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Abstract: Knowledge about the formation energies of compounds is essential to derive phase 

diagrams of multi-component phases with respect to elemental reservoirs. The determination of 

formation energies using common (semi-)local exchange-correlation approximations of density 

functional theory (DFT) exhibits well-known systematic errors if applied to oxide compounds 

containing transition metal elements. In this work, we generalize, reevaluate and discuss a set of 

approaches proposed and widely applied in the literature to correct for errors arising from the over-

binding of the O2 molecule and from correlation effects of electrons in localized transition-metal 

orbitals. The DFT+U method is exemplarily applied to iron oxide compounds, and a procedure is 

presented to obtain U values, which lead to formation energies and electronic band gaps comparable 

to experimental values. Using such corrected formation energies, we derive the phase diagrams for 

LaFeO3, Li5FeO4 and NaFeO2, which are promising materials for energy conversion and storage 

devices. A scheme is presented to transform the variables of the phase diagrams from the chemical 

potentials of elemental phases to those of precursor compounds of a solid-state reaction, which 

represents the experimental synthesis process more appropriately. The discussed workflow of 

methods can directly be applied to other transition metal oxides. 

Keywords: transition metal oxides; density functional theory; DFT+U; materials modelling; phase 

diagrams 

 

1. Introduction 

Due to their exceptional electronic, magnetic, or optical properties [1], transition metal oxide 

(TMO) compounds are key components of many modern technologies. Next to many other 

applications, TMOs are utilized as active anode and cathode materials in Li- and Na-ion batteries [2–

5], and as electrodes in solid-oxide fuel and electrolyser cells [6–8] (SOFC and SOEC), where they 

enable the catalytic reactions with oxygen. The decisive functional parameters of a TMO, such as the 

catalytic activity and the electronic conductivity in the case of a solid-oxide cell electrode, can be 

tuned by varying the stoichiometry, e.g. by external doping or the incorporation of intrinsic lattice 

defects [9–11]. A phase diagram with respect to elemental reservoirs determines the ranges of 

experimental synthesis conditions within which the desired compound can be stabilized, and within 

which its composition can be varied without unwanted competing phases being formed. 

In order to derive such a phase diagram theoretically, formation energies need to be known of 

all compound phases, which consist of a subset of the involved elements. Highly accurate formation 

energies can in principle be calculated using methods of density functional theory (DFT) [12]. 

However, the determination of formation energies of TMOs using common (semi-)local exchange-

correlation approximations of DFT (namely local-density or generalized-gradient approximations, 

LDA or GGA) raises some fundamental issues leading to results which systematically deviate from 

experimental values [13–16]: 
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• The molecular state is the natural reference phase for oxygen. The well-known over-binding of 

the O2 molecule in LDA and GGA [17] introduces an error in the formation energies of oxides. A 

correction scheme was proposed by Wang et al. [13], which builds on a comparison between 

theoretical and experimental values of formation energies for a series of non-TM oxide 

compounds. In the Materials Project (MP) database [18], for example, this scheme is applied and 

denoted by the term anion corrections. 

• The uncompensated electronic self-interaction imposed by approximate exchange-correlation 

functionals immanent in DFT methods, especially in the case of TMOs, where strongly correlated 

TM-d-electrons form the valence band, leads to incorrect total energies and underestimated band 

gaps. There are different approaches to cope with this inaccuracy, such as the use of hybrid 

functionals [19], a self-interaction correction (SIC) [20], or a Hubbard-U correction which acts on 

the d-electrons of the TM as an effective potential (DFT+U) [21]. 

• In case that the DFT+U method is used to obtain a corrected total energy of a TMO, the formation 

energy contains an error if the total energies of the elemental reference phases were calculated by 

LDA or GGA, as it is generally done for the elemental phases and for compounds not containing 

the TM elements. The error can be systematically corrected applying a method worked out by 

Jain et al. [14], where the total energies from DFT+U calculations are shifted by a constant amount 

per TM atom. The approach is used in the MP database [18], denoted by the term advanced 

corrections, to obtain formation energies of TM containing compounds. 

This paper aims at providing a complete picture of the derivation of formation energies and phase 

diagrams of TMOs based on DFT+U and the proposed correction schemes. After a description of the 

employed methods in Section 2, we first revisit the correction of the oxygen reference energy (Section 

3.1). The approach described in the literature [13] is extended by taking into account a larger set of 

non-TM oxides from the alkali, alkaline earth, boron, and carbon groups of the periodic table of 

elements in their ground state structures. The uncertainty of the resulting correction value is 

quantified and taken into account in the following calculations. Explicitly for Fe-containing oxides, 

we review in Section 3.2 the commonly used scheme [14] to correct for the error arising when 

comparing total energies from DFT+U and DFT calculations. The underlying assumption, that the 

deviation between calculated and experimentally determined formation energies linearly approaches 

zero with decreasing TM content, is checked by applying a general linear function and including 

ternary compounds with lower TM content in the procedure. We performed the analysis for different 

U values acting on the 3d orbitals at Fe sites, which directly led us to a way of finding an optimal U 

value by minimizing the total mean squared deviation between experimental and calculated 

formation energies for the considered compounds (Section 3.3). The widely used UFe value of 

approximately 4 eV [13, 22–26] is confirmed, and it provides reasonable band gap predictions for the 

considered Fe oxides (Section 3.4). 

Using the corrected formation energies, we determined the phase diagrams for LaFeO3, NaFeO2, 

and Li5FeO4, which are technologically promising as materials for electrodes in SOFC/SOEC devices 

[10, 11], as positive electrodes in Na-ion batteries [27,28], and as multi redox active cathodes in Li-ion 

batteries [29], respectively. In the cited literature, these compounds are described to be synthesized 

by solid-state reaction routes. This is a well-established technique to process ternary and higher-

component oxide compounds, where oxidic precursor phases are mechanically mixed and exposed 

to an oxygen atmosphere of variable temperature and pressure [29]. In order to reflect this process in 

phase diagrams, we present these in Section 3.5 not in the conventional way with respect to elemental 

reservoir energies of the non-gaseous components, but with respect to the chemical potentials of 

oxidic solid precursor compounds and molecular oxygen gas. 

The appendix provides a table listing experimental reference values and calculated formation 

energies (Appendix A), a heuristic explanation of the dependence of oxidation energies on U 

(Appendix B), a formal comparison of the method for determining an optimal U described in Section 

3.3 and the approach using oxidation energies described by Wang et al. [13] (Appendix C), and a 

detailed description of the transformation of variables in phase diagrams (Appendix D). 
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2. Methods 

2.1. DFT(+U) Calculations of Total Energies 

Total energies of elemental and compound phases were calculated using the method of density 

functional theory (DFT). The plane-wave-based DFT code VASP [30] was used for this purpose, with 

strict convergence criteria that ensure accurate results. A cutoff energy of 600 eV was set for the plane-

wave basis functions describing the valence electrons. The partial occupancies were set according to 

the linear tetrahedron method with Blöchl corrections [31], except for the O2 molecule, for which 

Gaussian smearing was applied with a width of 0.2 eV. The interaction with the core electrons was 

modeled by projector-augmented-waves (PAW) pseudopotentials [32]. The generalized gradient 

approximation (GGA) of Perdew et al. [33] was chosen for the exchange-correlation (xc) functional. 

Electronic self-consistency loops were stopped when the energy difference between two steps was 

less than 10–5 eV, and the structures were relaxed until the minimal force component acting on an 

atom was below 10–4 eV/Å. Brillouin zone integrations were performed on grids with about 403/V k-

points, with V denoting the initial supercell volume in Å3. Cell volumes were optimized by total 

energy minimization as implemented in VASP. All calculations were performed for cells with 

periodic boundary conditions. For the calculations of compounds containing Fe, the Hubbard-U 

correction of Dudarev et al. [34] was applied to the Fe 3d orbitals in order to account for the artificial 

self-interaction and, concomitantly, the too weak localization of the strongly correlated 3d electrons. 

