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Abstract: As many if not most ligands at G protein-coupled receptor antagonists are inverse 

agonists, we have systematically reviewed inverse agonism at the nine adrenoceptor subtypes. 

Except for β3-adrenoceptors, inverse agonism has been reported for each of the adrenoceptor 

subtypes, most often for β2-adrenoceptors, including endogenously expressed receptors in human 

tissues. As with other receptors, detection and degree of inverse agonism depends on the cells and 

tissues under investigation, i.e. is greatest when the model has a high intrinsic tone/constitutive 

activity for the response being studied. Accordingly, it may differ between parts of a tissue, for 

instance atria vs. ventricles of the heart, and within a cell type between cellular responses. The basal 

tone of endogenously expressed receptors often is low, leading to less consistent detection and 

smaller extent of observed inverse agonism. The extent inverse agonism depends on specific 

molecular properties of a compound but clusters by chemical class. While inverse agonism is a 

fascinating facet in attempts to mechanistically understand observed drug effects, we are skeptical 

whether an a priori definition of extent of inverse agonism in the target product profile of a 

developmental candidate is a meaningful option in drug discovery and development. 
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1. Introduction 

Adrenoceptors (AR) mediate many of the physiological and pathophysiological functions of the 

neurotransmitter noradrenaline and the adrenal hormone adrenaline, for instance in the heart, 

airways, liver and urogenital tract. Three families of AR exist, the α1-AR, α2-AR and β-AR and 

include three subtypes each (α1A, α1B, , α1D, α2A, α2B, α2C, β1, β2 and β3) [1-3]. Early receptor theory 

assumed that ligands can interact with receptors by either activating them (agonists) or preventing 

the activation by other ligands (antagonists). This was initially amended by findings that even high 

concentrations of some ligands produce smaller responses than reference agonists, i.e. are partial 

agonists. Largely driven by experiments with heterologous expression of high receptor densities 

and/or constitutively active mutants (CAM) of receptors [4] it then emerged that some compounds 

originally assumed to only act by inhibiting effects of agonists (conventionally called ‘antagonists’) 

can reduce receptor activity also in the absence of agonists; this property was described by the term 

inverse agonism (IA) [5-8]. While originally described for GABAA receptors it is now clear that IA 

can occur at most if not all G protein-coupled receptors (GPCRs) including angiotensin receptors [9], 

muscarinic acetylcholine receptors [10], histamine receptors [11] and dopamine receptors [12]. While 

early studies proposed that IA may be the exception among ligands, the opposite appears to be true, 

i.e. that very few ligands do not change receptor activity (i.e. are neutral or silent antagonists) and 

most compounds originally classified as antagonists either cause a small extent of receptor activation 

(weak partial agonists) or act as inverse agonists. Thus, it has been estimated that 85% of all 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 August 2020                   doi:10.20944/preprints202008.0100.v1

©  2020 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at Cells 2020, 9, 1923; doi:10.3390/cells9091923

mailto:marmiche@uni-mainz.de
mailto:michelma@uni-mainz.de
mailto:pehein@gmail.com
mailto:marmich@uni-mainz.de
https://doi.org/10.20944/preprints202008.0100.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cells9091923


 

compounds previously classified as antagonists are inverse agonists [13]. Of note, measured IA is 

only partly an intrinsic property of a compound but also depends on the model in which it is 

investigated; thus, a compound may exhibit partial agonism in some, neutral antagonism in others 

and IA in even further models [14, 15] – most likely depending on the tone/constitutive activity of a 

system (see below). Evidence from receptor crystal structures has indicated that each ligand induces 

a unique conformation of a receptor and that conformations induced by inverse agonists differ from 

those induced by neutral antagonists (see section 6). 

 

This article will shortly discuss methodological aspects of studying IA (section 3), followed by a 

systematic description of compounds exhibiting IA at AR subtypes (section 4) and how their effects 

on complex biological systems such as living animals or humans may deviate from those of neutral 

antagonists (section 5). Finally, we will discuss the molecular basis of IA and its impact on drug 

development and treatment of disease (section 7). 

 

2. Search strategy 

 

We have searched PubMed using the term “inverse agonist” in combination with any of the terms 

“alpha-1”, “alpha-2”, “beta-1”, “beta-2” or “beta-3”. Two authors (MBMR and MCM) removed 

duplicates retrieved by more than one search (n = 40). Title and abstract of retrieved references were 

independently screened by two authors (MCM and PH) and grouped as original paper, as review 

article or as obviously out of scope; the latter included those not dealing IA at AR but for instance 

with α1 subunits of GABA receptors. Retracted papers were also excluded from the analyses (n = 1). 

Full texts were retrieved for original and review papers potentially considered in scope and those 

where the two examiners did not agree on “obviously out of scope” based on title and abstract. The 

reference list of the review articles was manually searched for additional applicable original studies. 

A PRISMA flow chart on our search results is shown as Figure 1. 

 

primary hits n = 535

elimination of duplicates n = 40

elimination of out of scope or reviews n = 326

added from reference lists n = 9

extracted full text original articles n  = 178
 

Figure 1: PRISMA flow chart of handling of search results.  
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3. Methodological aspects of studying IA 

 

IA can in principle be assessed by any functional response. Frequently applied assays include 

GTPγS binding as a very proximal assay of receptor activity [16-18], more distally early second 

messengers such as formation of inositol phosphates (IP) [19], formation of cAMP [15, 20], inhibition 

of formation of cAMP [21, 22] or, even more distally, up-regulation of receptor number [23-27]. Less 

frequently applied readouts involve AR phosphorylation [26, 28], FRET signals for 

receptor/G-protein interaction [29-31], GTPase activity [32], β-arrestin recruitment [33], activity of 

phospholipase D [23] or of extracellular signal-regulated kinase [14, 34], free intracellular Ca2+ 

concentrations [35], modulation of ion channels such as L-type Ca2+ channels [36] or iKCa1 K+ 

channel [37], or modulation of cAMP gene transcription by acting on cAMP response elements [15, 

38]. However, it needs to be considered that the more distant an observed response occurs in the 

signal transduction cascade, the greater the biological complexity of the assay and the possibility 

that it becomes affected by factors other than IA [39]. α1-, α2- and β-ARs use distinct canonical 

signaling pathways, i.e. involving Gq/11, Gi/o and Gs, respectively; accordingly, studies of IA have 

largely applied IP formation, GTPγS binding and cAMP formation, respectively, reflecting this 

differential G protein coupling. 

 

Similar to agonism, IA can occur at orthosteric and allosteric sites [40, 41], and similar to classic 

antagonism, IA can present as competitive or non-competitive [42] and can exhibit stereo-specificity 

[43]. Moreover, AR ligands with IA are not necessarily small molecules but can also be antibodies 

[44]. 

 

It appears obvious that a reduction in basal state is easiest to detect if the tone/constitutive activity of 

the system is high (better signal/noise ratio). The basal state depends on endogenous features of the 

model under investigation, e.g. expression of various molecules involved in the signal transduction 

chain up to the point being measured. This can experimentally be manipulated for instance by 

over-expressing receptors [42, 45-48], by co-expression with a G protein [18, 49, 50] or an adenylyl 

cyclase isoform [51], by studying receptor/G protein fusion proteins [32, 49, 52], by using 

constitutively active mutants (CAM) of the receptor [17-19] and by sensitizing the signaling system, 

as has been done in cells expressing opioid receptors by pre-treatment with morphine [20, 53]. Of 

note, CAM can include naturally occurring receptor gene polymorphisms [30, 54, 55], which are 

frequent [56].  

 

It flows from this, that IA is not an intrinsic property of a ligand but rather is context-dependent. 

Thus, a given compound may behave as inverse agonist in some, as neutral antagonist in other and 

as (weak) partial agonist in even further models [57]. It may even exhibit these distinct properties for 

one vs. another response within a model, particularly if one read-out has a greater basal tone 

(signal/noise ratio) than the other [14]. This implies that the degree of IA may differ between ligands 

for a given read-out or between read-outs for a given ligand; for instance the degree of IA as 

measured in right and left atria and ventricle of rat heart differed considerable for any given 

compound [58]. Accordingly, ligands may exhibit partial IA [17, 23, 57]. While ligands from some 

chemical classes may exhibit stronger IA than others it typically is not limited to one chemical class 
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of ligands [19, 23, 57] and can even occur at AR with peptide ligands [40]. Therefore, the term inverse 

agonist should only be used specific to a context, similar to the term partial agonist [59]. 

