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Abstract

Often, when solving forward, inverse or data assimilation problems, only a part of
the solution is needed. As a model, we consider the stationary diffusion problem. We
demonstrate an algorithm that can compute only a part or a functional of the solu-
tion, without calculating the full inversion operator and the complete solution. It is a
well-known fact about partial differential equations that the solution at each discreti-
sation point depends on the solutions at all other discretisation points. Therefore, it
is impossible to compute the solution only at one point, without calculating the solu-
tion at all other points. The standard numerical methods like a conjugate gradient or
Gauss elimination compute the whole solution and/or the complete inverse operator.
We suggest a method which can compute the solution of the given partial differential
equation 1) at a point; 2) at few points; 3) on an interface; or a functional of the
solution, without computing the solution at all points. The required storage cost and
computational resources will be lower as in the standard approach.

With this new method, we can speed up, for instance, computation of the innovation
in filtering or the likelihood distribution, which measures the data misfit (mismatch).
Further, we can speed up the solution of the regression, Bayesian inversion, data as-
similation, and Kalman filter update problems.

Applying additionally the hierarchical matrix approximation, we reduce the cubic
computational cost to almost linear O(k*nlog?n), where k < n and n is the number
of degrees of freedom.

Up to the hierarchical matrix approximation error, the computed solution is exact.
One of the disadvantages of this method is the need to modify the existing deterministic
solver.

Keywords: mismatch, innovation, data misfit, likelihood, Bayesian inversion, Bayesian
formula, partial inverse, FEM, domain decomposition, hierarchical matrices, H-matrices,
elliptic problem, data-sparse H-matrix approximation, multiscale
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1 Introduction

We further develop the method, initially introduced in [31, 22, 7, 32] and in Chapter 12
of [21]. With this method, we will be able to compute the solution in a subdomain, in
a point, the mean value over a subdomain and other functionals F'(u) without computing
the full inverse operator and the complete solution. Similar ideas were considered in [1,
39]. This method can be very practical for speeding up the solution of the inverse and
data assimilation problems, which appear in many science and engineering applications such
as weather prediction, oil recovery, and subsurface flow. Under the inverse problem, we
understand the estimation of unknown model parameters from (noisy) measurements. Under
the data assimilation problem, we understand improving the existing mathematical model
when the new measurement data become available.

The forward problem we consider is the diffusion problem with uncertain or unknown
diffusion coefficient. A typical task is not only to solve the forward problem but also to
identify this unknown coefficient. Initially, some prior probability density function for the
diffusion coefficient is assumed. Then the Bayesian inference is applied to update this density.
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Table 0.1: Notation

HDD suggested here the hierarchical domain decomposition method
uly restriction of the solution u onto the interface ~
h, H grid step sizes on fine and coarse meshes
Q, 092 computational domain and its boundary
Z random parameter vector Z = (Z1, ..., Zn,)
e space where parameter Z = (Zy, ..., Z,_) is defined
w, dw local subdomain and its boundary
Vi, Vi two finite element spaces, Vi C V),
f, £, fy the right hand side, discretized on fine (h) and coarse (H) meshes
u, up, U the solution, computed on fine (h) and coarse (H) meshes
rk(z, Z) = ea@?) uncertain permeability coefficient, depends on parameter vector Z
VN vector space spanned on the basis {1 (z),...,pn(2)}
I, Iy index sets
T, Tu fine and coarse triangulations
Ty, hierarchical domain decomposition tree
Yoo interface in the domain w C Q (also call “internal” boundary)
I, =0w boundary (also call “external” boundary)
d. do = ((Ficrie)» @ienony) = (for9)
a composed vector consisting of the right-hand side restricted to w
and the Dirichlet boundary values g, = un|a,
Fn, Gn two operators, such that u, = Fp fr, + Gron,
i true observations
y=9y+e noisy observations

9 . RO« — RIOW)

maps the boundary data defined on Ow to the
data defined on the interface -,

®f RIW 5 RIOW)

maps the right-hand side data defined on w to the
data defined on ~,,.

Ul RIW 5 RIGw)

maps the whole subdomain to the external boundary

\Ijg . Rl(aw) N RI(Bw)

maps the external boundary to the external boundary

pdf

probability density function

PCG

preconditioned conjugate gradient
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The Bayesian inference is a statistical inference method in which Bayes’ theorem is used to
update the probability for a hypothesis as more evidence or information becomes available.

Computing the likelihood function in the Bayesian formula requires multiple solutions
of the forward problem and could be time-consuming. Depending on the available measure-
ments, the complete solution of the (forward) diffusion problem could be unnecessary, rather
only a part of the solution or a functional of the solution is needed. Computing only a part
of the solution will make the whole computing process faster and less time-consuming.

Typically, the available measurement data is a functional F'(u) of the solution w. The mis-
fit (or mismatch) function is the difference between the simulated data and the measurement
values [58, 56, 45, 46, 53, 57]. Below we will show how to simulate these measurement data
directly without computing the whole solution. Particularly, we will show that calculating
the full inverse operator is unnecessary.

One possible application of our method is the data driven research, a very popular topic
nowadays. In this research the available datasets are used either to improve (enrich) the
existing mathematical model (often a system of PDEs), or to discover the governing system
of PDEs. Another example when fast calculation of a part of the solution is required, is
computing the mean square error when comparing the training and computed datasets. In
[55], authors design data-driven algorithms for inferring solutions to various partial differen-
tial equations. They introduce neural networks that are trained to solve supervised learning
tasks while respecting any given laws of physics described by general nonlinear PDEs. Their
goal is to solve two classes of problems: data-driven solution and data-driven discovery of
PDEs.

The structure of this paper is the following. In Section 1 we give our motivation by intro-
ducing the stochastic forward problem and the Bayesian updating procedure for computing
posterior density function of the uncertain diffusion coefficient. The main ingredient and the
main contribution — the hierarchical domain decomposition (HDD) method — is contained
in Section 2. Details of the HDD method, including two algorithms “Leaves to Root” and
“Root to Leaves”, are shown in Section 3. The hierarchical (denoted by ) - matrix tech-
nique to speed up the HDD method is explained in Section 4. Section 5 explains how to
use the HDD method to compute a functional of the solution without computing the whole
solution. Particularly, it explains how to compute the mean value in a small subdomain.
The novelty here is that the whole solution is not available, only a small part of it. In the
last section, we conclude the main achievements.

Example. This example shows how the solution (or measurements) in only a few points
can reduce the uncertainty. Consider an elliptic PDE with uncertain coefficient and the
right hand side as in Eq. 1.1, but in 1D, on the interval [0, 1]. We pose uncertain Dirichlet
boundary conditions ¢(0,&) and g(1,¢), where £ is a Gaussian random variable. Assume
three measurements at locations x = {0.3,0.5,0.8} are given. The mean values u(0.3) = 22,
u(0.5) = 28, w(0.8) = 18 and the standard deviations are {0.2,0.3,0.3} respectively. The
following computations are done with the stochastic Galerkin library sglib, written by E.
Zander at TU Braunschweig !. In Fig. 1.1 twenty realisations of the uncertain solution u(z)
before and after an update are shown. The mean value (dark bold line) and +{1, 2,3} stan-
dard deviations (red, orange and yellow lines) are shown. The left picture shows realisations,
obtained with some prior assumption about distribution of random diffusion coefficient .

https://github.com/ezander/sglib
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In the following three pictures of the updated solutions are shown, after taking into account
one, two and three measurements. To conclude this example, it is practical to have a nu-
merical method, which can efficiently compute a part of the solution or a solution in a few
points, without computing the complete solution.

