A CONCISE PROOF OF THE RIEMANN HYPOTHESIS BASED ON HADAMARD PRODUCT

FAYEZ A. ALHARGAN

Abstract. A concise proof of the Riemann Hypothesis is presented by clarifying the Hadamard product expansion over the zeta zeros, demonstrating that the Riemann Hypothesis is true.

Key words. the Riemann Hypothesis, the functional equation, the Riemann zeta function, Hadamard Product

AMS subject classifications. 11M26

1. Introduction. In his landmark paper in 1859, Bernhard Riemann [1] hypothesized that the non-trivial zeros of the Riemann zeta function \(\zeta(s) \) all have a real part equal to \(\frac{1}{2} \). Major progress towards proving the Riemann hypothesis was made by Jacques Hadamard in 1893 [2], when he showed that the Riemann zeta function \(\zeta(s) \) can be expressed as an infinite product expansion over the non-trivial zeros of the zeta function. In 1896 [3], he also proved that there are no zeros on the line \(\Re(s) = 1 \).

The Riemann Hypothesis is the eighth problem in David Hilbert’s list of 23 unsolved problems published in 1900 [4]. There has been tremendous work on the subject since then, which has been illustrated by Titchmarsh (1930) [5], Edwards (1975) [6], Ivic (1985) [7], and Karatsuba (1992) [8]. It is still regarded as one of the most difficult unsolved problems and has been named the second most important problem in the list of the Clay Mathematics Institute Millennium Prize Problems (2000), as its proof would shed light on many of the mysteries surrounding the distribution of prime numbers [9, 10].

The Riemann zeta function is a function of the complex variable \(s \), defined in the half-plane \(\Re(s) > 1 \) by the absolutely convergent series

\[
\zeta(s) := \sum_{n=1}^{\infty} \frac{1}{n^s}
\]

and in the whole complex plane by analytic continuation [9].

The Riemann hypothesis is concerned with the locations of the non-trivial zeros of \(\zeta(s) \), and states that: the non-trivial zeros of \(\zeta(s) \) have a real part equal to \(\frac{1}{2} \) [9].

In this article, the truth of the Riemann Hypothesis is demonstrated by employing the Hadamard product of the zeta function and clarifying the principle zeros for the product expansion. The process is outlined in a less abstract form, to be accessible for a wider audience.

The paper is organized as follows. The principle zeros and poles are defined in section 2, the relations between sums and products are shown in section 3, the Proof of the Riemann Hypothesis is demonstrated in section 4, and the conclusions follow in section 5.

2. Principle Zeros of the Zeta Function. For the case of the Riemann zeta function \(\zeta(s) \), it has been shown, by Riemann [1], that the zeta function satisfies the

†PSDSARC, Riyadh, Saudi Arabia (Fayez.Alhargan@psdsarc.org.sa).
shown that there are infinitely many non-trivial zeros interior of the critical strip \(0 < \Re(s) < 1\), it follows that all non-trivial zeros must lie in the

\[f \]

Vallée-Poussin [11] independently proved that there are no zeros on the line \(s = 1 - i\tau\) for all the known zeros; thus, the product or sum over the zeros (1 + \(\rho\)) is the same as the product or sum over \(\overline{s}_m\) for the first ten trillion known zeros [13].

3. Sums and Products for Zeta Function. In this section, the sum over the principle poles of a reciprocal function of zeta is developed based on Mittag-Leffler’s theorem, in order to showcase the linkage to the Hadamard product over the principle zeros of zeta, by considering a normalized function of \(\zeta(s)\) given by

\[f(s) = 2\zeta(s) = \zeta(s)(s - 1)s\Gamma\left(\frac{s}{2}\right) = \zeta(s)(s - 1)s\Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}}, \]

which is an entire function with \(f(s) = f(1 - s)\), \(f(1) = f(0) = 1\), and which has principle zeros only at \(s = s_m\) and \(s = \overline{s}_m\). Thus, the \(\zeta(s)\) infinite product is.
understood to be taken in an order which pairs each root s_m with the corresponding conjugate root \bar{s}_m. Now, taking the log, we have

\begin{equation}
\ln f(s) = \ln 2 + \ln \xi(s) = \ln \zeta(s) + \ln(s-1) + \ln s + \ln \Gamma\left(\frac{s}{2}\right) - \frac{s}{2} \ln \pi.
\end{equation}

Differentiating, we have

\begin{equation}
\frac{f'(s)}{f(s)} = \frac{\zeta'(s)}{\zeta(s)} = \frac{\zeta'(s)}{\zeta(s)} + \frac{1}{s-1} + \frac{1}{s} + \frac{\Gamma'(s)}{\Gamma(s)} - \frac{1}{2} \ln \pi,
\end{equation}

which gives

\begin{equation}
\frac{f'(0)}{f(0)} = \ln 2\pi - 1 - \frac{1}{2}\gamma - \frac{1}{2} \ln \pi.
\end{equation}

Note that $\frac{f'(s)}{f(s)}$ has simple poles at the same zeros of $\xi(s)$ (i.e., the poles are at $s = s_m$ and $s = \bar{s}_m$).