 

The above can be conceptualized by imagining the receptor activity as an ‘output’ on a continuum 

ranging from ‘no signaling’ to ‘maximal signaling’ (Figure 2). The level of basal activity, i.e. in the 

absence of a ligand, is determined by intrinsic receptor properties (e.g. activating mutations) and its 

local environment (e.g. ions, G protein availability, temperature, localization to signaling domains). 

A specific ligand is now simply one additional ‘input’ which, together with all other inputs, 

determines the signaling output level. For example, a ligand that would set the output level to 20% 

of the maximal effect can be considered a partial agonist if the other inputs set the receptor at a 

signaling level below 20%, an inverse agonist if the other inputs set a level of larger than 20%, and a 

neutral antagonist if all other inputs have set the signaling output already to 20%. Changing the 

input, e.g. by introducing a CAM that causes the activity level to be 40% subsequently changes the 

apparent classifications for specific ligands; in this example, a ligand behaving as a “neutral 

antagonist” at 20% now appears to be an “inverse agonist” at 40%. In this framework, the terms 

“inverse agonist”, “neutral agonist”, and “partial agonist” begin to merge, since the traditional 

method used to classify a ligand (measuring changes in signaling output) can give different results 

depending on the dynamic nature of the receptor activity level in the absence of a ligand. Similar 

concepts have previously been proposed, e.g. to consider efficacy as a vector [13]. To complicate 

things further, given inputs can lead to different output levels as different signaling endpoints are 

considered.  

 

Stringent proof of IA requires that the inverse effect of one ligand is blocked by a neutral antagonist; 

however, most studies in the field have assumed that a given compound shown once or more often 

to reduce basal receptor output agonist consistently acts via IA but this is not necessarily the case. 

For instance, ICI 118,551 has repeatedly been shown to be an inverse agonist at β2-AR (see below); 

however, its inhibitory effect in rat endothelium were neither mimicked by other known inverse 

agonists (e.g. carvedilol or nadolol) nor blocked or reversed by antagonists (e.g. propranolol) or 

agonists (e.g. salbutamol) [60], indicating that it may have acted by a β-AR-independent 

mechanisms in this model. While this may be the exception, IA as an explanation of an observed 

effect should not be assumed too easily. 
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Figure 2: Ligand efficacy as one of many determinants of signaling output. A number of effects 

determine the signaling output (e.g. receptor structure, GTP/GDP ratio, ion concentrations, number 

of G proteins, and ligand binding. (left). The apparent property of a ligand as inverse agonist, 

neutral antagonist, and agonist can only be determined relative to the overall output level. For 

example, introducing a CAM into the receptor structure may change a ligand‘s effect from weak 

partial agonism to inverse agonism (right). 

 

4. Compounds exhibiting IA at AR subtypes in cellular models 

 

The subsequent sections are primarily ordered by subtypes within a subfamily of α1-, α2- and β-AR. 

Most research has been reported for isolated cells, very often transfected with the receptor of interest 

but in some cases also with endogenously expressed receptors. 

 

4.1. α1-AR 

 

The initial literature on IA at α1-AR has previously been summarized in a narrative review [61]. IA at 

α1-AR has largely been studied using cell lines such as COS-7 [19, 45], CHO [16] or HEK cells [17, 62, 

63] or rat-1 fibroblasts [23, 24, 34, 35, 57, 64] transfected with cloned wild-type (WT) receptors or, in 

some cases, CAM thereof [16, 19, 23, 45, 57, 63]. One study in isolated rat uterine cervix reported a 

pertussis toxin-sensitive stimulation of GTPγS binding by WB 4101, whereas phenylephrine had the 

opposite effect; concentration-dependent effects of WB 4101 on cervical tone were inhibited by 

phentolamine [65]. However, the α1-AR subtype involved in this effect has not been determined. 

 

4.1.1. α1A-AR 

 

The broadest evaluation of IA at α1A-AR characterized 24 compounds representing various chemical 

families including N-arylpiperazines, 1,4-dihydropyridines, imidazolines, benzodioxanes, 

phenylalkylamines and quinazolines for their ability to inhibit basal IP formation in COS-7 cells 
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transfected with CAM [19] (Figure 3). Among the N-arylpiperazines, some compounds (WAY 

100365) exhibited strong IA, some (5-methylurapidil and BMY 7378) moderate IA and others (REC 

15/2739, REC15/2869, REC 157/3011 and REC 15/3039) did not show IA. All tested compounds from 

the other chemical classes including the clinically used alfuzosin, phentolamine, prazosin, 

spiperone, tamsulosin and terazosin exhibited moderate to strong IA. Nine of these compounds 

were also tested at WT α1A-AR with largely similar results, but the extent of IA appeared greater 

than with the CAM receptor for 5-methylurapidil, BE 2253 and REC 15/2869. 
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Figure 3: Inhibition of basal inositol phosphate formation in cells stably transfected with CAM of 

α1A-AR (A271E mutation) and α1B-AR (A293E mutation). The figure was modified with permission 

from [19]. All compounds were tested at a concentration of 10 µM, except for Rec 15/3039 (100 µM) 
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and data are shown as means of 3-6 experiments. Compounds are grouped based on structural 

similarities as classified by original authors from left to right as N-arylpiperazines, 

1,4-dihydropyridines, imidazolines, benzodioxans and phenylalkylamines, quinazolines and ‘other’.  

 

Other investigators tested smaller panels of ligands but evaluated them in multiple assays at CAM 

of human α1A-AR transfected into CHO cells [16]. They confirmed IA as measured for IP formation 

for BMY 7378, phentolamine, prazosin and WB 4101, and extended this to HV723, whereas silodosin 

(formerly known as KMD-3213) did not exhibit IA. As a second indicator of IA they tested the ability 

to cause receptor up-regulation; this yielded qualitatively similar results as the IP formation assay, 

but the extent of IA appeared stronger in the IP than in the up-regulation assay for BMY 7378 and 

WB 4101 where the opposite was observed for HV 723 and phentolamine. Neither prazosin nor 

silodosin exhibited IA as assessed by IP formation against WT α1A-AR. In a third assay, prazosin but 

not silodosin inhibited GTPγS binding. Finally, silodosin attenuated the inhibitory effects of 

prazosin in the IP and GTPγS assay, strengthening the evidence for IA as underlying mechanism 

due to reversal by a neutral antagonist.  

 

In contrast to the above two studies, others reported a lack of IA of phentolamine and prazosin 

against basal IP formation with WT human α1A-AR transfected into Rat-1 fibroblasts under 

conditions where the two compounds blocked the effect of phenylephrine [24]. Nonetheless, 

prazosin increased the number of α1A-AR expressed at the cell surface, irrespective of presence of the 

agonist phenylephrine. The lipid raft disrupting agent methyl-β-cyclodextrin blocked the receptor 

up-regulation by prazosin. Methyl-β-cyclodextrin decreased the affinity of phenylephrine but 

increased that of prazosin or phentolamine. While other investigators had reported minor 

differences in affinity between WT and CAM for some but not other inverse agonists, a systematic 

pattern was not evident [16, 19].  

 

Neither phenylephrine nor prazosin affected continuous internalization rates of human α1A-AR 

transfected into Rat-1 fibroblasts [64]. Similarly, neither adrenaline nor prazosin affected 

dimerization between human α1A-AR and hamster α1B-AR transfected into HEK cells [62]. In 

conclusion, most but not all antagonists exhibited IA at α1A-AR but the extent of IA differed 

considerably between compounds. Some evidence indicates that a given ligand may exhibit a 

greater degree of IA for one than another assay (e.g. IP formation vs. receptor up-regulation), 

whereas other ligands may exhibit the opposite preference within the same study. Thus, the 

possibility exists that the IA may concomitantly involve a component of biased agonism. 

 

4.1.2. α1B-AR 

 

The initial report on IA at α1B-AR was based on a CAM of the hamster receptor and showed 

inhibition of IP formation by prazosin and phentolamine [45]. In a follow-up study the same group 

tested 24 antagonists from different chemical classes for their ability to inhibit IP formation with 

both WT and CAM of the human α1B-AR [19]. Most ligands exhibited IA against the CAM and fewer 

against the WT. Generally, extent of IA appeared larger than for that at α1A-AR investigated within 

the same study (see above). There was no systematic difference in affinity between CAM and WT 

receptor. Using cells obtained from these investigators, other confirmed IA of a range of compounds 
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from various chemical classes against IP formation at the CAM [57]. Interestingly, the tested 

quinazolines alfuzosin, doxazosin, prazosin and terazosin exhibited a similar level of IA, whereas 

that of the non-quinazoline BE 2254 was considerably weaker, SB 216,469 behaved as a neutral 

antagonist and tamsulosin even as a weak partial (not inverse) agonist; SB 216,469 inhibited both the 

IA by the quinazolines and the partial agonism of tamsulosin. None of the tested ligands exhibited 

IA at the WT receptor. An independent group also did not detect IA of prazosin for IP formation at 

the WT human α1B-AR and observed weak partial agonism for activation of extracellular 

signal-regulated kinase [34]. 

