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Abstract: The food distribution process is responsible for significant quality loss in perishable 

products. However, preserving quality is costly and consumes a tremendous amount of energy. To 

tackle the challenge of minimizing transportation costs and CO2 emissions while also maximizing 

product freshness, a novel multi-objective model is proposed. The model integrates a vehicle 

routing problem with temperature, shelf life, and energy consumption prediction models, thereby 

enhancing its accuracy. Non-dominated sorting genetic algorithm II is adapted to solve the 

proposed model for the set of Solomon test data. The conflicting nature of these objectives and the 

sensitivity of the model to shelf life and shipping container temperature settings are analyzed. The 

results show that optimizing freshness objective degrade the cost and the emission objectives, and 

the distribution of perishable foods are sensible to the shelf life of the perishable foods and 

temperature settings inside the container. 

Keywords: Sustainable distribution; Food perishability; Multi-objective optimization; Temperature 

prediction; Shelf life; Food waste; NSGA-II 

 

1. Introduction 

Improving the sustainability of a distribution network involves tradeoffs between multiple 

conflicting objectives, including minimizing transportation costs (e.g., fuel and vehicle maintenance 

costs, driver salaries), fulfilling customer requirements (e.g., on-time deliveries, short lead times), and 

limiting environmental impact (e.g., vehicle emissions). However, optimizing sustainability in 

perishable food distribution is particularly challenging, primarily because of temperature control 

requirements [1]. Temperature is a major determinant of the shelf life of a perishable product [2]–[4]. 

Even small or infrequent deviations from recommended temperature settings can significantly 

reduce product shelf life [5]–[7] because increased temperature accelerates the growth rate of the 

microorganisms that are responsible for quality degradation in perishable foods [5], [8]. Although 

refrigerated vehicles’ cargo is well-isolated, it can experience frequent exposure to increased 

temperature when the vehicle stops to make deliveries to other customers [2], [9]. As a result, an 

estimated 8-23% loss in perishable food quality occurs during the distribution process [10].   

This loss in quality increases the likelihood that the food is wasted [11]. According to the United 

States Department of Agriculture, 30-40% of food in the U.S. is wasted [12], with 40% of these losses 

occurring post-harvest [13]. As a result, much of the resources consumed by the production and 

distribution of perishable food, as well as their associated environmental impacts, are in vain [13]. It 

is estimated that food waste costs the U.S. economy $218 billion each year [14]. Moreover, as 
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described by Mercier et al. [11], quality loss due to inadequate temperature control increases food 

safety risk. In the U.S., the annual societal costs of foodborne illness are estimated to be $50 billion 

[15], with more than 120,000 hospitalizations and 3,000 fatalities annually [16]. Therefore, it is crucial 

to maintain the predefined temperature range for perishable food products during distribution to 

ensure their quality and safety [17]–[20]. 

A distribution plan that emphasizes short transit times and few stops can preserve product 

quality and reduce waste. However, the energy required to transport and refrigerate perishable 

products during distribution is supplied by burning fossil fuels, which releases greenhouse gases into 

the environment [17]. In fact, food refrigeration during transportation accounts for 15% of global 

fossil fuel consumption and 40% of the global greenhouse effect [18], with up to 40% of refrigerated 

vehicles’ emissions generated by a conventional diesel engine vapor compression refrigeration 

system [21]. In terms of cost and energy, delivering multiple orders using a single full truck is more 

efficient than delivering each individual order on its own dedicated route. However, a full truckload 

increases orders’ transit times, as well as the frequency of temperature abuses during unloading, 

thereby reducing product quality and increasing food waste. 

Consolidated logistics and distribution is a suitable solution for integrated food supply chain 

networks where preserving the quality of perishable products and reducing distribution costs and 

CO2 emissions are common sustainable goals for upstream food supply chain actors, such as farmers, 

food manufacturers, and distribution centers, food distributors, such as third party logistics 

companies, and downstream supply chain actors, such as supermarkets, restaurants, and grocery 

stores. As an example, a group of supermarkets can consolidate their orders from one supplier in a 

horizontally integrated supply chain where food suppliers, food distributors, and supermarkets 

benefit from preserving the quality of perishable items and lowering distribution costs and CO2 

emissions in the distribution process. Thus, attempts to simultaneously maximize product freshness 

while minimizing vehicle emissions and transportation costs in a perishable food distribution 

network involve tradeoffs. These tradeoffs indicate the necessity of incorporating multiple objectives 

when studying the problem of perishable food distribution. For example, some studies consider both 

product perishability and distribution costs (e.g., X. Wang et al. [22] and Rahbari et al. [23]). The 

tradeoff between emissions and distribution costs has also been analyzed (see e.g. Xiao et al. [24]). 

However, few studies integrate distribution costs, freshness, and CO2 emissions simultaneously, and 

the precision of existing studies has been limited by simplifying assumptions (e.g. Musavi & Bozorgi-

Amiri [25]). The integrated approaches can assess and optimize the effect of routing decisions on the 

sustainability goals of food supply chain actors. 

The research presented in this paper introduces a novel extension of the multi-objective vehicle 

routing problem for the sustainable distribution of perishable food products. In this multi-objective 

sustainable vehicle routing problem (MO-SVRP), products are dispatched from a depot and are 

delivered to a set of customers having deterministic demand. Temperature is the primary controllable 

element in preserving the quality of perishable food products. To capture this, the MO-SVRP model 

is extended by integrating a method for predicting heat exchange and temperature inside the 

shipping container, thereby allowing product freshness and vehicle energy consumption to be 

accurately estimated. This integrated model considers three objectives: maximization of average 

product freshness, minimization of total CO2 emissions, and minimization of total distribution costs. 

The MO-SVRP is solved using a non-dominated sorting genetic algorithm (NSGA-II), which provides 

schedules and routes for the efficient distribution of perishable products using refrigerated vehicles. 

The paper is organized as follows: Section 2 presents a review of the related literature. Section 3 

provides the problem statement and model formulation. Section 4 shows the solution procedure. In 

Section 5, computational results and a discussion of the findings are presented. Finally, the conclusion 

of this research and recommendations for future research are provided in Section 6. 

 

 

 

2. Literature Review 
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There is a rich literature related to the distribution of perishable food. The review presented in 

this paper focuses on literature that uses mathematical modeling to optimize food distribution 

systems. 

Transit time and temperature are the two most influential factors on the quality of delivered 

perishable food products. Integrating product transit time is straightforward for mathematical 

models that are already tracking delivery times for other purposes, such as time window constraints. 

Therefore, many studies that take perishability into account consider the reduction of transit time 

directly or indirectly in their models [10], [26]–[31]. These models assume that the rate of product 

deterioration is constant over time, such that minimizing product time in transit is linearly equivalent 

to an increase in the quality of the delivered products [32]. Hence, transit time is used as a proxy for 

product quality loss, either as part of cost minimization or revenue maximization objective.  