Spin-polarization was taken into account, and for the following phases, the initial magnetic moments 

were set up according to the known ground-state spin configurations: Fe (ferromagnetic [FM]), FeO 

(antiferromagnetic [AFM]), Fe2O3 (AFM), Fe3O4 (ferrimagnetic), and LaFeO3 (AFM). All other 

considered iron compounds were set up in FM spin configurations. 

2.2. Correction of the O2 Over-Binding 

Equation Error! Reference source not found. defines the formation energy of one formula unit of 

a binary oxide compound A𝑙O𝑛 with respect to the elemental phases of a non-oxygen component A 

and oxygen: 

𝐸form(A𝑙O𝑛) = 𝐸total(A𝑙O𝑛) − [𝑙𝜇(0)(A) + 𝑛𝜇(0)(O)]. (1) 

𝐸total denotes the total energy per formula unit of the compound. The total energies per atom of the 

elements in their ground states are expressed by the chemical potentials 𝜇(0) . Equation (1) can 

straightforwardly be adapted to systems containing multiple non-oxygen components, e.g. A𝑙A𝑙′
′ . 

The natural reference state of oxygen is the O2 molecule, with the energy 𝜇(0)(O) = 0.5𝜇(0)(O2). If the 

energy of an isolated O atom is set to zero, 𝜇(0)(O2) is the binding energy of the molecule. Its 

absolute value is known to be overestimated in DFT using LDA or GGA, corresponding to a too 

strong binding [17]. Wang et al. [13] proposed a method to correct this error by comparing calculated 

with experimentally determined values of formation energies for a series of oxides: Li2O and Na2O, 

MgO and CaO, Al2O3, and SiO2. They chose compounds without transition metals to avoid 

interference between the errors originating from the over-binding of O2 and from combining DFT 

with DFT+U results. The method is reevaluated and discussed in this work (Section 3.1) for a larger 

set of oxides from the non-transition metals in the main groups I, II, III, and IV of the periodic table 

of elements. 

2.3. Energy Correction for Combined DFT and DFT+U Results 

In addition to the O2 over-binding error, a systematic inaccuracy is introduced if one calculates 

formation energies of oxide compounds containing a transition metal element  M , e.g. binary 

systems  M𝑚O𝑛 or general compounds  A𝑙M𝑚O𝑛 , by comparing the total energies of the oxide 

compounds calculated by DFT+U to the total energies of the elemental phases, which are generally 

determined by DFT. The application of U on the 3d orbitals of the transition-metal atoms M in the 

compound shifts the reference energy. Hence the results of calculations involving M obtained by the 

two different methods cannot directly be compared. As described by Jain et al. [14], the value of this 
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error can again be systematically estimated by comparing calculated to experimental formation 

energy values for a set of compounds  {A𝑙M𝑚O𝑛} . The concept behind this approach is that the 

formation energy differences per atom, 

∆𝑒(A𝑙M𝑚O𝑛) ≔ [𝐸DFT/DFT+𝑈 
form (A𝑙M𝑚O𝑛) − 𝐸exp.

form(A𝑙M𝑚O𝑛)]/𝑁fu, (2) 

between the combined DFT and DFT+U results and the experimental values are expected to depend 

linearly on the fraction 𝑥M ≔ 𝑚/𝑁fu of the transition metal M in the formula unit, which contains a 

total number of 𝑁fu = 𝑙 + 𝑚 + 𝑛 atoms. 

For the case of iron, i.e. M = Fe, the binary oxide compounds FeO, Fe2O3, and Fe3O4 were taken 

into account in the original work [14] and their energies were calculated using a given, independently 

determined UFe value of 4 eV [13]. The data points ∆𝑒  were fitted by a line through the origin, 

∆𝑒fit,0(𝑥Fe) = 𝑚0 ∙ 𝑥Fe , justified by the argument that without any transition metal atoms in the 

compound, and considering an O2 over-binding correction as described in Section 2.2, there should be 

zero deviation between calculated and experimental results. This opens up the possibility to correct the 

DFT/DFT+U combination error for any iron containing oxide compound by using the so determined 

slope 𝑚0 of the best-fit line. 

In this work (Section 3.2), we compare this method to a more general approach, where the best-fit 

line is not forced through the origin, i.e. ∆𝑒fit(𝑥Fe) = 𝑚 ∙ 𝑥𝐹𝑒 + 𝑐. It is shown that the line approximately 

approaches the origin if both binary iron oxides and representative ternary compounds are taken into 

account. In addition, we tested this method for five different values of UFe in order to discuss its 

generality and applicability. A U value is derived, for which the corrected values are on average as 

closest as possible to the experimental results (Section 3.3). The oxygen correction derived in Section 3.1 

was applied and the effect of its uncertainty on the DFT/DFT+U correction is discussed. 

2.4. Derivation of Phase Diagrams 

The synthesis process of a material can be imagined as an exchange of elemental components 

and precursor compounds between reservoirs and the forming phase. Assuming thermodynamic 

equilibrium, the total energy of a solid phase, say A𝑙M𝑚O𝑛, can be expressed as the stoichiometric 

sum of the reservoir energies per atom, namely their chemical potentials 𝜇. Using Equation (1), this 

leads in the case of elemental reservoirs to a formation energy 

𝐸form(A𝑙M𝑚O𝑛) = 𝑙∆𝜇A + 𝑚∆𝜇M + 𝑛∆𝜇O. (3) 

Here, ∆𝜇𝑖 ≔ 𝜇𝑖 − 𝜇𝑖
(0)

, i.e. the chemical potentials are referenced to the energies of the elemental 

ground state phases. This formulation allows to relate the theoretical definition to experimental 

synthesis conditions, which can be described as “rich” in a component X, if Δ𝜇X is close to zero, and 

as “poor” in X, if Δ𝜇X has a large negative value. In the X-rich case (Δ𝜇X = 0) the elemental phase X 

forms in its ground state with energy 𝜇X
(0)

, imposing the constraints Δ𝜇X < 0  on the chemical 

potentials of all involved elements for the formation of a single compound phase. 

Analogously, to prevent the formation of competing, unwanted phases from a subset of the 

provided components [e.g. A𝑙′O𝑛′], the stoichiometric sum of the corresponding chemical potentials 

must be lower than the formation energy of the wanted phase [e.g. 𝑙′∆𝜇A + 𝑛′∆𝜇O < 𝐸form(A𝑙′O𝑛′)]. 

The phase diagram of A𝑙M𝑚O𝑛 is then defined by the space of chemical potentials fulfilling Equation 

(3) together with every possible constraint of such a form. For a ternary compound, it can be 

visualized by a 2-dimensional graph with two of the chemical potentials as axes and the third one 

sketched by contour lines or a color coding. In such a plot, lines represent the constraints confining 

the stability region. 

The chemical potential of a gaseous phase, such as O2, can be formally expressed as a function 

of the temperature and pressure of the gas [35]. If the synthesis takes place under a gas atmosphere, 

this links the chemical potential directly to accessible experimental processing parameters. However, 

it is difficult to give a quantitative interpretation of the chemical potentials of substances not provided 

as a gas during the synthesis beyond statements of conditions being “rich” or “poor” in the respective 

component. 
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In order to reflect the solid-state reaction process in the phase diagram, where often precursor 

compounds are mechanically mixed and heat-treated rather than non-gaseous elemental phases, the 

axes need to be transformed to the chemical potentials of such compound phases and ∆𝜇O . The 

formalism is explicitly demonstrated in the appendix (Appendix D) for the example of the synthesis 

of LaFeO3 from La2O3 and Fe2O3. It can be adopted to describe various processing routes for arbitrary 

compounds. 