 

Using phospholipase D activity as the read-out with a CAM α1B-AR receptor, IA was reported by 

various ligands, but 5-methyl-urapidil had a somewhat and tamsulosin a considerably weaker 

efficacy than the other tested compounds [23]. As part of the same study, up-regulation of the CAM 

α1B-AR was observed by the same ligands and again tamsulosin and 5-methyl-urapidil showed 

weaker IA efficacy. Up-regulation of the CAM α1B-AR was also reported by others upon exposure to 

various inverse agonists, but none of them caused an intracellular redistribution [63]. Neither the 

full agonist adrenaline nor the inverse agonist prazosin affected dimerization between the α1A- and 

α1B-AR [62]. Using a fusion protein of WT or CAM of the hamster α1B-AR and the α-subunit of G11, 

others detected IA based on inhibition of GTPγS binding with a rank order of efficacy of 

phentolamine > WB4101 > corynanthine > HV723 > urapidil [17].  

 

4.1.3. α1D-AR 

 

IA has been studied to a lesser extent at the α1D- as compared to the other α1-AR subtypes. 

5-methyl-urapidil, BMY 7378, chloroethylclonidine and phentolamine reduced basal free 

intracellular Ca2+ concentrations in Rat-1 fibroblasts transfected with α1D-AR, whereas WB 4101 had 

only very small effects and inhibited the effects of the inverse agonists and of noradrenaline [35]. 

Other investigators reported that prazosin reduced IP formation and activity of extracellular 

signal-regulated kinase in Rat-1 fibroblasts transfected with human α1D-AR, whereas this had not 

been observed with α1B-AR within the same study [34]. They also observed an intracellular 

redistribution of the α1D-AR upon exposure to prazosin. 

 

In conclusion, the majority of all tested compounds previously considered as antagonists exhibited 

IA at cloned α1-AR subtypes (Figure 3). This was observed with subtypes from multiple species (e.g. 

hamster and human) and in a range of expression systems including COS-7, CHO, HEK and Rat-1 

cells, indicating that it is a potentially universal phenomenon. While most studies focused on IP 

formation, IA has also been demonstrated for a range of other signaling pathways and for more 

distal responses such as receptor up-regulation. IA was detected more consistently with CAM than 

with WT of the receptor, confirming that detection of IA depends on the extent of basal activity of 

the functional response under investigation. Similar to agonists, inverse agonists exhibited a range of 

efficacies with a general trend for qinazolines including several clinically used drugs (alfuzosin, 

doxazosin, prazosin and terazosin) typically having the greatest efficacy as inverse agonists (Figure 

3). The clinically used non-quinazoline tamsulosin often (but not always) exhibited weaker IA and in 

some cases, where quinazolines showed IA behaved as weak partial agonist; whether this 

contributes to observed differences in clinical profiles of theses ligands remains unclear. Only few 
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compounds were close to being neutral antagonists; these similarly inhibited responses to agonists 

and inverse agonists. 

 

4.2. α2-AR 

 

IA at α2-AR has also been studied in a variety of transfected cell lines including COS-7 [50], CHO [18, 

21, 22, 66, 67], HEK [29, 68], HEL [43], PC-12 cells [46, 69-71], mostly using WT but in some cases also 

a CAM of the receptor [18, 22, 29, 66, 67, 71] or co-transfection with a Go protein [18, 66]. In contrast 

to the studies with α1-AR, those with α2-AR have at least in some cases been performed with natively 

expressed receptor, e.g. in C6 glioma [21], NG 108-15 neuroblastoma [72] and HepG2 

hepatocarcinoma cells [73]. 

 

A study using saturation and competition radioligand binding studies in rat brain sections (mix of 

α2-AR subtypes) was based on the premise that the presence of GTP decreases the affinity of agonists 

and increases that of inverse agonists when tested in the presence of magnesium [74]. GTP increased 

the affinity of RX 821002 and increased that of rauwolscine with inconclusive data for MK-912. These 

data are difficult to interpret because an earlier studies comparing the effects of multiple buffers in 

rat cerebral cortex had not reported effects of GTP on the affinity of either RX 821002 or rauwolscine 

[75]. 

 

4.2.1. α2A-AR 

 

Using WT-transfected PC12 cells, inhibition of GTPγS binding was reported for rauwolscine, 

yohimbine, phentolamine, idazoxan and WB4101 [69] and in a later report by tolazoline and some of 

its analogs [70]. In a follow-up study using not only the WT but also a CAM receptor, these 

investigators focused on molecular mechanisms underlying the IA by rauwolscine [71]. Treatment 

with protein kinase C inhibitors such as bisindolyl-maleimide, calphostin C, chelerythrine or 

staurosporin, but not those of several other protein kinases almost abolished the inhibitory effect of 

rauwolscine on GTPγS binding. The IA of rauwolscine was also abolished in a Ca2+-free medium. 

While a Gi1/2 antiserum had stronger inhibitory effects on adrenaline-stimulated GTPγS binding than 

a Gs antiserum, only the latter reduced basal GTPγS binding, indicating that different G proteins are 

involved in constitutive as compared to agonist-stimulated activity. 

 

Using CHO cells transfected with the human WT or CAM receptor and additionally a rat Go protein 

reduced basal GTPγS binding was found for RX 811059 and its (+)-enantiomer, (+)-RX 821002, RS 

15385 and yohimbine whereas fluparoxan and WB4101 exhibited partial IA and atipamezole and 

dexefaroxan were neutral antagonists; atipamezole inhibited the agonism by UK 14,304 and the IA 

by (+)-RX 811059 with similar pKB values [18]. A follow-up studies from the same group confirmed 

IA of (+)-RX 811059 and neutral antagonism of atipamezole for GTPγS binding [66]. Surprisingly, a 

48 h incubation with the inverse agonist (+)-RX 811059, the neutral antagonist atipamezole and the 

efficacious agonist medetomidine similarly increased α2A-AR within that study, both for WT and 

CAM receptor. These findings challenge the assumption that up-regulation of the target receptor can 

easily be interpreted as a result of IA; rather they support the idea that structural stabilisation of the 

receptor may be involved in up-regulation, irrespective of the nature of the ligand [66]. In another 
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follow-up study, this groups tested various analogs of dexefaroxan for IA to inhibit of GTPγS 

binding in transfected CHO for cAMP formation in transfected C6 glioma cells [21]. While 

chemically closely related, efficacy for GTPγS binding differed widely between the analogs and 

included inverse agonists (RX 851062), neutral antagonists (RX 851057), partial agonists (RX 821008) 

and full agonists (RX 821010); however, neither of these compounds exhibited positive or negative 

efficacy in the cAMP assay further demonstrating that the presence of IA depends on both intrinsic 

properties of a compound and those of the assay system.  

 

Two groups of investigators have tested known inverse agonists for their effects on receptors 

receptor/G protein interaction using FRET-based approaches in transfected HEK cells. IA could be 

detected when conformational changes were examined using intramolecular FRET (Vilardaga et al., 

2005). When looking at FRET between receptors and G proteins, agonist showed a decrease while no 

effect was seen with inverse agonists; this was interpreted as evidence for precoupling (Nobles et al., 

2005).  

 

In studies with CHO cells transfected with both WT and CAM receptor, several ligands exhibited IA 

with a rank order of inverse efficacy for modulation of forskolin-stimulated cAMP formation of 

rauwolscine > yohimbine > RX821002 > MK912, whereas phentolamine and idazoxan were largely 

neutral antagonists; the irreversible ligand phenoxybenzamine also was without effect [22]. IA based 

on cAMP formation has also been demonstrated for levomedetomidine, idazoxan, rauwolscine and 

atipamezole with endogenously expressed α2A-AR in HEL cells [43]. In contrast to these findings, 

others using C6 glioma cells did not observe effects of various RX821002 analogs for modulation of 

cAMP formation [21]. 

