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Abstract: Sustainable agricultural production is endangered by several ecological factors such as 

drought, extreme temperatures, excessive salts, parasitic ailments, and insect pest infestation. These 

challenging environmental factors may have adverse effects on future agriculture production in 

many countries. In modern agriculture, conventional crop breeding techniques alone are inadequate 

for achieving the increasing population’s food demand on a sustainable basis. The advancement of 

molecular genetics and related technologies are promising tools for the selection of new crop 

species. Gene pyramiding through marker assisted selection (MAS) and other techniques have 

accelerated the development of durable resistant/tolerant lines with high accuracy in the shortest 

possible period of time for agricultural sustainability. Gene stacking has not been fully utilized for 

biotic stress resistance development and quality improvement in most of the major cultivated crops. 

This review emphasizes on gene pyramiding techniques that are being successfully deployed in 

modern agriculture for improving crop tolerance to abiotic and biotic stresses for sustainable crop 

improvement. 
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1. Introduction 

The green revolution has resulted in substantial progress in yield and quality improvement of 

important food crops globally [1]. However, the conventional crop breeding method is insufficient 

for advancing crop improvement at the rate that is necessary to meet the food requirement for the 

steadily increasing human population [2,3]. The Food and Agriculture Organization estimated that 

worldwide food production must be increased by 70% by 2050 in order to meet the food demand of 

the expanding population [4]. Thus, to meet the increasing food demand, smart and rapid crop 

breeding tools are required to simultaneously improve multiple agronomic and nutritional traits [5].  

There are several yield-reducing factors in food grains, and it is estimated that annual losses are 

about 25% and 6-25% globally due to biotic and abiotic stresses, respectively [6,7]. In many 

developing countries, environmental stresses are severely affecting agricultural production [8]. The 

most important biotic stressors of food crops are plant diseases and insect pests [9,10]. There are 

diverse and widespread insect pest and pathogens that are challenge for the sustainable agriculture 

[11]. During the recent years, due to outbreak of a single insect pest, fall armyworm (Spodoptera 

frugiperda L.) across sub-Saharan Africa, India, Bangladesh, Sri Lanka, Thailand, and China, damaged 

more than 80 plant species including fruits, vegetables, staple foods (maize, rice, sorghum, and 

millet), and cash crops (cotton and sugarcane) in these regions and has threatened food security and 

caused huge economic loss in the affected regions [12-15]. Therefore, appropriate and effective 
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control strategies are required for the control of these biological threats to avoid food and economic 

losses across the globe.  

Chemical pesticides have been used to reduce biotic damage of crops for several years, but 

recently the use of chemical pesticides has been discouraged due to many adverse factors such as 

high product cost and the need for multiple applications, which is unaffordable by the majority of 

small-scale farmers [16]. In addition, chemical pesticides are a serious hazard to human health and 

the environment [17]. Pest resistance to chemical pesticides is another problem. In a recent report, 

herbicide resistance was reported in 262 weed species globally [18] Novel approaches for pest control 

are required for sustainable agricultural production, in order to minimize the dependence on 

pesticides, and to protect the environment and beneficial micro fauna [19]. Contrary to chemical 

control, the development of pest-resistant crop cultivars has become popular idea that is durable, 

economical, and environment friendly [20]. It is of key significance to achieve durable and 

environmentally-friendly biotic stress tolerance in crops to ensure food security on sustainable basis 

[21,22].  

Most crop breeding strategies for abiotic and biotic stress resistance are based on the insertion 

of a single resistant gene into plants, and thus crop resistance only lasts for a short period of time 

[23,24]. Therefore, the development of genotypes with resistance against several stresses by 

pyramiding multiple genes from different sources into a single plant is now emphasized [25-28]. Crop 

stress tolerance development has been elucidated in several studies by the pyramiding of multiple 

resistance genes [29,30] (Table 1). However this technique has not been fully utilized for biotic stress 

resistance and crop quality enhancement in most of the major cultivated crops [28,31-33]. 

Abiotic stresses also adversely affect the growth and yield of crops [34]. These can even affect 

the plant species survival [35,36]. Every year considerable crop losses occur due to floods [37]. Salinity 

is another problem for crop production and most crop plants are sensitive to salts throughout their 

life cycle, but seedling stage is more crucial [38]. There are also some salt-resistant crops varieties that 

express salt-responsive genes to tolerate the excessive salts, and the quantitative trait locus (QTLs) 

linked with these genes may be mapped through microsatellite markers for breeding of the salt-

tolerant lines [39,40]. The cultivar, NonaBokra, which is tolerant to salt, was successfully mapped 

with SKC1, and this was a good achievement that conserved K+ homeostasis under salinity [41,42]. 