3. Results and Discussion 

3.1. O2 Correction 

Using the computational DFT settings described in Section 2.1, total energies were calculated for 

binary oxide compounds composed of elements from the main groups I to IV of the periodic table: 

A2O with A  = Li–Cs, AO with A  = Be–Ba, A2O3  with A  = Al–Tl, and AO2  with A  = Si–Pb. For 

those compounds, we chose the most stable structures according to experimental observations at 

ambient conditions (see Table A1 in Appendix A). We calculated the formation energies according to 

Equation (1) from the total energies of the corresponding elemental ground-state phases [the chemical 

potentials 𝜇(0)]. In Figure 1, the results are plotted against experimental values of the standard 

enthalpies of formation taken from References [36–39]. With the exception of Tl2O3 and PbO2, the 

points can be represented by a line 𝑦 = 𝑥 + 𝑏, which confirms the generality of the approach of Wang 

et al. [13], where 6 arbitrarily chosen compounds were taken into consideration for this analysis. 

Excluding Tl2O3 and PbO2, a fit of the data points lead to 𝑏 = 0.64 eV, which can be regarded as 

an average energy error per O atom in the simulations. The derived 𝑏 is close to the value given by 

Wang et al. of 0.68 eV/O [13], and to 0.7 eV/O, which is used in the (MP) database [18]. The correction 

can now be applied by adding 𝑏 to the chemical potential of oxygen: 

𝜇corrected
(0) (O) ≔  𝜇(0)(O) + 𝑏. (4) 

Performing the correction in this way reflects that the deviation of the formation energies from the 

experimental values has its origin in an inaccuracy in 𝜇(0)(O) rather than in 𝐸total(A𝑙O𝑛). However, 

the same results are obtained for subtracting the product 𝑛𝑏  from  𝐸total  and using the 

unchanged 𝜇(0)(O), as it is done in the MP approach (denoted there as “MP anion correction”). 

From our results, clear trends of the data points belonging to different groups of the periodic 

table cannot be identified, except for a clustering of group II compounds at the lower formation 

energy values (blue squares), and a slight but systematic offset of the group IV compounds from the 

best-fit line (yellow upward triangles). 

Such an offset was reported by Wang et al. for SiO2 [13], as well, and explained by the highly 

covalent character of the Si—O bond. As in the case of the O2 molecule, the energy of such a bond is 

to some extent affected by the over-binding tendency of oxygen, leading to partial error cancellation 

and a formation energy of the compound closer to the experimental value. As apparent from our 

data, this argument can be applied for GeO2 and SnO2, as well. Mixed bonding configurations in the 

oxides of the heavy elements Pb and Tl could be the reason for an even stronger error cancellation in 

case of the formation energies of PbO2 and Tl2O3. As an alternative or complementary approach to 

explain the deviation of these points from the best-fit line, we calculated the energies of the 

compounds PbO2 and Tl2O3 and reference phases Pb and Tl by taking into account spin-orbit 

coupling. This lead to energy shifts of the order of 0.1 eV/O in the direction of the best-fit line. 

The mean deviation of all considered data points from the best-fit line is ±0.09 eV/O and the 

cited values used by other research groups are within this range as well. This uncertainty in 𝑏 has to 

be taken into account in further calculations using the O2 correction value. Next to numerical 

fluctuations, which we reduced as much as possible by applying strict convergence criteria, 

uncertainties in the experimental data may contribute to the uncertainty of the correction value as 

well. 
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Figure 1. Comparison between formation energies derived experimentally (standard enthalpies of 

formation) and by DFT calculations for a series of non-transition-metal oxides. The continuous line 

is a linear fit through the data points (excluding Tl2O3 and PbO2): 𝑦 = 𝑥 + 𝑏, with 𝑏 = 0.64 eV/O. 

The dashed line is the identity line (𝑦 = 𝑥). 

Note that the measurements are carried out at ambient conditions, i.e. at room temperature and 

atmospheric pressure. On the other hand, the calculated formation energies are derived at zero 

temperature and pressure. An energy contribution ∆𝜇(O2; 𝑇, 𝑝) can in principle be added to the 

ground state chemical potential of oxygen in Equation (1). It can be formally derived from statistical 

mechanics considering the entropy effects from the different degrees of freedom of the O2 molecule 

[35]. However, such a correction must not be additionally included in the method described above, 

since it is already compensated by the shift 𝑏, which encompasses both, the O2 over-binding error 

inherent in DFT as well as energy contributions due to differing external conditions. Analogously, 

this is argumentation is valid for energy shifts ∆𝜇(𝐴; 𝑇, 𝑝)  of the non-oxygen components and 

∆𝐸total(A𝑙O𝑛; 𝑇, 𝑝) of the compound of interest, too. In order to quantify separately the effects from 

O2 over-binding and different external conditions, all of these contributions need to be explicitly 

calculated, e.g. by considering volume changes with temperature and applying an equation of state, 

or by performing thermodynamic integrations of heat capacities [15]. 

An alternative way to deal with the effect of O2 over-binding in DFT was recently reported by 

Gautam and Carter [40]. They applied the strongly constrained and appropriately normed (SCAN) 

approximation for the exchange-correlation functional, and obtained formation energies of main 

group oxide compounds, which agree quite well with experimental values without the need to 

perform any post-processing corrections. With our study though, we aimed to evaluate and discuss 

common, widely applied DFT methods, which are implemented in many of the available codes, and 

which for example were used to generate large sets of data as available in the MP database [18]. 

3.2. Energy Correction for Combined DFT and DFT+U Results 

The left panel of Figure 2 depicts the differences ∆𝑒 defined in Equation (2) between formation 

energies per atom derived by using results from DFT and DFT+U calculations and the corresponding 

experimental standard enthalpies of formation of the binary compounds FeO, Fe2O3, and Fe3O4, and 
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the ternary compounds Li5FeO4 and NaFeO2. The phases were set up in their experimentally observed 

ground-state structures (see Table A1 in Appendix A). 

 

Figure 2. Left panel: Comparison of calculated data for different U values with experimental data. 

Symbols: energy differences ∆𝑒 between formation energies calculated with DFT and DFT+U and 

experimental values for different compounds containing Fe and for different values of UFe. The 

error bars shown exemplarily for the values for UFe = 3.1 eV originate from the uncertainty in the 

oxygen correction value 𝑏. They are meant as consistent shifts of all data points between an upper 

and a lower limit on changing 𝑏  between −∆𝑏  and +∆𝑏 . Data points represented by filled 

symbols were fitted by linear functions ∆𝑒𝑈
fit(𝑥Fe) = 𝑚(𝑈)𝑥Fe + 𝑐(𝑈)  [solid lines] and 

∆𝑒𝑈
fit,0(𝑥Fe) = 𝑚0(𝑈)𝑥Fe  [dashed lines]. The open symbols for LaFeO3 were not included in the 

fitting. Upper right panel: Slopes 𝑚(𝑈) and 𝑚0(𝑈). The error bars result from the error bars of 

the data points in the graph in the left panel. Lower right panel: Square root of the mean square 

errors (MSE) between the fit function ∆𝑒𝑈
fit(𝑥Fe) [∆𝑒𝑈

fit,0(𝑥Fe)] and the data points ∆𝑒. The U values 

leading to the MSE minima are displayed by dashed vertical lines at 3.95 eV [∆𝑒𝑈
fit] and 4.20 eV 

[∆𝑒𝑈
fit,0], together with uncertainty bars resulting from the uncertainty of the oxygen correction. 

