time decreased

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2020

 10 of 13

9 Stable results, processing time decreased

population size 100-150 Stable results, processing time increased

151-200 Stable results decreased, processing time increased

The change of mutation rate value does not affect the convergence result and processing time of

the algorithm for both approaches. The tested ranges of the values of the parameters show good

results. The small tournament size makes the crossover lose diversity. It negatively affects the

algorithm results as well as the time of convergence. The tournament size = 7 seems to generate good

results for the scalarizing approach, and tournament size > 9 increases processing time even though

it maintains good fitness value. Population size > 100 gets worse for both fitness values and

processing time. Based on the observed results, we selected the parameter set to run the algorithm

according to Table 3.

Table 3: Parameters to run the algorithm corresponding to approaches

Parameter 𝐵 𝑈 𝜑 Stop after 𝑤𝑜𝑏𝑗 𝑤𝑝𝑒𝑛

Value 0.4 100 7 30 0.3 0.7

To evaluate the proposed algorithm. We have run the algorithm multiple times with the same

initial value. Figures 4 shows the fitness values over 13 executions. It shows that the result is nearing

expected values (approximately 1) on tested data. The average time execution is around 33 seconds,

as shown in figure 5. The fitness values’ change during each generation of the Genetic Algorithm is

shown in figure 6. After about the first 20 generations, the fitness value has come very close to the

convergence value.

Figure 4: Fitness values of GA over several

executions.

Figure 5: Execution time of GA over several

executions.

The proposed model allows faculty preferences for both professional and time needs. It considers

more aspects of stakeholders' needs than the simple ‘sum of favorites on the particular wish of

lecturers’ model introduced by previous research [17] [21]. We use a non-preference approach for the

multi-objective problem. Compromise programming gives a satisfactory answer in cases where there

is not any priority assigned. The lecturer's satisfaction level was obtained by executing GA for

compromise programming, as shown in figure 7. It observed that teachers who are registered to teach

many subjects could teach in many different time frames and naturally prioritize various topics.

Meanwhile, with the current scoring of the target function: 100% ~ 5 stars of subjects * 5 stars of time

slots, which leads to those who can teach few items, or more constrained about time constraints may

receive a less-satisfied schedule.

0.95

0.955

0.96

0.965

0.97

0.975

0.98

0.985

1 2 3 4 5 6 7 8 9 10 11 12 13

F
it

n
es

s
v

al
u

es

#Executions

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13

E
xe

cu
ti

o
n

 t
im

e
(s

)

#Executions

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2020

 11 of 13

Figure 6: Fitness values changing over generations

Figure 7: Satisfaction degrees of different lecturers

The Genetic Algorithm (and also other approximation algorithms) does not guarantee to find the

global solution. The obtained solutions may be local optima. Decision-maker may have their

customization on the provided schedule in this situation. To support them, modify the plan quickly,

we design a web page to help drag and drop, as shown in Figure 8. The decision-maker can choose

any course and assign it to another instructor by dropping the item in the corresponding line. The

information systems part plays a vital role in compensating for the shortcomings of the proposed

algorithm.

Figure 8: The webpage allows the decision-maker to customize the generated schedule.

5. Conclusion

In this study, we have proposed a multi-objective optimization model for the assignment task.

The proposed model satisfies the lecturers' preferences regarding skills, time, and the number of jobs

while ensuring related constraints. Our model applied to the FPT University lecturers scheduling

problem and defined a generic solution for multi-objective task assignment problems. We use

Compromise Programming to turn the multi-objective problem into a single-objective problem.

Although the preferred approach, users can set different values for each weight of the target function.

It is flexible, but in a multi-dimensional space, the visualization of the results corresponding to a

parameter set is difficult. It leads to decision-makers to explore parameter sets in an ample search

space. On the other hand, a compromise model is a single-shot solution for decision-makers. It avoids

them having to define preference information for the objectives. The model itself has found a way to

the best. However, the low use of parameters reduces the ability to interact with the model of a

0.55

0.65

0.75

0.85

0.95
F

it
n

es
s

v
al

u
e

#Generations

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27

S
at

is
fa

ct
io

n
 D

eg
re

e

Lecturers

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2020

 12 of 13

decision-maker. The proposed scheme for genetic algorithm shows that it works effectively; the

repair step has removed all binding violation solutions without affecting crossovers' diversity.

