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Abstract: Achieving neuroprotection in ischemic stroke patients has been a multi-decade medical 

challenge. Numerous clinical trials were discontinued in futility and many were terminated in 

response to deleterious treatment effects. Recently however, several positive reports have generated 

the much-needed excitement surrounding stroke therapy. In this review, we describe the clinical 

studies that significantly expanded the time window of eligibility for patients to receive mechanical 

endovascular thrombectomy. We summarize the results available thus far for nerinetide, which can 

be considered the most promising neuroprotective agent yet for stroke treatment. Lastly, we reflect 

upon aspects of these successful trials in our own studies targeting the Kv2.1-mediated cell death 

pathway in neurons for neuroprotection. We propose that recent changes in the clinical landscape 

must be adapted by preclinical research in order to continue progressing toward the development 

of efficacious neuroprotective therapies for ischemic stroke. 
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1. Introduction 

Stroke is a devastating neuropathology associated with immense co-morbidity and mortality 1. 

It is the second leading cause of death worldwide 1, and more than half of the 18 million people that 

suffer from a stroke globally each year will have permanent motor deficits reflecting the irreversible 

loss of neurons 2. Relative to all neurological disorders, stroke is responsible for the greatest loss of 

disability-adjusted life years (DALYs) 1. This represents a tremendous societal burden that is 

constantly growing with the global population. Despite the broad impact of this pathology, no 

therapeutic agent has clearly demonstrated the capability to provide neuroprotection and reliably 

preserve neurological function in the clinical setting. This gap in medical knowledge highlights the 

critical need for the development of novel and creative neuroprotective approaches. 

Historically, neuroprotective agents are notorious for demonstrating efficacy across several in 

vitro assays and animal models before failing universally in late-stage clinical trials 3,4. Many factors 

have been attributed to this translational failure, including inadequacy of preclinical modeling, 

inopportune clinical trial design, failure to combine neuroprotectant use with existing reperfusion 

techniques, and limited knowledge of relevant stroke physiology. However, recent advances in the 

clinical standard of care for ischemic stroke coupled with advances in the understanding of the 

relevant pathophysiological mechanisms, beckon a new role for effective neurotherapeutic agents. In 

this review, we carefully describe several critical clinical trials in recent years that have set the 

landscape for emerging ischemic stroke therapies in the era of late time point reperfusion, and we 
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reflect on these lessons of success in the context of our own work in targeting the voltage-gated 

potassium channel Kv2.1 for neuroprotection. 

2. Physiology of the Ischemic Penumbra and Penumbral Preservation 

Ischemic stroke, representing 87% of all stroke cases 2, is classically defined as a cerebrovascular 

blockage that results in the formation of a central core infarct with a surrounding ischemic penumbra, 

which is a collaterally perfused at-risk region that can be rescued. The ischemic penumbra manifests 

radiographically in magnetic resonance (MR) imaging as a region of mismatch between diffusion-

weighted (DW) and perfusion-weighted (PW) imaging modalities, identified by the delayed arrival 

of an injectable tracer agent indicating a perfusion deficit. Similar estimation of core and penumbra 

can be made with computed tomography perfusion (CTP) imaging 5. If no intervention is provided, 

the ischemic penumbra predictably incorporates into the infarct core as necrotic tissue over a period 

of hours to days 6,7. The goal for stroke neuroprotection is based on the fundamental concept of 

penumbral preservation (also known as penumbral freezing), which is the maintenance of cell viability in 

the penumbra through an intervention in addition to standard treatments with or without 

reperfusion. While little can be done to combat the rapid degeneration of the infarct core following 

severe ischemia, extensive preclinical and clinical evidences have shown that the collaterally perfused 

ischemic penumbra can be targeted to improve cell survival and increase the likelihood of a complete 

functional recovery. 

Stroke researchers have committed decades to carefully dissecting the cell death pathways 

underlying the loss of neuronal tissue within the ischemic penumbra. Indeed, many well-defined 

molecular mechanisms are activated following the initial metabolic failure resulting from the 

deprivation of oxygen and glucose. These ischemic penumbra mechanisms include the formation of 

an excitotoxic environment due to the synaptic accumulation of glutamate and calcium dysregulation 
8, as well as delayed caspase- and nuclease-dependent apoptosis 9. Further, late time point reperfusion 

can increase the risk for reperfusion injury and hemorrhagic transformation. Ischemia-reperfusion 

injury has been well-characterized in a variety of tissues, including the brain, and is associated with 

massive generation of reactive oxygen species (ROS) that contributes to the activation of many cell 

death cascades 10. For these reasons, there is a clear need to develop neuroprotectants that specifically 

target cell death mechanisms after ischemic stroke. Despite the difficulties involved in this 

translational undertaking, the recent advances in stroke treatments, described below, have 

reinvigorated the race to develop an efficacious treatment for penumbral preservation. 