The values are plotted against 𝑥Fe , the fraction of Fe atoms in the compound. The ternary 

compounds were included to add more data points for lower 𝑥Fe values. They were chosen based 

on the availability of experimental data and such that they do not contain any further transition metal 

element. The data points ∆𝑒 were fitted by a straight line 

∆𝑒𝑈
fit(𝑥Fe) = 𝑚𝑈 ∙ 𝑥Fe + 𝑐𝑈 (5) 

for each of the five considered U values for Fe between 3.1 eV and 7.5 eV. A linear fit is well justified 

for most of the data points except for those belonging to Fe3O4 and FeO obtained with the higher U 

values. The lines ∆𝑒𝑈
fit(𝑥Fe) have slopes 𝑚𝑈  and 𝑦-intercepts 𝑐𝑈 , which themselves exhibit linear 

trends as a function of U: 𝑚𝑈 = 𝑚(𝑈) ≈ 0.24 ∙ 𝑈 + (1.02 ∓ 0.04)  eV and 𝑐𝑈 = 𝑐(𝑈) ≈ 0.02 ∙ 𝑈 −

(0.13 ± 0.04) eV. 𝑚(𝑈) is displayed in the upper right panel of Figure 2. The given ranges of the 𝑦-

intercepts of 𝑚(𝑈)  and 𝑐(𝑈)  stem from the uncertainty ±∆𝑏 in the O2 over-binding correction 

described in the previous section. By changing 𝑏 within these limits, the energy differences shown 

in the left panel of Figure 2 are consistently shifted to higher or lower values between limits which, 

for the sake of clarity, are exemplarily depicted by error bars only for the data points corresponding 

to U = 3.1 eV. The presented numbers determining ∆𝑒𝑈
fit(𝑥Fe)  are of course sensitive to the 

incorporation of additional ternary Fe-containing compounds in the analysis. However, this effect is 

of minor influence as long as the data points of additional compounds do not deviate more strongly 

from the lines than those already considered. 
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∆𝑒𝑈
fit(𝑥Fe) shifts the calculated formation energy per atom of an arbitrary oxide compound with 

a fraction of 𝑥Fe Fe atoms closer to its experimental value. Following the definition of the formation 

energy [Equation (1)], this correction can be formally applied by changing the total energies 

calculated with DFT+U at a given U according to: 

𝐸𝑈,corr
total (A𝑙Fe𝑚O𝑛) ≔ 𝐸𝑈

total(A𝑙Fe𝑚O𝑛) − 𝑁fu∆𝑒𝑈
fit(𝑥Fe). (6) 

As a proof of principle, correcting the energies 𝐸𝑈
total(LaFeO3) in this manner leads to formation 

energies very close to experimental values. This can be seen in Figure 2 (left panel), where the open 

symbols corresponding to LaFeO3, which were not included in the fitting processes, closely match 

the values of ∆𝑒𝑈
fit(𝑥Fe = 0.2) for all considered U values. 

In order to compare this generalized approach for deriving the correction energy arising in 

combined DFT and DFT+U calculations to the method described by Jain et al. [14], we repeated the 

whole analysis using best-fit lines through the origin, 

∆𝑒𝑈
fit,0(𝑥Fe) = 𝑚0(𝑈) ∙ 𝑥Fe, (7) 

marked by the dashed lines in Figure 2 (left panel). For the higher U values, the lines hardly deviate 

from the lines ∆𝑒𝑈
fit(𝑥Fe). The slopes, which are the only correction parameters in this approach, are 

derived as 𝑚0(𝑈) = 0.29 ∙ 𝑈 + (0.70 ∓ 0.13) eV [depicted in in the upper right panel of Figure 2]. 

Their range of uncertainty is enlarged, as compared to the general method. 

3.3. Determination of U 

The data points ∆𝑒, and therefore the deviations 𝛿 ≔ ∆𝑒 − ∆𝑒fit, follow linear trends with U for 

each of the five iron compounds included in the fitting procedure. Using the corresponding fit 

parameters, the average of the squared deviations, known as the mean squared error 𝑀𝑆𝐸, can be 

obtained as a function of U: 

𝑀𝑆𝐸(𝑈) =
1

5
∑ [𝛿(𝑥Fe

(𝑖)
, 𝑈)]

25

𝑖=1
. (8) 

The square root of this expression generally serves as a measure for the quality of the fits and, 

specifically, here for the quality of the correction scheme. It is displayed in the lower right panel of 

Figure 2 for both types of fitting discussed in Section 3.2. A difference is visible only for U values 

below 4.5 eV. Minimization leads to UFe = (3.95±0.17) eV and UFe = (4.20±0.37) eV for the general fits 

and the fits through the origin, respectively. The error ranges originate again from the uncertainties 

in the oxygen correction. Around these minima, the application of either of the two correction 

schemes reproduces the experimental formation energies on average with an accuracy of about 0.03 

eV per atom. The general fit leads to slightly more accurate results, but this difference can be regarded 

as insignificant considering the uncertainties in the approaches. 

A U value for the 3d-electrons of Fe of 4.0±0.1 eV was also derived by Wang et al. [13] following 

a different but related approach. The authors calculated oxidation reaction energies 𝐸(𝑟) between the 

binary iron oxides FeO, Fe2O3 and Fe3O4. No elemental Fe phase is involved in these reactions. 

Therefore, 𝐸(𝑟) could be determined by balancing only the uncorrected total energies obtained by 

DFT+U and the previously corrected chemical potential of oxygen. The change of 𝐸(𝑟) with U, which 

can be understood heuristically (see Appendix B), lead to an apparently optimal U value where the 

results for 𝐸(𝑟) best matched the experimental reaction energies. 𝐸(𝑟)  depends linearly on the 

formation energies of the involved compounds. Since these values also enter the method described 

in this section, the approach of Wang et al. may be interpreted as being formally equivalent to the 

method described above if only the binary oxides were included in the fitting. This is however not 

the case as is shown in detail in the Appendix C. 

3.4. Band Gaps of the Iron Compounds 

The usual approximations of DFT, LDA or GGA, insufficiently describe the correlated electrons 

in 3d-orbitals of transition metals which together with the oxygen 2p-orbitals form the valence band 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 August 2020                   doi:10.20944/preprints202008.0153.v1

https://doi.org/10.20944/preprints202008.0153.v1


 

edge in transition metal oxide compounds. This leads to incorrect, generally underestimated band 

gaps, which can be opened up by applying U to localize the 3d-orbitals, making the electronic 

structure less “metal-like”. Accordingly, an optimal U value can be found by tuning U until the 

experimental band gap value is reproduced in the band-structure calculation [22]. To compare this 

approach to the one described in Section 3.3, we calculated the band gaps of the considered 

compounds for the different U values of iron. As shown in Figure 3, the band gaps exhibit the 

expected opening with increasing UFe, following in most cases almost linear trends. For Fe3O4, a 

distinct bend of the line around U ≈ 5.3 eV is apparent. This is a significant feature, which is visible, 

albeit much less pronounced, for the other compounds as well. Very strict convergence criteria were 

applied to ensure that this effect is not an artifact of numerical fluctuations but rather a characteristic 

feature of the DFT+U approach. On a small scale, such a bending was also observed in the total 

energies and the quantities deduced from them. This can be seen for example by closely examining 

the deviations of the data points from the lines in Figure 2 (upper right panel). However, this is 

considered as insignificant in the approximate analysis conducted there. 

 

Figure 3. Calculated band gap energies as function of U. Filled symbols: band gaps of iron-oxide 

compounds calculated with DFT+U for different U values. The lines connect the two outer data 

points, indicating a more or less pronounced upwards shift of the values around U ≈ 5.3 eV. Open 

symbols, exemplarily displayed at U = 4 eV, represent experimental band gap values of the 

respective compounds [41–45]. 