 

While stimulation of phospholipase C is not a typical signaling response of α2A-AR [1], such 

coupling was observed in Cos-7 cells transfected with the WT and a CAM α2A-AR; IP formation by 

the CAM (but not the WT) was further enhanced upon co-transfection with the α-subunit of murine 

G15 [50]. However, none of the ligands shown by the same group to exhibit IA for GTPγS binding 

[18, 21, 66] including MK 912, WB 4101, RS 15385, RX 811059 and RX 821002 exhibited IA in this 

model; compounds that were neutral antagonists for GTPγS binding such as dexefaroxan, idazoxan, 

atipamezole, BRL 44408  and SKF 86466 exhibited partial agonism for IP formation. A 

phospholipase C-independent elevation of intracellular Ca2+ concentrations can be observed in HEL 

cells [76]. In such cells Ca2+ levels were increased by dexmedetomidine and lowered by 

levomedetomidine, idazoxan and rauwolscine [43]. The neutral antagonist MPV-2088 inhibited by 

responses. Despite exhibiting IA in both the Ca2+ and the cAMP assay in HEL cells, 

levomedetomidine behaved as a partial agonist in rat vas deferens. 

 

4.2.2. α2B-AR 

 

Yohimbine was shown to exhibit IA for GTPγS binding at α2B-AR endogenously expressed in NG 

108-15 neuroblastoma cells [72]. A lowering of intracellular Ca2+ concentrations was observed in 

transfected PC12 cells with chlorpromazine, rauwolscine RX821002, but not with ARC 239, MK 912 

or phentolamine whereas atipamezole was a partial agonist [46]. However, very high (3.8 pmol/mg 

protein) receptor expression was required to detect both IA and partial agonism, and this was not 
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seen with lower, but still high expression levels (1.3 pmol/mg protein). The same group also 

reported on WT and CAM α2B-AR expressed in CHO cells [67]. In line with their data from the NG 

108-15 cells, RX 821002 exhibited lowering of intracellular Ca2+ concentrations with the CAM but not 

with the WT receptor. 

 

4.2.3. α2C-AR 

 

Our search identified only one study related to IA by α2C-AR: treatment with RX821002 or 

yohimbine increased receptor number as assessed by radioligand binding in HepG2 

hepatocarcinoma cells endogenously expressing the receptor, treatment with UK 14,304 reduced it 

whereas phentolamine was without effect [73]. The regulation of α2C-AR binding sites was not 

accompanied by changes in corresponding mRNA level but rather were consequences of increased 

receptor degradation by the agonist and decreased degradation by the inverse agonist. 

 

In conclusion, knowledge on IA at α2-AR is largely driven by that on α2A-AR. While demonstration 

of IA tested as reductions of GTPγS binding bindings are very consistent across studies and 

investigators, effects on the canonical pathways of inhibition of cAMP formation are less consistent. 

Studies on other readouts are either contradictory or too few to reach robust conclusions. While 

detection of IA was facilitated by higher expression of WT, by CAM or by co-expression of G protein 

α-subunits, it has also been reported with multiple cell lines endogenously expressing the receptor. 

 

4.3. β-AR 

 

Subtypes of β-AR have been studied more extensively for IA than those of α1- and α2-AR combined. 

This is mostly due to studies with β2-AR, and most likely because the β2-AR was the first cloned G 

protein-coupled receptor [77] and became a general paradigm for studying GPCRs. In contrast, our 

search did not identify any studies related to IA at β3-AR. β-ARs also are on the only AR subfamily 

for which IA in tissues has been explored in many studies (see section 5). 

 

4.3.1. β1-AR 

 

IA at β1-AR has been explored using transfected cell lines; this was mostly done in HEK cells, 

although CHO [78] and CHW cells were also used [54]. Those were mostly transfected with the 

human receptor but in some cases also with the turkey receptor [78, 79] Transfections were mostly 

done with the WT β1-AR but often also with CAM [80] and/or naturally occurring variants of the 

receptor [30, 54, 55]. To a limited extent, IA has been studied at the signal transduction level in cells 

endogenously expressing the β1-AR [81]. 

 

Most investigators have used cAMP formation as readout for IA. Inhibition of basal cAMP formation 

was observed consistently with metoprolol [54, 55, 80]. IA has also been reported for CGP 20,712 

[54], whereas detection of IA by propranolol with the human receptor [14] was not confirmed with 

the turkey ortholog [79]. Two studies from the same group also did not observe IA by ICI 118,551 at 

the turkey β1-AR [78, 79]. Bucindolol at the human [14] and carazolol at the turkey receptor [78] were 

reported to be partial agonists, the latter being noteworthy because it has consistently been shown to 
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exhibit IA at the β2-AR (see below). Lowering of basal cAMP formation has also been found for CGP 

20,712 in rat anterior pituitary, representing a bona fide β1-AR; while this was abolished by 

carvedilol or pre-treatment with pertussis toxin, no IA was observed for betaxolol or propranolol in 

this model [81]. 

 

Only few studies have tested IA for signaling responses other than cAMP formation, all at human 

β1-AR transfected into HEK cells and sometimes in direct comparison to ligand effects on cAMP. 

Using a FRET assay to directly monitor receptor/G protein-interaction, carvedilol and, to a lesser 

extent bisoprolol and metoprolol were found to exhibit IA [30]; the IA by carvedilol was stronger in 

the naturally occurring (hypoactive) Arg389 than in the Gly389 variant. Using a different FRET probe 

that monitors cAMP levels, carvedilol also exhibited stronger IA with the Arg389 than the Gly389 

variant with bisoprolol and metoprolol not displaying measurable IA in that assay. In a comparison 

of cAMP formation and activation of extracellular signal-regulated kinase, propranolol was an 

inverse agonist whereas bucindolol a partial agonists for cAMP whereas both were partial agonists 

for the kinase activation [14]. Metoprolol exhibited stronger IA for cAMP formation at CAM R384E 

and R384Q mutations of the β1-AR as compared to WT; in contrast to the WT the mutated receptor 

largely exhibited an intracellular localization, and were redistributed to the plasma membrane in the 

presence of metoprolol or CGP 20,712 [80]. 

 

4.3.2. β2-AR 

 

IA has been studied more often at β2-AR than any other AR subtype. Accordingly, this has been 

done in a wide range of models including transfected mammalian COS-7 [47, 53], BC3H1 [42], CHW 

[49, 54], CHO [15, 28, 48, 82, 83], HEK [26, 27, 31, 33, 84, 85], NG 108-15 cells [25, 51, 53, 86], a Burkitt 

lymphoma [38] and H9C2 cells [87], and fibroblasts [84] and insect Sf9 cells [32, 48, 52, 88]. Models 

with endogenous expression of β2-AR have also been used including A431 [20] cells and 

cardiomyocytes [36, 89, 90]. While the most frequently used readout was cAMP formation, others 

included FRET assays for receptor/G protein interaction [31, 91], G protein activity [32], arrestin 

recruitment [33], receptor phosphorylation [26], intracellular Ca2+ levels [90] and Ca2+ channel 

activity [36], activation of extracellular signal-regulated kinase [15], reporter gene assays [15, 38] and 

receptor up-regulation [25-27, 85, 86]. 

 

Several approaches have been applied to explore IA at the level of receptor/G protein interaction. ICI 

118,551 exhibited IA in a G protein activation assay [91]. FRET sensors responsive to β2-AR/G 

protein interaction showed IA for ICI 118,551 and, to a lesser extent for metoprolol [31]. Others 

reported that ICI 118,551 inhibited phosphorylation of a CAM β2-AR, whereas propranolol had no 

effect and isoprenaline increase phosphorylation; phosphorylation of the WT β2-AR was also 

stimulated by isoprenaline but not affected by neither ICI 118,551 nor propranolol [28]. ICI 118,551 

also inhibited GTP hydrolysis of a constitutively active fusion protein between the β2-AR and the 

α-subunit of Gs [32]. Extending these observations, acute exposure to nadolol (5 min) reduced cAMP 

formation and forskolin-stimulated phosphorylation of the β2-AR at Ser355 and Ser356, whereas longer 

exposure (24 h) increased cAMP formation, presumably by up-regulation of the receptor, and did 

not change receptor phosphorylation [26]. In contrast to the agonist adrenaline, ICI 118,551 did not 

affect arrestin recruitment [33]. 
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More than 20 studies have demonstrated inhibition of basal cAMP formation via WT β2-AR: These 

studies demonstrated IA for ICI 118,551 as the most frequently studied compound [15, 20, 28, 31-33, 

42, 49, 51-54, 83-85, 88-90] but also for alprenolol [42, 48, 82], atenolol [15, 42], betaxolol [28, 51, 82, 85, 

86], bisoprolol [15], cyanopindolol [88], dichloroisoproterenol [48], labetolol [48, 82], metoprolol [15, 

31], nadolol [26],  pindolol [48, 82], propranolol [15, 42, 48, 82, 88], sotalol [15, 86], timolol [15, 53] 

[48, 51, 82, 84, 86]. However, IA by some of these compounds was not confirmed or found under 

some other experimental conditions, for instance for alprenolol [28, 51, 85], dichloroisoproterenol 

[82], labetolol [85] or propranolol [51, 86]. This may reflect lack of robustness of findings with a given 

compound, particularly if it exhibited only partial IA in the ‘positive’ studies or that the ‘positive’ 

studies were performed in models with a greater basal tone of the system than the ‘negative’ studies. 

