

1 Inhibitory cross-talk between P2X and NMDA receptors

2
3 **Larry Rodriguez¹, Catherine Yi¹, Cameron Chu¹, Quentin Duriez^{2,3}, Sharyse Watanabe¹, Megan**
4 **Ryu¹, Brandon Reyes¹, Liana Asatryan⁴, Eric Boué-Grabot^{2,3} and Daryl Davies^{1*}**5 ¹Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern
6 California Los Angeles, CA 90033; (L.R.) larryrod@usc.edu; (C.Y.) yich@usc.edu; (C.C.)
7 chucamer@usc.edu; (S.W.) sharysew@usc.edu; (M.R.) meganryu@usc.edu; (B.R.)
8 branreyes2970@gmail.com;9 ²Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France10 ³ CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France; (Q.D.)
11 quentinduriez@protonmail.com; (E.B-G) eric.boue-grabot@u-bordeaux.fr,12 ⁴Titus Family Department of Clinical Pharmacy, School of Pharmacy, University of Southern California
13 Los Angeles, CA 90033; (L.A.) asatryan@usc.edu

14 * Correspondence: ddavies@usc.edu; Tel.: +1-(323)-442-1427 (D.D.)

15 **Abstract:** Purinergic P2X receptors (P2X) are ATP-gated ion channels widely expressed in the CNS.
16 While the direct contribution of P2X to synaptic transmission is uncertain, P2X reportedly affect N-
17 methyl-D-aspartate receptor (NMDAR) activity, which has given rise to competing theories on the
18 role of P2X in the modulation of synapses. However, P2X have also been shown to participate in
19 receptor cross-talk: an interaction where one receptor (e.g. P2X2) directly influences the activity of
20 another (e.g. nicotinic, 5-HT3 or GABA receptors.) In this study, we tested for interactions between
21 P2X2 or P2X4 and NMDARs. Using two-electrode voltage-clamp electrophysiology experiments in
22 *Xenopus laevis* oocytes, we demonstrate that both P2X2 and P2X4 interact with NMDARs in an
23 inhibitory manner. When investigating the molecular domains responsible for this phenomenon,
24 we found that the P2X2 c-terminus (CT) could interfere with both P2X2 and P2X4 interactions with
25 NMDARs. We also report that 11 distal CT residues on the P2X4 facilitate the P2X4-NMDAR
26 interaction, and that a peptide consisting of these P2X4 CT residues (11C) can disrupt the interaction
27 between NMDARs and P2X2 or P2X4. Collectively, these results provide new evidence for the
28 modulatory nature of P2X2 and P2X4, suggesting they might play a more nuanced role in the CNS.29 **Keywords:** NMDA receptors; P2X2 receptors; P2X4 receptors; cross-talk;31 **1. Introduction**32 Ionotropic receptors are ligand-gated ion channels (LGICs) responsible for various physiological
33 processes. These LGICs, widely expressed in neurons, are activated by specific chemical species, such
34 as glutamate, adenosine triphosphate (ATP), or γ -aminobutyric acid (GABA), with multiple receptor
35 families being found across diverse population of cells types [1]. Glutamate receptors are one of the
36 largest and most widely expressed family of excitatory LGICs found in the CNS. Three different
37 classes of ionotropic glutamate receptors exist, differentiated by their ability to be stimulated by
38 selective agonists: Kainate, α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (or AMPA), and
39 N-methyl-D-aspartate (or NMDA) receptors. NMDA receptors are heterotetramers, usually
40 consisting of two obligate GluN1 subunits, and either two GluN2 or two GluN3 subunits. Within the
41 NMDA type of glutamate receptors, there exist several subtypes of GluN2 (i.e., GluN2A-D), each
42 with a different cytoplasmic domain, resulting in differences in functional and physiological activities
43 [1, 2].44 ATP is an important signaling molecule in the CNS, as it activates P2 receptors, including the
45 ATP-gated cation channel family (P2X receptors) which have been shown to play a role in
46 neuroinflammation, pain, and neurological dysfunction. Among the members of the P2X family
47 (consisting of P2X1-P2X7), P2X2, P2X4, and P2X6 subtypes are generally expressed on most neurons,
48 and are regularly found at the edge of the post-synaptic densities of excitatory synapses [3]. P2X
49 subtypes also show similar structural characteristics: an amino-terminal intracellular domain, two