3. Recent Advances in Reperfusion Therapy 

3.1. Canonical Management of Acute Ischemic Stroke 

The mainstay intervention method for ischemic stroke patients is the restoration of blood flow 

by pharmacological or surgical means. The first effective therapy developed was the administration 

of intravenous recombinant tissue plasminogen activator (rt-PA), commonly alteplase, which 

received FDA approval in 1996 11. rt-PA activates an endogenous fibrinolytic cascade by cleaving 

plasminogen to its activated form, plasmin, which degrades fibrin and fibrinogen, leading to the 

dissolution of intravascular clots and the subsequent reperfusion. Although this intervention is 

effective, its use is limited to early time points. Administration within 3 hours of stroke onset is ideal, 

with diminished efficacy up to 4.5 hours post-stroke 12,13. Treatment with rt-PA does not always lead 

to successful reperfusion. In fact, recanalization rates range from 10-50% depending on anatomic clot 

localization 14−16. Furthermore, rt-PA has a significant adverse effect profile and an exhaustive list of 

contraindications that limit its use in patients. Of all patients with ischemic stroke reaching a hospital, 

it is estimated that thrombolytic drugs are administered in only 2% to 3% of cases under canonical 

guidelines 17. 

 More recently, ischemic stroke management gained the addition of mechanical 

thrombectomy with endovascular surgeries. This approach involves a surgeon gaining access to the 

cerebral vasculature with a stent retriever, an aspiration device, or a combination tool, and physically 
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removing the occlusive thromboembolism 18. Critically, a series of key studies published in 2015 

reported that mechanical endovascular thrombectomy allows superior recanalization rates of up to 

88%, with marked improvements in functional outcomes 19−23. Initial clinical studies focused on 

validating the efficacy and safety of these surgical methods included time points of up to 6 hours 24. 

Although this intervention revolutionized stroke management, similar issues reminiscent of 

pharmacological thrombolytic remained, as only approximately 7% of patients with ischemic stroke 

reach a medical center in time for surgical revascularization 25,26. We describe below two recent studies 

that have drastically improved the use of mechanical thrombectomy by identifying the patient 

eligibility criteria at significantly delayed time points of up to 24 hours from stroke onset 27,28. 

Importantly, these studies demonstrated that imaging techniques can be used to identify patients 

with large proportions of still-viable penumbra. We suggest that these revascularization methods at 

later time points set the stage for the development of neuroprotectants that may act synergistically 

with the reperfusion to further extend the intervention window for substantial penumbral 

preservation. A graphical timeline of important recent and upcoming studies discussed in this review 

is summarized in Figure 1. 

 

Figure 1 A timeline summary of the clinical trials discussed in this review. 

Dates displayed are based on study start date and publication date of the results. Actual study 

completion date is typically few months prior to publication. More details can be found on 

clinicaltrials.gov with their respective NCT number. Mechanical endovascular thrombectomy trials: 

DAWN NCT02142283; DEFUSE-3 NCT02586415; DIRECT-MT NCT03469206; SWIFT DIRECT 

NCT03192332; MR CLEAN-NO IV ISRCTN80619088 (isrctn.com). Nerinetide trials: ENACT 

NCT00728182; ESCAPE-NA-1 NCT02930018; FRONTIER NCT02315443; ESCAPE-NEXT 

NCT04462536. 

3.2. DAWN Phase II/III Trial 

The efficacy of late time point mechanical thrombolytic reperfusion was evaluated in a landmark 

clinical trial that took place between 2014 and 2017 (DAWN; NCT02142283). This study selected for 

patients with high neurological deficits on the NIH Stroke Scale (NIHSS) but relatively small core 

infarct size at the time from stroke onset of 6-24 hours, with the hypothesis that the mismatch between 

clinical exam and imaging evidence of infarct reflects a high volume of viable penumbra. Three 

groups of patients were randomized to either mechanical thrombectomy with standard medical 

therapy (N = 107) or standard medical therapy alone (N = 99). All patients had evidence of intracranial 

