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Abstract: The problem of scheduling is an area that has attracted a lot of attention from researchers 

for many years. Its goal is to optimize resources in the system. The assigning task to the lecturer is 

an example of the timetabling problem, a class of scheduling. This study introduces a mathematical 

model to assign fixed tasks (the time and required skills to be fixed) to university lecturers. Our 

model is capable of generating a calendar that maximizes faculty expectations. The formulated 

problem is in the form of a multi-objective problem that optimal makes decisions require the trade-

off presence of trade-offs between two or more conflicting objectives. To solve this, we use the 

Compromise Programming approach to multi-objective programming. We then proposed the new 

version of the Genetic Algorithm to solve the introduced model. Finally, the model and algorithm 

tested with real scheduling data collected at the Computing Fundamental Department, FPT 

University, Hanoi, Vietnam. 

Keywords: Timetabling, Task Assignment, MOP, Combinatory Optimization, Compromise 

Programming, Genetic Algorithm. 

 

1. Introduction 

1.1. Background 

The need to optimize types of resources is as much a requirement in training organizations as in 

any other kind of institution. The university timetabling problem's goal is to find a method to allocate 

the predefined resources that minimize the cost where all constraints within the problem must be 

satisfied. The resources here consist of classes meant to be a group of students with the same schedule, 

a subject that requires one or more specific skills and knowledge, time slots that determine when a 

particular class and subject attached. The university usually performs a scheduling task before a 

semester begins [1, 2, 3, 4, 5]. The scheduling / timetabling problem comes in many forms. Each of 

them requires a different strategic approach. 

This research was conducted on a practical case study at FPT University in Vietnam. Currently, 

the university's scheduling process is a manual process. In our situation, the student can register for 

their studies very soon before the department head has enough resources to determine the final 

schedule (of course, some classes could be canceled due to lack of resources later). The training 

department creates groups of students who would like to study the same subject based on the 

registrations and select the time slots. However, the department heads still need to assign their 

lecturer to teach these classes later. The reason for this is that we are student-centered, other resources 

revolve around students to support them. In short words, the lecturers' timetables considered last. 

The project aims to provide an automated task assignment tool to replace the manual process of 
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matching lecturers to their courses, as shown in Figure 1. The problem becomes an instance of the 

teaching assignment problem [6].   
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Figure 1: The teacher assignment problem. 

The input data for the decision-making stage described as Every course/class established for a 

particular subject and took place in 30-time slots (equivalent to 45 hours of study, 1-time slots equals 

1.5 hours). A student can join a maximum of ten classes, but only one class per time-slot. The duration 

of a semester is ten weeks. Every class has three slots of the same subject per week and must not occur 

for two consecutive days, giving the student time to prepare for the next sections. Each semester the 

university opens about 1000 classes. Lecturers can teach a maximum of 6 slots per day. Table 1 

illustrates ten available time-slots for a teacher/student for every week in the semester. The system 

assigns these courses to the lecturers based on their skills and expectations (more detail in section 2).    

Table 1: The details of 10-time slots defined at the FPT University for a week. 

            DoW 

Time-Slot 

Monday Tuesday Wednesday Thursday Friday Part of the day 

1 M1 M4 M1 M4 M1 Morning 

2 M2 M4 M2 M5 M2 

3 M3 M5 M3 M5 M3 

4 E1 E4 E1 E4 E1 After Noon 

5 E2 E4 E2 E5 E2 

6 E3 E5 E3 E5 E3 

1.2. Related Work 

There have been many studies on the problem of university scheduling. Many of them have used 

an integer programming (IP) model to formulate the problem. For example, Andrade et al. have built 

a Non-Linear Binary Integer Programming mathematical model to develop the school timetabling 

problem, which is used to assign teaching tasks to teachers at a defined time frame [1]. Gianpaolo et 

al. proposed an Integer Programming formulation of selecting the training offer and the related 

timetabling for high-school remedial courses subject to constraints on budget and business operations 

[3]. Daskalaki et al. presented a binary integer programming model of the university timetabling 

problem, which they try to minimize the linear cost function [7]. Feng et al. developed a mixed-integer 

linear program for the university timetabling problem. The original problem converted to the three-

dimensional container packing problem. They consider day, period, and room as the three 

dimensions of one container and the lectures as different sized items then assign them into the 

container [8].  