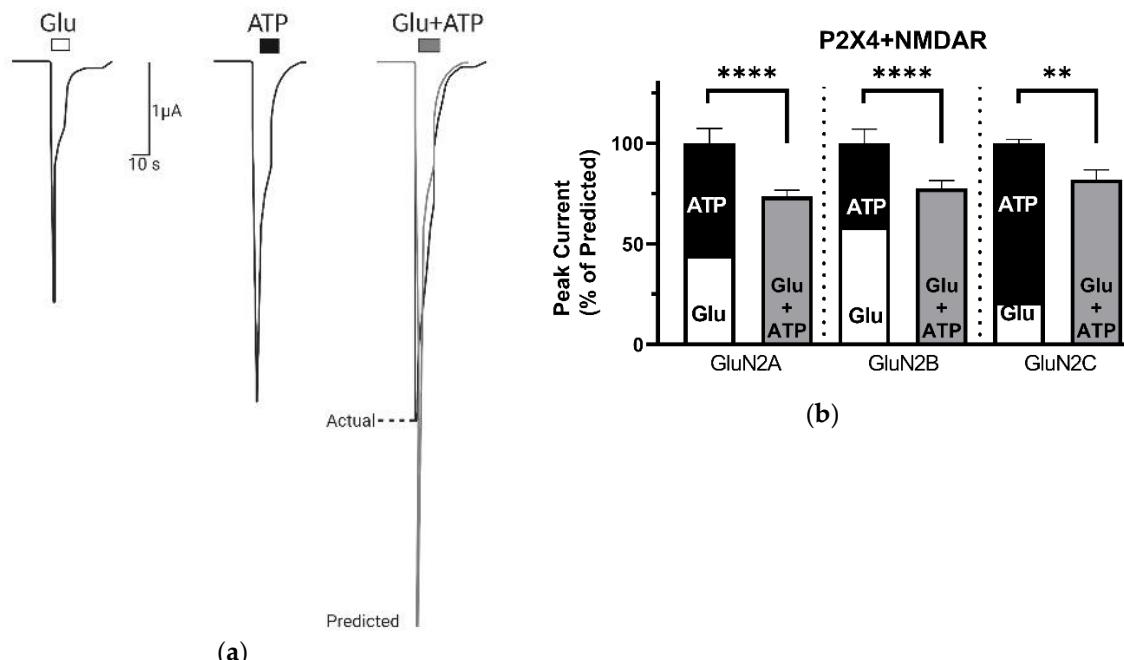
50 transmembrane domains, and a carboxy-terminal (CT) intracellular domain. In fact, the closed and
51 open zebrafish P2X4 crystal structures (PDB: 4DW0 and 4DW1, respectively) have previously been
52 used to build other P2X structural models, namely P2X2, highlighting the conserved shape of P2Xs
53 [3].

54 While ATP is released by neurons (as well as by glial cells in the CNS), direct evidence
55 supporting the function of P2X in synaptic transmission is limited. ATP can be coreleased with GABA
56 or glutamate at central synapse [4] [5], suggesting a modulatory role in synaptic activity or plasticity
57 in the brain. For example, studies on P2X4 knockout (P2X4 KO) mice suggested that calcium entry
58 via P2X4 played a role in the induction of long-term potentiation (LTP) via modulation NMDARs [6].
59 Additional studies on P2X4 KO mice support the notion that P2X4 modulates NMDARs, although
60 results indicated that calcium influx from P2X4 alone was not sufficient to explain changes in synaptic
61 plasticity [7]. More recent studies reported that P2X can down-regulate NMDARs in a calcium-
62 dependent manner [8], raising more questions regarding the mechanistic function of P2X4. Roles for
63 P2X4 in behavior have continued to emerge; studies have found that P2X4 KO mice 1) show
64 cognitive-behavioral deficits, 2) consume significantly more ethanol as compared to wildtype
65 controls and 3) display aberrant signaling within the mesolimbic pathway of the brain [9-11].
66 Moreover, pharmacologic and genetic studies support the significance of P2X4 in cognitive function
67 (for a detailed review on P2X modulators in disease, see [12]; P2X4 positive allosteric modulators
68 (e.g., ivermectin and moxidectin) have been shown to reduce ethanol intake in wildtype, [13, 14] and
69 internalization-deficient P2X4 knock-in mice, which display increased surface expression of P2X4,
70 demonstrate that P2X4 regulates anxiety and memory processes [15]. Indeed, increased P2X4 surface
71 expression in excitatory neurons was shown to alter long-term depression and long-term potentiation
72 (LTD and LTP) in the hippocampus, consistent with the idea that post-synaptic P2X4 receptors may
73 regulate NMDAR function. While these studies indicate that P2X are integral in neuronal signaling
74 and cognitive disease states, determining how P2X mediate these effects is necessary for determining
75 their promise as a target for cognitive pathologies (for a recent review of P2X4 in the nervous system,
76 see [16].).