60

60 60 60

40 40 40 40

20/\
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-20 -20
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Figure 1.1: (left) 20 original realisations of the solution u (2nd, 3rd, 4th) the same realisations
after update; the mean value (bold line) and +1, 2,3 standard deviations (red, orange and
yellow lines).

1.1 Main idea

The main ingredients of the developed approach are the weak formulation, the hierarchical
(or recursive) domain decomposition technique, the finite element method, and the Schur
complement. Additionally, to speed up matrix operations and reduce the overall storage
cost, we approximate the involved operators and the Schur complement in the hierarchical
matrix format [20, 17, 21].

The novelty of this work is the application of the HDD method for faster computation
of the innovation in filtering or the likelihood distribution, which measures the data misfit
(mismatch).

The forward problem we consider is an elliptic boundary value problem with uncertain
L coefficients and with Dirichlet boundary condition:

~V (k(z,Z)Vu(z, Z)) = f(z), 2€QCR?
u = g(z), x € 012, (1.1)

where r(x, Z) is a random field dependent on a random parameter Z = (71, ..., Z,.) € R,
n, > 1, consisting of a set of independent continuous random variables characterizing the
random coefficient of the governing equation. The solution u(z, Z) is a stochastic quantity,
given by

u(z, Z) : Q@ x R™ — R", (1.2)

where n is the number of finite element nodes in €.

For a fixed Z, the solution u(z, Z) belongs to H'(Q), and for a fixed z to Ly(©). There
is an established theory about the existence and uniqueness of the solution to Eq. 1.1 under
various assumptions on x and f; see, for example, [2, 11, 13, 43, 48]. In [11, 13] it is shown
that under additional assumptions on the right-hand side f and special choices of the test
space the problem Eq. 1.1 is well-posed. The case where the Lax-Milgram theorem is not
applicable (e.g., upper and lower constants k, & in 0 < Kk < kK < E < oo do not exist) is
also considered in [48]. In [11] the authors analyze assumptions on x from [2] to guarantee
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the uniqueness and the existence of the solution. Additionally, they offer a new method
with weaker assumptions. If the expansion of k is truncated, there is no guaranteed that
the truncated series will stay strictly bounded from zero. As a result, the existence of the
approximate solution to Eq. 1.1 is questionable, unless precautions are taken as in [43]. The
settings where the ellipticity condition is preserved are considered in [11].

Further we assume that each continuous random variable Z; has a prior distribution

Fi(z) = P(Z; < z) €0,1], (1.3)

where P denotes probability and m;(z;) = %Z(ji) probability density function (pdf). The
joint prior density function for Z is m4(z) = [[}Z, m;(2;). For the sake of simplicity, we will
skip the subscript 7 and will write 7(z) for denoting the probability density function of the
random variable Z.

The elliptic boundary value problem in Eq. 1.1, can represent, for instance, an incom-
pressible single-phase porous media flow or, another example, a steady state heat conduction
through a composite material. In the single-phase flow, u is the flow potential, and x the
permeability of the porous medium. For heat conduction in composite materials, u is the
temperature, —xkVu the heat flow density, and x the thermal conductivity.

Iterative methods and preconditioners to solve the problem in Eq. 1.1 were developed in
27, 28, 44, 59, 64]. In [10] the authors assume that the solution has a low-rank canonical
(CP) tensor format and develop methods for the CP-formatted postprocessing.

Tensor ranks of the stochastic operator were analysed in [47, 9]. The proper generalized
decomposition was applied for solving high dimensional stochastic problems in [51, 52]. In
[26] authors employed newer tensor formats for the approximation of coefficients and the
solution of stochastic elliptic PDEs. Other classical techniques to cope with high-dimensional
problems are sparse grids [18, 4, 50] and (quasi) Monte Carlo methods [15, 63, 29]. In [6, 5]
authors approximate the polynomial chaos expansion (PCE ) of the random input coefficient
k(z, Z) in the tensor train (TT) data format, and then solve the problem in that format. A
low-rank tensor approximation of random fields, covariance matrices and set of snapshots is
done in [25, 37, 35].

1.2 Bayesian updating formula

The inverse problem and propagation of uncertainty through a computational (forward)
model are strongly connected. Prior and posterior probabilities express our belief about
possible values of the parameters k(x, Z) before and after observations.

Various ideas to speed up the Bayesian updating procedure were presented in [42, 40,
49, 3]. Surrogate based techniques were presented in [56, 47, 34]; reduction of the stochastic
dimension by using KLE and PCE expansions in [58, 53, 56]; a non-linear Kalman filter
extension in [46, 45, 36].

In [8], the authors develop an approach to Bayesian inference that entirely avoids the
Markov chain simulation by constructing a map that pushes forward the prior measure
to the posterior measure. The work [60] is devoted to optimal dimensionality reduction
techniques for goal-oriented linear-Gaussian inverse problems, where the quantity of interest
is a function of the inversion parameters. A multiscale strategy for Bayesian inference using
transport maps was introduced in [54].



Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 6 August 2020

Partial inversion of elliptic operator to speed up computation of Bayesian inference 7

Further we assume that @ is a measure space with o-algebra A and with a probability
measure P, and that ¢ : © — Q and u : © — U are random variables (RVs). Often, we are
not able to observe the entity ¢ € Q directly, we can only see a ‘shadow’ of it, formally given
by a ‘measurement operator’

Y:9OxUD> (¢qu)— Y(qu) €, (1.4)

where q(z,Z) = log(k(z, Z)). We assume that the space of possible measurements ) is a
vector space, which frequently can be regarded as finite-dimensional, as one can only observe
a finite number of quantities.

The measurement operator Y with values in ) produces

y(Z) = Y(a(Z)iw), where u=u(q(Z)).

Examples of measurements are a) y(Z) = [ u(Z,x)dz, with a subdomain w C Q, and b)
u in a few points. For a given f, the measurement y is just a function of ¢. This function
is usually not invertible since the measurement y does not contain enough information. In
the Bayesian framework, the state of knowledge is modeled in a probabilistic way. The
parameter ¢ is uncertain and is modeled by a random variable. The Bayesian setting allows
updating/sharpening of information about ¢ when the measurement is performed.

Usually the observation of the “truth” y € R™ will deviate from what we expect to
observe even if we know the right ¢ due to some model error . The measurement can be
also polluted by some measurement error €. Hence we observe y = ¢ + € + ¢, and would
like to know what ¢ is. Let S : R"™ — R™ be the solution operator (for instance, the set
{®9 &/} or the inverse) of Eq. 1.1. For the sake of simplicity we will only consider one error
term

y=y+e=8(Z)+¢e, where &= (e1,...,6p,) € R"™ includes all the errors. (1.5)

Here €4, ..., €,, are mutually independent random variables with probability density function
m(e) = [[:2, 7(g;). We also assume here that € and Z are independent.