Similarly, many goals have been achieved in the development of drought-tolerant traits in other crops 

through marker assisted breeding methods [43]. Many drought-tolerant genes have been explored 

and successfully engineered in many crops for the development of drought resistance [44,45]. Low 

temperature tolerant genes (OsRAN1) and QTLs have also been identified in many plants for further 

use in cold tolerance development in crop varieties through molecular marker breeding tools [46-48]. 

Yet, gene pyramiding has not been fully utilized in the area of abiotic stress improvement for durable 

resistance. 

The incidence of crop stresses has necessitated the adoption of superior and innovative 

technologies to protect yield potential of various crops under stressful growing conditions. However, 

a problem in the improvement of crops through traditional breeding methods is that not only the 

desired genes, but some unwanted genes, continue to exist even after several backcross generations 

and the ability to screen for these is not easy. Compared to traditional breeding, advances in 

molecular technologies have led to precise, sophisticated, and rapid breeding through molecular 

markers [5,49]. Marker assisted selection (MAS) comprises indirect selection of traits with the marker 

linked with the desired gene for the tagging of some important agronomic trait that otherwise is not 

easy to mark for resistance against pathogens, diseases, and abiotic stresses, and attributing to yield 

and quality characteristics. Marker studies, especially on near isogenic lines (NILs) and bulk 

segregate or recombinant inbred lines (RILs) have hastened gene mapping in many crop species. 

Through the use of random amplified polymorphic DNA (RAPD), 

restriction  fragment  length polymorphism (RFLP), and microsatellite markers, sequence tagged 

sites have been developed successfully in tomato (Lysopersicon esculentum L.), rice (Oryza sativa L.), 

wheat (Triticum aestivum L.), and many other cereals [28]. 

Resistance developed through a single gene can be overcome by pests after a few years [50-53], 

so it is needed to develop unique and efficient strategies to enhance crop resistance against stresses 
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to improve yield and quality on a sustainable basis [54-56]. Gene pyramiding may be one of the 

superior techniques to accomplish durable resistance against various stresses in crop production [57-

59]. Sustainable  improvement of crops by integrating multiple resistance genes is essential to ensure 

agricultural production across a range of climatic conditions [60]. In most cases, more than one gene 

control some specific trait, so it is necessary to manipulate multiple genes for evolving resistance 

against biological and non-biological agents such as chemicals, diseases, pests, and weeds [61]. For 

long-term and durable resistance development, the pyramiding of diverse resistance genes against a 

single pathogen or pest in a single genotype can help for long-term resistance development [59,62-

65]. Marker assisted breeding could make it possible to effectively combine resistant genes into a 

single genetic background in the shortest possible time [66,67]. In this review, we highlight the 

advances made in gene pyramiding to address crop production challenges and also to identify the 

limitations that need to be addressed in utilizing gene pyramiding techniques. 

2. Types of Gene Pyramiding in Plant Breeding  

Gene pyramiding is a crop breeding technique that can be applied in conventional and advanced 

molecular breeding programs to introduce novel lines. The conventional technique of crop breeding 

develops new crop varieties by employing traditional techniques and routine natural processes, as 

compared to modern and sophisticated tools of the current era [68-70]. The technique involves 

sequential gene pyramiding deployed in the same plant. The conventional pyramiding technique 

involves backcross breeding; crossing a hybrid with one of the parental lines, followed by selection 

for the desired characteristic [45,71]. The inherited traits and resistant genes are transferred from 

donor parents into recipient lines by crossing and backcrossing, and are identified via the selection 

process. The backcrossing method is also used for resistance gene pyramiding [72]. (ii) Pedigree 

breeding; a method of genetic improvement of self-pollinated species, in which 

superior genotypes are selected from segregating generations and proper records of 

the ancestry of selected plants are maintained at each stage of selection [71], and (iii) 

recurrent selection; an efficient and modified form of progeny selection, where 

selection for some specific trait(s) is conducted within consecutive segregating 

progeny generations on the basis of phenotypic characteristics [73] (Figure 1; A, B, 

C, D). 