 

The following experimental band gap energy data were taken from the literature: for Fe2O3 1.9 

eV [41] and 2.2 eV [42]; for FeO 1.15 eV [43]; for LaFeO3 2.1 eV [44] and 2.3 eV [45]. These data lie 

within 0.2 eV around the calculated values in the region of the previously optimized value U ≈ 4 

eV. The data are marked by the open symbols in Figure 3. Fe3O4 is known to be electronically 

conductive in the cubic state, so there should be no band gap, which is reproduced by the DFT+U 

calculations for U below about 3 eV. A small band gap of 0.07 eV is reported only for the 

monoclinically distorted structure forming below the Verwey transition temperature [46]. The 

complex electronic structure of Fe3O4 of mixed octahedrally coordinated Fe3+ and tetrahedrally 

coordinated Fe2+ ions cannot be sufficiently described by the same, single U value which is applied 

for the octahedrally coordinated Fe ions in the same trivalent charge state in the other compounds. 

For Li5FeO4 and NaFeO2, no experimental band gap values are reported to the best of our knowledge. 
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Hoang et al. [47] derived a band gap of 4.4 eV for Li5FeO4 using hybrid-functional DFT calculations 

with non-optimized mixing or screening parameters. This value is considerably larger than the 

DFT+U results obtained here. For NaFeO2, only one DFT+U calculation was found in the literature 

[48] with a band gap value of 1.5 eV for UFe = 4 eV in agreement with our result. 

3.5. Phase Diagrams of LaFeO3, Li5FeO4 and NaFeO2 

In order to derive the phase diagrams for the ternary oxide compounds LaFeO3, Li5FeO4 and 

NaFeO2, we calculated ground state formation energies for a set of binary oxides and ternary iron 

oxides containing the elements La, Li or Na, respectively. A U value for Fe of 4 eV was applied, and 

the corrections determined in Sections 3.2 and 3.3 were adopted. The choice of compounds was based 

on phases listed in the MP database [18] with energies close to the convex hull. The way the phase 

diagrams are presented in the following reflects solid-state processing routes, which were reported 

for the considered materials. 

3.5.1. LaFeO3 

LaFeO3 was experimentally synthesized by mechanical mixing treatment of La2O3 and Fe2O3 

powders and calcination under an oxygen atmosphere [49, 50], according to: 

La2O3 + Fe2O3 ⟶ 2 LaFeO3.  

The phase diagram with variables ∆𝜇(La2O3) [∆𝜇(Fe2O3)] and ∆𝜇(O) is shown in Figure 4, with 

an alternative y-axis assigned to the pressure of the oxygen gas at a temperature of 1400 K. In addition 

to the binary iron oxides and La2O3 (space group 𝐼𝑎3̅), the phase La3FeO6 (𝐶𝑚𝑐21) was taken into 

account, but it turned out to be not relevant for the phase diagram of LaFeO3 since the corresponding 

phase separation line lies outside of the displayed region. 

Since the stability region is horizontally confined by the precursor compounds of the reaction, 

the formation of an intermediate phase during the synthesis of LaFeO3 is not expected. Molecular 

oxygen and metallic Fe can form at very high and at very low gas pressures, respectively. Lines 

corresponding to metallic La, FeO, or Fe3O4 do not cross the stability region, indicating that no 

thermodynamic condition can be realized, under which LaFeO3 would be in equilibrium with either 

of these phases. The functional dependencies between Δ𝜇La, Δ𝜇Fe, Δ𝜇O, Δ𝜇La2O3
, and Δ𝜇Fe2O3

 (see 

Appendix D) can be applied to determine the chemical potentials of the metallic elements at each 

point in the phase diagram, which are, e.g., needed for calculating point defect formation energies 

involving these elements. Heifets et al. [51] calculated and discussed phase diagrams of LaFeO3 with 

respect to the elemental chemical potentials Δ𝜇La and Δ𝜇Fe. The phase diagram which is derived 

there using experimental input data shows chemical potentials Δ𝜇O  between −3.2 and −2.8 eV 

along the Δ𝜇Fe= 0 line, in agreement with our results in Figure 4Error! Reference source not found.. 

This is expected, since the calculated formation energies we used for deriving the phase diagram are 

close to the experimental values because of the applied correction procedure. 

Although a representation of the phase diagram in the form of Figure 4 is closer to the reality of 

the actual synthesis process than a representation with respect to elemental reservoir energies [52–

55], it remains a difficulty of adjusting and quantifying, or, in general, interpreting Δ𝜇La2O3
 and 

Δ𝜇Fe2O3
in an experimental setup. In analogy to a gas phase, “rich” conditions correspond to a high 

chemical reactivity, which can for example be realized by a high density of reactive surfaces, i.e. small 

and densely packed grains. 
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Figure 4. Phase diagram of LaFeO3 with respect to the chemical potentials of the oxide components 

La2O3 (Fe2O3) and oxygen. At a given temperature, which was chosen as 1400 K in this case, Δ𝜇O 

can be expressed by the pressure of the oxygen gas (right vertical axis, logarithmic scaling in units 

of 𝑝0 = 1 atm). The lines mark the transitions to the denoted competing phases. 

 

3.5.2. Li5FeO4 

The experimental synthesis of Li5FeO4 was achieved by tempering a powder mixture of Li2O and 

elemental Fe at 1000 °C and a low pressure of about 1 mPa [56], following the reaction: 

4 Li2O + Fe ⟶ Li5FeO4 + 3 Li.  

The corresponding phase diagram is shown in Figure 5, with variables ∆𝜇(Li2O) and 𝑝(O2) for 

𝑇 = 1300 K. Since Fe is involved in the reaction, its chemical potential is of relevance as well. This 

energy of the second reaction partner cannot be represented by an alternative horizontal axis as in 

the case of LaFeO3 (see Figure 4) due to the existence of an additional species (Li) in the reaction (see 

detailed explanation in the Appendix D). Instead, ∆μ(Fe) was made visible via a color coding in the 

stability region. Next to Li2O (space group 𝐹𝑚3̅𝑚) and the binary iron oxides, the phases taken into 

account were Li2O2 (𝑃63𝑚𝑚𝑐), Li2FeO2 (𝐼𝑚𝑚𝑚), Li2FeO3 (𝐶2), and LiFeO2 (𝐹𝑑3̅𝑚). 

Based on the scale of the horizontal axis, Li5FeO4 can be expected to form only under very rich 

Li2O conditions. The experimentally applied pressure of 10−8  atm corresponds to rather rich Fe 

conditions as well. During vaporization of Li5FeO4, the precipitation of solid LiFeO2 was observed 

[56], accompanied by gaseous Li and O2. This is in agreement with the phase diagram, where LiFeO2 

terminates the narrow stability region on one side. The Li gas cannot solidify, since the corresponding 

line [∆𝜇(Li) = 0] lies far outside the Li5FeO4 region at unreasonably low oxygen gas pressures below 

10−35  atm. In contrast to the situation of LaFeO3, the phase diagram indicates no equilibrium 

between Li5FeO4 and a binary iron oxide. For example, the line  ∆μ(Fe2O3) = 0, which is parallel 

to ∆μ(LiFeO2) = 0, is located at ∆μ(Li2O) = −0.18 eV outside of the displayed region. This impedes a 

direct solid-state route such as Li2O + Fe2O3 → 2 Li5FeO4, which, at rich Fe2O3 conditions, would lead 

to the formation of LiFeO2 instead. 
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Figure 5. Phase diagram of Li5FeO4 with respect to the chemical potentials of Li2O and oxygen. The 

vertical axis on the right is assigned to the corresponding oxygen gas pressure at a temperature of 

1300 K (𝑝0 = 1 atm). The chemical potential of Fe is visualized by a color coding. The lines mark the 

transitions to the denoted competing phases. 