The mapping in Eq. (1.4) is usually not invertible, and hence the problem is called ill-
posed. By modeling our lack of knowledge about ¢ in a Bayesian way [62] with a Q-valued
random variable, the problem becomes well-posed [61]. But of course one is looking now at
the problem of finding a probability distribution that best fits the data; and one also obtains
a probability distribution of q. Here we focus on the use of Bayesian approach [14].

Bayes’s theorem is commonly accepted as a consistent way to incorporate new knowledge
into a probabilistic description. It may be formulated as ([62] Ch. 1.5)

m(y|2)

"Gl = g (16)
where 7,(2) is the pdf of Z, 7(y|z) is the likelihood as a function of y for fixed prior Z and
m(z]y) is the posterior pdf of Z conditioned on the data y. We follow the notation from
[41]. Numerical approaches for computing a posterior pdf were developed in [40, 42, 61, 56].
Assuming independence on the measurement noise € = (£1,...,¢&p, ), the likelihood function
becomes

L(z) i=r(yl2) = [[ 7ty = Si2)). (1.7)
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Again, we see a formula, where the noisy measurement y; should be compared with the
computed simulation S;(z). And very often, the complete solution is not required.

2 Hierarchical domain decomposition (HDD) method

The hierarchical domain decomposition (HDD) method [31] combines the weak formulation,
the finite element method (FEM), and the recursive domain decomposition method to obtain
a fast and efficient algorithm for computing the partial inverse and a part of the solution
(without computing the complete solution). This method was introduced by Hackbusch in
2002 and later on developed in [31, 32, 22, 7, 21].

HDD computes the solution operators Fj, and G, in Eq. 2.2, which after applying to the
boundary condition and the right-hand side give us the solution.

Below in this section we define the main components of the HDD method - the hierarchical
domain decomposition tree (see Fig. 2.2) in Section 2.1, the boundary-to-boundary mappings
(U9) in Section 2.3, domain-to-boundary (¥/) mappings in Section 2.2, boundary-to-interface
(®9) and domain-to-interface (®/) mappings which are essential for the definition of the HDD
method in Section 2.2.

For a fixed parameter Z, Eq. 1.1 can be written as follow:

—V (k(x)Vu(x)) = f(x), x€QCR? (2.1)
u=g(x), xé€o,
where x = (z1,25) € Q.
The HDD method computes two discrete hierarchical solution operators F;, and Gy such
that:
up = Fnfo + Guon, (2.2)
where u;, = up(fn, gn) is the FE solution of 2.1, f;, the discretized right-hand side, and gy,

the Dirichlet boundary data. To decrease the computing time and the storage cost, both
operators Fj and G, are approximated by H-matrices.

Figure 2.1: (a) The solution u|, on the interface v can be computed with the auxiliary
operator @, by applying it to the right hand side f and to the boundary condition u|sq; (b)
HDD can compute the solution in a subdomain w C §2; (¢) HDD method can compute the
solution on a coarse mesh (shown by dotted lines).

Three examples of possible problem setups, shown in Fig. 2.1, are the following:
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1. Suppose the solution on the boundary 092 (Fig. 2.1 (a)) is given. One is interested in
the fast numerical approach which computes the solution u|, on the interface . The
solution u|, depends on the right-hand side and ulsq = g, i.e. ul, = ®(ulsq, f) with
some mapping P;

2. Only the solution in a small subdomain w C € is of interest (Fig. 2.1 (b)). To solve
the problem in a domain w the boundary values on dw are required. How to compute
them efficiently from the global boundary data 02 and the given right-hand side?

3. The third possible problem setup is as follows. The solution on the interface or on a
very coarse mesh (see Fig. 2.1 (c)) is required. How can this solution be computed
effectively without neglecting small scale features?

Other properties of the HDD method are the following. The HDD allows one to compute
un(fr, gn) for fi given in a smaller space Vg C Vj. This could be useful, for instance, in
multi-scale settings. The HDD provides the possibility to compute uy, restricted to a coarser
grid with reduced computational effort. The HDD shows big advantages in complexity for
problems with multiple right-hand sides and multiple Dirichlet data. In this case both
operators Fj and G, are computed only once and then applied multiple times to f;, and g,.
Due to the binary tree structure the HDD is an easily parallelizable method. If the problem
contains repeated patterns (for instance, so-called cells in a multi-scale framework) then the
computational resources can be reduced drastically.

u=g, on I’

Ul U,

7

Figure 2.2: HDD contains two algorithms: “Leaves to Root” (shown on the left) which
computes mappings {Wq, Wy, Wiy, Uys, ...} and {Py, Py, P11, 1o, ...} and “Root to Leaves”
(on the right) which applies mappings {®;;} to compute the solutions u|,, on the interfaces

Yi-
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2.1 Notation

Let 7, be a triangulation of the spatial domain ). After hierarchical decomposition of Q (cf.
[12]), obtain the hierarchical domain decomposition tree Ty, (see Fig. 2.2) with the following
properties:

e () is the root of the tree,
e T'1 is a binary tree,

o If w e T has two sons wy,ws € T7; , then
w = wy Uwy and w1, wy have no interior point in common,

o w e Ty is aleaf, if and only if w € 7.

The construction of T, is straight-forward by dividing €2 recursively into subdomains. For
practical purposes, the subdomains w;, wy must both be of size &~ |w|/2 and the internal
boundary

Vo := 0w \Ow = Owq\Ow (2.3)
must not be too large (see Fig. 3.1 (left)).

inner boundary

9 10 11
e ——
| |
7{ X X }8
|| ||
3 4 5 6

extern boundary

Figure 2.3: Domain wy € T, with I(w) = {1,...,12}, I(0wy) = {3,4,5,6,7,8,9, 10,11, 12},
I(v,,) = {1,2} to be eliminated via the Schur complement, I(I',,) = {9,7,3,4,5,6,8,12}.
On the next level, when w; will be coupled with w,, the points I(y,) = {10,11} will be
eliminated.

Let I := I(Q) and a4, i € I, be the set of all nodal points in  (including nodal points
on the boundary). We define I(w) as a subset of I with z; € w = @. Similarly, we define
1(@), I(Ty), I(v), where T, := w, @ = w\dw, for the interior, for the external boundary
and for the interface.

Computing the discrete solution uy,, Eq. 1.1, in € is equivalent to the computation of uy,
on all v, w € T, since 1(Q2) = Uwery, { (7w). These computations are performed by using
the linear mappings ®/  ®¢ defined for all nodes w € T, .

Notation 2.1 Let g, := uly@aw) be the local Dirichlet data and f, = f|iw) be the local
right-hand side.
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Definition 2.1 The mapping ®9, : RI9) — RIOW) maps the boundary data defined on Ow
to the data defined on the interface ~y,,. @/ : RI@ — RIO) maps the right-hand side data
defined on w to the data defined on ~,,.

The final aim is to compute the solution w; along 7, in the form wuyl|,, = <I>£ fu + P29,
w € Ty,. For this purpose HDD builds the mappings ®,, := (&9, ®/), for all w € T7,.
For computing the mapping ®,,, w € T7,, we first need to compute the auxiliary mapping
W, = (U9, ¥/) which will be defined later.