The task assignment problems exist in many different forms. While some of them like the classical 

problem have polynomial-time solutions [9], others are NP-hard combination optimization problems 

[10] that requires approximation approaches, especially metaheuristic [11]. In [12], Lewis classifies 

several metaheuristic-based techniques into three classes for University Timetabling problems in 
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their survey. Muthuraman and Venkatesan also conducted a survey of meta-heuristic algorithms for 

solving combinatorial optimization problems [13]. They reviewed several algorithms, such as ant 

colony optimization, evolutionary computation, particle swarm optimization, etc. Related to the 

scheduling problem, many researchers used genetic algorithms, an evolutionary algorithm to solve 

scheduling problems, and task assignment problems [14,15,16]. Genetic Algorithm generates high-

quality solutions to optimization and search problems. A particular researcher can have different 

designs of the Genetic Algorithm to solve specific problems. Feng et al. combine genetic algorithms 

and search strategies to create offspring in populations based on information collected from the best 

individuals of previous generations and with a local search that improves the efficacy of the proposed 

Genetic Algorithm [17]. Yang develops an efficient hybrid genetic algorithm based on algorithms for 

the converted problem [8]. This study introduces a multi-objective optimization problem that used 

binary integer decision variables, and a version of the Genetic Algorithm to solve the task assignment 

problem mentioned in section 1.1.    

1.3. Contribution 

In this study, we present an approach to construct a task assignment support system for the 

university. The work we perform is a stage in the automatic scheduling solution at FPT University 

and a new approach for the fixed-tasks assignment problem. The related researches to the scheduling 

may benefit from our study. Due to the fixed schedule that respects the business requirement, the 

considered events such as classes, time-slots, and subjects determined. Our mission is to arrange the 

available works for available human resources. We built a multi-objectives model that accesses each 

individual's level of interest assigned to the job, which still provides a binding compliance solution. 

Our proposed model covers more business requirements rather than previous works—the 

optimization model of the problem described in section 2.  

There are many ways to solve the proposed optimization model. We choose Compromising 

Programming to transform the multi-objective problem into a single-objective problem. Each MOP 

approach has its advantages and disadvantages and is suitable for different decision-maker groups, 

but Compromise Programming works extremely better if no preference is indicated. We have 

implemented a Genetic Algorithm that solves both optimal models of a target mentioned above—the 

detail of the implementation described in section 3. In the following sections of this paper, we present 

our experiments using the scheduling data of Computer Fundamentals at FPT University. A review 

of the algorithm is also discussed in section 4. The remaining are discussion and conclusion. 

2. Problem Formulation 

2.1. Multi-Objective Task Assignment Problem  

Many researchers have used the integer programming (IP) model to solve this problem, such as 

[1, 3]. In this research, we also define our timetable problem in the form of IP as follows:   

 Let 𝐺 is the number of lecturers.  

 Denote 𝑆 is the number of subjects. 

 𝑇 is the number of available time slots, in our case, 𝑇 = 10 as described in Table 1. 

 𝐻 is the number of section, a section represents a particular class studies a specific subject at 

a timeslot. 

 𝑐ℎ, 𝑠ℎ , 𝑡ℎ are class, subject and time slot of section ℎ𝑡ℎ respectively. 

 𝐷𝑔 is a number of classes that lecturer 𝑔𝑡ℎ prefer to teach. 

 𝑀𝑔 is a minimum number of classes that the lecturer 𝑔𝑡ℎ has to teach. 

 𝑎𝑠,𝑔 ≥ 0 as integer for every 𝑠 = 1…𝑆, 𝑔 = 1. . 𝐺 represent the rating of the lecturer 𝑔𝑡ℎ to 

teach subject 𝑠𝑡ℎ. The value 0 indicates that the lecturer does not want to teach the subject. 

Other values respectively mean “like a little” to “like very much”. 

 𝑏𝑡,𝑔 ≥ 0  as integer for every 𝑡 = 1…𝑇, 𝑔 = 1. . 𝐺  denote the rating of the lecturer 𝑔𝑡ℎ  to 

teach at time slot 𝑡𝑡ℎ. The value 0 indicates that the lecturer does not want to teach at the 

time slot. Other values respectively mean “like a little” to “like very much”. 
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 𝑥ℎ,𝑔  is the decision variable for every ℎ = 1…𝐻, 𝑔 = 1…𝐺 . 𝑥ℎ,𝑔 = 1 if the lecturer 𝑔𝑡ℎ  is 

assigned to section ℎ𝑡ℎ, 𝑥ℎ,𝑔 = 0  otherwise.     