However, the inherent tradeoffs between delivering high-quality products and minimizing 

distribution costs have inspired researchers to consider them as separate objectives. The multi-

objective model developed by Bortolini et al. [32] minimizes delivery time as a separate objective to 

represent the freshness of delivered foods. Similarly, Amorim and Almada-Lobo [33] Musavi and 

Bozorgi-Amiri [25], and Rahbari et al. [23] used a multi-objective approach to study product freshness 

maximization, where freshness was linearly estimated. Amorim, Günther, & Almada-Lobo [34] and 

Hsu, Chen, and Wu [35] integrated the effect of temperature into the rate of quality degradation, such 

that the rate of quality degradation increases with increasing storage temperature. Since the growth 

rate of microorganisms that spoil food is exponential, the impact of temperature variations on 

product shelf life can be estimated using exponential functions, which can then be maximized [22], 

[36]–[38].  

Temperature-controlled transportation is energy-intensive and consequently releases a large 

volume of CO2 emissions into the environment. The energy required to carry a load between two 

locations is evaluated in Bektaş & Laporte [39] study with respect to traveled distance, vehicle 

acceleration speed, the slope of the road, the weight of the load, the density of air, and the frontal 

surface of the vehicle. Stellingwerf et al. [17] adapted this methodology to evaluate CO2 emissions for 

both transportation and refrigeration, based on the assumption of constant energy losses during 

unloading and through the walls of the vehicle. S. Wang et al. [38] transformed CO2 emissions and 

the energy required for transportation and refrigeration into costs, which were minimized. Accorsi, 

Gallo, & Manzini [40] calculated the energy consumption of distribution activities, which were then 

minimized in the objective function. Hsu et al. [31] integrated the effects of energy required for 

refrigeration of perishable products as a part of a cost minimization objective, where the cost of 

energy is a function of the constant and predetermined temperature inside the container, ambient 

temperature, volume of the container, duration of each stop, and frequency of opening the container. 

Hsu et al. [35] optimized the delivery of perishable products having different temperature 

requirements, accounting for refrigeration costs as a component of distribution costs. Some studies 

include CO2 emissions in a separate objective of a multi-objective model (see e.g. Bortolini et al. [32], 

Govindan, Jafarian, Khodaverdi, & Devika [41], Molina, Eguia, Racero, & Guerrero [42], Musavi & 

Bozorgi-Amiri [25], and F. Wang, Lai, & Shi [43]), allowing decision-makers to assess the impact of 

reducing CO2 emissions on other food distribution system objectives, as well as the marginal cost of 

reducing environmental effects. 

Most models in the literature seek to maximize product quality throughout the distribution 

process. By contrast, Devapriya, Ferrell, & Geismar [44], Khalili-Damghani, Abtahi, & Ghasemi [45]  

and Nakandala, Lau, & Zhang [46] added a set of constraints to their model to ensure that the quality 

of the delivered products meets customers' expectations. Hsu et al. [31] calculated the volume of 

spoiled products based on the duration and ambient temperature of each delivery stop. Novaes et al. 

[9] used commercial software to predict the temperature inside the shipping container, using time-

temperature data to evaluate the quality of products at each delivery location via a statistical indicator 

in a traveling salesman problem. 

The impact of sustainability goals was reflected in multi-objective models. Several studies 

addressed the environmental and economic effects of the food supply chain in bi-objective models 
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(see e.g. Govindan et al. [41], Soysal et al. [47], and Validi et al. [48]). The quality and safety of 

perishable products are affected by storage and distribution process time and temperature. Hence, 

Accorsi, Baruffaldi, and Manzini [49] evaluated the impact of temperature on operation efficiency 

and the safety of perishable products in a bi-objective study. Bortolini et al. [32] added the delivery 

time minimization as the third objective to the environmental and economic objectives to reduce the 

effect of traveling time on losing the quality of perishable products. 

A diverse set of solution strategies have been used to solve the perishable food distribution 

problem. Ghezavati et al. [27] adapted a Benders decomposition model to solve a mixed-integer linear 

program. Chen et al. [26] and Farahani et al. [30] adapted a heuristic algorithm to solve the 

distribution planning problem as part of their production and distribution model. Metaheuristic 

approaches have also been widely used to find good-quality solutions in a reasonable amount of 

time. These approaches are also useful for finding a Pareto optimal frontier in multi-objective 

problems. Musavi & Bozorgi-Amiri [25] applied NSGA-II on a multi-objective hub location 

scheduling problem, in which total transportation costs and carbon emissions were minimized and 

food freshness was maximized. Amorim & Almada-Lobo [33] applied 𝜀 -constraint method to a 

small-scale problem and NSGA-II to a large-scale multi-objective problem that aimed to minimize 

total routing costs and maximize average freshness in a food distribution problem. Khalili-Damghani 

et al. [45] solved a bi-objective location-routing problem for the distribution of perishable products 

using 𝜀-constraint and NSGA-II algorithm. Their result showed that the NSGA-II solutions were as 

good as the 𝜀-constraint solutions, but the metaheuristic algorithm outperformed the exact method 

in terms of solving time, especially for larger-scale problems. Govindan et al. [41] used a hybrid 

approach that integrated an adapted multi-objective particle swarm optimization (MOPSO) and an 

adapted multi-objective variable neighborhood search (AMOVNS) to solve a bi-objective location 

routing problem for perishable products with economic and environmental minimization objectives. 

A summary of the important features of the related literature is given in Table 1. The related 

literature is ordered from oldest to the newest, and “x” represents that the publication included the 

specific feature in their study. Most of these studies either focus on food product perishability or the 

environmental impacts of temperature-controlled distribution. Only two studies cover cost, 

freshness, and emissions, and only Hsu et al. [31] and Novaes et al. [9] have considered the effect of 

temperature on product quality and carbon emissions.  

To the best of our knowledge, the multi-objective VRP model presented in this paper is the first 

to use an integrated temperature prediction method to estimate product quality and refrigeration 

energy consumption while accounting for cost, freshness, and emissions in a perishable food 

distribution system. Specifically, this paper extends the MO-SVRP by adding a heat exchange model 

to accurately estimate the temperature inside the refrigerated container.  This allows for a more 

accurate prediction of product freshness (i.e., shelf life) upon delivery, as well as improving the 

estimation of total emissions generated by refrigerated trucks. This paper also utilizes a novel 

adaptation of the NSGA-II metaheuristics algorithm to solve the MO-SVRP model. 
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Table 1. A comparison of the important features of the related literature 
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Hsu et al. [31] x    The predicted amount of spoiled products are added to the shipment to ensure orders are filled x   x  x x   x  

Osvald & Stirn [10] x    Minimize delivery time x         x  

Chen et al. [26] x    Minimize product deterioration, assuming a constant rate x         x  

F. Wang et al. [43]      Does not address perishability x  x  x    x   

Ahumada & Villalobos [29] x    Minimize product decay x        x   

Farahani et al. [30] x    Minimize time between production and delivery x         x  

Amorim et al. [34] x x   Maximize fractional remaining shelf life x x       x   

Hsu et al. [35]      Does not address perishability x     x     x 

Govindan et al. [41]      Does not address perishability x  x  x      x 

Molina et al. [42]     Does not address perishability x  x  x     x  

Amorim & Almada-Lobo [33] x    Maximize average freshness x x       x  x 

Khalili-Damghani et al. [45]  x    Constrain delivery of products to occur before they expire x        x  x 