3.5.3. NaFeO2 

NaFeO2 was experimentally synthesized by milling the precursor compounds Na2O2 (sodium 

peroxide) and Fe3O4, and exposing the mixture to a temperature of about 900 K [27,28]. Due to 

stoichiometric constraints, oxygen has to be released during this reaction: 

3 Na2O2 + 2 Fe3O4 ⟶ 6 NaFeO2 + O2.  

The phase diagram is presented with variables ∆𝜇(Na2O2), ∆𝜇(O) and 𝑝(O2) for 𝑇(O2) = 900 K 

in Figure 6, with the chemical potential of Fe3O4 being depicted by a color code. Next to Na2O2 (space 

group 𝑃6̅2𝑚) and the binary iron oxides, the phases taken into account were Na2O (𝐹𝑚3̅𝑚), NaO2 

(𝑃𝑛𝑛𝑚), Na2FeO3 (𝑃1̅), Na3FeO3 (𝑃21/𝑐), Na4FeO4 (𝑃1̅), and NaFeO2 (𝑅3̅𝑚). Further phases consisting 

of Na, Fe, and O turned out to be irrelevant for the stability discussion of NaFeO2. 

Under Fe3O4 rich conditions, NaFeO2 only forms at low pressures and Na2O2 poor conditions 

(lower left part of the stability region). If the atmospheric pressure is too high, the oxidation of Fe3O4 

to Fe2O3 can occur, and if it is too low, a reduction to metallic Fe is expected. Under Na2O2 rich 

conditions (upper right part of the stability region), NaFeO2 only forms at high oxygen pressures and 

Fe3O4 poor conditions, and the phases NaO2 and Na4FeO4 are likely to emerge. Based on the phase 

diagram, two alternatively plausible processing routes can be proposed: Na3FeO3 + Fe2O3 → 3 NaFeO2 

and Na2O + Fe2O3 → 2 NaFeO2. The latter does not include the complication of preliminarily having 

to synthesize Na3FeO3, but it can only be realized under not too rich Na2O conditions. A reaction of 

metallic Fe with sodium superoxide (NaO2) appears possible, too, but due to the high reactivity of 

NaO2 with water and a costly production process, this route is presumably inexpedient from a 

practical point of view. 
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Figure 6. Phase diagram of NaFeO2 with respect to the chemical potentials of Na2O2 and oxygen. 

The vertical axis on the right is assigned to the corresponding oxygen gas pressure at a temperature 

of 900 K (𝑝0 = 1 atm). The chemical potential of Fe3O4 is visualized by a color coding. The lines mark 

the transitions to the denoted secondary phases. 

4. Summary and Conclusions 

In the first part of this work, we compiled, reconsidered and reevaluated a set of correction 

methods previously described in the literature and applied in a frequently accessed materials data 

base (Materials Project, MP), which deal with inaccuracies of the usual LDA or GGA calculations of 

DFT in deriving accurate formation energies of transition metal oxide compounds. Common to these 

methods is the incorporation of physically justified and generally applicable parameters for 

systematic error corrections, which can be tuned to minimize an average deviation of computed and 

experimentally determined energies for a variety of compounds. We come to the following 

conclusions: 

• The method to correct the formation energy error due to the over-binding of the O2 molecule 

remains valid if a larger set of non-transition metal oxide compounds from the groups I to IV of 

the periodic table is considered instead of the previously chosen smaller subset. The magnitude 

of the energy correction we derived (0.64 eV) agrees within 0.1 eV with the reported values, which 

reflects the uncertainty range we determined for the approach. Experimental enthalpies of 

formation for the considered compounds can be reasonably reproduced within 0 to 5%, except 

for Tl2O3 and PbO2, for which the values deviate more. A possible explanation is given.  

• For the binary iron oxide compounds, we confirmed that it is well justified to correct the error 

arising in combining results of DFT and DFT+U calculations by adding a value proportional to 

the Fe content to the formation energy. While it was originally derived considering only the 

binary oxides for a fixed U value for Fe, we strengthened and generalized the scheme by (a) 

taking into account ternary compounds, (b) not a priori constraining the correction value to be 

zero for hypothetical compounds without Fe, and (c) considering different values of U. 

• Our U-dependent correction value offers a new possibility to determine an optimal U value for 

Fe, for which experimental formation energies are reproduced best. With this approach, we 
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confirmed the frequently used value of U  4 eV, which additionally turns out to reproduce 

experimental band gaps of the considered compounds within 0.3 eV. 

In the second part of this work, by applying the above mentioned correction schemes, we 

calculated formation energies for a set of binary oxide and ternary iron oxide compounds containing 

La, Li or Na in order to derive the phase diagrams for LaFeO3, Li5FeO4 and NaFeO2 with respect to 

reservoir energies (chemical potentials) of elements and/or precursor compounds. Our representation 

of the phase diagrams corresponds closely to actual solid-state synthesis routes reported in the 

experimental literature. This allows for motivating experimental adjustments of pressures, for 

predicting phase transformations upon changing the synthesis conditions, and for explaining phases 

found after vaporization, which is demonstrated for the described compounds. In addition, 

alternative synthesis routes can be proposed and compared. 
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Appendix A: List of Calculated and Experimental Formation Energies 

Table A1. Formation energies of oxide compounds in their ground state crystal structure [specified by the 

space group (SG) in Hermann-Mauguin notation] with respect to elemental phases in eV per formula unit. 

Experimental standard enthalpies of formation (𝐸exp.
form) are taken from References [38] (Rb2O, Cs2O), [37] 

(Ga2O3, In2O3, GeO2, SnO2, PbO2), [39] (Tl2O3), [49] (LaFeO3), [56] (Li5FeO4), [57] (NaFeO2), and [36] (all other 

compounds). Calculated formation energies from DFT (non-TM oxides) and DFT+U for UFe = 4 eV (TM 

oxides) are given without any corrections (𝐸uncorr.
form ), considering oxygen over-binding corrections (𝐸ox

form), and 

considering oxygen over-binding together with DFT/DFT+U combination corrections (𝐸ox+𝑈
form ). 𝛿 denotes the 

absolute value of the relative deviation of the calculated and totally corrected value from the experimental 

value. 

 SG 𝑬𝐞𝐱𝐩.
𝐟𝐨𝐫𝐦 𝑬𝐮𝐧𝐜𝐨𝐫𝐫.

𝐟𝐨𝐫𝐦  𝑬𝐨𝐱
𝐟𝐨𝐫𝐦 𝑬𝐨𝐱+𝑼

𝐟𝐨𝐫𝐦  𝜹 (%) 

Non-TM oxides 

Li2O 𝐹𝑚3̅𝑚 –6.21 –5.62 –6.26 – 0.8 

Na2O 𝐹𝑚3̅𝑚 –4.33 –3.59 –4.23 – 2.3 

K2O 𝐹𝑚3̅𝑚 –3.76 –3.11 –3.75 – 0.3 

Rb2O 𝑅3̅𝑚 –3.43 –2.77 –3.42 – 0.3 

Cs2O 𝑅3̅𝑚 –3.59 –2.99 –3.63 – 1.1 

BeO 𝑃63𝑚𝑐 –6.31 –5.53 –6.17 – 2.2 

MgO 𝐹𝑚3̅𝑚 –6.23 –5.45 –6.09 – 2.2 

CaO 𝐹𝑚3̅𝑚 –6.58 –5.96 –6.60 – 0.3 

SrO 𝐹𝑚3̅𝑚 –6.14 –5.49 –6.14 – 0.0 

BaO 𝐹𝑚3̅𝑚 –5.68 –4.98 –5.62 – 1.1 

Al2O3 𝑅3̅𝑐 –17.37 –15.16 –17.08 – 1.7 

Ga2O3 𝐶2/𝑚 –11.29 –9.25 –11.17 – 1.1 

In2O3 𝐼𝑎3̅ –9.60 –7.99 –9.91 – 3.2 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 6 August 2020                   doi:10.20944/preprints202008.0153.v1

https://doi.org/10.20944/preprints202008.0153.v1


 