77 A large body of evidence suggests that a major function of P2X involves interacting with and
78 regulating other LGICs (i.e. cross-talk.) In cross-talk, coactivation of P2X and another receptor leads
79 to rapid inhibition of agonist-evoked currents. P2X cross-talk can rely on physical interactions
80 between the intracellular domains of each receptors and may also regulate the subcellular targeting
81 of receptors in neurons. Cross-talk between several P2X subtypes has been shown to modulate the
82 activity of GABA receptors [17-20], nicotinic ACh receptors [21] and 5-HT3 receptors [22-24].
83 Alternatively, P2X can also have slow but long-lasting modulatory effects on the function or surface
84 trafficking of receptors; activation of post-synaptic P2X by ATP released from glia has been shown to
85 trigger changes in the surface trafficking of AMPAR, which leads to long lasting changes in synaptic
86 efficacy at glutamatergic synapses. In the hypothalamus, activation of P2X7 by ATP led to increases
87 in the number of surface AMPAR and synaptic strength [25]. In the hippocampus, activation of post-
88 synaptic P2X2 or P2X4 can activate surface AMPAR internalization, leading to a P2X-mediated long
89 term synaptic depression [26, 27]. Despite evidence of the modulatory potential of P2X, interactions
90 between P2X and NMDAR have not been investigated.

91 To better understand how P2X regulate NMDAR function [6, 7, 28] here we investigated putative
92 interactions between P2X and NMDAR using two-electrode voltage clamp (TEVC) electrophysiology
93 in *Xenopus laevis* oocytes coexpressing P2X2 or P2X4 and various GluN2-containing NMDAR
94 combinations. We demonstrate an interaction between P2X and NMDARs, producing inhibitory
95 responses, and that this interaction between both receptor types exhibits subunit-dependent
96 properties. Using mutagenesis and molecular biology approaches, we delved deeper into the
97 domains responsible for this interaction and found evidence that suggests that the C-terminal of P2X
98 is important for the interactions between P2X and NMDARs.

99 2. Results


100 2.1. Coactivation of P2X and NMDA receptors

101 ATP and glutamate (Glu) are coreleased from presynaptic vesicles [4], suggesting that activation of
 102 post-synaptic P2X and NMDARs might occur at the same time. We expressed P2X and NMDARs
 103 separately or in combination in *Xenopus laevis* oocytes. Voltage clamp recordings demonstrate that
 104 coexpression did not affect either ATP or Glu concentration-responses when tested separately (Figure
 105 A1.) Furthermore, ATP did not affect NMDAR responses when expressed alone, and Glu did not
 106 affect P2X responses when expressed alone (Figure A2). Note that since NMDARs are
 107 heterotetramers consisting of obligate GluN1 and variable GluN2 subunits, we will refer only to the
 108 variable GluN2 subunit when discussing differences among NMDARs.