 

The presence of true IA was confirmed by antagonism of reduced cAMP formation in the presence 

of ligands with considerably weaker IA or neutral antagonists [20, 42, 48, 53, 86]. As with other AR 

subtypes, the relative efficacy of IA differed considerably between ligands [15, 48, 82] (Figure 4). 
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Figure 4: Efficacy for cAMP accumulation and activation of a cAMP response element (CRE) 

reporter gene in cells stably transfected with human β2-AR. The figure was generated based upon 

data from [15]. Each bar represents means ± SD of Emax as % of basal derived from 3-38 

concentration-response experiments. Note that the efficacy of the most efficacious ligand, labetalol 

8.5% and 66.9% of maximum isoprenaline response in the cAMP and CRE assay, respectively. 

 

Stimulation of cardiac β-AR can lead to elevations of intracellular Ca2+ elevation. A study in most 

cardiomyocytes found that concentrations of ICI 118,551 can reduce the elevated Ca2+ concentrations 

induced by the PI-3 kinase inhibitor LY 294002 or the phosphodiesterase type 4 inhibitor milrinone 

[90]. Similarly, activation of L-type Ca2+ channels by a peptide corresponding to the second loop of 

the human  β2-AR was inhibited by ICI 118,551 but not by alprenolol in guinea pig cardiomyocytes 
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[36]. While mostly occurring via β1-AR, the authors attributed these effects to β2-AR because of the 

low concentrations of ICI 118,551 being used and the high β2-selectivity of this compound. 

 

Studies in transfected CHO cells found that several ligands exhibited IA for activation of a reporter 

gene construct based on the cAMP response element; while the patter was similar for various 

compounds for IA of cAMP formation and activation of the reporter gene construct, it was generally 

higher for the latter; accordingly, was detected for cAMP formation but not the reporter gene 

construct for some compounds (Figure 4) [15]. ICI 118,551 also exhibited IA in a similar assay in a 

Burkitt lymphoma cell line, whereas propranolol was a partial agonist in this model [38]. 

 

Several studies have used β2-AR upregulation to study IA. This was observed with betaxolol in NG 

108-15 cells transfected with a CAM and to a lesser extent when transfected with a WT receptor, 

whereas this was not seen with alprenolol with either [25]. Interestingly, half-maximal 

concentrations of betaxolol for receptor upregulation were very similar for those of reducing basal 

adenylyl cyclase activity. Moreover, the upregulation was specific for the receptor, i.e. not 

accompanied by change of Gs protein or mRNA, and depended on de novo protein synthesis. 

Additional studies from the same group confirmed the upregulation and demonstrated that it was 

be prevented by the neutral antagonists dihydroalprenolol and propranolol [86]. Upregulation of the 

β2-AR was also shown in transfected HEK cells for betaxolol, diyhydroalprenolol, ICI 118,551 or 

labetalol [85], for betaxolol [27] and for nadolol [26]. In H9C2 cells, ICI 118,551 was used based on its 

consistently shown IA as a probe for the presence of constitutive activity for the formation of 

nanoscale clusters but had no effect in that model [87]. 

 

5. Effects of compounds with IA data for tissue and in vivo function 

 

Studies with isolated tissues and in vivo are particularly important in two ways: Firstly, they allow to 

study tissue or whole organism consequences of IA. Second, they are more likely to be 

representative for effects with relevance to a therapeutic situation if endogenously expressed 

receptors are studied. However, a key limitation of most of these studies is that employed tools 

typically allow to assign IA to α1-, α2- or β-ARs as a subfamily but less so to directly link it to a 

specific subtype within a subfamily. Another limitation applicable largely to the in vivo studies is the 

difficulty of understanding whether a given response opposite to that of an agonist can be attributed 

to IA or alternatively explained by classic antagonism of endogenously present agonists [92, 93]; this 

applies even more to the interpretation of human in vivo studies [94] in which much less 

experimental modulation is possible than in research animals for ethical reasons. One approach to 

address this is the intra-study comparison with ligands that were reported to be neutral antagonists. 

 

5.1. α1-AR 

 

One of the earliest reports on IA at AR in a complex physiological system was based on indirectly 

measuring depletion of intracellular Ca2+ stores in rat aorta strips [39] and this highlights the 

complexity of studying IA in a native tissue. The investigators initially contracted rat aortic strips 

with noradrenaline and then repeated noradrenaline exposure in Ca2+-free medium to deplete 

internal Ca2+ stores; after refilling of the intracellular stores, spontaneous increases in resting tone 
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were observed, which were inhibited by antagonists such as benoxathian and WB 4101 in the 

absence of agonist.  

 

In isolated rat cervix, WB 4101 concentration-dependently increased GTPγS binding and increased 

tone, both being modified by day of pregnancy [65]. Phentolamine inhibited the WB 4101 effects on 

cervical tone, whereas other known inverse agonists such as AH 11110A or BMX 7378 did not mimic 

the effect of WB4101. Others reported that WB 4101 and two of its analogs K+-induced contractions 

in guinea pig ileum and left atrium, but not in aorta, whereas various Ca2+-channel inhibitors 

exhibited comparable inhibition in all three tissues [95]; unequivocal evidence for the involvement of 

IA at α1-AR as underlying mechanism was not provided.  

 

Other investigators explore a possible involvement of IA in synaptic transmission and other CNS 

functions. In rat cardiac vagal neurons, prazosin reduced the frequency of GABAergic and 

glycinergic neurotransmission, whereas phenylephrine increased it [92]; however, a specific role of 

inverse agonism in this observation was not proven. In rats with chronic spinal cord injury, 

presumably lacking endogenous noradrenaline release from fibers originating from the brainstem, 

α1-AR agonists methoxamine and the α1A-selective A 61603 facilitated Ca2+-mediated persistent 

inward currents and produced muscle spasms both in vivo and in vitro, whereas in vivo recorded 

spasms were inhibited by WB 4101, prazosin and Rec 15/2739 in the absence of agonist [93]; in 

contrast, only WB 4101 and prazosin but not Rec 15/2739 blocked spasms in vitro. Transgenic mice 

expressing CAM α1A- but not α1B-AR exhibited antidepressant-like behavior in the tail suspension 

test and forced swim test [96]; this was reversed by prazosin and mimicked by chronic treatment of 

WT mice with cirazoline. While an effect on CAM indicates a possible involvement of IA, definitive 

proof remained lacking. This problem of proving the involvement of IA in in vivo studies is also 

highlighted by a study with doxazosin in patients with allergic rhinitis, where doxazosin reduced 

peak nasal inspiratory flow, whereas oxymetazoline increased it [94].  

 

In conclusion, data with isolated tissues are highly suggestive for the possibility of observing IA 

with natively expressed α1-AR. While some in vivo data applying known inverse agonists are 

compatible with this view, the study designs did not allow unequivocal differentiation between IA 

and antagonism of endogenous neurotransmitter in most cases. 

  

5.2. α2-AR 

 

Only few in vivo reports relate to IA at α2-AR, in most cases not providing conclusive evidence that 

the observed effects indeed are mediated by IA. In cultured human meibomian gland epithelial cells 

the α2-AR agonist brimonidine and clonidine promoted differentiation and inhibited proliferation, 

whereas RX 821002 and MK 912 failed to inhibit this and, if anything, acted as partial agonists on 

differentiation [97]. In mice with syngeneic transplants of mammary duct carcinomas, the α2-AR 

agonists clonidine and dexmedetomidine enhanced tumor growth, which was inhibited by 

yohimbine and rauwolscine; in the absence of clonidine, rauwolscine reduced tumor growth with 

yohimbine having a smaller and inconclusive effect [98].  
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Other investigated effects of α2-AR ligands on the inhibition of food intake in rats by sibutramine or 

bupropion. Imiloxan, atipamezole, BRL 44408 or RX 821002 alone did not affect food intake at the 

chosen doses [99]. Atipamezole and RX 821002 increased meal sizes in the presence of sibutramine, 

BRL 44408 and imiloxan inhibited it. whereas the other to antagonists did not. The situation became 

even more complex in a follow-up study where the α2-AR antagonists were studied in conjunction 

with bupropion [100]. In this setting imiloxan, atipamezole and BRL 44408 similar increased the 

inter-meal interval;  however, BRL 44408 reduced meal initiation, whereas imiloxan increased it 

modestly and atipamezole markedly; only imiloxan reduced the size of the first meal. Interpretation 

of these observations is complicated based upon comparison of single doses and differential α2-AR 

subtype recognition profiles of the antagonists. In rats with chronic spinal cord injury, clonidine and 

UK14303 decreased excitatory postsynaptic potentials whereas RX 821002 increased them [93].  