In [18], Corne suggested some of timetabling constraints such as (1) Unary constraints, (2) Binary 

constraints, (3) Capacity constraints, (4) Event spread constraints, (5) Agent constraints. Based on 

those suggestions, we also define several constraints to the problem as follows: 

 All section must be assigned lecturer and at most one lecturer is assigned to a section. 

∑𝑥ℎ,𝑔

𝐺

𝑔=1

= 1      ∀𝑠𝑠 = 1…𝐻     (𝐻1) 

 A particular lecturer does not teach the subject that he/she does not have skill. 
𝑎𝑠ℎ,𝑔 ≥ 𝑥ℎ,𝑔     ∀ℎ = 1…𝐻, 𝑔 = 1…𝐺      (𝐻2) 

 A particular lecturer does not teach at the time-slot that he/she is not available. 
𝑏𝑡ℎ,𝑔 ≥ 𝑥ℎ,𝑔     ∀ℎ = 1…𝐻, 𝑔 = 1…𝐺       (𝐻3) 

 All lecturers have to satisfy the quota for the number of sections they have to teach. 

∑𝑥ℎ,𝑔

𝐻

ℎ=1

≥ 𝑀𝑔     ∀𝑔 = 1…𝐺      (𝐻4) 

In the past, several researchers proposed models focused on assignments for rooms and time 

slots to achieve workable schedules while optimizing the lecturer's interests. For example, Nouri and 

Driss [19, 20] use the multi-agent approach, where the agents represent teachers of different levels 

and seek to assign their lectures according to their interests. Higher-ranking teachers are given 

priority in meeting their interests. Malik et al. build a model for mapping the task to the lecturer that 

maximizes their preference on the time-slot [21]. There are many different views about the compact 

schedule. The goal is to avoid idle time on the teacher's plan and minimize working days [22,23]. In 

this research, we have defined some objectives functions that maximize the lecturer's preference level 

on time-slots, subjects, and the number of classes that the lecturer expects to teach. The objective 

functions described as follows: 

 Maximize the expectations of the lecturers on the subject they want to teach. 

max {∑𝑥ℎ,𝑔 ∗ 𝑎𝑠ℎ,𝑔

𝐻

ℎ=1

}     ∀𝑔 = 1…𝐺     (O1) 

 Maximize the expectations of the lecturers on the time slots they want to teach. 

max {∑𝑥ℎ,𝑔 ∗ 𝑏𝑡ℎ,𝑔

𝐻

ℎ=1

}     ∀𝑔 = 1…𝐺     (O2) 

 Minimize the errors on the number of classes that the lecturers want to teach. 

min {|∑𝑥ℎ,𝑔 − 𝐷𝑔

𝐻

ℎ=1

|}     ∀𝑔 = 1…𝐺     (03) 

 Minimize the number of parts of the day, which lecturers have to work (morning, afternoon 

every day). The lecturer would register three classes, even if he expressed his interest in all 

of the time-slots. It is better to assign him/her to work in the slot-times (E1, E2, E3) instead 

of (E1, E4, M1): 

max{𝑝𝑜𝑑({𝑥ℎ,𝑔| ℎ = 1. . 𝐻})}     ∀𝑔 = 1…𝐺     (𝑂4)) 

Where 𝑝𝑜𝑑 is a fuzzy logic membership function that returns the rating for the number of 

parts of the day, which lecturers have to work, the detailed implementation can be different 

in different situations. We show our implementation in the part of the experiment to suit the 

context of FPT University.   

The proposed model is in the form of a multi-objective programming problem (MOP) [24]. Since 

there are often many Pareto optimization solutions for MOP problems, solving such a problem is not 

as simple as a typical single goal optimization problem. In the following sections, we present an 

approach to transform the optimal problem into a more suitable form to find the optimal solution in 

the decision space. 

2.2. Compromise Programming for MOP 
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Our proposed scheduling problem becomes MOP. There are two main approaches to solving the 

MOP problem: preference method and non-preference method, as mentioned in Hwang's survey [25]. 

The most useful solution is found using different philosophies that depending on the subjective 

preferences of the decision-makers. In the decision-making process, decision-makers can place 

interest in each criterion according to his / her subjective preferences. Here, the decision-maker 

should be an expert in the domain. It is challenging to find the desired weights for different objectives. 

This section of this paper discusses the Compromise Programming approach that requires no pre-

defined decision-maker preferences.  

The problem of 4*g objective functions is complicated for decision-makers to define the weights 

corresponding to each lecturer. There are many proposed methods to solve multi-objective problems. 