Tl2O3 𝐼𝑎3̅ –4.09 –3.43 –5.35 – 30.8 

SiO2 𝐼4̅2𝑑 –9.44 –8.48 –9.76 – 3.4 

GeO2 𝑃3121 –6.01 –4.88 –6.16 – 2.5 

SnO2 𝑃42𝑚𝑛𝑚 –5.99 –5.00 –6.28 – 4.8 

PbO2 𝑃42𝑚𝑛𝑚 –2.88 –2.52 –3.80 – 31.9 

TM oxides 

FeO 𝐹𝑑3̅𝑚 –2.82 –0.31 –0.95 –2.83 0.4 

Fe2O3 𝑅3̅𝑐 –8.56 –3.04 –4.96 –8.69 1.5 

Fe3O4 𝐹𝑑3̅𝑚 –11.62 –3.35 –5.92 –11.53 0.8 

LaFeO3 𝑃𝑛𝑚𝑎 –14.24 –10.59 –12.51 –14.27 0.2 

Li5FeO4 𝑃𝑏𝑐𝑎 –20.21 –16.34 –18.91 –20.45 1.2 

NaFeO2 𝑅3̅𝑚 –7.23 –3.96 –5.24 –7.05 2.5 

Appendix B: Dependence of Oxidation Energies on U 

In order to understand the dependence of the calculated oxidation reaction energy values on U, 

we consider as an example the reaction between FeO and Fe2O3, where Fe changes its oxidation state 

from 2+ to 3+: 

2 FeO + 0.5 O2 ⟶ Fe2O3.  

The corresponding reaction energy per formula unit can be expressed as: 

𝐸(𝑟) = 𝐸total(Fe2O3) − [2𝐸total(FeO) + 0.5𝜇(O2)]. (B1) 

The application of U changes the total energies. We define 

𝛿Fe3+ ≔
1

2
[𝐸𝑈>

total(Fe2O3) − 𝐸𝑈<
total(Fe2O3)], (B2) 

and analogously 𝛿Fe2+  (for FeO) as the differences of total energies per Fe atom in the compounds 

for a fixed difference between a higher (𝑈>) and a lower U value (𝑈<). By applying higher U values, 

the correlated electrons, which become too delocalized by LDA or GGA, are forced to a higher 

localization, which increases the energy of the system due to Coulomb repulsion. Therefore, 𝛿Fe3+ > 

0 and 𝛿Fe2+ > 0. 

With higher oxidation states, the number of correlated electrons is increased, so U has a stronger 

influence on the change in energy: 𝛿Fe3+ > 𝛿Fe2+ . A comparison of the reaction energies for different 

U values then leads to: 

𝐸𝑈>

(r)
− 𝐸𝑈<

(r)
= 2(𝛿Fe3+ − 𝛿Fe2+) > 0. (B3) 

This implies, that oxidation reaction energies increase with increasing U, which is confirmed by 

our results for iron oxides, and by the results of Wang et al. [13] for vanadium-, chromium-, 

manganese-, iron-, cobalt-, nickel-, and copper oxides. 

Appendix C: Comparison of Methods for the Determination of U 

In this section, two conceptually different approaches are explicitly described to derive an 

optimal U value by comparing experimental and calculated formation and oxidation energies of iron 

oxides. The first method is equivalent to the procedure worked out in Section 3.2, except that now 

only the energies of the binary iron oxide phases are taken into account. The function to be minimized 

with respect to U is: 

𝑓(𝑈) = ∑[∆𝑒𝑖(𝑈) − ∆𝑒𝑖
fit,0(𝑈)]

2
3

𝑖=1

. (C1) 

with ∆𝑒 as defined in Equation (2). For the fitting, the linear functions ∆𝑒fit,0 through the origin are 

chosen, since the difference between ∆𝑒fit,0 and the general linear fit ∆𝑒fit is insignificant in the U 
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region where 𝑓 is minimal [see Figure 2 (left panel)]. The sum runs over Fe2O3, Fe3O4 and FeO. With 

𝑥Fe ≡ 𝑥 the fit lines can be expressed as: 

∆𝑒𝑖
fit,0(𝑈) = 𝑥𝑖𝑚0(𝑈) = 𝑥𝑖

∑ 𝑥𝑗∆𝑒𝑗(𝑈)𝑗

∑ 𝑥𝑗
2

𝑗

. (C2) 

By expressing the energy differences as linear functions of U: ∆𝑒𝑖(𝑈) = 𝑎𝑖𝑈 + 𝑏𝑖, only the parameters 

𝑥𝑖, 𝑎𝑖 and 𝑏𝑖 enter the function 𝑓(𝑈). Minimization leads to: 

𝑈min = −
∑ (𝑎𝑖 − 𝛼𝑥𝑖)(𝑏𝑖 − 𝛽𝑥𝑖)𝑖

∑ (𝑎𝑖 − 𝛼𝑥𝑖)
2

𝑖

, (C3) 

with 𝛼 ≔ ∑ 𝑥𝑖𝑎𝑖𝑖 𝑥𝑖
2⁄  and 𝛽 ≔ ∑ 𝑥𝑖𝑏𝑖𝑖 𝑥𝑖

2⁄ . 

In the approach by Wang et al. [13], the energies of the oxidation reactions 

(r1)    2 FeO + 0.5 O2 ⟶ Fe2O3 

(r2)    3 FeO + 0.5 O2 ⟶ Fe3O4 
 

are compared to the experimental values. These reaction equations can be obtained by linear 

combinations of the formation equations of the compounds from the pure elemental phases. For 

example, subtracting the reaction [Fe + 0.5 O2 ⟶ FeO] twice from [2 Fe + 1.5 O2 ⟶ Fe2O3] yields (r1). 

The corresponding energies can be combined accordingly. The oxidation energies per atom 

[𝑒(𝑟1), 𝑒(𝑟2)] are related to the formation energies of the oxides from the elemental phases per atom 

(𝑒𝑖) via: 

(𝑒(𝑟1)

𝑒(𝑟2)
) = (

1 0 − 4 5⁄

0 1 − 6 7⁄
) (

𝑒1

𝑒2

𝑒3

) ≕ T (

𝑒1

𝑒2

𝑒3

), (C4) 

if 𝑖 = 1,2,3 stand for Fe2O3, Fe3O4 and FeO, respectively. Since this relation holds for the calculated 

as well as for the experimental values, it can be formulated for their respective differences ∆𝑒(𝑟1,𝑟2) 

and ∆𝑒1,2,3. Note that changing the energies 𝑒1,2,3 by any correction proportional to the number of Fe 

atoms involved cancels out and has no effect on 𝑒(𝑟1,𝑟2), so it is irrelevant whether or not the correction 

of combined DFT and DFT+U data described in Section 3.2 is considered here. Therefore, we can 

apply the linear dependencies ∆𝑒𝑖(𝑈) = 𝑎𝑖𝑈 + 𝑏𝑖 with the same set of parameters as above in the first 

approach, which lead to Equation (C3). 

 
Figure C1. Deviation functions of formation energy differences between calculated and 

experimental values from linear fit [ 𝑓(𝑈) ], and of calculated oxidation energies from the 

corresponding experimental values [𝑔(𝑈)]. 