  

5.3. β-AR 

 

5.3.1. Heart 

 

The role of IA has been investigated more often in the heart than in any other tissue. Studies were 

based on isolated tissues or performed in vivo in healthy animals with endogenously expressed 

receptors [58, 90, 101] or humans including those with naturally occurring polymorphisms of the 

receptor [102]. They also included data from knock-out models [103], those with transfection of 

receptors [89, 103, 104] or transgenic (over)expression of WT [47, 104-114]. The animal models most 

often involved mice, but rats [44, 58] and rabbits [101, 104] were used as well. Other than healthy 

animals, animal models of disease including coronary heart disease [115] or arrhythmia [116] were 

studied, or material derived from patients suffering from heart failure [55, 102, 104, 117, 118]. Such 

studies have been performed at various levels of cardiac function and readouts including signal 

transduction [89, 90, 101, 103, 105, 110, 112, 117], cardiomyocyte electrophysiology [102, 107-109, 113, 

114], inotropy [47, 89, 90, 103, 104, 106, 110-113, 115, 117-119], lusitropy [113], chronotropy [44, 58] 

and conduction [116]. Hereafter, the resulting data will be discussed grouped by level of 

investigation. 

 

Signal transduction in the heart has mostly been studied as cAMP formation. As the β2-selective ICI 

118,551 has consistently been reported to be an inverse agonist at β2-AR (see above), several 

investigators reported lowering of cAMP formation by ICI 118,551 in most studies with cardiac 

tissue from mice transgenic for the WT receptor [104, 105, 110, 112, 114], β1/β2-double KO mice 

transfected either with a β2-AR or a β1/β2 chimeric receptor (but not with a β1-AR) [89, 103] and, most 

importantly, also in many [90, 110, 112] but not all studies [104, 114] with WT mice. The only 

exception is a study in healthy rabbits, even if cAMP formation had been enhanced by treatment 

with pertussis toxin [101]; however, that study had used a lower concentration of ICI 118,551 than all 

others (10 nM), which may have been insufficient to elicit a robust response. That lowered cAMP 

level were indeed linked to IA was demonstrated by the observation that alprenolol did not reduce 

cAMP formation but blunted the effects of ICI 118,551 [105]. Infusion of WT mice for 14 days with 

ICI 118,551 increased protein kinase A activity, whereas infusion of atenolol or carvedilol did not; in 

contrast, all three ligands reduced protein kinase A activity in transgenic mice overexpressing the 

WT β2-AR [110]. In contrast, G protein receptor kinase 2 was increased only by carvedilol in WT and 
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sharply reduced only by alprenolol and carvedilol. The authors proposed that these regulations 

were not driven by spontaneous activity of the receptor, but rather by occupancy.  

 

Several investigators have explored spontaneous activity and IA predominantly by using transgenic 

mice overexpressing WT β2-AR in comparison to control animals. Initial studies reported greater 

Ca2+ sparks in the transgenic mice, which was normalized by ICI 118,551 [113]. In contrast, the 

properties of the L-type Ca2+ channel were found to be unaltered and not affected by ICI 118,551 

[114]. While others reported lower activity of the L-type Ca2+ channel in transgenic mice, they also 

failed to observed IA by ICI 118,551 in this model [108]. That group also reported that activity of the 

hyperpolarization-activated If current was markedly enhanced in the transgenic mice and, in 

contrast to the Ca2+ channel activity shifted towards values observed in WT mice by ICI 118,551 

[107]. Based on mRNA measurement they proposed that this may at least partly occur secondary to 

an enhanced expression of cyclic nucleotide-gated HCN channels, specifically HCN 4. Modeling and 

simulation studies based on the data reported by [105] predicted that ICI 118,551 should not affect 

the voltage of the action potential or the magnitude of the background Ca2+ transients in WT mice 

but to reduce it in the transgenic animals [119]. 

 

Many investigators have explored possible IA in cardiac contraction and, more rarely, relaxation 

[113]. Such studies were reported with mouse [47, 89, 90, 103, 106, 112, 114, 115], rat [104, 111, 112], 

rabbit [104] and human tissue [47, 102, 104, 117, 118]. Several of the mouse studies involved 

transgenic overexpression of the human β2-AR [106, 110-112, 114] and more rarely β1-AR [47], some 

of the others transfection with β2-AR and/or Gi [89, 103, 104]. Studies mostly focused on effects of 

acute exposure to β-AR ligands, but in some cases also chronic treatment [110]. Some animal [115] 

and most human studies involved material from diseased subjects [102, 117].  

 

In studies with transgenic expression of the β2-AR, multiple groups independently reported that ICI 

118,551 reduced basal cardiomyocyte contraction [104-106, 111-114]. Such inhibition was abolished 

after inactivation of Gi by pertussis toxin. In line with this it was also reported that overexpression of 

β2-AR in rabbit cardiomyocytes or of Gi in rat cardiomyocytes allowed detection of IA by ICI 118,551 

[104]. Similar IA was also reported with carvedilol [111]. Others have used cardiomyocytes from 

β1/β2 double KO mice transfected with β1-AR, β2-AR or chimeras thereof [89, 103]: upon transfection 

with β2-AR, inhibition of basal contraction was observed with ICI 118,551 but not with CGP 20,712 or 

propranolol; inhibition by ICI was also observed upon transfection with the chimeric receptor, but 

not with the β1-AR. In contrast to an observation by others [104], the IA of ICI 118,551 was insensitive 

to treatment with pertussis toxin in those studies [89]. 

 

While these studies demonstrate that IA is detectable for cardiomyocyte contraction if the basal tone 

of the system is increased by enhanced expression of receptor or G proteins, the clinically more 

relevant question is whether this also applies in the absence of such enhancement of the basal tone. 

In contrast to the above study with transgenic expression of the β2-AR, reduction of basal 

cardiomyocyte tone were not detected in cardiomyocytes from WT mice [112, 114] or, when detected 

were much weaker than in the transgenic mice [104, 106]. They were also not detected in 

cardiomyocytes from rats or rabbits in the absence of additional interventions [104]. However, 

reduction of basal contractility by ICI 118,551 became detectable in WT mice when basal tone was 
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increased by the PI-3-kinase inhibitor LY 294,002 or the phosphodiesterase 3/4 inhibitor milrinone 

[90]. One group of investigators reported negative inotropic effects of various β-AR antagonists 

including acebutolol, alprenolol, atenolol, metoprolol, ICI 118,551, nadolol, pindolol, propranolol 

and timolol in the heart of reserpinized rats and, investigated in less detail, in those of untreated rats 

and of reserpinized mice [58, 120]. In reserpinized rats, the extent of negative inotropic effects varied 

between left atrium, right atrium, right ventricle and right papillary muscle for all compounds. 

However, two findings question whether these effects are related to IA: Firstly, the concentrations 

required to observe negative inotropy were > 1 µM. Second, the extent of negative inotropy did not 

align with the presence or absence of IA as detected by other investigators (see above), except that it 

was weakest with the known weak partial agonist pindolol. On the other hand, the negative 

inotropic effects of atenolol, ICI 118,551 or propranolol were partly inhibited by pindolol. Therefore, 

it remains unclear whether these findings can be attributed to IA or even to β-AR. 