Zeleny [26] introduced the ideal solution defined as the best-compromise solution that is the nearest 

to perfection. Ngo et al. [27, 28, 29] applied compromise programming to solve the problem of the 

binary objective in team selection, where they introduced the idea point E and try to find the solution 

that has minimum distance to E. When the decision-maker stands in the view of lecturers, they 

declare their preferences on subjects and time-slots. It is hard to find the solution to archive the best, 

but we can define the best schedule they expect. The only goal left is to find a solution that is closest 

to this predefined point. The question we may ask decision-maker and predictable answer for them 

is as follows:  

 How much faculty satisfaction on preferred time-slot and skill is good? Ideally, what they 

receive should be what they expect. 

The decision-maker mostly provides this pair of the above question and answer for the time-slot, 

skill, number of courses, and part of the days they have to work. The objective function now 

expressed as follow: 

 Denote 𝐸 ∈  ℝ𝐺×(𝑇+2) = {𝐸1, 𝐸2, … , 𝐸𝐺} is the matrix of idea timetable.  

Where 𝐸𝑔 = {𝐸𝑔,1, 𝐸𝑔,2, … , 𝐸𝑔,𝑇 , 𝐸𝑔,𝑇+1, 𝐸𝑔,𝑇+2} is the vector of expected timetable for lecturer 

𝑔𝑡ℎ, such that 

𝐸𝑔,𝑗 = {

max
ℎ=1..𝐻∣𝑡ℎ=𝑗 

(𝑎𝑠ℎ,𝑔 ∗ 𝑏𝑗,𝑔)      𝑖𝑓 𝑗 ≤ 𝑇           

𝑛𝑜𝑟𝑚(𝐷𝑔 )              𝑖𝑓 𝑗 = 𝑇 + 1         

ℶ                      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

 

Where 𝑛𝑜𝑟𝑚 denotes the normalization function, ℶ is max rating for the number of parts 

of the days that a lecturer has to work. 

 Let 𝐹  is the matrix of the solution. 𝐹 ∈  ℝ𝐺×(𝑇+2) = {𝐹1, 𝐹2, … , 𝐹𝐺}  where 𝐹𝑔 =

{𝐹𝑔,1, 𝐹𝑔,2, … , 𝐹𝑔,𝑇 , 𝐹𝑔,𝑇+1, 𝐹𝑔,𝑇+2} is the vector of final timetable for lecturer 𝑔𝑡ℎ, such that: 

𝐹𝑔,𝑗 =

{
 
 
 
 

 
 
 
 ∑ 𝑥ℎ,𝑔 ∗ 𝑎𝑠ℎ,𝑔 ∗ 𝑏𝑗,𝑔

𝐻

ℎ=1∣𝑡ℎ=𝑗

 𝑖𝑓 𝑗 ≤ 𝑇       

𝑛𝑜𝑟𝑚 (∑𝑥ℎ,𝑔

𝐻

ℎ=1

)  𝑖𝑓 𝑗 = 𝑇 + 1         

𝑝𝑜𝑑({𝑥ℎ,𝑔| ℎ = 1. . 𝐻}) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒      
      

 

The original multi-objective functions (O1), (O2), (O3) and (O4) rewritten in form of compromise 

problem (CP): 

min(𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒([𝐸1, 𝐸2, … , 𝐸𝐺], [𝐹1, 𝐹2, … , 𝐹𝐺])) = √∑∑(𝐸𝑖,𝑗 − 𝐹𝑖,𝑗)
2

𝑇+2

𝑗=1

𝐺

𝑖=1

 

3. Proposed Algorithm 

3.1. Introduction to Genetic Algorithm 
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The Genetic Algorithm [30] is a population-based metaheuristic method extensively used in 

scheduling problems. It searches a solution space for the optimal solution to a problem. This search 

is done in a fashion that mimics the operation of evolution. In essence, a “population” of possible 

solutions formed, and new solutions are created by “breeding” the best individual from the 

population’s members to build a new generation. When the algorithm converged after several 

generations, the best solution returned. Genetic algorithms are particularly useful for problems 

where it is extremely difficult or impossible to get an exact answer or severe problems where a correct 

solution may not be required. They offer an exciting alternative to the typical algorithmic solution 

methods and are highly customizable. This notion can apply to a search problem. We consider a set 

of solutions for a challenge and select the set of best ones out of them. There are five phases 

considered in a genetic algorithm. This study introduces a version of the Genetic Algorithm to solve 

the MOP model Compromise Programming approach with a new added phase called “repair” to 

correct the errors. The flow of the proposed scheme displays in Figure 2. 