 

Figure 1. Conventional methods of plant breeding[74]. 

3. Molecular techniques in breeding programs  

Crop breeding has been improved to a great extent in recent years and now precision breeding 

has become possible in a shortest possible time with the advent of modern molecular tools. Innovative 

molecular breeding tools are being used to improve crop varieties, which mostly involve MAS and 

gene transformation. Single nucleotide polymorphisms and insertion deletions polymorphisms are 
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abundantly found all over the genome of plants [75], and these prove a good source for MAS in 

breeding programs [76]. Easy accessibility of polymorphic markers, linkage maps, and 

quantitative trait loci (QTLs) for different quantitative and qualitative traits have facilitated for 

construction of inter- and intra-specific maps [77,78]. Quantitative trait loci, have been identified and 

linked with the resistance to many plant diseases [79]. The association of QTLs with yield-related 

traits has not been widely applied [80-82], these can be used as a marker’s linkage with key important 

genes for the selection and improvement of crops by stacking multiple traits into a variety through 

modern breeding tools [83]. 

3.1. Molecular Marker Assisted Selection   

Selection of a trait in plants through molecular markers normally involves omic regions 

identification, which play role in the expression of desirable genes [11]. Marker assisted selection is 

involved in genotype identification, diversity and purity analysis, selection of parent lines, and the 

study of hybrid vigor [84] and it utilizes DNA-based markers that are directly linked with the 

targeted gene to help phenotypic evaluation and improvement of breeding efficiency by selecting the 

target genes within the germplasm, but not genetic engineering which involves transfer of foreign 

gene sequences [85-87]. In many crop plants MAS has been effectively applied for stress resistance 

development and quality improvement in many important crops such as rice (resistance to bacterial 

blight, blast, flood, and salinity, and improvement in grain quality), wheat (resistance to leaf rust and 

powdery mildew), and cotton (insect pests, resistance) [84,88]. Previously, crop breeders used 

performance of plants and information obtained from them to conclude about their genetic makeup, 

but it was time consuming, strenuous, and not so efficient [85,89]. Thus, direct handling of genes that 

are involved in controlling specific traits can speed up the breeding process [90]. These traits may be 

monogenic or polygenic [85,90], and their locations are referred to as QTL, which may have a greater 

effect than others as major genes. Quantitative traits locus essentially refers to those genes that might 

be good option for selection; however, it is difficult to find inheritance at QTL only, but it helps to 

locate marker sequence inheritance, close to or within the QTL. Selection of markers is done on the 

basis of closeness to QTL, so sophisticated and well organized procedures are adopted for the 

identification of marker sequences closely linked with major genes on the chromosomes [91]. The 

reliability of a phenotype should be accurately predicted by the markers, and these are commonly 

applied to confirm the trueness of first filial generation (F1), genetic purity testing of seeds, cultivar, 

linkages construction, gene, and QTLs mapping associated with other biological and physiological 

functions [86]. The attributes of DNA-based markers for effective applications are, their reliability 

and close link to the trait of interest (< 5 cM genetic distance) [92]. It is also desirable that markers 

applications should be convenient for other researchers to handle with good reproducibility, and 

should also be simple and fast. Hence, a high output and quick methods of efficiency are important 

factors to be taken into account. These should also possess high polymorphism and should have co-

dominance inheritance for homo and hetero zygotes in segregating offspring and should be cost 

effective [93-95].  

3.2. Marker Assisted Backcrossing 

Marker-assisted backcrossing (MABC), a simple form of marker-assisted selection, is currently 

being widely applied in molecular breeding [96]. Marker-assisted backcrossing  targets one or more 

genes or QTLs transfer from one donor parent into some other superior cultivar or genotype to 

improve a targeted trait. Contrary to conventional backcrossing, MABC depends on the alleles of a 

marker linked with desirable genes or QTLs instead of phenotypic performance. Through MABC, the 

outcomes can be obtained within a shorter period of time (about two years) [85]. In principle, MABC 

can be utilized in any crop breeding program. Markers are helpful in the backcross selection for the 

desired alleles or genes, which are difficult to select based on phenotypic observations such as 

pyramiding of disease and pest resistance genes in a specific genotype, where these may overlap each 

other’s effect epistatically. Markers may be used for the selection of some progeny where 

recombination occurs near the targeted gene containing the allele with some DNA of the donor plant. 
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As a result, these have a vital importance in backcross breeding for the pyramiding of two or more 

genes linked with desired stresses tolerance [97]. MABC gene pyramiding involves three levels of 

selection (Figure 2) [66,98]. Crossing is done between the recurrent parent donor parents for the F1 

hybrid, which is then backcrossed up to three generations to obtain best parent. It is further crossed 

with another donor parent for pyramiding two or more genes of interest. Although this technique is 

considered to have low satisfactory and be time consuming, its precision for gene pyramiding is good 