Thus, the HDD method consists of two steps: the first step is the construction of the
mappings ®¢ and ®/ for all w € T7.. The second step is the recursive computation of the
solution uy,. In the second step HDD applies the mappings ®¢ and ®/ to the local Dirichlet
data g, and to the local right-hand side f,,.

Notation 2.2 Letw € T5;, and

do = ((Picrior+ icra) = (s 00) (24)

be a composed vector consisting of the right-hand side from Eq. 1.1 restricted to w and the
Dirichlet boundary values g, = uplo. (see also Notation 2.1).

Note that g, coincides with the global Dirichlet data in Eq. 1.1 only when w = . For all
other w € T, we compute g, in (Eq. 2.4) by the algorithm “Root to Leaves” (see Section
3.4).

Assuming that the elliptic boundary value problem, Eq. 2.1, restricted to w is solvable, we
can define the local FE solution by solving the following discrete problem in the variational
form [19]:

aw(Uonbj) = (fW7bj>L2(w)7 \V/j € ](Cf))’ (25)

Here, b; is the P'-Lagrange basis function at x; and a,(-, -) is the bilinear form (see Eq. 1.1)
with integration restricted to w and (f,,b;) = [ f., b; dx.

Let U, € V}, be the solution of (Eq. 2.5) in w. The solution U, depends on the Dirichlet
data on dw and the right-hand side in w. Dividing problem (Eq. 2.5) into two subproblems
(Eq. 2.6) and (Eq. 2.7), we obtain U, = U/ + UY, where U/ is the solution of

aw(UwabJ) = (fwvbj>L2(w)’ vj € I((f)>’ (26)
Ul (x;) =0, Vj € I(0w)
and UY is the solution of
{ a, (U, b;) =0, VjelI(w), (2.7)

If w = then (Eq. 2.5) is equivalent to the initial problem Eq. 2.1 in the weak formulation.
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2.2 Mapping ¢, = (99, q’f;)

In this section we define mappings ®,,, ®9, ®/. We consider w € T, with two sons wy, wy.
Considering once more the data d,, from (Eq. 2.4), U/ from (Eq. 2.6) and UY from (Eq. 2.7),
we define ®/(f,,) and ®9(g,,) by

(®£(fw))i =Ul(x;) VielI(yw) (2.8)
and
(P (90)); = Ud(xi) Vi€ I(). (2.9)
Since U, = U + U9, we obtain
(Pu(do)); = P () + PL(f) = UL(x:) + UL (x:) = Ul (1) (2.10)

for all i € I(7,).

Hence, ®,(d,) is the trace of U, on ~,. Definition in (Eq. 2.10) says that if the data d,, are
given then ®,, computes the solution of (Eq. 2.5). Indeed, ®,d, = ®9g, + ®/ f,,. Note that
the solution u; of the initial global problem coincide with U, in w, i.e., up|, = U,,.

2.3 Mapping ¥, = (V9 ¥/)

In this section we define mappings ¥, W9 W/
First, we define the mapping ¥/ from (Eq. 2.6) as

(VL)) serony = @(UL b)) = (fur bi) 2 (2.11)
where US € Vj,, UJ|s, = 0 and
a(UL, b)) — (f,b) =0, for Vi e I(w).
Second, we define the mapping WY from (Eq. 2.7) by setting
(W) ic 10wy = @(UZ00) = (fur 0) gy = €U, 0) — 0 = au (UL, b)), (2.12)
where U € V}, and (¥9(d,));, = 0 for Vi € I(w).

The linear mapping U, which maps the data d,, given by (Eq. 2.4) to the boundary data
on Ow, is given in the component form as

\I’w(dw) = (‘I’w<dw>)iel(aw) = aw(Uwa bi) - (fwa bi)]ﬁ(w) . (2-13)

By definition W, is linear in (f.,g,) and can be written as ¥, (d,) = ¥/ f, + ¥9g,. Here
U, is the solution of the local problem (Eq. 2.5) and it coincides with the global solution on
I(w).
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2.4 &, and ¥, in terms of the Schur complement matrix

Let the linear system Au = F'c for w € T’7; be given. In Sections 3.1 and 3.3 we explain how
to obtain the matrices A and F. A is the stiffness matrix for the domain @ after elimination
of the unknowns corresponding to I (c?} \7w). The matrix F' comes from the applied numerical
integration rule [31].

We will write for simplicity v instead of ~,. Thus, A : RIO«U) 5 RIOWWY) g ¢
RIOwW) o RIW 5 RIOWD) and ¢ € RI@ . Decomposing the unknown vector w into
two components u; € R/ %) and u, € R, obtain

The component w; corresponds to the boundary dw and the component us to the interface
~. Then the equation Au = Fc becomes

A A uy Fy
= 2.14
(i) ()= (5 ) 219

Ay RI0Ow) _y Rz(aw)7 A : RIG Rl(a‘”),
Ayt RIOW) S RIG) Ay, RIO) 5 RIOD,
Fl : Rl(w) — RI(8M)7 F2 : RI("J) — RI(’Y)‘

where

The elimination of the internal points is done as it is shown in (Eq. 2.15) below

AH — A12A2_21A21 0 uq . F1 - A12A2_21F2
( e o) ()= - c. (2.15)

We rewrite the last system as two equations

A’U,l = (AH — A12A2_21A21)’U,1 = (F1 — A12A2_21F2)C,

uy = Ay Fhe — Ay Asyuy. (2.16)

The explicit expressions for the mappings ¥, and ®,, follow from (Eq. 2.16):
W9 = Ay — ApAy Ay, U= F — Ap Ay Fy, (2.17)
DI = AL Ay, B = ALF,. (2.18)

Thus, uy = ®/(f,,) + ®9(g.), with the rhs f, = ¢, and local b.c. g, = u;.

3 Construction Process

In this section we explain the recursive construction of mappings W9, W/ ®9 and ®/.
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3.1 Initialisation of the recursion

This section explains how to compute mapping W/ for the leaves of T, and how it is
connected with the quadrature rule.
Our purpose is to get for each triangle w € T, the system of linear equations

A-u=c:=F-c, (3.1)

where A is the stiffness matrix, ¢ the discrete values of the right-hand side in the nodes of
w and F' will be defined later. The matrix coeflicients A;; are computed by the formula

Ay = / (%) (Vb () - Vb (x))dx, (3.2)

w

where b;(x) is a piecewise linear basis function [19]. For w € Ty, F € R**3 comes from
the discrete integration and the matrix coefficients Fj; are computed using (Eq. 3.5). The
components of ¢ can be computed as follows:

G — /fbidx ~ F(x1)bi(x1) + f(x2)b;(x2) + f(x3)bi(x3)

3 - wl, (3.3)

where x;, ¢ € {1,2,3}, are three vertices of the triangle w € T, bi(x;) = 1 if i = j and
b;(x;) = 0 otherwise. Rewrite (Eq. 3.3) in matrix form:

1 1 [ xa) bi(xz) ba(xs) f(x1)
c=| & | = 3 ba(x1) bo(xa) bo(x3) f(x2) |, (3.4)
C3 by(x1) b3(x2) bs(x3) f(xs)

where f(x;), ¢ = 1,2, 3, are the values of the right-hand side f in the vertices of w. Then,
for piecewise linear basis functions obtain

1 1 00 f
bQ(Xl) bg(Xg) bg(Xg) = g 010 and ¢ := ';Z(X2) . (35)
0 01

S
w
—~
"
—
~—
S
W
—~
»
[\
~—
S
W
—~
»
w
~—

Thus, W9 corresponds to the matrix A € R¥? and ¥/ to F € R¥3.