Bortolini et al. [32] x    Minimize delivery time x x x  x    x   

X. Wang et al. [22]   x x Maximize freshness x x        x  

Ghezavati et al. [27] x    Minimize quality degradation and disposal costs x        x   

Devapriya et al. [44] x    Constrain delivery of products to occur before they expire x         x  

Hsiao et al. [36]   x x Minimize loss in shelf life as product-related costs x          x 

Gallo et al. [37]   x x Minimize energy consumed to cool down products spoiled in transportation   x  x x   x   

Musavi & Bozorgi-Amiri [25]  x    Maximize purchase probability x x x  x      x 

Albrecht & Steinrücke [28]  x    Maximize revenue from the grade of quality x        x   

S. Wang et al. [38]   x  Minimize product damage costs in the objective function x    x x     x 

Stellingwerf et al. [17]      Does not address perishability x  x  x x   x   

Rahbari et al. [23] x    Maximize freshness x x       x   

This research   x x Maximize average freshness x x x x x x x x   x 
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3. Problem Statement and Model Formulation 

Distribution problems typically seek to consolidate the flow of goods from a depot to their 

demand destinations into fewer routes [50]. The vehicle routing problem (VRP) is often utilized to 

formulate this problem, such that an optimal (i.e., minimum distance) route is determined, subject to 

constraints, such as route connectivity, vehicle capacity limits, and the number of available vehicles. 

The model described in this paper integrates a VRP with methods that accurately predict 

temperature, estimate CO2 emissions, and predict product freshness. 

The proposed MO-SVRP model consists of the interconnected perishable food distribution 

modules including distribution model, temperature prediction, CO2 emission, and shelf life 

prediction. The distribution model provides vehicles’ delivery sequence and traveled distance which 

then are used to predict temperature inside the vehicle. The predicted temperatures are the key 

element of estimating the shelf life of the foods at their destination. Also, the predicted temperature 

along with routing information enables the CO2 estimation module to predict the environmental 

effect for the proposed routing plan. The predicted freshness of perishable products, CO2 emission 

estimates, and distribution costs are the sustainability objectives of the MO-SVRP model. Figure 1 

presents the integrated structure of the MO-SVRP model. In the remainder of this section, each of 

these methods and their mathematical relations are presented, and then the MO-SVRP assumptions, 

notations, and model are illustrated. 

  

Temperature Prediction

CO2 Emission Estimation

Shelf life Prediction

Delivery Sequence

Predicted Temperature

Predicted Freshness

Food Distribution Model

 

Figure 1. Integrated structure of MO-SVRP model 

3.1. Temperature Prediction Based on Heat Transfer 

The cooling unit in a refrigerated vehicle is constantly trying to preserve the temperature inside 

the container by blowing cold air. However, each time the vehicle makes a delivery stop and opens 

the container door for unloading, the heat exchange between the hot ambient air and cold container 

air raises the temperature inside the container. The capacity of the cooling equipment and the amount 

of heat exchange are the main factors that determine the temperature inside the container. In the MO-

SVRP model, energy balance equations are applied to predict the temperature inside the container. 

Since heat exchange when the vehicle is in transit differs from unloading, the container 

temperature in each of these stages is predicted using different methods. When the vehicle is moving, 

the cooling system runs until the temperature inside the container reaches the desired level (Td), and 

a thermostat turns the cooling system off. In most cases, the vehicle’s cooling system and engine are 

turned off during unloading to protect the engine and to avoid polluting the air around the delivery 

dock. Therefore, it is assumed that the cooling system is not running during unloading, and therefore 

the temperature inside the container can only increase. 

3.1.1. Temperature Prediction during Unloading 

According to the energy balance equation, the overall heat that enters the container is equal to 

the accumulated heat inside the container (Equations 1-2; Holdsworth et al. [51]). The heat entering 

and accumulating inside the container at customer location j are denoted by AEj and AHj, 

respectively. 
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𝐴𝐸𝑗 =  𝑚𝑎. 𝑟𝑜 . 𝑠𝑎 . (𝑇𝑗 − 𝑇0). 𝑡              (1) 

𝑚𝑎: air mass (kg) 

𝑟𝑎: air transfer ratio 

𝑠𝑎: specific heat of the air (J kg-1 K-1) 

𝑇𝑗: the ambient temperature at location j (K) 

𝑇0: current temperature inside the container (K) 

𝑡: Portion of unloading time (𝑡 ≤ 𝑢𝑗) 

𝐴𝐻𝑗 = (𝑚𝑗𝑠𝑐 + 𝑚𝑎𝑠𝑎)
𝑑𝑇

𝑑𝑡
               (2) 

𝑚𝑗: cargo mass at location j (kg) 

𝑚𝑎: air mass (kg) 

𝑠𝑐 : specific heat of cargo (J kg-1 K-1) 

𝑠𝑎: specific heat of the air (J kg-1 K-1) 
𝑑𝑇

𝑑𝑡
: rate of change in temperature (K) 

Following the energy balance equation, the temperature at customer j, given an unloading time 

t, can be estimated by theorem 1 (See Appendix A), Equation 3. 

𝑇𝑗 = 𝑇𝑎 − (𝑇𝑎 − 𝑇0). 𝑒
− 

𝑚𝑎.𝑟𝑜.𝑠𝑎

(𝑚𝑗𝑠𝑐+𝑚𝑎𝑠𝑎)
.𝑡

             (3) 

𝑚𝑗: cargo mass at location j (kg) 

𝑚𝑎: air mass (kg) 

𝑠𝑐 : specific heat of cargo (J kg-1 K-1) 

𝑠𝑎: specific heat of the air (J kg-1 K-1) 
𝑑𝑇

𝑑𝑡
: rate of change in temperature (K) 

3.1.2. Temperature Prediction during Transportation 

When the engine is running, the cooling equipment begins to remove the heat absorbed during 

the unloading process until the container temperature reaches Td. The rate of heat removal is denoted 

by Qc: 

𝑄𝐶 = (𝑚𝑖𝑗𝑠𝑐 + 𝑚𝑎𝑠𝑎)
𝑑𝑇

𝑑𝑡
               (4) 

𝑚𝑖𝑗: cargo mass between location i and j (kg) 

𝑚𝑎: air mass (kg) 

𝑠𝑐 : specific heat of cargo (J kg-1 K-1) 

𝑠𝑎: specific heat of the air (J kg-1 K-1) 
𝑑𝑇

𝑑𝑡
: rate of change in temperature (K H-1) 

Applying the energy balance enables the prediction of container temperature during 

transportation between locations i and j (Tij), theorem 2 (See Appendix A): 

𝑇𝑖𝑗 =
𝑄𝑐

(𝑚𝑖𝑗𝑠𝑐+𝑚𝑎𝑠𝑎)
. 𝑡 + 𝑇0               (5) 

𝑄𝑐: the capacity of cooling equipment (J H-1) 

𝑚𝑖𝑗: cargo mass between location i and j (kg) 

𝑚𝑎: air mass (kg) 

𝑠𝑐 : specific heat of cargo (J kg-1 K-1) 

𝑠𝑎: specific heat of the air (J kg-1 K-1) 

𝑡: time duration (h) 

𝑇0: current temperature inside the container (K) 
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Equation 5 shows that the cooling equipment reduces the temperature at a rate of 
𝑄𝑐

(𝑚𝑖𝑗𝑠𝑐+𝑚𝑎𝑠𝑎)
. 