Start

End

Generate the initial Population

Compute Fitness 

Is Converged

Selection

Crossover

Mutation

Repair

Compute Fitness 

Generate new 

Generation

Yes No

 

Figure 2: basic workflow of the proposed Genetic Algorithm’s Scheme 

3.2. Genetic Algorithm Scheme 

3.2.1. Genetic representation 

Chromosome is represented as a matrix of 𝐺  rows and 𝑇  columns, rows 𝑖𝑡ℎ  represent the 

section assignment for lecturer 𝑖𝑡ℎ. Cell (𝑔, 𝑡) contains section lecturer 𝑔𝑡ℎ assigned to at time-slot 

𝑡𝑡ℎ, or 0 if lecturer 𝑔𝑡ℎ is not assigned to any section at time-slot 𝑡𝑡ℎ.  

3.2.2. Fitness function 

The fitness function contains two components: the penalty function and objective function. 

While the objective function focuses on optimizing lecturer’s satisfaction, the penalty function deals 

with constraints. We separate constraints into 2 groups, group 1𝑠𝑡 includes constraint (H4) handled 

by penalty function and group 2𝑛𝑑 includes the remaining constraints (H1),(H2),(H3) handled by 

repair mechanism described in section 3.2.4. So, we have the fitness function: 
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𝑓 = 𝑤𝑝𝑒𝑛 ∗ 𝑝𝑒𝑛 + 𝑤𝑜𝑏𝑗 ∗ 𝑜𝑏𝑗 

Where 𝑝𝑒𝑛, 𝑜𝑏𝑗, 𝑤𝑝𝑒𝑛 , 𝑤𝑜𝑏𝑗  denote penalty function, objective function, penalty function weight and 

objective function weight respectively. We normalize the penalty function, objective function and 

weights to 0-1 range. So we have the constraints: 0 ≤ 𝑤𝑝𝑒𝑛 , 𝑤𝑜𝑏𝑗 ≤ 1 and 𝑤𝑝𝑒𝑛 +𝑤𝑜𝑏𝑗 = 1. Let 𝑉 be 

the number of lecturer violate constraint (𝐻4), the penalty function is normalized as follow: 

𝑝𝑒𝑛 =
1

1 + 𝑉
 

The objective function defined for Compromise Programming as:  

1 − 
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒([𝐸1, 𝐸2, … , 𝐸𝐺], [𝐹1, 𝐹2, … , 𝐹𝐺])

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒([𝐸1, 𝐸2, … , 𝐸𝐺], [𝑄1, 𝑄2, … , 𝑄𝐺])
= 1 − √

∑ ∑ (𝐸𝑖,𝑗 − 𝐹𝑖,𝑗)
2𝑇+1

𝑗=1
𝐺
𝑖=1

∑ ∑ (𝐸𝑖,𝑗 − 𝑄𝑖,𝑗)
2𝑇+1

𝑗=1
𝐺
𝑖=1

 

With 𝑄  is the matrix of the worse possible solution. 𝑄 ∈  ℝ𝐺×(𝑇+1) = {𝑄1, 𝑄2, … , 𝑄𝐺} where 𝑄𝑔 =

{𝑄𝑔,1, 𝑄𝑔,2, … , 𝑄𝑔,𝑇 , 𝑄𝑔,𝑇+1, 𝑄𝑔,𝑇+2} is the vector of the worse timetable for lecturer 𝑔𝑡ℎ, such that: 

𝑄𝑔,𝑗 =

{
 
 

 
 {
0 𝑖𝑓 max

𝑠𝑠=1..𝑆𝑆∣𝑡𝑚𝑠𝑠=𝑗 
(𝑎𝑠𝑏𝑠𝑠,𝑔 ∗ 𝑏𝑗,𝑔) ∗ 2 > max_𝑟𝑎𝑡𝑖𝑛𝑔 

max_𝑟𝑎𝑡𝑖𝑛𝑔 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         
𝑖𝑓 𝑗 ≤ 𝑇

{
0 𝑖𝑓 𝐷𝑔 ∗ 2 > 𝑇  

𝑇2 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
                  𝑖𝑓 𝑗 = 𝑇 + 1        

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                            

 

3.2.3. Algorithm Operations 

Denote: 

 𝑈 represents the size of the population. 

 𝑃𝑒 = {𝑝𝑖
𝑒| 𝑖 = 1. . 𝑈} as the population at generation 𝑒𝑡ℎ. 