3.2 Recursion

This section explains how to build ¥, from ¥,, and ¥,,, with w € T7; and w;, we be two
sons of w. The coefficients of ¥,, can be computed by (Eq. 2.13). The external boundary T’
of w splits into (see Fig. 3.1 (left))

F%l = 0dwnN w1, Fw72 = 0JdwnN (R (36)
For simplicity of further notations, we will write v instead of ~,,.

Notation 3.1 Recall that I(0w;) = I(I'y;) U I(y). We denote the restriction of U, :
RI@@) — RIOW) 4o () by "W, = (Vy)|ier(y)-
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Suppose that by induction, the mappings ¥,,,, ¥, are known for the sons wy, we. Now, we
explain how to construct ¥, and ®,,.

Lemma 3.1 Let the data dy = d,,,, do = d, be given by (Eq. 2.4). Data dy and dsy coincide
along v, t.€.,
e (consistency conditions for the boundary)

1 =02, Vi€ I(wr)NI(ws), (3.7)
e (consistency conditions for the right-hand side)
fri= foi Vi€ I(w)) N I(ws). (3.8)

If the local FE solutions upy and ups of the problem (2.5) for the data dy,dsy satisfy the
additional equation

W\IJUJl (dl) + ijwz(dQ) =0, (39)

then the composed solution uy, defined by assembling

NS una(xe) for i€ I(w),
Uh(Xz) - { uh,Q(Xi) fO’)” = I(WQ) (310)

satisfies (Eq. 2.5) for the data d,, = (f, g) where

| fi for i€ I(w),
B R ) (31

S g for i€ I(Ty,q),
o { g0 for i€ I(Tuz). (3.12)

Proof: Note that the index sets in (Eq. 3.10)-(Eq. 3.12) overlap. Let wy € T7,, fi: = fi,
i€ I(w), and g1; = gi, @ € I(Owy). Then the existence of the unique solutions of (Eq. 2.5)

gives w1 (x;) = un(x;), Vi € I(wy).
In a similar manner we get u,o(x;) = us(x;) , Vi € I(w,). Equation (Eq. 2.13) gives

( \Ijm(dl))zel (v) — = Gy, (uh7 ) (fwu )L2 (w1) (3-13)
and

( 7WW2 <d2))iel( )y — = Gy (ufw ) (fw27 )L2 (w2) * (3'14>
The sum of the two last equations (see Figure 3.1 (right)) and (Eq. 3.9) give

0= 7\I]w(dw)iel('y) = aw(un, bi) = (fu, bi)r2( (3.15)
We see that uy, satisfies (Eq. 2.5). |
Note that

uh71(xi) =015 = G925 = uh’g(xi) holds for ¢ & I(wl) N ]((A)Q).

Next, we use the decomposition of the data d; into the components

dy = (fhgl,r,gm); (3-16>
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A2
T

Figure 3.1: (left) Domain w and its two sons w; and wy. Here 7, is the internal boundary
and I'y;, ¢ = 1,2, parts of the external boundaries, see (Eq. 3.6). (right) The support of
basis function b;, z; € w; and x; € ws.

where
g1r = (G1)ierru), 91y = (91)ier(y) (3.17)

and similarly for dy = (f2, g2.1, g2+ )-

The decomposition g € R!@) into gir € R (I'w.s) and gj, ER! () implies the decomposition

of Wy : RIOw) — RIO) into WL : RITws) — RIOw) and W) RIV) — RIOW) 5 =1 2,
wj wj wj ? Y

Thus, WY, g, = Vi, 010 + V0,01 and W9, g, = VL gor + U7, 9o,

The maps ¥,,,, ¥,, become

U, di = ‘Ifﬁl fi+ ‘PEIQLP + W 914, (3.18)

Uydy = UL fo + WL gor + U2 go.. (3.19)
Definition 3.1 We will denote the restriction of W7, : R0 — RI) to I() by

T - RIG) o RIO
w] Y
where j = 1,2 and Ow; =T, ; U.

Restricting (Eq. 3.18), (Eq. 3.19) to I(7), we obtain from (Eq. 3.9) and ¢1, = g2, =: ¢,
that

( 7‘1111 + 7\1132) 9y = (—\I’{Jlfl - ‘I’Elgl,r - ‘I’izfz - ‘I’gzgz,r)h(y)-
Next, we set M := —( "¥), + 707 ). and after computing M ', we obtain:

gy =M (YL L+ 90 g0 + Y fo+ UL gor) 1) (3.20)

Remark 3.1 The inverse matriz M~ exists since it is the sum of positive definite matrices

corresponding to the mappings V7 , W7 .

Remark 3.2 Since g,; = up(x;), ¢ € I(7), we have determined the map ®,, (it acts on the
data d,, composed by fi, f2, ¢11,92r)
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Remark 3.3 We have the formula U, (d,) = Y, (d1) + ¥, (d3), where

dy = (fu,90), d1= (f1,g1,1“,91,w), dy = (f2=92,1“;92,w)7 (3.21)
Gin = Goy = MH(UL fr + V5 gur + WL, fo+ UL, g0 0) 1)

Here (f., 9.) is build as in (Eq. 3.11)-(Eq. 3.12) and (Eq. 3.7),(Eq. 3.8) are satisfied.

Conclusion:
Thus, using the given mappings ¥,,,, ¥,,, defined on the sons wy,ws € T7;, we can compute
®,, and V¥, for the father w € T7; .

3.3 Building of Matrices ¥, and ¢, from ¥V, and V¥,

Let w, wy where wy € T7;, and wy, wy are sons of w. Recall that dw; =Ty, ; U~v. Suppose we
have two linear systems of equations for w; and wy which can be written in the block-matrix

form: ' 4 , , , .
Aé’;; A% “?.; [ F lili F IE% C?; i=1,2 (3.22)
Asi Ay ) Fy' Fy Co
where v := 7, . .
A%) RICwd) oy RICwa) Ag LRI o RICw),
Agl) CRITw) ]RI('y)7 ASQ) CRI RI(’Y)’
Fl(i) L RI@NY _y RIOw) Fl(;) L RIO) 5 RIOw:),
F2(i) LRIV 5 RIO), FZ(;) CRIO s IO

Both the equations in (Eq. 3.22) are analogous to (Eq. 3.18) and (Eq. 3.19). Note that

cf = ¢ and ul! = 4l because of the consistency conditions (see (Eq. 3.7),(Eq. 3.8)) on

the interface «. The system of linear equations for w be

1 1 1 1 1 1
N A N I W
0o A AP o) = o FY FY |, (323)
1 2 1 2 1 1 2 1 2 1
Aé1) Agl) AgQ) + AgQ) ué ) F2(1) F2(1) FQ(Z) + F2(2) Cg )

See the left matrix in Fig. A.1 in the Appendix. Using the notation

- AL g . AW
Aqq = 11 , Ay = 12 ,
B ( 0 A Rt

A21 = (Aéll)a Agl))v A22 = é12) + AgZQ)a

1)
. u .
Uy = ( ué) ) . Uy = ’u,gl) = 'ué?),

1

_ FY o FY - D R® g0 e
re (0w ) (e ),
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(1) =
= ._ [ & PRI ¢ RN ) I S

the system (Eq. 3.23) can be rewritten as

Al 40 @ F\ .
W () -(7)e 320
As{ Ay 2 2

The system (Eq. 3.24), indeed, coincides with (Eq. 2.14). After elimination of variables u§2)

(on the interface), we obtain the matrices as it shown in Figures 4.1 and 4.2.