However, since the cooling equipment stops blowing cold air when the temperature reaches Td, the 

actual temperature is as follows: 

𝑇𝑖𝑗
∗ = 𝑀𝑎𝑥{𝑇𝑖𝑗  , 𝑇𝑑}                (6) 

3.2. CO2 Emissions 

The main source of CO2 emissions in a perishable food distribution system is the fuel that is 

burned to provide energy for transport and refrigeration. The energy required for transportation, 

which is not specific to perishable products, depends primarily on the distance traveled, the weight 

of the vehicle and its cargo, the vehicle speed, and road/vehicle specifications. Bektaş & Laporte [39] 

developed a widely used method that integrates all these factors to predict road transportation 

energy consumption: 

𝑝𝑖𝑗 ≈  𝛼𝑖𝑗(𝑤 + 𝑓𝑖 𝑗)𝑑𝑖𝑗 +  𝛽𝑣𝑖𝑗
2 𝑑𝑖𝑗              (7) 

𝑤: vehicle weight 

𝑓𝑖𝑗: weight of the load between node i to j 

𝑣𝑖𝑗 : vehicle velocity 

𝑑𝑖𝑗 : distance between nodes i and j 

𝛼𝑖𝑗: arc constant (i.e., road specification) 

𝛽: vehicle constant 

Bektaş & Laporte [39] calculated 𝛼𝑖𝑗 and 𝛽 as follows: 

𝛼𝑖𝑗 = 𝑎 + 𝑔𝑠𝑖𝑛𝜃𝑖𝑗 + 𝑔𝐶𝑟𝑐𝑜𝑠𝜃𝑖𝑗              (8) 

𝑎: vehicle acceleration 

𝑔: gravitational constant 

𝐶𝑟: rolling resistance 

𝜃𝑖𝑗: slope of the road between locations i and j 

𝛽 = 0.5𝐶𝑑𝐴𝜌                 (9) 

𝐶𝑑: drag coefficient 

𝐴: vehicle frontal surface area 

𝜌: air density 

Stellingwerf et al. [17] added a method to calculate the energy consumed by refrigeration in 

temperature-controlled distribution. They illustrated that heat exchange between the air in the 

container and the ambient air during distribution is equal to the energy that the cooling system must 

remove to reduce the temperature inside the container. The MO-SVRP model presented in this paper 

extends their work by considering the air transfer ratio, air mass, unloading time, ambient air 

temperature, and predicted temperature inside the container (Section 3.1) to accurately estimate the 

heat exchange during unloading at location j using Equation (1). It is assumed that the heat exchange 

during transportation is negligible, since refrigerated containers are well-isolated. Considering both 

transportation and refrigeration energy consumption, the total energy consumption for a refrigerated 

vehicle v that is assigned to the visit a set of locations Lv is: 

𝑇𝐸𝑣 = ∑ 𝑝𝑖𝑗𝑥𝑖𝑗𝑖,𝑗 ∈ 𝐿𝑣
+ ∑ 𝐴𝐸𝑗𝑗 ∈ 𝐿𝑣

             (10) 

𝑥𝑖𝑗 : equals 1 if location j is visited immediately after location i; 0 otherwise 

Using the approach of Stellingwerf et al. [17], a refrigerated vehicle’s total energy consumption 

can be converted to CO2 emissions as follows: 
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𝐸𝑣 =
𝑇𝐸𝑣

𝜇.𝐸𝐶
. 𝑔𝑙𝑏. 𝑒                (11) 

𝐸𝑣: total CO2 emissions of vehicle v (lb) 

𝑇𝐸𝑣 : total energy consumption of vehicle v (kWh) 

𝜇: the efficiency of converting the chemical energy of the fuel to vehicle energy consumption 

(dimensionless) 

𝐸𝐶: energy content of a gallon of fuel (kWh g-1) 

𝑔𝑙𝑏: conversion factor for fuel: gallons to pounds (lb g-1) 

𝑒: conversion factor: fuel to emissions (dimensionless) 

3.3. Food Product Freshness Based on Shelf Life Prediction 

Increased temperature can elevate the growth rate of specific spoilage organisms (SSOs) in 

perishable food products [11]. Therefore, most shelf life prediction models require the temperature 

of the product over time, as well as product characteristics, to predict the remaining shelf life. Using 

the temperature prediction method explained in Section 3.1., an accurate estimate of product 

temperature from the time of vehicle departure from the depot until delivery is possible.  

While most studies assume that the remaining shelf life of a product declines at a constant rate 

over time, the shelf life prediction model provided by Bruckner et al. [5] predicts a nonlinear increase 

in the number of SSOs in non-isothermal conditions. A product reaches the end of its shelf life when 

the number of SSOs reaches its maximum acceptable level. The product is not safe for consumption 

beyond this point and is considered spoiled. The remaining shelf life of food products can be 

estimated at any point in time, given the initial count of SSOs and characteristics of the food at 

presumed future storage temperature. Figure 2 shows the number of SSOs over time for a unit of 

product volume for constant temperature. 

Shelf Life

Maximum Acceptable Level

Time

SSOs Count

Remaining Shelf LifeDelivery Time
 

Figure 2. The growth rate of SSOs over time at a constant temperature. 

The Gompertz model [52] predicts the number of SSOs over time: 

𝑁(𝑡) = 𝐴 + 𝐶 ∗ 𝑒−𝑒−𝐵(𝑡−𝑀)
              (12) 

N(t): SSO count (log10 cfu g-1) at time t, 

A: initial SSO count of the food product at the time it is loaded into a refrigerated vehicle (log10 

cfu g-1) 

C: the difference between the maximum SSO population level (a constant defined for each type 

of food product) and the initial SSO count A (log10 cfu g-1) 

M: time at which the maximum growth rate is obtained (h) 
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B: relative growth rate at time M (h-1) 

The relative growth rate (B) is a function of temperature and is predicted by the Arrhenius 

equation [53]: 

𝑙𝑛(𝐵) = ln(𝐹) −  
𝐸𝑎

𝑅
. (

1

𝑇
)               (13) 

F: pre-exponential factor describing the number of times two molecules collide 

Ea: activation energy for growth of SSOs (J mol-1) 

R: gas constant (8.314 J mol-1 K-1) 

T: absolute temperature (K) 

The freshness of the delivered products at location j (frj) can be evaluated using Eq. 14 as the 

percentage of remaining shelf life before distribution to location j, given estimated time and 

temperature conditions. The remaining shelf life is the amount of time that it will take for the number 

of SSOs to climb from their current level to the maximum acceptable level. 