[99,100]. In the other breeding technique(Figure 2B), the recurrent parent is crossed with donor 

parents to obtain F1 hybrids, and these are intercrossed to get improved F1 and this is further 

backcrossed with the recurrent parent to produce an improved recurrent parent. Thus, pyramiding 

is done in the pedigree itself. In the third strategy (Figure 2C), the first two schemes (Figure 2 A&B) 

are combined; it involves simultaneous crossing of the recurrent parent with multiple donor parents, 

and then backcrossing up to the BC3 generation. The backcrossed populations are then intercrossed 

with each other to achieve gene pyramiding. This technique is considered most suitable because it is 

less time consuming and fixation of genes is certain. However, success or failure of this technique 

depends on many factors, such as distance between the closest markers and the target gene, the 

number of target genes, the genetic base, and the genetic background in which the target gene is 

manipulated, and the marker type. If proper selection criteria are maintained, then MABC-based gene 

pyramiding can produce durable and sustainable crop improvement [28,101-104]. 

 

Figure 2. Schematic presentation of different backcrossing strategies for gene pyramiding. RP, 

recurrent parent; DP, donor parent; BC, backcross; IRP, improved recurrent parent; A, stepwise 

transfer; B, simultaneous transfer; C, simultaneous and stepwise transfer combined [98]. 

3.3. Marker Assisted Recurrent Selection  

Recurrent selection is considered an efficient approach for pyramiding multiple traits in plants; 

however, its efficacy of selection is not satisfactory because phenotypic selection depends on 

environments while genotypic selection takes much time (two to three cropping seasons for a cycle 

of selection) [105]. Marker assisted recurrent selection is an improved system that enables genotype 

selection and intercrossing in one cropping season (Figure 3), which can facilitate the efficacy of 

recurrent selection and expedite the selection process [106], and help in integration of multiple 
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favorable genes. For complex agronomic traits such as grain yield and biotic and abiotic stress 

resistance, the pyramiding of multiple QTLs into crops is recommended [83,107-109]. Many 

researchers have reported that the genetic advance obtained through MARS in maize was almost 

double as compared with phenotypic selection [108,110,111]. Bankole [112] also reported 

effectiveness of MARS for improvement of yield and related traits in maize through MARS. The basic 

procedure of MARS comprises some steps, such as selection of the parent lines from a similar and 

non-similar population[113]. Maker assisted recurrent selection F3-derived individuals are generally 

satisfactory and multiplied through a single-seed decent strategy for increasing the seed to conduct 

multiplication trials. Large plant numbers are preferred, to rely on the accuracy of QTL mapping. 

Further, QTL can be evaluated after geno-phenotypic analysis for the selection of markers and 

suitable alleles. The best population is selected for recombination, as shown in the example in Figure 

3, four genotypes are crossed to generate two pair of offspring with one each resulting in F1. At each 

cycle, genotyping is performed to identify the best F1 individuals, which could be used again in the 

next cycle of recombination[114]. 

 

Figure 3. Schematic representation of marker assisted recurrent selection in 

crops [28]. . 

3.4. Marker Assisted Gene Pyramiding in Developing Resistant Crop Varieties 

Gene stacking or pyramiding is a useful technique for transferring several desired genes or QTLs 

from different parents into a single genotype in the shortest possible time (two to three generations), 

as compared with conventional breeding which takes a minimum of six generations to recuperate 

99.2% of the recurrent parent genome [25,49,84]. It aims at accumulating several resistance genes with 

known effect on a trait of target and confers durable resistance against different stresses [88], and 

became possible with recent advances in molecular markers techniques [115-117]. Plant scientists 

have successfully utilized this technique to pyramid resistant genes or QTLs through the help of 
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closely associated markers against biotic stresses such as late blight (Phytophthora infestans L.), 

bacterial blight (Xanthomonas campestris L.), gall midge (Contarinia quinquenotata L.), mosaic viruses, 

powdery mildew (Podosphaera xanthii L.), and many abiotic stresses such as salinity, drought, heat, 

cold, as well as quality improvement in many major crops as shown in Table 1. Marker assisted gene 

pyramiding also provides ease in selection of QTL allele-linked markers with similar phenotypic 

expression. Thus, pyramiding of several genes or QTLs is endorsed as a possible approach to improve 

quantitative as well as qualitative traits in plants [85,118,119]. 