3.4 Algorithms “Leaves to Root” and “Root to Leaves”

The scheme of the recursive process of computing ¥, and &, from ¥, and ¥, for all
w € T, is shown in Fig. 2.2 (left). We call this process “Leaves to Root”:

1. Compute ¥/ € R3*3 and U9 € R3*3 on all leaves of T, (triangles of 7;) by (Eq. 3.2)
and (Eq. 3.5).

2. Compute recursive from leaves to root ®, and ¥, from ¥, , ¥, . Store &, and delete
1

3. Stop if w = (2.

Remark 3.4 The result of this algorithm will be a collection of mappings {®,, : w € T7, }.
The mappings ¥, w € T, , are only of auxiliary purpose and need not stored.

The algorithm which applies the mappings ®, = (®9,®/) to compute the solution we call
“Root to Leaves”. This algorithm starts from the root and ends on the leaves. Figure 2.2
(right) presents the scheme of this algorithm.

Let the data d, = (f,, 9s,), w = €, be given. We can then compute the solution u; of the
initial problem as follows.

The Algorithm “Root to Leaves”:

1. Start with w = Q.

2. Given d,, = (f., 9»), compute the solution u; on the interior boundary -, by ®,(d,,).

3. Build the data d,, = (fu,,0w) dos = (fuss9u,) from d, = (fu,9,) and
g'Yw = ¢W(dw)

4. Repeat the same for the sons of w; and ws.

5. End if w does not contain internal nodes.

Since up(x;) = g-.i, the set of values (g, ), for all w € T7,, results the solution of the initial
problem (Eq. 1.1) in the whole domain €.
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3.5 Multiple scales

Let h and H be fine and coarse meshes, used for discretization of Eq. 2.1. The subscript j,
near the operator or function means that this operator or function was discretized on a mesh
with the step size h. Let n; and ny be the numbers of degrees of freedom on a fine grid
and on a coarse grid. For instance, if the right-hand side is smooth, we may use a coarser
mesh for it (e.g., operator Fy and G,). So, the matrices ¥/ and®/ will be much smaller. For
discretising the diffusion coefficient and the Dirichlet b.c. we use a fine scale h (see more in

[31]).

Lemma 3.2 The complexities of the one-grid version and two-grid version of HDD are

O(nplog®ny,) and  O(y/nang log® \/nang),  respectively.

The storage requirements of the one-grid version and two-grid version of HDD are

O(nyplog®ny) and O(/nunglog? \/nyng),  respectively.
Proof: see [31, 7] or Ch. 12 in [21].

4 Hierarchical matrix approximation

The mappings ¥, and &, correspond to dense matrices, and, therefore, require quadratic
storage and quadratic or cubic arithmetic cost. Both these mappings (matrices) ¥, (see
Fig. 4.1) and ®,, (see Fig. 4.2) can be approximated in the H-matrix format. Additionally,
all necessary computational steps can be performed within the hierarchical matrix format
with a log-linear cost.

The matrices ®J : RIO») — RIOW) @f . RIW — RIOW §f . RIC 5 RIOW  are
rectangular. The matrix W9 : R/(%) — RI(9) is quadratic.

The hierarchical matrices (H-matrices) have been used in a wide range of applications
since their introduction in 1999 by Hackbusch [20]. They provide a format for the data-
sparse representation of fully-populated matrices. The complexity of the H-matrix addition,
multiplication, Schur complement and inversion is O(k*nlog?n), ¢ = 1,2. See more details
about H-matrices in [21, 20, 23, 17, 16, 38, 33]. In [30] authors prove the existence of
an H-matrix approximation of the inverse (Assumption 2) and of the Schur complement
(Theorem 1).

The following proposition follows from Theorem 1 ([30]) and [24].

Proposition 4.1 The matrices W9, € RIO)x10w) yf ¢ RIOWXIW) oS ¢ RIODXW) gpnd
@9 € RIOWI*I0) for gll w € Ty, can be effectively approzimated by H-matrices.

For more details and complexity estimates see [31].

5 Fast Evaluation of Functionals

In this section we describe how to use ®/ and ®9 for building different linear functionals of
the solution. Indeed, the functional X\ is determined in the same way as V.

Below we list some examples of problem settings which can be solved by using linear func-
tionals.
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Figure 4.1: An H-matrix approximation to (¥9)" € R/ [ := [(Ow). The dark (red) blocks
are dense matrices and grey (green) blocks are low-rank matrices. The numbers inside the
blocks indicate the ranks of these blocks.

Figure 4.2: An H-matrix approximation to (¥/)* € R/ [ := I(0w), J := J(w), |I| = 256,
|I| = 4225. The dark (or red) blocks indicate the dense matrices and the grey (green) blocks
indicate the rank-k matrices; the number inside each block is its rank. The steps inside the
blocks show the decay of the singular values in log scale. The white blocks are empty.
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Example 5.1 If the solution u in a subdomain w € Ty, is known, the mean value p(w) can
be computed by the following formula

_ [ouxdx DT (@) %(m + uy + u3)
|w] wl

, (5.1)

where u is affine on each triangle t with values uy, us, ug at the three corners and Tp(w) is
the collection of all triangles in w. If the solution u is unknown, we would like to have a
linear functional A\, (f,g),w € Tr,, which computes the mean value ,, of the solution in w.

Example 5.2 Let us assume that Q0 is decomposed into p = 16 subdomains Q = |J_, Q.
Sometimes these sub-domains §2; are called cells. The set of nodal points on the interface
1s denoted by Is. HDD can compute the solution on the interface Is, and the mean value
over each Q;, i =1,...,p, (see Fig. 5.1).

mean value

7 Q

3 . . . A

Th
. . . . TH

snanRENTITTIRE

Figure 5.1: (left) HDD computes the solution on a coarse mesh (or the interface (X)) and
the mean value inside of each cell. (right) Algorithm “Leaves to Root” goes through the
whole tree, but “Root to leaves” starts in the root, goes through a subtree 77, and terminates
on a coarse level with the mesh size H (marked with the red horizontal line). After that the
mean value inside of each coarse cell (of size H x H) is computed.