𝑓𝑟𝑗 =
𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑠ℎ𝑒𝑙𝑓 𝑙𝑖𝑓𝑒𝑗

𝑠ℎ𝑒𝑙𝑓 𝑙𝑖𝑓𝑒𝑗
× 100 = (1 −

𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑡𝑖𝑚𝑒𝑗

𝑠ℎ𝑒𝑙𝑓 𝑙𝑖𝑓𝑒𝑗
) × 100        (14) 

3.4. Mathematical Model 

The freshness prediction and CO2 emission modules are integrated with a VRP model to create 

the MO-SVRP model. The perishable food distribution problem is defined as a directed graph in 

which a fleet of homogenous vehicles (V), each with a capacity of Q, deliver perishable food from a 

depot (node 0) to a set of customers (C) using a set of transportation paths (A) which connect the 

nodes. The order that fulfills the demand of customer i (di) must be delivered within the customer’s 

required time window ([ai, bi]). For ease of reference, all notations are given in Table 2. 

Table 2. Notations used in the MO-SVRP model. 

Sets: 

C = {1, …, n}: set of customers 

V = {1, …, v}: set of vehicles 

N = {0} ∪ C: set of depot and customers 

A = {(i, j): i, j ∈ N, and i ≠ j}: set of paths from node i to node j 

Parameters: 

cij: cost of traveling from node i to node j 

tij: travel time from node i to node j 

F: fixed dispatching cost 

Q: vehicle capacity 

di: customer i demand 

[ai, bi]: required time window for delivery to customer i 

ut: average unloading time for one unit of product 

ui: unloading time at customer i, where 𝑢𝑖= 
𝑑𝑖

𝑢𝑡
 and ui ≤ bi - ai 

Decision variables: 

𝑦𝑖𝑘: time that vehicle k arrives at node i 

𝑥𝑖𝑗𝑘: equals 1 if vehicle k travels from node i to node j, 0 otherwise 

𝑙𝑖𝑗𝑘: units of product carried by vehicle k between nodes i and j 
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The MO-SVRP model is formulated as a multi-objective mixed-integer program, and the 

mathematical formulation is as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍1 =  ∑ ∑ ∑ 𝑐𝑖𝑗𝑗𝜖𝑁𝑖𝜖𝑁𝑘𝜖𝑉 𝑥𝑖𝑗𝑘 +  ∑ ∑ 𝐹𝑥0𝑗𝑘𝑘∈𝑉𝑗∈𝐶         (15) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑍2 = ∑ 𝑓𝑟𝑖𝑖𝜖𝐶
𝑑𝑖

∑ 𝑑𝑗𝑗∈𝐶
             (16) 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑍3 = ∑ 𝐸𝑘𝑘𝜖𝑉                (17) 

Subject to 

∑ ∑ 𝑥𝑖𝑗𝑘 = 1𝑗𝜖𝑁𝑘𝜖𝑉      ∀ i ϵ C, i ≠ j         (18) 

∑ 𝑑𝑖 ∑ 𝑥𝑖𝑗𝑘𝑗𝜖𝑁𝑖𝜖𝐶 ≤ 𝑄    ∀ k ϵ V, i ≠ j         (19) 

∑ 𝑥0𝑗𝑘 ≤ 1𝑗∈𝐶       ∀ k ϵ V          (20) 

∑ 𝑥𝑖ℎ𝑘𝑖𝜖𝑁 −  ∑ 𝑥ℎ𝑗𝑘𝑗𝜖𝑁 = 0   ∀ h ϵ N, k ϵ V         (21) 

∑ ∑ 𝑙𝑗𝑖𝑘𝑘∈𝑉𝑗∈𝑁 − ∑ ∑ 𝑙𝑖𝑗𝑘𝑘∈𝑉𝑗∈𝑁 =  𝑑𝑖 ∀ i ϵ C          (22) 

𝑦𝑖𝑘 +  𝑢𝑖 + 𝑡𝑖𝑗 − 𝑀(1 − 𝑥𝑖𝑗𝑘) ≤  𝑦𝑗𝑘 ∀ i ϵ C, j ϵ N, k ϵ V        (23) 

𝑡0𝑗 ≤ 𝑦𝑗𝑘 + 𝑀(1 − 𝑥0𝑗𝑘)    ∀ j ϵ C, k ϵ V         (24) 

𝑎𝑖 ≤ 𝑦𝑖𝑘 ≤ 𝑏𝑖       ∀ i ϵ C          (25) 

𝑙𝑖𝑗𝑘 ≤ (𝑄 − 𝑑𝑖)𝑥𝑖𝑗𝑘      ∀ i ϵ N, j ϵ N, k ϵ V        (26) 

𝑑𝑗𝑥𝑖𝑗𝑘 ≤ 𝑙𝑖𝑗𝑘       ∀ i ϵ N, j ϵ C, k ϵ V        (27) 

𝑦𝑖𝑘 ≥ 0        ∀ i ϵ C, k ϵ V         (28) 

𝑙𝑖𝑗𝑘 ≥ 0        ∀ i ϵ N, j ϵ C, k ϵ V        (29) 

𝑥𝑖𝑗𝑘  ϵ {0,1}       ∀ i ϵ C, k ϵ V         (30) 

The first objective (Eq. 15) minimizes transportation costs, including the cost of traveling 

between customer locations as the first term and dispatching costs associated with the fixed costs of 

using a vehicle in the distribution plan as the second term. The second objective (Eq. 16) maximizes 

the total freshness of the delivered products at each customer location. The third objective (Eq. 17) 

minimizes total CO2 emissions generated by refrigerated vehicles during transit and unloading. 

Equation (18) ensures that each customer location can be visited by only one vehicle. Equation (19) 

prevents the load carried between two locations from being greater than the capacity of the vehicle. 

A vehicle can only leave the depot once (Eq. 20), and if a vehicle arrives at a location, it must also 

leave that location (Eq. 21). The amount of cargo unloaded at a customer location must equal that 

customer’s demand (Eq. 22). Equation (23) ensures that a customer cannot be visited prior to the time 

that the previous customer is visited plus the unloading and travel times between these two 

customers. Similarly, equation (24) prevents the first customer from being visited earlier than the time 

required to travel from the depot to that customer’s location. Deliveries must occur within customers' 

required time windows (Eq. 25). A vehicle’s load after leaving a customer location must be less than 

or equal to the capacity of the vehicle minus the demand of the visited customer (Eq. 26), and equation 

(27) ensures that the load carried between two customer locations is at least equal to the demand of 
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the next customer. Equaions (28) and (29) prevent the arrival time and the load carried by a vehicle 

from taking negative values, and equation (30) defines a vehicle’s path as a binary variable. 

4. Solution Procedure 

The MO-SVRP model presented in the previous section is difficult to solve. Even a VRP problem 

with a single objective and fewer parameters and variables is categorized as an NP-hard problem 

[24], [54]. Consequently, a meta-heuristic approach was applied to solve the problem in a reasonable 

time. NSGA-II is an efficient and widely applied meta-heuristic approach introduced by Deb et al. 