ICA or MCA-M1 occlusion on computed tomography (CT) or magnetic resonance (MR) imaging and 

a mismatch between clinical neurologic deficit and infarct volume identified with imaging. Group A 
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consisted of patients 80 years or older with NIHSS ≥ 10 and infarct volume < 21 mL, Group B consisted 

of patients younger than 80 years of age with NIHSS ≥ 10 with infarct volume < 31 mL, and Group C 

consisted of patients younger than 80 years of age with NIHSS ≥ 20 and an infarct volume of 31-51 

mL. The investigators concluded that endovascular thrombectomy at late time points was efficacious 

and superior when compared to standard medical therapy alone across all subgroups 28. The mean 

score for disability on the utility-weighted modified Rankin scale at 90 days was significantly higher 

in the thrombectomy-treated group compared to the control group (5.5. vs. 3.4), indicating improved 

functional capacity and decreased prevalence of disability in patients treated with thrombectomy. 

Further, the authors reported a significantly higher level of functional independence at 90 days 

(modified Rankin scale 0-2) with mechanical thrombectomy when compared to standard medical 

treatment alone (49% vs. 13%). 

3.3. DEFUSE-3 Phase III Trial 

 Soon after the publication of the DAWN trials results, the DEFUSE-3 clinical trial (NCT02586415) 

provided a second body of evidence for late time point endovascular thrombectomy in ischemic 

stroke therapy. In contrast to the DAWN trial, the DEFUSE-3 trial focused on an imaging-based 

approach for the selection of eligible patients. With evidence from prior studies, the DEFUSE-3 

investigators hypothesized that patients with high penumbra-core ratios could benefit from 

thrombectomy and recanalization at late time points following stroke 29−32. They utilized the RAPID 

neuroimaging system composed of CT and MR imaging with perfusion analysis to identify patients 

with a significant mismatch between infarct core size and ischemic penumbral volume 5. 

From 2016 to 2017, the DEFUSE-3 authors used the RAPID neuroimaging platform to identify a 

total of 182 functionally independent patients with large vessel occlusion (LVO) of the MCA-M1, 

MCA-M2, or ICA and a viable penumbra that might benefit from delayed reperfusion. Specific 

neuroimaging criteria included patients with LVO and a main infarct core lesion < 70 mL in volume, 

with mismatch ratio of ischemic tissue to infarct core ≥ 1.8 and ≥ 15 mL of mismatched tissue area, 

representing the ischemic penumbra. Patients were randomized to either standard medical therapy 

with late endovascular thrombectomy (N = 92) or standard medical therapy alone (N = 90). Critically, 

they demonstrated that reperfusion was effective and superior when utilized 6 to 16 hours following 

symptom onset in this patient subset 27. Delayed thrombectomy was associated with a favorable shift 

in the distribution of functional outcomes (unadjusted common OR 2.77) and an increase in the 

proportion of patients with functional independence at 90 days, defined as modified Rankin scale of 

0-2. Patients treated with late endovascular thrombectomy were functionally independent in 45% of 

cases compared with 17% in the cohort that received standard medical therapy alone. Importantly, 

no increase in the rate of symptomatic intracranial hemorrhage or serious adverse events was 

observed with late endovascular thrombectomy. 

Together, the DAWN and DEFUSE-3 trials represent important steps forward in stroke therapy; 

the therapeutic time window for ischemic stroke management has been extended significantly. The 

various techniques that identify patients with large penumbra-core mismatch volumes have not only 

increased the proportion of patients eligible for currently available treatments, but beckon on further 

development of intervention with neuroprotectants that can further provide penumbral preservation. 

This advancement in our understanding of stroke physiology is beginning to validate the decades of 

preclinical work on targeting penumbral mechanisms and has re-opened the door to properly 

evaluate neuroprotective agents developed for the purpose of targeting the ischemic penumbra. 

4. Recent Advances in Stroke Neuroprotective Therapy 

4.1. Neuroprotective Agents in Stroke 

While hundreds of drugs have been evaluated clinically for effectiveness as a stroke therapy, 

less than 5% of these molecules have reached the market 33. Of these, no mechanistically 

neuroprotective treatment is available in the United States for clinical use. Creative non-drug 

approaches, such as hypothermia and hyperbaric oxygen therapy, have not been able to demonstrate 
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efficacy in clinical trials, and some trials have been terminated due to increased mortality (see ICTuS 

2 hypothermia trial 34). Despite these daunting odds, many ongoing lines of research remain steadfast 

on the translation of stroke neuroprotective agents. Recent work on a PSD-95 protein inhibitor 

provides evidence that incorporation of the ischemic penumbra into the necrotic core can be halted 

by targeting excitotoxic mechanisms 35,36. To date, the clinical work involved with this peptide is the 

most promising neuroprotectant for stroke patients. 