MAS facilitates the monitoring several traits at a time, while separate field trials are required to 

screen for individual traits with traditional breeding method [45]. Moreover, MAS also facilitates 

cost-effective gene stacking by selecting desirable plants at the initial stage of growth, which greatly 

reduces field space, maintenance cost of germplasm, and costs and agronomic inputs for field trials. 

When several genes conferring resistance to similar stresses are assembled, the markers are potent 

and effective to classify those plants bearing genes of interest from the undesirable ones[120]. It could 

be inferred undoubtedly that marker assisted gene pyramiding is quick, proficient, economical and 

a simple technique for application in plant breeding to pyramid genes of interest to build up multiple 

stress tolerance in crops [120-122]. 

3.5. Gene Pyramiding Involving Polygenic Applications 

Many quantitative traits such as yield and quality along with tolerance to biotic and abiotic 

stresses have great economic value. Genetic expression affecting these traits is normally regulated by 

a large number of loci that have some impact on the development of phenotypic traits. These loci 

(QTLs) can be manipulated by molecular markers as Mendelian entities to harbor resistance against 

stresses and to improve many quantitative and qualitative traits [123-125]. MAS has been used 

successfully in polygenic trait development in many crop plants with a high level of success through 

genotype and pedigree selection, and introgression of alien genes in elite lines using advanced 

backcrossed inbred selection [126]. However, polygenic traits related with yield improvement pose 

some complications, because yield trait selection is done by crossing between the best lines from a 

pool. Hence, QTLs mapped in one population may have low significance for other populations. 

Genetic improvement using the advanced backcross quantitative trait loci AB-QTL technique has 

been utilized for many important traits, such as fruit quality improvement and fungus (mold) 

resistance in tomato [127]. Advances made in utilization of gene pyramiding techniques to improve 

the yield, quality, and stress tolerance in many crops are summarized in Table 1. 

Table 1. Gene pyramiding for biotic, abiotic stresses, and quality improvements in crops. 

Crop Traits   Pyramided genes Reference 

Biotic stress tolerance 

Potato Late blight resistance Rpi-phu 1, Rpi-rzc  [128] 

Cotton Bacterial blight/sheath 

resistance 

Chi11, t1p, Xa21 [129] 

 
Bollworm resistance Cry1Ac, Cry2Ab [130]  
Weed and pathogen 

resistance 

ptxD/Phi [6] 

 
Insect pest resistance Cry1Ac, Cry2Ac [131] 

Wheat Leaf and stem rust 

resistance 

SrCad, Sr33, Lr34, Fhb [132] 

 
Cereal cyst nematode 

resistance 

CreX, CreY, CRISPR-Cas9 [133] 
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Aphid resistance Gn2, Gn4 [134] 

Rice Gall midge resistance Gm1, Gm2, Gm4 [75]  
Blast resistance Pi(2)t, Pi25, Pi(t)a, Xa4, Xa5, Xa13, 

Xa21 

[135,136] 

 BPH resistance Bph1, Bph2 [137] 

 Blight resistance Xa5, Xa13, Xa21 [138] 

 Bacterial , Sheath blight, 

stem borer  

Xa12, Rc7, Cry1AB1, Cry14c [139] 

Soybean Mosaic virus resistance Rsv1, Rsv3, Rsv4 [31] 

Tomato Leaf curl/spotted virus  Ty-1, Ty-3, Sw-5 [140] 

Barley Mosaic virus resistance rym4, rym5, rym9, rym11 [141] 

 Strip rust resistance 3 QTL [142] 

Com Com borer resistance Cry1le, Cry1Ac [143] 

Chickpea Lepidopteran resistance Cry1Ac, Cry1Ab [144] 

Pepper Root-knot nematode 

resistance 

Me1, Me2 [145] 

Abioic stress tolerance 

Rice Cold tolerance 9PssT-3,9PssT-7, 9PssT9,  [146] 