[55] as a search technique for finding optimal solutions to multi-objective problems. This algorithm 

works based on iterative improvements in the pool of solutions’ quality. In each iteration, genetic 

algorithm operators create offspring from the existing pool of solutions, and the solutions in this new 

pool are sorted based on the non-dominated sorting algorithm and crowding distance index. The top 

solutions are then selected for the next iteration. This section describes how this approach has been 

applied to solve the MO-SVRP. 

In the NSGA-II algorithm, a “chromosome” represents a solution that assigns a list of customers 

to each vehicle in a particular delivery sequence. Each chromosome is an array consisting of n+v-1 

elements, in which n represents the number of customers and v represents the number of vehicles. 

An example is given in Figure 3. There are v-1 special characters in the array (“*” in Figure 3), which 

divide the array into v sections (i.e., one section for each vehicle). The n remaining elements of the 

array are integer values from 1 to n, each of which is assigned to a customer. Thus, the sections 

between two special characters are lists of customers assigned to each vehicle, and the order of these 

numbers represents the delivery sequence. 

5 1 3 * 8 4 6 * 2 7

Vehicle No. 1 Vehicle No. 2 Vehicle No. 3

Depot 5 1 3 Depot Depot 8 4 6 Depot Depot 2 7 Depot  

Figure 3. NSGA-II chromosome encoded as a MO-SVRP solution 

Initially, n customers and v-1 special characters are randomly assigned to p chromosomes, 

where p is the size of the pool of solutions. Then, crossover and mutation operators are used to 

generate new solutions as the algorithm iterates. 

The single point crossover operator is used to generate Pc chromosomes from the previous pool 

of solutions. Figure 4 provides an example, in which the first three elements the parent chromosomes 

are swapped to create two new offspring. 

5 1 3 * 8 4 6 * 2 7

2 3 * 6 5 8 1 7 * 4

* 8 4 6 * 2 72 3 *

5 1 3 6 5 8 1 7 * 4

 
Figure 4. Crossover operation 

The crossover procedure is followed by a repair procedure [25], which is applied to fix 

chromosomes that have duplicated or missing customers or special characters. An example is shown 

in Figure 5. 
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* 8 4 6 * 2 72 3 *

5 1 3 6 5 8 1 7 * 4

* 8 4 6 * 5 72 3 1

5 1 3 6 * 8 2 7 * 4

 

Figure 5. Repair procedure for crossover operation 

Pm solutions are then randomly selected from the previous pool of solutions. The locations of 

two randomly selected elements from each chromosome are swapped, as shown in the example in 

Figure 6. 

5 1 3 * 8 4 6 * 2 7 5 1 4 * 8 3 6 * 2 7

 
Figure 6. Mutation operator 

The solutions are then categorized based on the number of solutions that dominate them. The 

front i (Fi, i ϵ K, where K is the number of categories) includes the solutions with rank i dominated 

by i-1 other solutions. Solutions that cannot be dominated by any other solutions from their pool 

comprise the Pareto frontier. Figure 7 shows how the pool of solutions in domains D1 and D2 is 

categorized in three fronts. 

Min D1

Min D2

F1
(Pareto frontier)

F2

F3

 

Figure 7. Rank of chromosomes in one iteration (F1 is Pareto frontier) 

Crowding distance is an estimate of the density of solutions around a particular solution in a 

front. The value of crowding distance for a particular solution is the summation of distances of the 

solutions with the neighboring solutions of the same front. Equations (31)-(32) show the mathematical 

equations by which crowding distance is calculated. 

𝑑𝑖
𝑗

=  |𝑓𝑗
𝑖+1 − 𝑓𝑗

𝑖−1|                (31) 

𝑑𝑖
𝑗: distance of solution i from its neighbors in domain j 

𝑓𝑗
𝑖: value of function f for solution i in domain j 

𝑑𝑖 = ∑ 𝑑𝑖
𝑗

𝑗∈𝐷                  (32) 

𝑑𝑖: crowding distance of solution i 
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D: set of the problem domains 

In each iteration, binary tournament selection is applied to sort the solutions, first based on their 

ranks, and then based on their crowding distance. 

The NSGA-II main loop consists of offspring generation and ranking and sorting modules. 

Algorithm 1 presents a pseudocode that illustrates an iteration of the NSGA-II algorithm. At the end 

of each iteration, solutions with rank 1 are stored as Pareto-frontier. 

Algorithm 1. NSGA-II main loop pseudocode 

p = population of randomly generated chromosomes with size pops 

for i = 1 to Max number of iterations do 

 for j =1 to (pc ÷ 2) do 

  c1 = 1st randomly chosen parent chromosome 

  c2 = 2nd randomly selected parent chromosome 

  popc = append crossover (c1, c2) 

 for k = 1 to pm do 

  m = a randomly chosen parent chromosome 

  popm = append mutate (m) 

 pop = merge (p, popc, popm) 

 function (non-dominated sorting (input: pop)) 

  return: Rank of chromosomes 

 function (crowding distance (input: pop, rank)) 

  return: crowding distance value for each chromosome 

 function (sort population (input: pop, rank, crowding distance)) 

  return: sorted pop based on 1) rank, 2) crowding distance 

 pop = store only the top pop and truncate the others 

 function (non-dominated sorting (input: pop)) 

  return: Rank of chromosomes 

 function (crowding distance (input: pop, rank)) 

  return: crowding distance value for each chromosome 

 function (sort population (input: pop, rank, crowding distance)) 

  return: sorted pop based on 1) rank, 2) crowding distance 

 Pareto_frontier = chromosomes with rank 1 

 Go to the next iteration if the stopping criteria are not met  

5. Computational Results and Discussion 

5.1. Performance of the solution method 

First, the performance of the NGSA-II solution algorithm in solving the MO-SVRP was tested on 

Solomon's datasets [56], which are widely applied to measure the quality of solutions for a VRP. The 

geographical distribution of the visiting location has a substantial impact on the performance of the 

VRP solution algorithm. So, these instances were provided in three categories: R, C, and RC, 

representing randomly generated, clustered, and mixed generated geographical data, respectively. 

Within these three categories, the MO-SVRP was solved for small instances (25 customers) and large 

instances (100 customers). However, the solutions should be compared with a competing algorithm 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 August 2020                   doi:10.20944/preprints202008.0108.v1

Peer-reviewed version available at Sustainability 2020, 12, 6668; doi:10.3390/su12166668

https://doi.org/10.20944/preprints202008.0108.v1
https://doi.org/10.3390/su12166668


 15 of 22 

to verify the efficiency and accuracy of the NGSA-II.  Thus, weighted simulated annealing (w-SA) 

was used to solve the single objective weighted problem. According to the L1 metric method, the 

inverse of the optimum solution for each objective was used as the weight of the objectives in a single 

weighted objective function [23]. 

The NSGA-II and w-SA algorithms were coded in Python and run on a computer with 3.10 GHz 

Intel Core i9 CPU, 64 GB of RAM, and Windows 10 operating system. The parameter values that were 

used are given in Table 3.  The algorithms terminate when the solutions in the Pareto front (for 

NSGA-II) or the optimum solution (for w-SA) do not improve after a certain number of iterations, 

which depends on the size of the problem. 