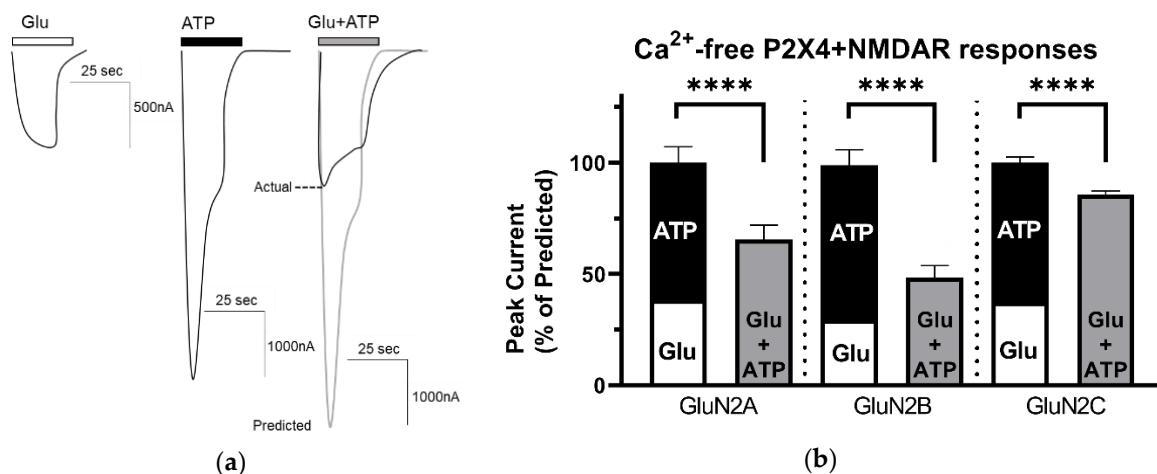
109 We sought to characterize the effects of activating both receptor types at the same time (coactivation).
 110 If both receptors are functionally independent, then simultaneous activation of P2X and NMDAR
 111 should be additive. That is, equal to the sum of the separate response of each receptor when activated
 112 individually by their respective agonist [17, 20-22]. On the other hand, non-additive responses during
 113 concomitant application of both agonists would indicate a functional interaction with synergistic
 114 (greater than additive responses) or inhibitory (less than additive response) effects.

115 *2.1.1. Coactivation of P2X4 and NMDA receptors produces non-additive (inhibitory) responses*


116 As presented in Figure 1A, coapplication of both agonists on oocytes coexpressing P2X4 and
 117 NMDARs consisting of GluN2B subunits produced a significantly lower current response (black line)
 118 than the arithmetic sum of the separate responses evoked by application of Glu and ATP alone (grey
 119 line.) The bar graph presented in Figure 1B illustrates the mean of the predicted sum of the Glu
 120 responses (white) and ATP responses (black) and mean of actual peak currents evoked during
 121 coactivation of P2X4 and different GluN2-containing NMDARs (grey), normalized to the predicted
 122 response (set as 100%). Regardless of the GluN2 subunit, we found that coactivation of P2X4 and
 123 NMDARs produced significantly smaller responses than predicted: GluN2A, GluN2B, and GluN2C
 124 produced $73.6 \pm 3.1\%$ ($p < 0.0001$; $n = 9$), $77.7 \pm 3.9\%$ ($p < 0.001$; $n = 9$), and $82.2 \pm 4.7\%$ ($p < 0.01$; $n = 10$)
 125 of the predicted coactivation response, respectively. These results indicate that P2X4 and NMDARs
 126 do not function in isolation and that coactivation led to inhibitory responses, independent of the
 127 GluN2 subunit composition of NMDARs (One-way ANOVA, $p > 0.05$). Interestingly, we observed an
 128 increase in Glu responses after coactivation for GluN2A- and GluN2C-containing NMDARs (GluN2B
 129 was not assessed). Unfortunately, due to this non-recovery (i.e. return to baseline) of NMDARs,
 130 determining the directional nature of this interaction (i.e. coactivation of P2X4 and then NMDARs,
 131 or vice versa) was not further investigated in this current work (see Figure 2C-D).

132 **Figure 1.** P2X4-NMDAR coactivation produces an inhibited response. **(a)** Representative currents
 133 recorded from an individual oocyte coexpressing P2X4 and GluN2B-containing NMDARs
 134 responding to: Glutamate (Glu, 2 μ M), ATP (5 μ M), or Glu and ATP (2 μ M and 5 μ M respectively.)
 135 The predicted *additive* response (grey line) is calculated as the sum of the separate Glu and ATP
 136 induced currents. **(b)** Bar graphs comparing the predicted and actual responses obtained from
 137 coapplication of agonists for P2X4 and NMDARs containing GluN2A (n = 9), GluN2B (n = 9), or
 138 GluN2C (n = 10), normalized to the sum of the separate Glu and ATP responses for each oocyte. The
 139 data are expressed as mean \pm SEM; Statistical analysis performed using paired t-test * p < 0.05, ** p <
 140 0.01, *** p < 0.001, **** p < 0.0001. Similar results were seen using a saturating concentration of 100 mM
 141 Glu (data not shown).