 𝑝𝑖
𝑒 as the individual ith of the population at generation 𝑒𝑡ℎ, represented as chromosome 

matrix described in section 3.2.1. 𝑝𝑖
𝑒
𝑛,𝑚

 denote the value of the cell at row 𝑛𝑡ℎ  and 

column 𝑚𝑡ℎ. 

 𝜕𝑡 as the set of sections that learn at time-slot 𝑡𝑡ℎ.  

 𝜑 as the tournament size for selection. 

 Β as the mutation rate 

1. Generate the initial population: Columns 𝑘𝑡ℎ of an individual 𝑝𝑖
𝑒  contain 𝜕𝑘  and exactly 

𝐺 − |𝜕𝑘| number 0. So, for each column 𝑘 ∣ 𝑘 = 1…𝑇 , fill 𝜕𝑘  and 𝐺 − |𝜕𝑘| number 0 to 

that column, and shuffle its element to ensure the randomness of the initialized population. 

After filling all column to chromosome matrix, apply repair operator to ensure the created 

chromosome respects constraints (𝐻1), (𝐻2), and (𝐻3). 

2. Selection: we implemented the selection process based on Tournament Selection [32]. 

randomly select 𝜑  individuals from 𝑃𝑒  and perform a tournament that return the best 

individuals base on fitness value amongst them. 

3. Crossover: Denote 𝑝𝑓𝑎𝑡ℎ𝑒𝑟
𝑒  and 𝑝𝑚𝑜𝑡ℎ𝑒𝑟

𝑒  are parents to crossover. The set of numbers in each 

column of 𝑝𝑓𝑎𝑡ℎ𝑒𝑟
𝑒  and 𝑝𝑚𝑜𝑡ℎ𝑒𝑟

𝑒  is permutation of each other, so we can choose any Ordered 

Crossover method to apply. Partially-mapped crossover (PMX) [33] is one of the most 

effective crossover technique for ordered list, so it is chosen in this study. 

4. Mutation: For each individual 𝑝𝑖
𝑒, have rate 𝐵 to swap only once for any 2 elements in any 

column. Similar to generating initial population process, the created chromosome after 

performing crossover and mutation must be applied repair operator to ensure there are no 

invalid results during the processing. 

3.2.4. Repair Process 
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Input a chromosome matrix 𝑝  which may violate constraints (𝐻1), (𝐻2)  and (𝐻3) , genetic 

repair operator rearrange elements in 𝑝 so that new chromosome 𝑝′ satisfy all these constraints. 

Moreover, 𝑝′ should retain as many 𝑝’s genes as possible. 

The purpose we combine constraints (𝐻1), (𝐻2), (𝐻3) into one group is because it’s very easy 

to convert them into the maximum matching problem in bipartite graph. In this study, we use 

Hopcroft-Karp algorithm [34], a polynomial algorithm to find the maximum matching. 

The repair process is performed in 3 steps as follows: 

1. Build a graph 𝒢 = (𝒱, ℰ), with vertex set 𝒱 = 𝒳 ∪ 𝒴, 𝒳 represents vertex set of 𝐺 × 𝑇 

items for each lecturer in each timeslot, 𝒴 represents vertex set of 𝐻 items represent for 

sections. For each vertex ℊ𝓉 ∈ 𝒳 (ℊ𝓉 is the vertex represents for lecturer ℊ𝑡ℎ at timeslot 

𝑡𝑡ℎ), ℎ ∈ 𝒴 (ℎ is the vertex represents for section ℎ𝑡ℎ), we add an edge from ℊ𝓉 to ℎ if 

and only if 𝑡 = 𝑡ℎ, 𝑎𝑠ℎ,𝑔 > 0 and 𝑏𝑡,𝑔 > 0. 

2. For each lecturer 𝑔 ∣ 𝑔 = 1…𝐺 at each timeslot 𝑡 ∣ 𝑡 = 1…𝑇, pair the vertex 𝑢 ∈ 𝒳 (u is the 

vertex represents for lecturer 𝑔𝑡ℎ at timeslot 𝑡𝑡ℎ) to vertex 𝑣 ∈ 𝒴 (𝑣 is the vertex represents 

for section 𝑝𝑔,𝑡
   𝑡ℎ ) if 𝑝𝑔,𝑡 > 0  and the pairing does not violate any constraints in 

(𝐻1), (𝐻2), (𝐻3). This step aim to retain the good genes from 𝑝. 

3. Apply the Hopcroft-Karp algorithm [34] to graph 𝒢 built in step 1 with pre matching in 

step 2, we get the final matching which represents for repaired chromosome 𝑝′. 