Table 3. Test problem and solution algorithm parameters 

w-SA parameters value NSGA-II parameters value test problem parameters value 

Initial temperature 20 Population size 30 Vehicle speed (km h-1) 15 

Damping rate 0.99 Crossover rate 0.7 Product shelf life (h) 2880 

  Mutation rate 0.4 Fixed cost per vehicle ($) 1000 

    Transportation cost ($ km-1) 1.5 

    Service time (minute) 10* 90** 

    Vehicle capacity (kg) 200 

* for R and RC test problems, ** for C test problems 

In Table 4, the column “w-SA” provides the values of each of the three objective functions for 

the best solution to each test problem instance. The values of the objective functions in the “NSGA-

II” column correspond to the best solution that was found among the Pareto front solutions for each 

objective. The gap shows the difference between the objective values divided by the best value 

generated by these algorithms. 

The results in Table 4 show that, on average, NSGA-II provides solutions that are 9.2%, 4.2%, 

and 8.0% better than w-SA in terms of cost, freshness, and emission objectives, respectively. The 

advantage of NSGA-II over w-SA is more pronounced for the cost objective when the size of the 

problem increases, or when the customers are more geographically clustered (i.e., the gap is largest 

for the C instances).  

Table 4. Comparison of the performance of w-SA and NSGA-II 

Test problem 

w-SA NSGA-II Gap 

Costs 

($) 

Freshness 

(%) 

CO2 

(lbs×103) 

Costs 

($) 

Freshness 

(%) 

CO2 

(lbs×103) 

Costs 

($) 

Freshness 

(%) 

CO2 

(lbs×103) 

R101 (25) 5,233 89% 4,164 4,886 95% 3,848 6.6% 4.8% 17.5% 

R101 (100) 13,450 90% 48,042 12,356 94% 45,026 8.1% 2.3% 6.3% 

C101 (25) 3,065 90% 2,452 2,761 96% 2,305 9.9% 6.7% 6.0% 

C101 (100) 10,655 92% 39,787 9,452 94% 38,564 11.3% 2.2% 3.1% 

RC101 (25) 3,318 90% 3,075 3,027 92% 2,684 8.8% 4.6% 12.7% 

RC101 (100) 11,569 91% 47,666 10,335 93% 42,597 10.7% 4.5% 2.4% 

5.2. Optimality Analysis 

Balancing cost, freshness, and emission objectives is necessary to improve the sustainability of 

perishable food distribution networks.  The results in Table 5 demonstrate the conflicting nature of 

the three objectives: if the MO-SVRP problem is solved for a single objective, the values of the other 

two objective functions deviate significantly from optimality. Because the traveled distance is the 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 August 2020                   doi:10.20944/preprints202008.0108.v1

Peer-reviewed version available at Sustainability 2020, 12, 6668; doi:10.3390/su12166668

https://doi.org/10.20944/preprints202008.0108.v1
https://doi.org/10.3390/su12166668


 16 of 22 

primary driver of transportation cost and emissions, it is unsurprising that the emissions objective in 

the cost-optimal solution has only a 4% gap with the emission-optimal solution, and cost objective in 

the emission-optimal solution is only 14% higher than in the cost-optimal solution. However, keeping 

perishable products fresh requires faster delivery and fewer stops, which means that the vehicles 

may not be full. This increases the total traveled distance, which increases transportation cost and 

energy consumption, such that a solution that preserves 95% of the product’s freshness results in 95% 

and 94% optimality gaps for cost and emissions objectives, respectively. In contrast, when a solution 

is a cost- or emissions-optimal, freshness is 42% and 41% less than optimal, respectively. 

Table 5. Impact of choosing a non-dominated solution on the optimality of the transportation costs, 

freshness, and emissions for R101(25) instance 

Optimality No. of Vehicles Costs ($) Freshness (%) CO2 (lbs×103) 

Cost 7 4886 (*) 55% (42% gap) 3997 (4% gap) 

Freshness 8 112123 (95% gap) 95% (*) 66413 (94% gap) 

Emission 7 5723 (14% gap) 56% (41% gap) 3848 (*) 

Final solution 7 10213 (52% gap) 75% (21% gap) 8892 (57% gap) 

* optimum 

Most likely, there is more than one non-dominated solution in the Pareto frontier. So, a final 

solution that properly reflects the impact of all the objectives is chosen from the non-dominated set 

of solutions in the Pareto frontier. To choose a final solution, the approach developed by Bortolini et 

al. [32] was adapted. The presented method only ranks the solutions based on their distance to the 

optimum objective values, and other factors such as decision-maker priorities are not reflected in this 

method. 

𝑀𝑖𝑛 𝜃𝑙                  (33) 

𝜃𝑙 =
𝛼𝑙

𝛼𝑙
∗ .

𝛽1
∗

𝛽1
.

𝛾𝑙

𝛾𝑙
∗                 (34) 

𝜃𝑙: represents a single calculated value for a solution l in Pareto frontier 

𝛼𝑙: value of the first objective function for solution l 

𝛼𝑙
∗: optimum value of the first objective function for solution l 

𝛽𝑙: value of the second objective function for solution l 

𝛽𝑙
∗: optimum value of the second objective function for solution l 

𝛾𝑙: value of the third objective function for solution l 

𝛾𝑙
∗: optimum value of the third objective function for solution l 

As shown in Table 5, the optimality gaps for each objective in the final solution are 52%, 57%, 

and 21% for cost, emissions, and freshness, respectively. When the only objective is to maximize 

freshness, the refrigerated vehicles are likely carrying loads that are far smaller than their capacity, 

rather than consolidating customer orders to ensure fast delivery and few delivery stops. In this 

scenario, the vehicles’ traveled distances are very high, and consequently, distribution costs and CO2 

emission are at their highest level. Consolidating orders and increasing vehicle capacity utilization 

provides a substantial improvement in the cost and emission objectives, and the gaps of these 

objectives associated with the final solution reflect this. 

5.3. Sensitivity to Shelf Life 

To generate the results presented in the previous sections, it was assumed that the products have 

similar characteristics and the same shelf life (i.e., 2,880 hours). In reality, perishable products’ shelf 

life can range from 168 hours for highly perishable products, such as tomatoes, to 1,440 hours for 

moderately perishable products, such as oranges, and 2,880 hours for products with low 

perishability, such as apples. Therefore, the sensitivity of the MO-SVRP model to long, medium and 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 August 2020                   doi:10.20944/preprints202008.0108.v1

Peer-reviewed version available at Sustainability 2020, 12, 6668; doi:10.3390/su12166668

https://doi.org/10.20944/preprints202008.0108.v1
https://doi.org/10.3390/su12166668


 17 of 22 

short shelf life scenarios was analyzed. The final values of the three objectives for these shelf life 

scenarios are shown in Table 6. The results emphasize the increase in cost and energy that is required 

to distribute more perishable items, as well as the loss of freshness for shorter shelf-life products. 