Shortly, we are looking to build an integrated model with lecturers and students' scheduling

simultaneously. Refining the parameters of the algorithm is also a job in our plan.

Funding: This research was funded by FPT University, grant number DHFPT/2020/12. The APC was funded by

FPT University.

References

1. Andrade, P. R. L., Steiner, M. T. A., & Góes, A. R. T. (2019). Optimization in timetabling in schools

using a mathematical model, local search and Iterated Local Search procedures. Gestão & Produção,

26(4), e3421. https://doi.org/10.1590/0104-530X3241-19.

2. Lemos, A., Melo, F. S., Monteiro, P. T., & Lynce, I. (2018). Room usage optimization in timetabling: A

case study at Universidade de Lisboa. Operations Research Perspectives, 100092. doi:

10.1016/j.orp.2018.100092.

3. Ghiani, G., Manni, E., & Romano, A. (2017). Training offer selection and course timetabling for

remedial education. Computers & Industrial Engineering, 111, 282–288. doi: 10.1016/j.cie.2017.07.034.

4. Vermuyten H, Lemmens S, Marques I, Beliën J. Developing compact course timetables with optimized

student flows. Eur J Oper Res 2016;251(2):651–61. https://doi.org/10.1016/j.ejor.2015.11.028.

5. Babaei, H., Karimpour, J., & Hadidi, A. (2015). A survey of approaches for university course

timetabling problem. Computers & Industrial Engineering, 86, 43–59. doi: 10.1016/j.cie.2014.11.010.

6. D. W. Pentico, “Assignment problems: A golden anniversary survey, “European Journal of

Operational Research, vol. 176, no. 2, pp. 774–793, January 2007.

7. Daskalaki S., Birbas T., and Housos E. (2004) An integer programming formulation for a case study in

university timetabling. European Journal of Operational Research, vol. 153, issue 1, pp. 117-135.

8. Yang, S., & Jat, S. N. (2011). Genetic algorithms with guided and local search strategies for university

course timetabling. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on, 41 , 93–106.

9. Hmer, A., & Mouhoub, M. (2010). Teaching Assignment Problem Solver. Lecture Notes in Computer

Science, 298–307. doi:10.1007/978-3-642-13025-0_32.

10. H. W. Kuhn, “The Hungarian method for the assignment problem,” Naval Research Logistics

Quarterly, vol. 2, pp. 83–97, 1955.

11. M. L. Fisher, R. Jaikumar, and L. N. V. Wassenhove, “A multiplier adjustment method for the

generalized assignment problem,” Management Science, vol. 32, no. 9, pp. 1095–1103, September 1986.

12. Lewis R. (2007) A survey of metaheuristic-based techniques for University Timetabling problems. OR

Spectrum, vol. 30, issue 1, pp. 167-190.

13. Muthuraman, S., & Venkatesan, V. P. (2017). A Comprehensive Study on Hybrid Meta-Heuristic

Approaches Used for Solving Combinatorial Optimization Problems. 2017 World.

14. B. Sigl, M. Golub and V. Mornar, "Solving timetable scheduling problem using genetic algorithms,"

Proceedings of the 25th International Conference on Information Technology Interfaces, 2003. ITI

2003., Cavtat, Croatia, 2003, pp. 519-524.

15. A. Savić, D. Tošić, M. Marić, and J. Kratica, “Genetic algorithm approach for solving the task

assignment problem,” Serdica Journal of Computing, vol. 2, pp. 267–276, 2008.

16. V. Sapru, K. Reddy and B. Sivaselvan, "Time table scheduling using Genetic Algorithms employing

guided mutation," 2010 IEEE International Conference on Computational Intelligence and Computing

Research, Coimbatore, 2010, pp. 1-4.