4. Experiment and Result 

To evaluate the proposed model and algorithm, we use the data obtained in the spring semester 

of 2020 of the Computing Fundamental department at FPT University. A total of H = 139 sections of 

S=17 subjects were assigned to G=27 lecturers. We built a webpage to collect lecturer preferences of 

the subjects, time-slots, and the number of time-slots they want to teach, as shown in figure 3. The 

preferences received the values in the range of 𝑎𝑠,𝑔 ∈ [0…5] and 𝑏𝑡,𝑔 ∈ [0…5]. All experiments 

mentioned in this report use a computer configured as follows: Processor: Intel(R) Xeon(R) CPU 

X5650 @2.67GHz (4 CPUs), ~2.3GHz; Memory: 8096MB RAM; all code implemented in java 8.  

The 𝑝𝑜𝑑 function is implemented as: 

Function: 𝑝𝑜𝑑 

Input: {𝑥ℎ,𝑔| ℎ = 1. . 𝐻}  

1: ℶ = 100 

2: 𝑟=𝑁𝑢𝑚𝑃𝑜𝑑({𝑥ℎ,𝑔| ℎ = 1. . 𝐻}) 

3: 
𝑛 = ∑𝑥ℎ,𝑔

𝐻

ℎ=1

 

4: If (1 ≤ 𝑛 ≤ 3) and (𝑟 = 1) Return  ℶ 

5: If (1 ≤ 𝑛 ≤ 3) and (𝑟 = 2) Return  ℶ/5 

6: If (1 ≤ 𝑛 ≤ 3) and (𝑟 ≥ 3) Return  0 

7: If (4 ≤ 𝑛 ≤ 6) and (𝑟 = 2) Return  ℶ 

8: If (4 ≤ 𝑛 ≤ 6) and (𝑟 = 3) Return  ℶ/5 

9: If (4 ≤ 𝑛 ≤ 6) and (𝑟 = 4) Return  0 

10: If (1 ≤ 𝑛 ≤ 3) and (𝑟 = 1) Return  ℶ 

11: If (7 ≤ 𝑛 ≤ 8) and (𝑟 = 3) Return  ℶ 

12: If (7 ≤ 𝑛 ≤ 8) and (𝑟 = 4) Return  ℶ/2 

13: If (9 ≤ 𝑛 ≤ 10) Return ℶ 

The 𝑁𝑢𝑚𝑃𝑜𝑑 function defined as: 

Function: 𝑁𝑢𝑚𝑃𝑜𝑑 

Input: {𝑥ℎ,𝑔| ℎ = 1. . 𝐻}  
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1: 𝑁𝑢𝑚 =  0 

2: If (∑ 𝑥ℎ,𝑔𝑡ℎ∈{𝑀1,𝑀2,𝑀3}
≥ 1) Then 𝑁𝑢𝑚 =  𝑁𝑢𝑚 +  1 

3: If (∑ 𝑥ℎ,𝑔𝑡ℎ∈{𝐸1,𝐸2,𝐸3}
≥ 1) Then 𝑁𝑢𝑚 =  𝑁𝑢𝑚 +  1 

4: If (∑ 𝑥ℎ,𝑔𝑡ℎ∈{𝑀4,𝑀5}
≥ 1) Then 𝑁𝑢𝑚 =  𝑁𝑢𝑚 +  1 

5: If (∑ 𝑥ℎ,𝑔𝑡ℎ∈{𝐸4,𝐸5}
≥ 1) Then 𝑁𝑢𝑚 =  𝑁𝑢𝑚 +  1 

6: Return 𝑁𝑢𝑚 

 
Figure 3: webpage to collect the preferences of a particular lecturer on the subjects and time-slots 

Genetic algorithms operate based on several parameters. They have a significant influence on 

the results of the algorithm. In this section, we describe how the values of this parameter are selected. 

To select the most suitable parameters for the genetic algorithm, we execute the algorithm multiple 

times. Observed effects on the corresponding MOP approaches are listed in Table 2. 

Table 2: The observation result of the algorithm for each set of parameters. 