These results suggest that distributors should consider investing more money and time on improving 

container isolation and the efficiency of the diesel engine to reduce energy consumption and preserve 

quality when distributing products with a shorter shelf life. These results are compatible with the 

findings of Bortolini et al. [32] in which it was illustrated that products with lower shelf life have 

higher operating costs and produce a higher carbon footprint. 

Table 6. Final solutions for transportation costs, freshness, and CO2 emissions for products with 

different shelf life values (for R101(25) instance) 

Shelf life (h) Costs ($) Freshness (%) CO2 (lbs×103) 

168 13522 62% 12916 

1440 11390 71% 10662 

2880 10213 75% 8892 

5.4. Sensitivity to Temperature Setting 

Although there are recommended temperature ranges for perishable product storage, 

determining the specific temperature setting for a refrigerated shipping container can be challenging. 

Lower temperature settings preserve product quality, but this requires more energy. Therefore, the 

sensitivity of the MO-SVRP model to various temperature settings was assessed by solving the 

R101(25) instance at temperature settings between 263-269 degrees Kelvin (14-25 °F) in two-degree 

increments.  

Table 7 shows that the final solutions for the three sustainability objectives for different 

temperature settings inside the container. Increasing the temperature setting from 263 °K to 269 °K 

causes a 15% reduction in product freshness (from 75% to 60%). Because the MO-SVRP recommends 

faster delivery to compensate for the loss in quality that results from an increase in temperature, the 

transportation distance and cost tend to increase at higher temperature settings. However, the effect 

of an increased temperature setting on emissions is more complex.  On one hand, transportation 

consumes more energy due to the increase in traveled distance. On the other hand, energy 

consumption for refrigeration decreases. This leads to a decrease in overall energy consumption 

throughout distribution.  

Table 7. Final solutions for transportation costs, freshness, and CO2 emissions for different container 

temperature settings (for R101(25) instance) 

Temperature (°K) Costs ($) Freshness (%) CO2 (lbs×103) 

263 10213 75% 8892 

265 10526 72% 8556 

267 11013 68% 8436 

269 11596 60% 8301 

6. Conclusions and Future Research 

In this paper, the VRP is extended to consider the perishability of the food products and 

refrigerated vehicles’ CO2 emissions in a multi-objective framework. The model addresses 

sustainability concerns associated with the perishable food distribution problem in a mathematical 

model by minimizing transportation costs and CO2 emissions and maximizing product freshness. 

Integrating a temperature estimation model provides accurate predictions of refrigeration-related 

emissions and product quality loss during distribution. The presented MO-SVRP model was solved 
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using an adapted NSGA-II algorithm, and the performance of the solution algorithm was tested and 

verified against the w-SA algorithm over the Solomon [56] data sets.  

The results of the analysis revealed that the sustainability objectives are conflicting, such that 

optimizing one objective can degrade the other two objectives. In particular, optimizing the freshness 

objective leads to a solution in which deploying all the available vehicles to minimize delivery time 

and the quality-deteriorating effect of temperature abuses at the delivery locations. Therefore, the 

optimality gaps in distribution costs and CO2 emission objectives are high when only the freshness 

objective is optimized. Furthermore, when vehicles are carrying highly perishable products, the MO-

SVRP model recommends faster delivery and fewer stops, which increases energy consumption and 

distribution costs. Sensitivity analysis over different temperature settings inside the shipping 

container indicates that even small increments in the temperature settings can have a huge impact on 

CO2 emissions and freshness objectives. This sensitivity analysis can be a helpful tool to determine 

the best temperature setting to achieve sustainability goals.  

This paper is mainly focused on presenting a methodology to accurately measure and optimize 

sustainability goals in the distribution of perishable food products. It is highly recommended to apply 

the methodology in practice to evaluate the sustainability goals with respect to the real-world 

parameters and constraints. The methodology of this research is limited to the single product 

distribution system with single compartment refrigerated vehicles. Considering the growth in the 

application of multi-compartment refrigerated vehicles to distribute multiple types of products with 

one vehicle, it would an interesting expansion for this study to measure and optimize sustainability 

objectives for perishable food distribution with multi-compartment refrigerated vehicles in which 

each food product has different perishability parameters and the compartments of the refrigerated 

vehicles can be set to different temperatures. 

The outcomes of this research highlight the necessity of integrating and accurately estimating 

multiple influential factors that impact sustainability in a perishable food distribution network to find 

solutions that are cost-effective, reduce food waste, and decrease emissions generated by refrigerated 

vehicles. 
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Appendix A 

Theorem 1. shows how to use the energy balance equation to predict the temperature when the 

container door is open to unload the products. 

𝑚𝑎. 𝑟𝑜 . 𝑠𝑎 . ∆𝑇𝑗 . 𝑡 = (𝑚𝑐𝑗
𝑠𝑐 + 𝑚𝑎𝑠𝑎)

𝑑𝑇

𝑑𝑡
 

∫
𝑚𝑎.𝑟𝑜.𝑠𝑎

(𝑚𝑐𝑗𝑠𝑐+𝑚𝑎𝑠𝑎)
𝑑𝑡

𝑡

0
= ∫

𝑑𝑇

(𝑇𝑜𝑢𝑡−𝑇)

𝑇𝑗

𝑇0
  

𝑚𝑎.𝑟𝑜.𝑠𝑎

(𝑚𝑐𝑗𝑠𝑐+𝑚𝑎𝑠𝑎)
(𝑡 − 0) = −(ln(𝑇𝑜𝑢𝑡 − 𝑇𝑗) − 𝑙𝑛(𝑇𝑜𝑢𝑡 − 𝑇0)) ) 

−
𝑚𝑎.𝑟𝑜.𝑠𝑎

(𝑚𝑐𝑗𝑠𝑐+𝑚𝑎𝑠𝑎)
. 𝑡 = ln

(𝑇𝑜𝑢𝑡−𝑇𝑗)

(𝑇𝑜𝑢𝑡−𝑇0)
   

𝑇𝑗 = 𝑇𝑎 − (𝑇𝑎 − 𝑇0). 𝑒
− 

𝑚𝑎.𝑟𝑜.𝑠𝑎

(𝑚𝑗𝑠𝑐+𝑚𝑎𝑠𝑎)
.𝑡

  

Theorem 2. shows implementing the energy balance equation to predict the temperature when 

the container door is closed during transportation.  

𝑄𝐶 =  𝐴𝐸            

𝑄𝐶 = (𝑚𝑐𝑠𝑐 + 𝑚𝑎𝑠𝑎)
𝑑𝑇

𝑑𝑡
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∫
Q𝑐

(𝑚𝑐𝑠𝑐+𝑚𝑎𝑠𝑎)
𝑑𝑡

𝑡

0
 = ∫ 𝑑𝑇

𝑇𝑝

𝑇0
          

Q𝑐

(𝑚𝑐𝑠𝑐+𝑚𝑎𝑠𝑎)
(𝑡 − 0) = (𝑇𝑝 − 𝑇0)          

𝑇𝑝 =
𝑄𝑐

(𝑚𝑐𝑠𝑐+𝑚𝑎𝑠𝑎)
. 𝑡 + 𝑇0   
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