 

Studies on IA in human hearts have involved failing heart samples, mixed groups of failing and 

non-failing hearts, or parallel investigation of both. One group reported that metoprolol, but not 

carvedilol or bucindolol reduced isoprenaline-induced contraction in failing human hearts to levels 

lower than baseline [117]. In a follow-up study they reported that both bisoprolol and nebivolol 

reduced forskolin-stimulated force of contraction in ventricular strip of a mixed group of patients 

with and without heart failure; a concentration-dependent reduced inotropy was also observed for 

both compounds and also bisoprolol (but not for bucindolol or carvedilol) in atria from non-failing 

hearts [118]. Accordingly, bucindolol abolished the negative inotropic effect of nebivolol. Other 

investigators reported a lack of negative inotropic effect in ventricular human cardiomyocytes under 

conditions where one was observed in samples from failing hearts [104]. A third group reported on a 

mixed population of ventricular strips of non-failing and failing human hearts and analyzed 

contractile responses based on genotype for a β1-AR gene polymorphism [102]. Isoprenaline had 

greater responses in non-failing than failing heart, and within each group in homozygous Arg389 

subjects than in those carrying at least one Gly389 allele; in a mixed group of failing and non-failing 

hearts, carvedilol behaved as neutral antagonist, whereas bucindolol was neutral in Gly389 carriers 

but elicited a negative inotropic response in homozygous Arg389 subjects. 

 

Applying a very different approach, the group of Bond from Houston, TX, has not acutely added 

inverse agonists but rather administered them for multiple days or weeks. In an initial study 

alprenolol, carvedilol, ICI 118,551 or propranolol were given to WT and mice with transgenic 

overexpression of the β2-AR for 4 days [111]. ICI 118,551 and propranolol, to a limited extent and not 

always reaching statistical significance carvedilol, but not alprenolol reduced the elevated presence 

of Gi in the heart of the transgenic mice, increased Gs and further increased GRK2. In WT mice, 

neither affect Gi, only ICI 118,551 increased Gs, but ICI 118,551, propranolol and carvedilol increased 

GRK2, whereas alprenolol had no effect on any of the three proteins. In line with this pattern of 

altered protein expression, treatment with ICI 118,551, carvedilol and propranolol increased basal 

tension of isolated atria by to 150, 141 and 129 mg as compared to 96 mg in non-treated mice; tension 

in alprenolol-treated animals was 90 mg. Acute addition of ICI 118,551 reduced atrial tension, and 

this effect was markedly greater than in historical controls [105]. In a follow-up study, WT and 

transgenic mice were treated for 14 days with ICI 118,551, carvedilol or alprenolol [110]. Cardiac 

protein kinase A activity was increased in WT mice treated with ICI 118,551 but not with carvedilol 
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or alprenolol, whereas the increased activity in the β2-AR transgenic mice was reduced to WT levels 

by all three ligands. The increased GRK2 expression levels in transgenic mice was lowered by 

treatment with alprenolol or carvedilol, but not with ICI 118,551; in contrast, only carvedilol 

increased GRK2 expression levels in WT mice. The increase in basal atrial tension in transgenic mice 

upon treatment with ICI 118,551 or carvedilol [111] was not confirmed in the follow-up study, but 

the depressed inotropic response to histamine in the transgenic mice was partly restored by all three 

ligands [110]. The authors interpreted these complex findings with inverse agonist and a neutral 

antagonist to indicate that it was receptor occupancy and not spontaneous activity driving the 

changes of GRK and histamine responses. In another follow-study the authors used WT mice that 

had undergone myocardial infarction followed by 3 weeks of treatment with ICI 118,551, carvedilol 

or alprenolol [115]. Myocardial infarction led to a reduced mitral-wave E peak velocity and aortic 

peak velocity; after 3 weeks of treatment, was improved by carvedilol to pre-occlusion values 

whereas it worsened in the alprenolol and the non-treated group; neither treatment affected aortic 

peak velocity. While permanent occlusion of the left anterior descending coronary artery reduced 

inotropic responses to isoprenaline in left atria, treatment with carvedilol markedly enhanced it. The 

authors proposed that the beneficial effects of carvedilol may reflect a combination of IA at β2-AR 

and of antagonism at β1-AR. 

 

A possible role of IA at β-AR has also been explored for the regulation of chronotropy and cardiac 

conduction. Mice with heart-specific transgenic overexpression of β1-AR exhibited a greater 

spontaneous beating right of isolated right atria [47]. The increased heart rate was not affected by 

reserpinization. However, it was reduced by various β-AR ligands with a rank order of CGP 20,712 > 

bisoprolol > metoprolol > carvedilol, whereas carvedilol if anything increased it. A reduction of in 

vivo heart was also observed in bisoprolol treated mice by an scFv antibody fragment with high 

affinity for the β2-AR [44]. A different antibody against β2-AR induced conduction blocks in murine 

heart; however, it remains unclear whether this can be attributed to IA because ICI 118,551 did not 

enhance but rather reverse this [116].  

 

5.3.2. Lung 

 

Although studied to a lesser extent than in the heart, IA at β-AR has also been explored in the 

airways, largely by two groups of investigators. The Bond group from Houston, TX, initially showed 

that treatment of mice with nadolol or ICI 118,551 but not with metoprolol had a protective effect on 

the ovalbumin-induced airway hypersensitivity model of asthma [121]. This was associated with an 

upregulation of β2-AR and a reduced expression of several proteins involved in the regulation of 

bronchial tone including Gi, phosphodiesterase 4D and phospholipase C-β1. However, these 

findings did not allow a clear conclusion on a possible involvement of IA in the observed effects of 

ICI 118,551 and nadolol. To obtain further evidence, the asthma model was applied to WT and β2-AR 

knock-out mice [122]. The knock-out mice exhibited a similar phenotype as those treated with an 

inverse agonist, including a reduced airway hyperresponsiveness. In contrast, treatment with 

alprenolol did not mimic the effects of the inverse agonists, providing additional evidence that the 

anti-asthmatic effects in the mouse model may be explained by IA. They also reported that 

co-administration of nadolol with dexamethasone was more effective in murine ovalbumine model 

than either drug alone [123]. Finally, they used HEK923 cells transfected with human β2-AR to 
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directly compare acute ad chronic effects of nadolol [26]. Basal cAMP levels were reduced by acute 

(5 min) addition of nadolol but increased by prolonged exposure (24 h). Similarly, acute nadolol 

decreased forskolin-stimulated phosphorylation at the β2-AR  protein kinase A site Ser262, whereas 

prolonged exposure increased it. Chronic exposure to nadolol also increased β2-AR protein levels 

and decreased receptor degradation, consistent with receptor stabilization by the inverse agonist; it 

also increased cellular levels of Gαs but had no effect on Gαi. Overall, these observations in HEK293 

cells were consistent with those in the murine asthma model and lend additional support to an 

involvement of IA in the observed bronchoprotective effects. 

 

The group of Zaagsma and Meurs from Groningen, The Netherlands, used bovine tracheal smooth 

muscle strips and found that an 18 h treatment with fenoterol reduced airway contractility; when 

various antagonists were added after the fenoterol treatment (all dosed to achieve 98-99% receptor 

occupancy), they restored airway contractility with a rank order of efficacy of pindolol ≥ timolol = 

propranolol > alprenolol ≥ sotalol > labetalol [124]. Of note, these effects do not necessarily require to 

imply IA as the underlying mechanism, particularly as the observed rank order does not match that 

observed for extent of IA (see above). In a follow-up study they confirmed the original findings with 

fenoterol; timolol added after pre-treatment with fenoterol restored airway contraction but it 

remains unclear whether IA was involved as timolol had no effects on airway contraction in the 

absence of pre-treatment with fenoterol [125]. Other investigators round that salbutamol increased 

the short circuit (Isc) current in Calu-3 human airway adenocarcinoma cells whereas carvedilol 

decreased under basal conditions and after stimulation with a cAMP-mimetic [126]. The carvedilol 

effect was abolished after pretreatment with ICI-118551, which questions whether IA was involved 

in this observation. 

 

Inflammatory cells play an important roles in the pathophysiology of obstructive airway disease. 

IgE-dependent activation of human mast cells open the intermediate conductance Ca2+-activated K+ 

channel iKCa1 to cause hyperpolarization and enhancement both Ca2+ influx and degranulation. 

While salbutamol inhibited iKCa1 currents, ICI 118,551 open such channels [37]. In antigen-specific T 

lymphocyte lines (R)-albuterol inhibited proliferation, whereas (S)-albuterol did not [127]. However, 

the addition of (S)-albuterol to (R)-albuterol concentration-dependently increased proliferation and 

both the inhibitory effects of (R)-albuterol alone and the stimulating influence of (R)- plus 

(S)-albuterol were inhibited by propranolol. The authors hypothesized that the (S)-albuterol may 

behave as inverse agonist at T-cell β2-AR, but definitive evidence was not provided. 