4.2. PSD-95 Inhibition, Excitotoxicity, and Nerinetide (NoNO inc.) 

 The loss of cerebral blood flow during ischemic stroke deprives the brain of glucose and oxygen, 

collapsing the necessary cellular respiration machineries for adenosine triphosphate (ATP) 

generation. As a result, many energy-dependent biological functions stall, including the Na+/K+-

ATPase that typically maintains plasma membrane polarization, leading to complete membrane 

depolarization within minutes 37,38. In neurons, the depolarized state causes hyperexcitability and the 

release of excitatory neurotransmitters into the synaptic cleft, which further propagates the 

depolarization outwards from the infarct core. Overstimulation of Ca2+-permeable ion channels leads 

to the activation of several Ca2+-dependent pathways that can be immediately deleterious to neuronal 

survival. 

Neuronal excitotoxicity is primarily mediated by the activation of the Ca2+-permeable N-methyl-

D-aspartate (NMDA) receptor 39,40. Downstream from activation, NMDA receptor subunit GluN2B 

interacts with proteins within the postsynaptic density (PSD) microdomain, including the membrane-

associated guanylate-kinase (MAGUK), PSD-95. The PSD-95 PDZ-2 region binds directly to the N-

terminal region of neuronal nitric oxide synthase (nNOS), which depends on the binding of the Ca2+-

activated enzyme calmodulin. The activation of nNOS releases nitric oxide (NO) and the reaction of 

NO and superoxide (O-) anions form the highly toxic peroxynitrite (ONOO-). Peroxynitrite has been 

shown to mediate most of the toxic actions of NO, leading to many mechanisms of cell death, ranging 

from necrotic to apoptotic 41. 

Nerinetide is a neuroprotective agent designed to ameliorate neuronal excitotoxic damage by 

preventing the activation of nNOS 42. Previously called TAT-NR2B9c and NA-1, nerinetinde is a 31 

amino acid peptide-based treatment derived from the isolated C-terminal residues of GluN2B that 

mediate the essential interaction with PSD-95, conjugated with the cell-permeant transactivator of 

transcription (TAT) domain from the HIV-1 genome 43. This design allows nerinetide to be cell- and 

blood-brain-barrier permeable, and competitively binds PSD-95 to disrupt its interaction with 

GluN2B, thus preventing nNOS activation mediated by the over-stimulation of the NMDA receptor 
44. Decades of preclinical studies have validated this neuroprotective strategy before gaining clinical 

traction 45. Notably, the first evidence of its neuroprotective action was demonstrated in the standard 

transient middle cerebral artery occlusion (MCAO) rat stroke model 44. Further demonstration of the 

peptide’s action was shown in nonhuman primate cynomolgus macaques MCAO model 46. To further 

evaluate the potential of nerinetide in human patients undergoing endovascular aneurysm repair, a 

novel model of embolic stroke was developed by the injection of polystyrene spheres in increasing 

numbers and sizes. Treatment with nerinetide reduced the number and the volume of micro-strokes 

in macaques injected with the polystyrene spheres 47. Nerinetide has recently demonstrated 

promising effects in clinical settings, providing both hope and important lessons for the development 

of stroke neuroprotectants. 

4.3. ENACT Phase II Trial 

In a Phase II clinical trial, the safety and efficacy of nerinetide was evaluated in stroke patients 

undergoing endovascular aneurysm repair (ENACT; NCT00728182) 36. Between 2008 and 2011, a total 

of 182 patients were evaluated (N = 92 nerinetide; N = 93 saline). An initial estimation of ~400 patients 

necessary to detect significance was reduced by half with the macaque primate data designed to 

mimic the clinical presentation of micro-strokes after aneurysm repair 47. Patients were given 2.6 

mg/kg of nerinetide in 0.9% saline over 10 min immediately after the aneurysm repair. Lesions 

number and volume were analyzed by diffusion-weighted (DW) and fluid-attenuated inversion 
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recovery (FLAIR) MR imaging. Primary analysis including all patients found the number of lesions 

was significantly reduced by nerinetide treatment, but with no changes to lesion volume. 