Param Value Observation Results 

mutation 0.9 - 1 Stable results, processing time increased slightly 

0.5 - 0.8 Stable results, processing time increased 

0 - 0.5 Stable results, stable time execution 

tournament size 2 Results decreased slightly, stable time execution 

3 Stable results, processing time increased 

5 Stable results, stable time execution 

7 Stable results, processing time decreased 
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9 Stable results, processing time decreased 

population size 100-150 Stable results, processing time increased 

151-200 Stable results decreased, processing time increased 

The change of mutation rate value does not affect the convergence result and processing time of 

the algorithm for both approaches. The tested ranges of the values of the parameters show good 

results. The small tournament size makes the crossover lose diversity. It negatively affects the 

algorithm results as well as the time of convergence. The tournament size = 7 seems to generate good 

results for the scalarizing approach, and tournament size > 9 increases processing time even though 

it maintains good fitness value. Population size > 100 gets worse for both fitness values and 

processing time. Based on the observed results, we selected the parameter set to run the algorithm 

according to Table 3. 

Table 3: Parameters to run the algorithm corresponding to approaches 

Parameter 𝐵 𝑈 𝜑 Stop after 𝑤𝑜𝑏𝑗  𝑤𝑝𝑒𝑛 

Value 0.4 100 7 30 0.3 0.7 

To evaluate the proposed algorithm. We have run the algorithm multiple times with the same 

initial value. Figures 4 shows the fitness values over 13 executions. It shows that the result is nearing 

expected values (approximately 1) on tested data. The average time execution is around 33 seconds, 

as shown in figure 5. The fitness values’ change during each generation of the Genetic Algorithm is 

shown in figure 6. After about the first 20 generations, the fitness value has come very close to the 

convergence value. 

 
Figure 4: Fitness values of GA over several 

executions. 

 
Figure 5: Execution time of GA over several 

executions. 

The proposed model allows faculty preferences for both professional and time needs. It considers 

more aspects of stakeholders' needs than the simple ‘sum of favorites on the particular wish of 

lecturers’ model introduced by previous research [17] [21]. We use a non-preference approach for the 

multi-objective problem. Compromise programming gives a satisfactory answer in cases where there 

is not any priority assigned. The lecturer's satisfaction level was obtained by executing GA for 

compromise programming, as shown in figure 7. It observed that teachers who are registered to teach 

many subjects could teach in many different time frames and naturally prioritize various topics. 

Meanwhile, with the current scoring of the target function: 100% ~ 5 stars of subjects * 5 stars of time 

slots, which leads to those who can teach few items, or more constrained about time constraints may 

receive a less-satisfied schedule. 
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Figure 6: Fitness values changing over generations  

 
Figure 7: Satisfaction degrees of different lecturers 

The Genetic Algorithm (and also other approximation algorithms) does not guarantee to find the 

global solution. The obtained solutions may be local optima. Decision-maker may have their 

customization on the provided schedule in this situation. To support them, modify the plan quickly, 

we design a web page to help drag and drop, as shown in Figure 8. The decision-maker can choose 

any course and assign it to another instructor by dropping the item in the corresponding line. The 

information systems part plays a vital role in compensating for the shortcomings of the proposed 

algorithm. 

 

Figure 8: The webpage allows the decision-maker to customize the generated schedule. 

5. Conclusion 

In this study, we have proposed a multi-objective optimization model for the assignment task. 

The proposed model satisfies the lecturers' preferences regarding skills, time, and the number of jobs 

while ensuring related constraints. Our model applied to the FPT University lecturers scheduling 

problem and defined a generic solution for multi-objective task assignment problems. We use 

Compromise Programming to turn the multi-objective problem into a single-objective problem. 

Although the preferred approach, users can set different values for each weight of the target function. 

It is flexible, but in a multi-dimensional space, the visualization of the results corresponding to a 

parameter set is difficult. It leads to decision-makers to explore parameter sets in an ample search 

space. On the other hand, a compromise model is a single-shot solution for decision-makers. It avoids 

them having to define preference information for the objectives. The model itself has found a way to 

the best. However, the low use of parameters reduces the ability to interact with the model of a 

0.55

0.65

0.75

0.85

0.95
F

it
n

es
s 

v
al

u
e

#Generations

0

0.2

0.4

0.6

0.8

1

1 3 5 7 9 11 13 15 17 19 21 23 25 27

S
at

is
fa

ct
io

n
 D

eg
re

e

Lecturers

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 31 August 2020                   



 12 of 13 

decision-maker. The proposed scheme for genetic algorithm shows that it works effectively; the 

repair step has removed all binding violation solutions without affecting crossovers' diversity. 

Shortly, we are looking to build an integrated model with lecturers and students' scheduling 

simultaneously. Refining the parameters of the algorithm is also a job in our plan. 

Funding: This research was funded by FPT University, grant number DHFPT/2020/12. The APC was funded by 

FPT University. 
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