The function to be minimized to find the closest match between calculated and experimental 

oxidation energies is: 

𝑔(𝑈) = [∆𝑒(𝑟1)(𝑈)]
2

+ [∆𝑒(𝑟2)(𝑈)]
2

. (C5) 
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With the definitions 𝑎⃗ ≔ (𝑎1, 𝑎2, 𝑎3) and 𝑏⃗⃗ ≔ (𝑏1, 𝑏2, 𝑏3), the U value where 𝑔 is minimal can be 

found as: 

𝑈min = −
(𝑇𝑎⃗) ∙ (𝑇𝑏⃗⃗)

(𝑇𝑎⃗)2
, (C6) 

with the matrix 𝑇 as defined in Equation (C4). 

From the data points ∆𝑒𝑖(𝑈) shown in Figure 2, one obtains 𝑎⃗ = (0.132, 0.153, 0.105) eV/U and 

𝑏⃗⃗ = (0.198, 0.209, 0.523) eV, leading to 𝑈min= 4.00 eV and 𝑈min= 4.05 eV for the first [Equation (C3)] 

and second approach [Equation (C6)], respectively. The functions 𝑓(𝑈) and 𝑔(𝑈)  are shown in 

Figure C1, indicating, that the two approaches are indeed different from each other, even though they 

use the same set of calculated and experimental input data and lead to very close minima. 

Appendix D: Phase Diagram with Respect to Precursor Compounds 

In this section, it is explicitly described for the example of LaFeO3 (LFO), how a phase diagram 

can be derived with respect to reservoir energies of binary compounds and molecular oxygen instead 

of the usual representation considering only elemental phases. The latter corresponds to a 

hypothetical solid state reaction La + Fe + (3/2)O2 → LaFeO3. In a more realistic synthesis scenario, 

stable oxide compounds, for LFO e.g. La2O3 and Fe2O3, are mixed by mechanical and/or chemical 

treatment and exposed to an oxygen atmosphere [49, 50]. In analogy to Equations (1) and (3), 𝐸c
form 

given in Equation (D1) expresses the formation energy of LFO with respect to the binary oxides in 

their ground state phases, which are again labeled by the index (0): 

𝐸c
form(LFO) = 𝐸total(LFO) −

1

2
[𝜇(0)(La2O3) + 𝜇(0)(Fe2O3)] 

=
1

2
∆𝜇(La2O3) +

1

2
∆𝜇(Fe2O3). 

(D1) 

Since 𝐸c
form(LFO) has a fixed value, the second equation of Equation (D1) contains only one free 

variable, which implies that fixing the value of one chemical potential, e.g. ∆𝜇(La2O3) (i.e. setting the 

conditions in this compound in terms of rich or poor), defines the chemical potential/conditions of 

the other compound [∆𝜇(Fe2O3)] . However, processing under an oxygen atmosphere results in 

constant exchange of oxygen atoms between the compound phases and the atmospheric reservoir, 

which also produces free non-oxygen elements (La, Fe) at certain energies. This can be formally taken 

into account by expressing one of the chemical potentials of the precursor compounds, say 𝜇(Fe2O3), 

by the respective energies of its elemental components, leading to: 

∆𝜇(Fe2O3) = 𝜇(Fe2O3) − 𝜇(0)(Fe2O3) = 2𝜇(Fe) + 3𝜇(O) − 𝜇(0)(Fe2O3) 

          = 2[𝜇(0)(Fe) + ∆𝜇(Fe)] + 3[𝜇(0)(O) + ∆𝜇(O)] − 𝜇(0)(Fe2O3). (D2) 

With this expression, Equation (D1) can be reformulated: 

∆𝜇(La2O3) + 2∆𝜇(Fe) + 3∆𝜇(O) = 2𝐸c
form(LFO) + 𝐸form(Fe2O3), (D3) 

with 𝐸form(Fe2O3) according to Equation (1) [note that 𝜇(0)(Fe2O3) = 𝐸total(Fe2O3) for the ground 

state phase]. 

Equation (D3) now defines the phase space of LFO with free variables ∆𝜇(La2O3) and ∆𝜇(O), 

which can be visualized in a 2-dimensional diagram, e.g. with axes 𝑥 = ∆𝜇(La2O3) and 𝑦 = ∆𝜇(O). 

Following Equation (D1), an appropriate second 𝑥 -axis can then be chosen as  𝑥′ = ∆𝜇(Fe2O3) =

2𝐸c
form(LFO) − 𝑥 . Lines 𝑦(𝑥)  constraining the phase space of LFO with respect to other phases 

La𝑙Fe𝑚O𝑛 can be obtained by expressing ∆𝜇(La) and ∆𝜇(Fe) in the formation energy of La𝑙Fe𝑚O𝑛 

according to Equation (3) by 𝑥  and 𝑦. For example, Equation (D3) yields ∆𝜇(Fe) = 𝐸c
form(LFO) +

0.5 𝐸form(Fe2O3) − 0.5𝑥 − 1.5𝑦. On the other hand, expressing ∆𝜇(La2O3) by the elemental chemical 

potentials in analogy to Equation (D2) and using Equation (D1) leads to ∆𝜇(La) = 0.5 𝐸form(La2O3) +

0.5𝑥 − 1.5𝑦. It then follows from Equation (3): 

𝑥[−𝑙 + 𝑚] + 𝑦[3𝑙 + 3𝑚 − 2𝑛] = 𝐾𝑙𝑚𝑛 , (D4) 
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with 

𝐾𝑙𝑚𝑛 ≔ 2𝑚𝐸c
form(LFO) + 𝑙𝐸form(La2O3) + 𝑚𝐸form(Fe2O3) − 2𝐸form(La𝑙Fe𝑚O𝑛). (D5) 

For example, the line in the phase diagram separating LFO from elemental Fe [𝑙 = 𝑛 = 0, 𝑚 = 1, 

𝐸form(Fe) = 0] is given by 𝑥 + 3𝑦 = 𝐸c
form(LFO) + 𝐸form(Fe2O3), and the line between LFO and O2 

by 𝑦 = 0 consistent with the definition of 𝑦. The formation energies used in Equations (D3) and (D5) 

are calculated with the corrections described in Sections 2.3 [Equation (4)] and 2.4 [Equation (6)]. 

The procedure described here for LFO is transferable to other solid-state processing routes and 

arbitrary ternary compounds such as Li5FeO4 and NaFeO2 considered in this study. Note that 

chemical potentials of elemental phases need to be included in the formulation of the formation 

energy with respect to compound phases (𝐸c
form) corresponding to Equation (D1), if elemental phases 

are part of the reaction due to stoichiometric constraints (see Sections 3.5.2 and 3.5.3). This however 

does not change the methodology following Equations (D2)–(D5). For example, the starting point for 

deriving the phase diagram of Li5FeO4 with respect to ∆𝜇(Li2O) and ∆𝜇(O2) would be in analogy to 

Equation (D1): 

𝐸c
form(Li5FeO4) = 4∆𝜇(Li2O) + ∆𝜇(Fe) − 3∆𝜇(Li), (D6) 

according to the reaction 4 Li2O + Fe ⟶ Li5FeO4 + 3 Li . The procedure then follows the steps 

described above. However, in contrast to the situation for LaFeO3 and Equation (D1), Equation (D6) 

contains two free variables. Therefore, choosing ∆𝜇(Li2O) as the horizontal (𝑥) axis of the phase 

diagram does not allow for an alternative horizontal axis 𝑥′ = ∆𝜇(Fe) or 𝑥′ = ∆𝜇(Li). Instead, these 

quantities can be represented by height functions in the phase diagram, and e.g. illustrated by a color 

coding as shown in Figures 5 and 6. 
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