Further examination and stratification of the data based on patient status found an interesting 

caveat. The effect of nerinetide was most significant in patients with ruptured as opposed to 

unruptured aneurysms. Considering only patients with ruptured aneurysms, both lesion number 

and volume was significantly decreased in patients treated with nerinetide. This is not the case when 

only evaluating patients with unruptured aneurysms, in which case neither the number nor volume 

differ between the treatment groups. This physiological efficacy is reflected in the patient behavioral 

assessment, which shows significantly more nerinetide-treated patients with ruptured aneurysms 

receiving a minimal NIHSS score of 0-1 (18/18; 100%), compared to saline-treated patients with also 

ruptured aneurysms (13/19; 68%). On the other hand, the neurological outcome of patients with 

unruptured aneurysms was virtually identical in both drug and placebo treatment groups. 

4.4. ESCAPE-NA1 Phase III Trial 

In a Phase III clinical trial, nerinetide was evaluated for efficacy in patients experiencing ischemic 

stroke undergoing rapid endovascular thrombectomy (ESCAPE-NA1; NCT02930018) 35. This 

multinational trial took place between 2017 and 2019, with 549 patients receiving nerinetide at the 2.6 

mg/kg dose utilized in the ENACT Phase II trial and 556 patients receiving placebo. Nerinetide was 

administered as soon as possible after randomization (within 60 min from imaging and 

randomization) and investigators were required to administer the treatment before arterial access 

closure. While there was no difference in primary or secondary outcome in the nerinetide- and 

placebo-treated groups, there was a promising signal of potential efficacy in the subgroup of patients 

who were not treated with rt-PA. 

A larger proportion of nerinetide-treated patients who did not receive rt-PA achieved functional 

independence with a modified Rankin scale of 0-2 (59.3%; 130/219 vs. 49.8%; 113/227). The infarct 

volume of patients who did not receive rt-PA was significantly reduced by nerinetide treatment (26.7 

mL vs. 39.2 mL), as was mortality (12.8%; 28/219 vs. 20.3%; 46/227). In contrast, patients who received 

rt-PA in this trial did not exhibit any beneficial responses to nerinetide treatment. In fact, rt-PA 

drastically reduced plasma concentration of nerinetide, perhaps to sub-therapeutic levels. It was 

revealed in the authors’ communications that nerinetide contains amino acid sequences known to be 

cleaved by plasmin 48 and that this reduction of nerinetide concentration has been observed 

previously in animals, though they had hypothesized based on those animal data that nerinetide 

might still be efficacious after rt-PA 35. While much work remains to solidify the role of nerinetide in 

clinical applications, ENACT and ESCAPE-NA1 provided the most promising evidence yet that 

neuroprotection in stroke patients is indeed feasible. The definitive efficacy of nerinetide in 

thrombectomy patients who have not been treated with rt-PA will be tested in the ESCAPE-NEXT 

trial (NCT04462536), which is targeted to commence in late 2020. 

The FRONTEIR Phase III trial began in 2015 to evaluate the use of nerinetide for stroke patients 

within 3 hours of stroke, to be administered IV by first responders (FRONTIER; NCT02315443). The 

recruitment for this study is still ongoing; the estimated study completion date is mid-2021. 

5. The emerging landscape of ischemic stroke therapy 

These above clinical data represent rare occasions of success in ischemic stroke therapy. We must 

meticulously consider the evolving clinical context driven by these results and continue the 

momentum in future research on neuroprotective drugs and therapy. A common theme that connects 

all the clinical trials presented here is in the careful stratification of the patient population that may 

have better represented a well-controlled scientific experiment. In the DAWN and DEFUSE-3 trials, 

advances in imaging techniques allowed the identification of the patient population with large stroke 

penumbra regions, optimizing the risk-reward of an invasive procedure. This provided a criterion 

that is far more tangible than the previously – almost subjective – estimation of time from “last known 

well”. These results drastically expanded the patient population eligible for endovascular 

reperfusion. Because more stroke patients are eligible to receive endovascular thrombectomy in this 
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“age of reperfusion” 3, preclinical evaluation of drugs in ischemic-reperfusion injury models are 

becoming increasingly relevant. 