Now, using Mittag-Leffler’s theorem for the sum over the poles of the function $\frac{f'(s)}{f(s)}$, we obtain

\begin{equation}
\frac{\zeta'(s)}{\zeta(s)} + \frac{1}{s-1} + \frac{1}{s} + \frac{\Gamma'(s)}{\Gamma(s)} = \ln 2\pi - 1 - \frac{1}{2}\gamma
\end{equation}

\begin{equation}
+ \sum_{m=1}^{\infty} \frac{1}{s-s_m} + \frac{1}{s_m} + \frac{1}{s-s_m} + \frac{1}{\bar{s}_m}.
\end{equation}

Integrating Equation (3.5) and taking the antilog, we have

\begin{equation}
\zeta(s)(s-1)s\Gamma\left(\frac{s}{2}\right) = e^{\ln 2\pi - 1 - \frac{1}{2}\gamma} \prod_{m=1}^{\infty} \left(1 - \frac{s}{s_m}\right) e^{\frac{s}{s_m}} \left(1 - \frac{s}{\bar{s}_m}\right) e^{\frac{s}{\bar{s}_m}},
\end{equation}

which was proved by Hadamard [2]. Note the $\frac{1}{2} \ln \pi$ term canceled out, as it appears on both sides of the equation.
Also, using Mittag-Leffler’s theorem for the following function

\[F(s) = \frac{f'(s)}{f(s)} s \implies F(0) = 0, \]

we have

\[\zeta'(s) + \frac{1}{(s-1)} + \frac{1}{s} + \frac{\Gamma'(s/2)}{\Gamma(s/2)} - \frac{1}{2} \ln \pi = \sum_{m=1}^{\infty} \frac{1}{s - s_m} + \frac{1}{(s - \overline{s}_m)}. \]

Integrating and taking the antilog, we have

\[\zeta(s)(s-1)\Gamma(s/2)\pi^{-s/2} = \prod_{m=1}^{\infty} \left(1 - \frac{s}{s_m}\right) \left(1 - \frac{s}{\overline{s}_m}\right); \]

that is,

\[2\xi(s) = \zeta(s)(s-1)\Gamma(s/2)\pi^{-s/2} = \prod_{m=1}^{\infty} \left(1 - \frac{s(2\sigma_m - s)}{s_m\overline{s}_m}\right), \]

which was given by Riemann [1], in a logarithmic form with minor difference from the modern definition of \(\xi(s) \). He set \(s = \frac{1}{2} + ti \) to obtain

\[\log \xi(t) = \sum \log \left(1 - \frac{tt}{\alpha\alpha}\right) + \log \xi(0); \]

that is,

\[\xi(t) = \xi(0) \prod \left(1 - \frac{tt}{\alpha\alpha}\right). \]

Theorem 4.1. The Riemann zeta function \(\zeta(s) \) has only two independent sets of principle zeros, \(M \) and \(S \). The set \(M \) of all principle trivial zeros of \(\zeta(s) \) lies on the real negative axis with imaginary part \(t = 0 \), whereas the set \(S \) of all principle non-trivial zeros of \(\zeta(s) \) lies on the imaginary line with real part \(\sigma = \frac{1}{2} \), as shown in Figure (2).

Proof. It has been shown, by Riemann [1], that the zeta function satisfies the following functional equation:

\[\zeta(s) = 2^s \pi^{s-1} \sin \left(\frac{\pi s}{2}\right) \Gamma(1-s)\zeta(1-s), \]

Now, if \(\zeta(s) = 0 \), then from Equation (4.1), we have

\[\sin \left(\frac{\pi s}{2}\right) \Gamma(1-s) = 0, \]

or

\[\zeta(s) = \zeta(1-s) = 0. \]
From Equation (4.2), we can obtain the set M of all trivial zeros of $\zeta(s)$ (i.e., $M = \{-2, -4, \ldots, -2m, \ldots\}$, where m is a positive integer) and, from Equation (4.3), we can obtain another independent set S of all non-trivial zeros of $\zeta(s)$, $S = \{s_1, s_2, \ldots, s_m, \ldots\}$, with $s_m = \sigma_m \pm it_m$, where $\frac{1}{2} \leq \sigma_m < 1$, t_m are real numbers, and i is the imaginary unit.