Example 5.3 To compute the FE solution up(X;) in a fized nodal point x; € Q, i.e., to
define how the solution uy(x;) depends on the given FE Dirichlet data g, € R'OY and the
FE right-hand side f, € RV,

5.1 Computing the mean value in all subdomains w € T,

Let w be the father node, w; the left son, and wy the right son. Then w = w Uws, wiNws # I,
with w, wy, wy € T7;. To simplify the notation, we will write d; := d,, and (f;, g;) instead of
(fwis Gw;), @ = 1,2 (see also Fig. 2.3). Recall the following notation (see (Eq. 3.16), (Eq. 3.17)):

[''=0w, T,i1=0wNuw, Ty 2:=0wNuw,y, then
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dy = (f1,01) = (f1791,r791,w), dy = (fa,92) = <f27g2,F792,’y)7 where (5.2)
gir = (91)|Fw,17 91y = (91)|w (5.3)

gor = (92)Irus 920 = (92)]5-
We consider a linear functional A\, with the following properties:
Mo(dw) = (A, 90) + (AL, foo), (5.4)

Au(di) = c1d; (duy) + c2A0,(doy ), (5.5)

where A : RIO) s R M\ - RI@ 5 R, ¢, ¢y two constants, and (-, -) the scalar product of
two vectors.

Definition 5.1 Let w; C w, )\fjl :RI@) 5 R. a) We define the following extension of )\f)l

A9, = (Az{u)i fOTiE](wl),
()i = 0 forie I(w\ w),

where (M, |¥) : RI®) — R. b) The extension of the functional Mr :RITw1) 5 R s defined

as
()\9 |F) - ()‘51],1‘)2' f07’i € I<Fw,1)a
Lr 0 forie I(T'\T,,),
where (A p|") : RTD — R.
Definition 5.2 Using (Eq. 5.8), we obtain the following decompositions
AN, = (M A and N, = ()\gr,)\g ), where - : (RITe) 5 RN RIO) 5 R,
Xp WWQ%RV 16) 5 R.

Lemma 5.4 Let \,(d,) satisfy (Eq. 5.4) and (Eq. 5.5) with w = wy Uwy. Let N9, N

Vi
wi’ wo w1
and N, be the vectors for the representation of the functionals A, (d.,) and Ay, (d.,). Then
the vectors N, N9 for the representation

Ao(do) = M, £0) + (N, g.), where f, € R g, € RIO) (5.6)

are given by

M= M+ (@),
A= AL+ (@)1,
M= Nl ¥+ e |2, (5.7)
M= N ol el (5.8)
N = 01)\1,7 + 62)\2,7. (5.9)
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Proof: Let d,,, d,, be the given data and A,, and \,, be the given functionals. Then the
functional A\, satisfies

(Egq- 5.5)

)\w(dw) = Cl)\wl (dm) + 02)‘0-)2 (dwz)

PP e (M, 1)+ O2,.90) + ea (M, f) + (A, 92)-

Using the decomposition (Eq. 5.2), we obtain

Ao(du) = c1(ML,, f1) + e2(AL,, fo) + ea((Mp, g1r) + (M5, 914)) (5.10)
+ (A g2r) + (A2, 924))- (5.11)
The consistency of the solution implies g;, = g2, =: g5. From the Definition 5.1 follows

Ao f1) = L9 L), (M f2) = LI ),
()‘?,F’gl,F) = ()‘gll,l“|r7gw)v ()\%1392,1“) = (Ag,I‘|F>gc~J)'
Then, we substitute the last expressions in (Eq. 5.10) to obtain
Ao(do) = (a1, [ + ML, 17 fo) + (X pl" + X", g0) (5.12)

+(eM, + 2N, 9y)-
Fron i s o b e el 8 T e e
gy = Bu(d) = B8 g + B £, (5.13)
Substituting ¢, from (Eq. 5.13) in (Eq. 5.12), we obtain
Aoldo) = AL L) + (A%, 00) + (A, @90 + DL L)
= (N + ()TN, fu) + (A4 + (@)X, gu.).

We define A/ := M + (®/)" A9 and \g, := N 4 (®9)7A¢ and obtain

Ao(dy,) = ()\f),fw) + (A, gu,)- (5.14)
|
Example 5.5 Lemma 5.4 with ¢, = |i’:j||, cy = % can be used to compute the mean values

in all subdomains w € T, .

5.2 Algorithms for computing the mean values

Below we describe two algorithms which are required for computing the mean value in all
subdomains w € T, . These algorithms compute vectors A and A/ respectively.

The initialisation is A, := (3,4, %), A] := (0,0,0) for all leaves of T7,. Let us denote
A =), Af := A9, The algorithms for building A9, and A for all w € T, which have

internal nodes, are the following:
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Algorithm 5.1  (Building of \9)
build_functional_g(\{, \5, ®9...)
begin

allocate memory for )\ ;
for allic I(T',,) do
N i+ = a \{[d];
for alli e I(T', ) do
N i)+ = e M[i];
for allic I(vy) do
2li] = el N[l + A3l
= (q)g) 2
for all i € I(0w) do
N [i] == N [i] + v[i];
return \J;
end;
Let Al := M\, AL ==\,

wi?

Algorithm 5.2 (Building of \/)
build_functional_f(\, \}, 1 ..
begin

for alli € I(w\7) do
M)+ = e\ [i];
for alli € I(wy\7) do
AL+ = e\ [i);
for allic I(vy) do
2[i] = el M [i] + e M [i);
(@) 2
for alli € I(w) d
M = M][i] +v [l]
return )\f:,
end;

Remark 5.1 a) If only the functionals \,, w € T7,, are of interest, the maps ®,, do not
need to be stored.

b) For functionals with local support in some wy € T, , it suffices that ®, is given for all
w € Tr, with w D wy, while \,,(dw,) is associated with wy € T7,. The computation of
A(up) = A(d) starts with the recursive evaluation of ®,, for all w D wy. Then the data d,
are available and M\, can be applied.

5.3 Solution in a subdomain

Suppose that the solution is only required in a small subdomain w € T7, (Fig. 5.2, left).
For this purpose, the HDD method requires less computational resources as usual. The
algorithm “Leaves to Root” is performed completely, but the algorithm “Root to Leaves”
computes the solution only on the internal boundaries (dotted lines) which are necessary for
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computing the solution in w. The storage requirements are also significantly reduced. We
only store the mappings ®/ and ®¢ for all w € T, that belong to the path from the root
of Tr, to w. The storage requirement is O(nylogny,), where n;, is the number of degrees
of freedom in €. The computational cost of the “Root to Leaves” is O(ny, log® ny). If the
right-hand side is smooth, it can be discretized (defined) only on a coarse mesh Ty (see
Fig. 5.2, right). About the interpolation and restriction operators read in [31, 22, 7, 21].

h

- <

||||||||||||||||
HI. L L o
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h hiaah h

RN AR AR TR

Figure 5.2: (left) The solution in a subdomain w € T7, is required. HDD computes subse-
quently the solution only on the dotted lines and then only in w; (right) The coarse H and
the fine h scales.

6 Numerics

In [31, 7, 22], the HDD method was compared with the preconditioned conjugate gradient
(PCG) method, with the hierarchical (#)- Cholesky method and the direct full H-matrix
inverse. A cheap H-matrix approximation of the inverse, computed from the H-Cholesky
factors, was used as a preconditioner.

Some experiments were performed with two meshes - a coarse for the right-hand side and
a fine for the diffusion coefficient. Technical details and implementation of the HDD method
can be found in [32, 7, 31]. The data misfit and the likelihood function in the Bayesian-like
approach were computed in [58, 56, 45, 46, 53, 57]. In the following numerical experiments
we compare the computational time and memory requirement of HDD with the times and
memory requirements of the H-matrix inverse and the H-Cholesky factorisation.