This stratification of the patient population in both clinical trials for nerinetide was also the 

critical factor in unmasking the drug’s effects. The ENACT trial found significant differences in drug 

effect based on whether the patient undergoing aneurysm repair sustained a ruptured aneurysm. The 

ESCAPE-NA1 trial found an unexpectedly strong effect of rt-PA to reduce blood nerinetide 

concentrations to below the therapeutic level. These wise considerations by the investigators allowed 

nerinetide to continue its clinical development as potentially the first drug to demonstrate robust 

neuroprotection – given the optimal conditions. We believe that the decades of extensive basic science 

and highly specific experimental designs in both the preclinical and clinical experiments contributed 

to this success and are necessary to continue this momentum. This is clearly demonstrated in the 

development of the novel emboli stroke macaque model 47 reflecting its specifically paired human 

clinical trial 36. Most importantly, the nerinetide trials provided the most enticing evidence that 

neuroprotection through pharmaceutical targeting is a feasible stroke therapy for ischemic stroke 

patients. 

These successful clinical trials provide important hints on what must be accomplished in the 

development of stroke therapy in the near future, especially in the field of neuroprotection. 

Encouraged by the positive outlook for nerinetide, we have incorporated elements of these studies in 

our own research, focusing on the translational targeting of the well-studied neuronal cell death 

pathway modulated by the voltage-gated potassium channel Kv2.1. We highlight our preclinical 

progress below. 

6. Targeting Kv2.1 for Neuroprotection 

6.1. An omnipresent cell death mechanism in neurodegeneration 

The depletion of intracellular potassium has been shown to be an essential event in the activation 

of cell death machineries, including Apaf-1 apoptosome formation, caspase activation, and nuclease 

activity 49. Indeed, changes to potassium efflux has been observed in many preclinical models of 

neurodegeneration, including stroke 50, traumatic brain injury 51, Parkinson’s disease 52, and 

Alzheimer’s disease 53,54. Over the past twenty years, our laboratory has characterized the molecular 

signaling pathway that is initiated by lethal oxidative damage to deplete intracellular potassium by 

efflux through the voltage-gated potassium channel Kv2.1. This cell death cascade is initiated by the 

release of intracellular free zinc from damaged metal-binding proteins 55. The increase in intracellular 

zinc activates several phosphorylation pathways that surmise in the phosphorylation of Kv2.1 

residues Y124 and S800 by the kinases Src and p38 respectively, and in that preferential order 56−58. 

These channel modification events increase the interaction between Kv2.1 and syntaxin that is 

seemingly solely necessary for apoptotic trafficking of the channel 59. A simplified visual summary 

of this cell death-enabling pathway is provided in Figure 2A and B. Blocking potassium efflux has 

long been postulated as a promising neuroprotective approach. However, side effects associated with 

broad-spectrum potassium channel blockers, such as tetraethylammonium bromide 60, have been a 

crux in the development of a feasible therapy. As a significant advantage in our strategy, many 

aspects of the molecular events in the Kv2.1 cell death pathway can be targeted for neuroprotection 

without affecting Kv2.1 basal currents 59,61−63. We present our two most developed strategies below, 

as illustrated in Figure 2C and D. 
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Figure 2 Kv2.1-mediated neuronal cell death and two strategies for neuroprotection. 

(A) In a healthy neuron, Kv2.1 forms somatodendritic clusters with the ER proteins VAPA/B. (B) 

After exposure to pro-apoptotic stimuli, a zinc-mediated phosphorylation cascade leads to enhanced 

Kv2.1-syntaxin interaction, increasing channel insertion at Kv2.1 channel clusters, enhancing 

potassium efflux, and enabling cell death mechanisms. This process can be halted to provide 

neuroprotection in several ways, including (C) disrupting Kv2.1-syntaxin binding with TAT-C1aB 

and (D) dispersing Kv2.1 channel cluster with TAT-DP-2 that interferes with Kv2.1-VAPA/B 

association. MT: Metallothionine; ER: Endoplasmic Reticulum; ROS: Reactive Oxygen Species. 