Now, by Equation (3.10), we have

$$2\xi(s) = \zeta(s)(s - 1)s\Gamma(\frac{s}{2})\pi^{-\frac{s}{2}} = \prod_{m=1}^{\infty} \left(1 - \frac{s(2\sigma_m - s)}{s_m s_m}\right),$$

and, considering the case of the limit when $s \to 1$, we have

$$\lim_{s \to 1}[\zeta(s)(s - 1)] \Gamma(\frac{1}{2})\pi^{-\frac{1}{2}} = \prod_{m=1}^{\infty} \left(1 - \frac{(2\sigma_m - 1)}{s_m s_m}\right).$$

It is well-known that

$$\lim_{s \to 1} \zeta(s)(s - 1) = 1 \text{ and } \Gamma(\frac{1}{2}) = \pi^{\frac{1}{2}}.$$

Therefore, Equation (4.5) becomes

$$1 = \prod_{m=1}^{\infty} \left(1 - \frac{(2\sigma_m - 1)}{s_m s_m}\right),$$

and since

$$\frac{1}{2} \leq \sigma_m < 1$$

for all the principle non-trivial zeros ($s_m = \sigma_m \pm it_m$) of $\zeta(s)$, it implies that

$$0 \leq (2\sigma_m - 1) < 1.$$

Therefore, Equation (4.6) is true only when $(2\sigma_m - 1) = 0$, which requires that $\sigma_m = \frac{1}{2}$ for all the non-trivial zeros of $\zeta(s)$. This concludes the proof of the Riemann Hypothesis that: the real part of every non-trivial zero of the Riemann zeta function is $\sigma_m = \frac{1}{2}$.\[\square\]
Also, the proof can be stated in a concise form as

\[(4.9) \quad \therefore \begin{array}{c} \zeta(s)(s-1)s\Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}} = \prod_{m=1}^{\infty} \left(1 - \frac{s\sigma_m - s}{s_m s_m}\right) \& \left\{ \frac{1}{2} \leq \sigma_m < 1 \right\}, \end{array} \]

\[
\therefore \begin{array}{c} \prod_{m=1}^{\infty} \left(1 - \frac{s\sigma_m - 1}{s_m s_m}\right) \implies (2\sigma_m - 1) = 0 \implies \sigma_m = \frac{1}{2}. \end{array} \]

To validate the result, with \(\sigma_m = \frac{1}{2}\), Equation (3.10) can be restated as

\[(4.10) \quad 2\xi(s) = \zeta(s)(s-1)s\Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}} = \prod_{m=1}^{\infty} \left(1 - \frac{s(1-s)}{s_m s_m}\right), \]

from which we see that the right hand side of Equation (4.10) is unchanged when \(s\) is replaced by \((1 - s)\), obtaining the expressions for \(\zeta(1-s)\) and \(\xi(1-s)\) as

\[(4.11) \quad 2\xi(1-s) = \zeta(1-s)s(s-1)\Gamma\left(\frac{1-s}{2}\right)\pi^{-\frac{1-s}{2}} = \prod_{m=1}^{\infty} \left(1 - \frac{s(1-s)}{s_m s_m}\right). \]

Therefore, Equations (4.10) and (4.11) are equal, as validated by the well-known \(\xi(s)\) functional equation, given by

\[(4.12) \quad \xi(s) = \xi(1-s). \]

If any zero of \(\zeta(s_m)\) has \(\sigma_m \neq \frac{1}{2}\) in Equation (4.4), it implies that \(\xi(s) \neq \xi(1-s)\), which would contradict Equation (4.12). Therefore, all \(\sigma_m\) must be equal to \(\frac{1}{2}\). From this, we can hypothesize that the product form of the \(\xi(s)\) in Equation (3.11) developed by Riemann [1] was very likely to have been the source of inspiration for the Riemann Hypothesis.

Now, as a consequence of the proof of Riemann Hypothesis, combining Equation (2.3) and Equation (4.10), to obtain a relation between all non-trivial zeros of the zeta function and all prime numbers as

\[(4.13) \quad (s - 1)s\Gamma\left(\frac{s}{2}\right)\pi^{-\frac{s}{2}} = \prod_{m=1}^{\infty} \left(1 - \frac{s(1-s)}{s_m s_m}\right) \left(1 - \frac{1}{p_m^{s_m}}\right), \]

in particular for \(s = 2\), we have

\[(4.14) \quad \frac{2}{\pi} = \prod_{m=1}^{\infty} \left(1 + \frac{2}{s_m s_m}\right) \left(1 - \frac{1}{p_m^{s_m}}\right). \]

5. Conclusions. Proof of the Riemann Hypothesis would unravel many of the mysteries surrounding the distribution of prime numbers, which are at the heart of all encryption systems. In addition, proof of the Riemann Hypothesis would, as a consequence, prove many of the propositions known to be true under the Riemann Hypothesis.

The proof demonstrated here was based on a basic insight into the product expansion of the Riemann zeta function, as available from Hadamard’s publication in 1893 and Riemann’s publication in 1859, as well as clarifying that the product expansion is only over the principle non-trivial zeros of zeta. Sometimes, the truth is hidden in plain sight.
Acknowledgements. I would like to thank Dr. Sami M. Alhumaidi director general of PSDSARC, Prof. Mohammed I. Alsuwaiyel, and Dr. Fawzi A. Al-thukair for their feedback on the first draft and their encouragement.

REFERENCES