17. Feng, X., Lee, Y., & Moon, I. (2016). An integer program and a hybrid genetic algorithm for the

university timetabling problem. Optimization Methods and Software, (pp. 1–25).

doi:10.1080/10556788.2016.1233970.

18. Corne D, Ross P, Fang H (1995) Evolving timetables. In: Lance C. Chambers (ed) The practical

handbook of genetic algorithms, vol 1. CRC, Florida, pp 219–276.

19. Nouri, H. E., & Driss, O. B. (2016). MATP: A Multi-agent Model for the University Timetabling

Problem. Software Engineering Perspectives and Application in Intelligent Systems, 11–22.

doi:10.1007/978-3-319-33622-0_2.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2020

 13 of 13

20. Nouri, H. E., & Driss, O. B. (2013). Distributed model for university course timetabling problem. 2013

International Conference on Computer Applications Technology (ICCAT).

doi:10.1109/iccat.2013.6521990.

21. Malik, B. B., & Nordin, S. Z. (2018). Mathematical model for timetabling problem in maximizing the

preference level. doi:10.1063/1.5041568.

22. Santos HG, Uchoa E, Ochi LS, Maculan N. Strong bounds with cut and column generation for class-

teacher timetabling. Ann Oper Res 2012;194(1):399–412. https://doi.org/10. 1007/s10479-010-0709-y.

23. Dorneles Á P, de Araújo OCB, Buriol LS. A fix-and-optimize heuristic for the high school timetabling

problem. Comput Oper Res 2014;52:29–38. https://doi.org/10.1016/j.cor.2014.06.023.

24. David A. Van Veldhuizen , Gary B. Lamont, “Multiobjective Evolutionary Algorithms: Analyzing the

State-of-the-Art” (2000), DOI: 10.1162/106365600568158.

25. Ching-Lai Hwang; Abu Syed Md Masud (1979). Multiple objective decision making, methods and

applications: a state-of-the-art survey. Springer-Verlag. ISBN 978-0-387-09111-2.

26. Zeleny, M. (1973), "Compromise Programming", in Cochrane, J.L.; Zeleny, M. (eds.), Multiple Criteria

Decision Making, University of South Carolina Press, Columbia, pp. 262–301.

27. Ngo Tung Son, Le Van Thanh, Tran Binh Duong, and Bui Ngoc Anh. 2018. A decision support tool for

cross-functional team selection: case study in ACM-ICPC team selection. In Proceedings of the 2018

International Conference on Information Management & Management Science (IMMS '18). ACM, New

York, NY, USA, 133-138. DOI: https://doi.org/10.1145/3277139.3277149.

28. Ngo Tung Son, Tran Thi Thuy, Bui Ngoc Anh, and Tran Van Dinh. 2019. DCA-Based Algorithm for

Cross-Functional Team Selection. In Proceedings of the 2019 8th International Conference on Software

and Computer Applications (ICSCA '19). ACM, New York, NY, USA, 125-129. DOI:

https://doi.org/10.1145/3316615.3316645.

29. Ngo, T.S.; Bui, N.A.; Tran, T.T.; Le, P.C.; Bui, D.C.; Nguyen, T.D.; Phan, L.D.; Kieu, Q.T.; Nguyen, B.S.;

Tran, S.N. Some Algorithms to Solve a Bi-Objectives Problem for Team Selection. Appl. Sci. 2020, 10,

2700.

30. S. M. Thede, “An Introduction to Genetic Algorithms,” Journal of Computing Sciences in Colleges, vol.

20, no. 1, pp. 1–1, 2004.

31. Miller, Brad; Goldberg, David (1995). "Genetic Algorithms, Tournament Selection, and the Effects of

Noise" (PDF). Complex Systems. 9: 193–212.

32. Otman, A., & Jaafar,A. (2011). A comparative study of adaptive crossover operators for genetic

algorithms to resolve the travelling salesman problem. International Journal of Computer

Applications, 31(11), 49-57.

33. John E. Hopcroft and Richard M. Karp. An 𝑛5/2 algorithm for maximum matchings in bipartite

graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 31 August 2020

https://doi.org/10.1145/3316615.3316645