6.2. Disrupting the Kv2.1-syntaxin interaction 

Prior to commitment to apoptosis, Kv2.1 is inserted in the plasma membrane via an enhanced 

interaction with the SNARE protein syntaxin. The Kv2.1-syntaxin interaction appears to not be 

necessary for the basal trafficking of the Kv2.1 channel. In cells expressing botulinum toxin that 

totally abrogates SNARE activity, basal Kv2.1 currents can still be observed while the expression of 

the enhanced pro-apoptotic current is abolished 59. Using a peptide-spot array of small Kv2.1 

fragments, we were able to isolate the binding sequence of Kv2.1 to syntaxin, from which we 

generated a TAT-linked peptide (TAT-C1aB) 64. We showed that not only intraperitoneal injections 

of such TAT-linked peptide was able to reach the brain vasculature rapidly, it can provide 

neuroprotection in the middle cerebral artery occlusion model of ischemic-reperfusion injury 64. This 

is the first in vivo evidence that targeting the Kv2.1-syntaxin interaction can be neuroprotective in 

ischemic stroke, as it has been shown many times previously in in vitro models. The mechanism 

described here is highlighted in Figure 2C. This strategy of displacing a protein-protein interaction 

using endogenous channel-derived sequences with a TAT-linked peptide mirrors the treatment 

design in the successful nerinetide story. 
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Unlike the well-studied interaction between NR2B and PSD-95, the Kv2.1-syntaxin interaction 

was not molecularly localized on the target protein. In a bid to further understand the Kv2.1-syntaxin 

interaction and to extend the effectiveness of our approach, we utilized molecular dynamic 

simulations to dock C1aB onto syntaxin 61. We localized the Kv2.1-syntaxin interaction to a highly 

coordinated binding pocket centered on the syntaxin Ha helix. Leveraging these molecular insights, 

we were able to screen vast libraries of small molecules and identified candidates that recapitulate 

the molecular interactions of C1aB and are capable of eliciting neuroprotective actions 61. We believe 

that this small molecule approach is the natural progression from designer TAT-peptides, as it allows 

us to rapidly identify novel treatment candidates with the same mechanism of action. The small 

molecules libraries may be leveraged to identify drugs that are more efficacious, better tolerated, and 

possibly resist enzymatic degradation. 

6.3. Disruption of Kv2.1-ER cluster junctions 

Recent advances in our understanding of the cellular microdomains that contain Kv2.1 channels 

have provided valuable insight into their role in neuronal cell death and have highlighted yet another 

unique protein-protein interaction that may be targeted pharmacologically for neuroprotection. 

Curiously, a subpopulation of non-conducting Kv2.1 channels localize to micron-sized 

somatodendritic clusters on the cell surface 65−67. These clusters represent ER-PM junctions 68,69 that 

form as a result of Kv2.1 C-terminal interaction with transmembrane VAMP-associated proteins 

(VAPA/VAPB) located on the ER 70,71. These clusters act as trafficking sites for several proteins, 

including new Kv2.1 channels reaching the membrane 68, which likely include the pro-apoptotic 

population discussed above. Studies based on this work have demonstrated that over-expression of 

the C-terminus of the cognate channel, Kv2.2, induces dispersal of these channel clusters 72, 

preventing potassium efflux following oxidative injury, and providing neuroprotection in vitro 73. In 

a recent study, we exploited knowledge of this pro-apoptotic Kv2.1 surface insertion mechanism to 

validate targeted-disruption of Kv2.1 VAPA association and cluster dispersal as a neuroprotective 

strategy 63. 

In this work, we similarly identified the critical sequence within the Kv2.2 C-terminus that can 

disrupt Kv2.1-VAPA association, effectively removing the portal of entry for pro-apoptotic Kv2.1 

channels reaching the membrane. As with the TAT-C1aB peptide, we again created a TAT-linked 

therapeutic peptide based on this sequence (TAT-DP-2). We showed that this peptide, importantly, 

induces rapid disruption of Kv2.1 channel clusters in mice in vivo following intraperitoneal injection, 

and demonstrate its neuroprotective efficacy in the context of ischemic stroke (Figure 2D). We show 

that when administered by intraperitoneal injection following MCAO with subsequent reperfusion, 

TAT-DP-2 reduces total infarct volume at 24 hours and provides long-term preservation of 

neurological motor function in mice over a 42-day period 63. 

Taken together, the results of these studies provide promising evidence for the specific targeting 

of pro-apoptotic potassium efflux as an ischemic stroke therapy. With late time point reperfusion 

becoming a mainstay of clinical stroke treatment, targeting mechanisms such as these may aid in 

penumbral preservation, increasing the number of patients eligible for endovascular thrombectomy 

and improving the already positive outcomes that this therapy provides. 