We consider the problem as in Eq. 1.1 with fixed Z. The computational domain is a
unit square 2 = [0, 1]2, the diffusion coefficient is k(x,y) = 1 + 0.5 - sin(50z) sin(50y). Note,
that HDD does not require an axes parallel triangulation. All numerical experiments were
performed on a usual notebook. Figure 6.1 demonstrates the dependence of computing
times (left) and memory requirements (right) on the H-matrix accuracy (see the adaptive
rank arithmetic in [21]). One can see that the computational time and storage requirement
of the H-Cholesky factorisation are the best. The HDD method shows a slightly larger time
and storage than the H-Cholesky factorisation (due to some overhead) and is better than
the direct ‘H-matrix inverse. Note that HDD computes more details about the operator and
the solution than the H-Cholesky factorisation.

If the right-hand side is smooth, we can discretise it on a mesh with the mesh size, for
instance, H = 2h. As result, the matrices ®9 and U9 will stay the same, but ®/ and ¥/ will
be smaller. See more for the restriction and prolongation operators in [31].
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Figure 6.1: Comparison of the HDD, H-Cholesky factorisation, and H-matrix inverse. (left)
Dependence of the computing time (in sec.) and (right) memory requirements (in MB) on
the H-matrix accuracy, n = 1292 dofs.

In the next example we consider again the problem as in Eq. 1.1. The parameter Z is
fixed and k is a jumping coefficient as in Fig. 6.2 with & = 107® and 8 = 1. Such problems
appear in the material sciences and in medicine (the, so-called, skin problem).

0 0.25 0.75 1

Figure 6.2: Model domain © = [0,1]2. The diffusion coefficient is very small (o« = 107°)
inside the grey areas and large in white subdomains (5 = 1).

Figure 6.3 compares the computational times of HDD and PCG methods. The PCG

time includes the time needed for: (a) computing the stiffness matrix A in the H-matrix
format; (b) computing the H-Cholesky decomposition of A (used as a preconditioner); (c)
PCG iterations.
For example, for n = 66049, the PCG time is 53 = 38.2 + 11.4 + 3.4 (sec.). Note that for
n =~ 263000 dofs there is not enough memory to compute the stiffness matrix A and perform
its H-Cholesky factorization. The advantage of the HDD method is that it does not require
an agglomeration of the whole stiffness matrix. The memory is dynamically allocated and
deallocated.

In the next example we take a coarse mesh for the right-hand side with the grid step size
H = 2h. n Figure 6.4(left) we visualise the difference ||, — || in the Frobenius and infinity
norms. Here @ is the HDD solution and .4 the solution obtained by the PCG method with
the H-Cholesky preconditioner. The corresponding HDD and PCG times are compared in
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Figure 6.3: HDD and PCG computing times vs. n. The accuracy in each H-matrix subblock
is 107®, the PCG stopping criteria ., = 1078, £ =2 as in Sec. 3.5.

Fig. 6.4(right). The accuracy inside of each H-matrix subblock is 107°. Note, that PCG
requires too much memory for n = 513% dofs and we were not able to compute .
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Figure 6.4: Dependence of the absolute errors on the number of dofs, f = 1, a(z,y) =
1/(1.0001 + sin(500z) sin(500y)). H-matrix accuracy ¢ = 107°, £ = 2. (left) errors (left)
dependence of the errors ||, — || and ||t — @||o on n; (right) computing times PCG
and HDD vs. n.

Figure 6.5 shows the total storage requirement for all matrices ®J and ®/ w € Tr.. We
see an almost linear dependence on n.
7 Conclusion and discussion

We suggested another useful application of the already known HDD method. Namely, HDD
speeds up computations of the data misfit (mismatch) in the likelihood function in the
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Figure 6.5: Dependence of the total memory requirement for all ®J and ®/ on n, the maximal
H-matrix rank is k = 7.

Bayesian approach. HDD can also be used when the simulated data and measurement data
are compared (e.g., in regression, parameter inference, data assimilation, Kalman filter, and
Bayesian update problems). HDD uses the fact that often only a functional of the solution
or a small part of it is observed or measured. Therefore, HDD computes only a part of the
inverse operator and only a part of the solution. Optimally, HDD computes only what is
needed, i.e., what is measured.

As such the computational accuracy is as usual (for instance, as in the standard FEM
method), but the computational recourses (FLOPS and storage) are smaller. The HDD
method is based on the hierarchical (recursive) domain decomposition, FEM, and the Schur
complement methods. If the forward operator and the right-hand side can be discretized on
different meshes, which is often the case in multiscale problems, the HDD method can get
significant advantages. The computational resources will be reduced even more.

Additionally, to speed up the Schur complement computations, we approximate all inter-
mediate and auxiliary matrices in the H-matrix format. We then achieve the computational
cost O(nlog® n) and the storage O(nlog”n). There is some overhead due to the construction
of the hierarchical decomposition tree T7; and permutation of indices.

To apply the HDD method, the user should have a possibility to 1) modify the assembling
procedure of the stiffness matrix; 2) build the hierarchical domain decomposition tree.

We note that the interface size in a d-dimensional problem is O(n?"!). So in a 2D case,
the interface is O(n), whereas, in 3D problems, the interface is O(n?). This fact results
in increasing matrix sizes. The structure and the cost of the H-matrix arithmetics become
more expensive too.

Numerical tests showed that HDD requires more computational resources than PCG with
the H-Cholesky preconditioner, and less resources than the direct H-matrix inverse. But
the HDD method computes more details than PCG. It computes the solution operators 9
and ®f on each level of the hierarchical domain decomposition tree. These can be used later
to compute a functional of the solution, or solution on different scales, in a sub-domain, in
a point or on an interface.
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The HDD method can be coupled with more uncertainty quantification and parameter
inference techniques. Potentially interesting could be the coupling with the Multi-Level
Monte Carlo method.
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A Appendix A

Example A.1 Figure A.1 shows an example of building (V9)* € R5'>*512 from (W9 )M €
RIDIE gnd (W9 )" € RV Let [ := I(0wU~y). The construction is performed in three
steps:

1) embed matriz (V9 )" into a larger matric H' = (U9 )™ and (09 )" into H" :=
(g, 4141,

2) since H' and H" have the same H-matriz format, compute the sum H = H' & H",

3) compute the Schur complement and eliminate the block (2,2) of size I(y) x I(7).

Note that H', H", H have the same block structures. The symmetries of (W9 )", (B9, )"
and (V)" are used. See more details and a similar construction of (W1)™ in [31].

(Lg )| (U8)¥ € H(Tyur, k)

iBl

19 6

(v, )" ﬂj{

20

Figure A.1: Building (09)* € R*2*5!2 from (09 )* and (¥9,)" € R¥3¥ The interme-
diate matrix H € R%9%639 i3 an auxiliary matrix. The maximal size of the diagonal blocks
is 32 x 32. The red (dark) blocks indicate dense matrices. The green (grey) blocks indicate
low-rank matrices. The steps inside these blocks show an exponential decay of the corre-
sponding singular values. The white blocks indicate zero blocks. For the acceleration of
building the symmetry of U9 is used.