 

Unrelated to airways or β2-AR it was reported that CGP 20,712 or the combination of CGP 20,712 

with ICI 118,551 (but not ICI 118,551) reduced cAMP formation in rat pituitary cell aggregates 

whereas either compound alone had inhibited the stimulatory effects of isoprenaline [81]. The 

inhibitory effects of CGP 20,712 were abolished by pertussis toxin or carvedilol, but not by 

propranolol or betaxolol with none of these three ligands affecting cAMP accumulation in the 

absence of CGP 20,712. While the authors attributed the inhibition by CGP 20,712 to IA, its 

modification pattern by other β-AR ligands and the lack of effect of ICI 118,551, carvedilol, betaxolol 

or propranolol do not support this interpretation. 

 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 August 2020                   doi:10.20944/preprints202008.0100.v1

Peer-reviewed version available at Cells 2020, 9, 1923; doi:10.3390/cells9091923

https://doi.org/10.20944/preprints202008.0100.v1
https://doi.org/10.3390/cells9091923


 

6. Molecular mechanisms and structural basis of inverse agonism at AR 

 

Advances in structural exploration of receptor conformations, and ligand-induced changes thereof 

since the mid-2000s enable an improved understanding of inverse agonism and its relationship to 

agonism. Much of this work has been done using the β2-AR as a model system. The first crystal 

structures have been obtained by locking the receptor into an immobile state, supported by binding 

to the inverse agonist carazolol [128, 129]. Structure determinations suggest that IA-induced changes 

are ‘different’ [130] or ‘opposite’ [78, 131, 132] to agonist-induced changes. This view is supported by 

molecular dynamic simulations [133]. Structural modeling suggests that a key change in the receptor 

conformation is induced by different degrees of tilting of the helix V [134] and, more specifically, an 

outward movement of the helices V and VI coupled with inward movements of the 3rd and 7th helix 

[135]. Another structural indicator could be a methionine residue at position 82 [136]. An IA-induced 

receptor conformation appears to be different from an empty structure, which may not be 

straightforward to conceptualize considering both conformations display a similarly low activity 

level [137]. 

 

Crystallization data also enables computational prediction of the degree of (inverse) agonism [138, 

139]. It has been shown that virtual screening processes can be set up to preferentially deliver either 

agonists [140] or inverse agonists [141]. 

 

NMR spectroscopy has been reported to map three [142], and molecular dynamic simulations to 

map seven receptor activation states to different energy states [143]. Some ligands (‘true’ neutral 

antagonists) do not appear to shift the receptor activity level set by specific assay conditions [144]. 

Different types of ligands (agonists, antagonists, inverse agonists) modulated the conformational 

dynamics differently [145]. IAs have been shown to induce immobile receptor structures (whereas 

agonists induce more mobile, dynamically fluctuating conformations) [146]. These more immobile 

structures cannot readily bind G proteins [147]; however, these conformations may be able to 

activate different signaling pathways [148]. 

 

At β2-ARs, different Gs protein species select for different receptor activity levels, thereby leading to 

a different potential for action, and action, of inverse agonists [32, 84]. Also, mutations in the 

receptor can induce constitutive activity, with an increase in precoupling potentially playing a role 

in this [46]. The activity level of constitutively active mutants can be restored to more ‘normal’ levels 

by inverse agonists [30, 80]. Similar results have been shown for constitutive recycling which could 

be inhibited by IAs [80]. However, some ligands do not change the receptor confirmation as 

measured by FRET for both WT and CAM α2-ARs [68] – this may be at odds with the idea that IAs 

reduce specific receptor confirmations with specific affinities for G proteins. 

 

 

Receptor expression levels can change apparent properties of ligands (inverse vs. partial agonism) 

[67]. Conversely, the antagonist betaxolol and the inverse agonist phentolamine differently regulate 

expression levels of wild-type and constitutively active β2-ARs [27]. Inverse agonist [15], and general 

signaling [14] properties of a ligand differ between different downstream signaling pathways (e.g. G 
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protein vs G protein-independent), or Gs vs Gi signaling [31]. Similar implications are considered by 

examining lipid rafts, which can help stabilizing receptors in an inactive state [24]. 

 

Agonists and inverse agonists may be able to stabilize different multimolecular complexes, e.g. 

receptor monomers vs. dimers [149]. G proteins – presumably by shifting the average conformations 

towards more active states) reduce the number of binding sites for inverse agonists [88] and could 

thus be considered as allosteric modulators [150]. Moreover, different stoichiometries of Gα, Gβγ, or 

guanosine nucleotides can change receptor activity levels as well [151]. Inverse agonists are reported 

to not change the association of receptors and G proteins [29], which could be explained by a high 

degree of basal precoupling.   

 

7. Conclusions and implications for drug development 

 

The degree of investigation of IA at AR subtypes differs markedly, particularly at the level of 

endogenously expressed receptors at the tissue level, with β2-AR studied most frequently and b3-AR 

apparently not studied at all. This leads to heterogenous robustness of the existing evidence, but 

some common themes emerge. The detected IA at a given subtype and model system varies between 

compounds, but some chemical compound classes may intrinsically exhibit greater IA than others. 

For instance, quinazolines appear to exhibit a greater degree of IA at α1A- and α1B-AR than 

N-arylpiperazines (Figure 3). However, minor chemical modifications may lead to major changes of 

degree of IA within a compound class [33].  

 

IA is best observed when the tone of the system is increased, for instance by overexpression of the 

receptor, presence of a CAM or increased expression of the coupled G protein (Figure 2). 

Accordingly, IA can also be observed with endogenously expressed receptors but this is a less 

consistent finding than in settings with an increased tone of the system; when IA is detected with 

endogenously expressed receptor, it typically is of smaller magnitude than in settings with increased 

tone as also observed for receptors other than AR [8]. Of note, increased expression of a receptor 

and/or a specific G protein can occur in the context of various physiological and pathophysiological 

settings [152] or be caused by administration of drugs that affect gene transcription and/or stability 

of the expressed protein, for instance glucocorticoids. An example of physiological differences in 

tone is the presence of β1-AR gene polymorphism [55, 102]. As many elements of the cardiac β-AR 

signal transduction cascade exhibit an altered expression in congestive heart failure and many 

clinically used β-AR antagonists exhibit various degrees of IA, it has been speculated that presence 

of IA may at least partly explain different outcomes upon treatment of heart failure patients with 

different β-AR antagonists [153]. However, clear conclusions on the role of IA are hampered by the 

fact that clinical outcomes most likely do not only depend on IA but also other properties of the 

various drugs, including selectivity for β1- over β2-AR and biased agonism. Another 

pathophysiological example is obstructive airway disease, particularly asthma. While use of β-AR 

antagonists is classically considered contra-indicated in asthma patients, it has been shown that slow 

up-titration is well tolerated in asthmatic patients and may even have beneficial effects [154]. As 

β-AR antagonists with different degrees of IA had differential profile in an animal model of asthma 

[155], it has been proposed that a combination of choice of compounds with strong IA and slow 
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up-titration of their dosages may lead to an effective and innovative management of asthma patients 

[156]. However, others have remained skeptical about this possibility [157]. 

 

Based on all of the above, the question emerges whether IA should play a role in drug discovery and 

provide a development perspective, e.g. as part of a target product profile for new compounds. 

Whether IA is a potential therapeutic strategy or just a pharmacological curiosity has been debated 

since the early days of IA research [7, 158]. A potential advantage of such considerations would be 

that differences in tone of a given AR or GPCR in general - between cell types and tissues, and 

between healthy and diseased subjects - could be leveraged to obtain functional selectivity, i.e. a 

good effectiveness with limited adverse events. A potential disadvantage of this is that we typically 

lack an in-depth knowledge of the tone in the various cell types and tissues important in a certain 

pathophysiology, not to mention possible alterations of that tone in disease; this makes it hard to 

predict what the optimal compound should look like. An added layer of complexity is that IA 

certainly is not the only drug property to be considered for definition of a target product profile and 

others such as biased agonism [159], ortho- vs. allosteric receptor modulation, subtype-selectivity 

and pharmacokinetics also weigh in. These considerations are similar to those using biased agonism 

as a desired drug property in the target product profile, where we have recently argued that it may 

be too early to defined biased agonism as a desirable drug property, particularly for highly 

innovative treatments where prior knowledge on cell types and signaling pathways involved and 

their endogenous one in disease is limited [160]. However, others have argued to the opposite [161]. 

A similar debate is expected for the role IA in drug discovery and development and only future 

experience will teach us when and where IA will be a differentiating factor for new drugs. 
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