7. Other Recent and Ongoing Clinical Trials for Ischemic Stroke Therapy 

7.1. Mechanical endovascular thrombectomy 

The optimization of late time point reperfusion in the setting of ischemic stroke management is 

an ongoing process with new clinical trials constantly underway. Recently, the DIRECT-MT trial 

(NCT03469206) found that endovascular thrombectomy alone was not inferior to combinational 

treatment with rt-PA and endovascular thrombectomy, although there was a slight improvement 

with the combined treatment in pre-thrombectomy reperfusion, and overall successful reperfusion 
74. Whether combining rt-PA with thrombectomy is beneficial is being further tested in multiple 

ongoing trials internationally: see SWIFT DIRECT (NCT03192332) and MR CLEAN-NO IV 
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(ISRCTN80619088). Now more than ever, it is essential for the stroke researcher to continue 

monitoring the evolution of clinical ischemic stroke therapeutic techniques. 

7.2. NMDA-related Neuroprotective therapies 

In the sphere of neuroprotection, NMDA antagonism is one of the most extensively explored 

strategies. In addition to nerinetide, several molecules targeting excitotoxic mechanisms are currently 

or were recently in the spotlight for clinical evaluations. In a large Phase III clinical trial reported in 

2015 (FAST-MAG; NCT00059332), field-administered magnesium sulfate was evaluated as a 

neuroprotective therapy that acts by blocking NMDA receptors. Despite earlier data suggesting 

possible efficacy, modified Rankin Score evaluation did not find a favorable shift in neurological 

deficits from the magnesium sulfate treatment 75. Neu2000 (nelonemdaz), a derivative of sulfasalazine 

that selectively blocks NMDA and scavenges free radicals, is being evaluated in Phase II clinical trials 

(SONIC; NCT02831088) 76. SP-8203, Otaplimastat, an earthworm extract protease that appears to elicit 

neuroprotection through a pleiotropic mechanism that includes blocking NMDA receptor and 

inhibiting metalloproteinase appears to be effective and will be proceeding from Phase IIa to IIb as 

of 2018 (SAFE-TPA; NCT02787278) 77. In addition to the nerinetide FRONTIER trial, the SONIC and 

the SAFE-TPA trials are important upcoming results that will allow us to further elucidate the 

therapeutic potentials of modulating NMDA receptors in stroke treatment. 

8. Conclusions 

 The development of an effective and integrated antithrombotic treatment regimen in the clinical 

treatment of ischemic stroke has been a multi-decade effort plagued by challenges and failures, yet 

highlighted by revolutionary findings that provide meaningful benefits to patients afflicted by this 

devastating pathology. Nine years after rt-PA was initially approved for thrombolytic use in the 

setting of myocardial infarction, it was finally validated and approved by the U.S. Food and Drug 

Administration (FDA) for use in ischemic stroke in 1996. After a lull, the advancements in stroke 

management techniques over the last few years have been accelerating – from the demonstration of 

the efficacy of endovascular thrombectomy in 2015 to the validation of late time point 

revascularization up to 24 hours post-stroke beginning in 2018. Not covered in this review, 

antiplatelet and antiedema therapies are also both massive and immensely promising lines of 

research. In this current landscape, the motivation to study and develop novel neuroprotective 

strategies has been renewed and reinvigorated. With promising neuroprotectant peptides both in 

preclinical development and displaying possible signs of efficacy in Phase III clinical trials, as is in 

the case of nerinetide, we may be closer than ever to a novel class of approved and validated 

neuroprotective therapeutics for ischemic stroke management. 
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Abbreviations: 

DALYs  Disability-adjusted life years 

MR   Magnetic resonance 

DW   Diffusion-weighted 

PW   Perfusion-weighted 

CT   Computed tomography 

ROS   Reactive oxygen species 

rt-PA  Recombinate tissue plasminogen activator 
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NIHSS  NIH stroke scale 

ICA   Internal carotid artery 

MCA  Middle cerebral artery 

LVO   Large vessel occlusion 

ATP   Adenosine triphosphate 

NMDA  N-methyl-D-aspartate 

PSD   Postsynaptic density 

MAGUK  Membrane-associated guanylate-kinase 

nNOS  Neuronal nitric oxide synthase 

NO   Nitric oxide 

O-   Superoxide 

ONOO-  Peroxynitrite 

TAT   Transactivator of transcription 

MCAO  Middle cerebral artery occlusion 

FLAIR  Fluid-attenuated inversion recovery MR imaging 

MT   Metallothionine 

SNARE  SNAP receptor 

ER-PM  Endoplasmic reticulum-plasma membrane 

VAP   VAMP-associated protein 
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