 Cold tolerance 9SCT1a, 9SCT2 [147] 

 Drought tolerance Soltol [75] 

 Drought tolerance QTLs [148] 

 Cold tolerance qPSST-3, qPSST-7, qPSST-9, qSCT1a, 

TSF4-1 

[149] 

  Heat, drought, salt, and 

cold resistance 

OsHSP18.6 [150] 

Quantitative and qualitative traits 

Cereal High yield Gn1a/OsCKX2, APO1, WFP/OsSPL 14 [151] 

 Seed shape GW2, GS 3, 9SW5 [151] 

4. Challenges in Molecular Markers Utilization in Plant Breeding  

A major challenge of using molecular markers in plant breeding is the high cost to secure and 

maintain molecular laboratories [88]. There is a huge initial capital cost requirement for marker 

development, and it is one of the main limitation in marker use in many developing countries for 

crop improvement[152]. Constant electric supply to preserve the markers at very low temperature is 

another major constraint. Additionally, using MAS for line development lacks consistency in 

determining phenotypes of crops, and bias sampling from a small population may be misleading for 

specific expression [153,154]. Recombination is another problem, which may occur during DNA 

replication, because during the recombination process, someone may not be sure about the exact 

marker option, or allele that is linked to an individual gene or allele. Markers are categorized as direct 

(within major gene) or indirect markers (near major gene), and recombination is the function of 
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distance between a gene or QTL and the linked marker. It is undesirable for recombination with 

higher distance between a maker and a major gene [155-157].  

5. Contribution of the Gene Pyramiding Technique to Agricultural Sustainability  

The gene pyramiding technique has contributed enormously to modern agriculture. It has led 

to tolerance development in plants for diseases, insect pests, and abiotic stresses, and productivity 

enhancement on a sustainable basis. DNA molecular markers have made it possible for quick and 

precise plant breeding, and early generation selection for significant traits without extensive field 

work. Gene pyramiding, through MAS, has enabled integration of multiple genes into a single plant 

to achieve the goals of biotic or abiotic stress resistance and higher yield with desired nutritional 

quality. Durability of abiotic and biotic tolerance is crucial for sustainably achieving global food 

requirements. Many researchers have been reported for the successful pyramiding and function of 

the resistance genes into crops to increase the durable resistance against a different insect pests and 

pathogens. An overview of gene pyramiding in major important crops species has been presented in 

Table 1. The utilization of host plant resistance is the best package, economically viable, durable, and 

environment friendly for stress tolerance. In most of the cases, biotic resistance developed by a single 

gene is shaken within a short period of time, so modern breeding techniques are focusing at 

pyramiding of several genes or QTLs into single genotype to insure long-lasting resistance for 

sustainable crop production [51,96,158,159]. 

6. Conclusion  

There are several stresses that cause devastating effects on productivity and cultivation of crops 

throughout the globe. To fulfill the needs of the world’s growing population for food, there is an 

immense need to safeguard crop plants from biotic and abiotic stresses, which cause yield and quality 

loss. In the present era, conventional plant breeding has improved with the help of molecular markers 

and MAS strategies. Many stress-tolerant genes have been integrated into crop plants for higher 

yield, durable stress resistance/tolerance, and enhanced nutritional traits. Molecular marker 

genotyping has simplified the breeding selection process and reduced the number of generations 

required for evaluation and gene integration into a desired cultivar. Marker assisted selection gene 

pyramiding should be fully explored to minimize the risk of crop yield and quality reduction due to 

biotic and abiotic stresses. This strategy has already been utilized successfully for accumulation of 

several resistant/tolerant genes in some varieties of potato, rice, wheat, and barley, and the field 

results are encouraging for stress tolerance and yield performance. Despite the tremendous 

advancement of gene pyramiding, there are still challenges that need to be addressed to improve its 

implementation and vast impact. Marker assisted gene pyramiding technique should be cost effective 

and technical collaboration, financial support may be extended to the developing countries for the 

improvement of their local germplasm. Successful accumulation of resistant genes has been 

accomplished in the areas of a biotic stress and disease resistance; however, there have only been 

small achievements in pest resistance and nutritional quality enhancement. Any innovation in a 

breeding program is measured on the contribution made towards improvement of food production. 

Hence, breeders should take maximum advantage of MAS gene pyramiding and it should be 

meritoriously implemented in breeding programs to achieve sustainable agricultural goals.     
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