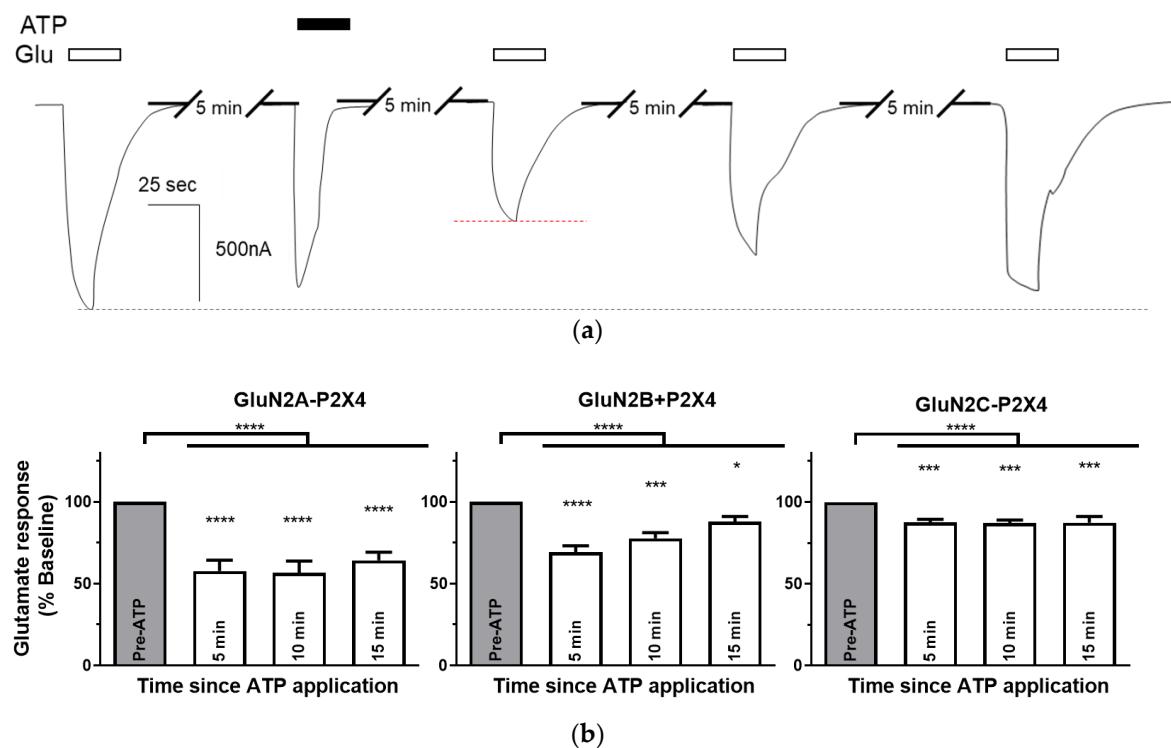
142 **2.1.2. Coactivation of P2X2 and NMDA receptors produces reciprocal inhibitory (cross-talk) responses**

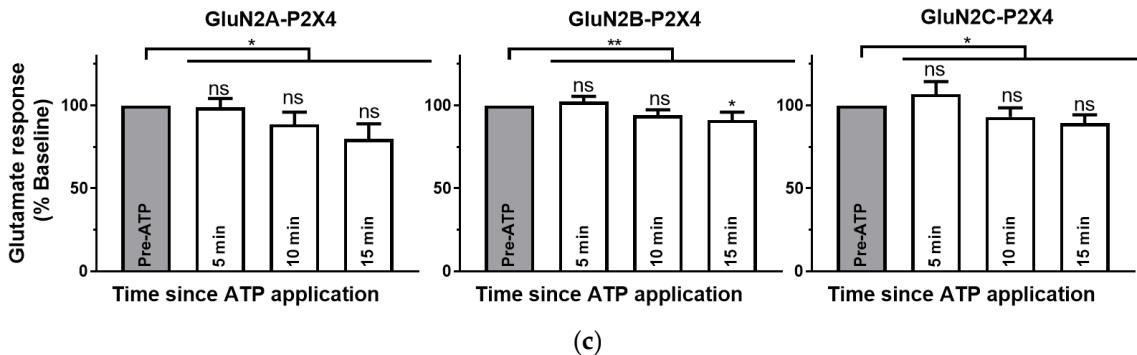

143 Given that both P2X2 and P2X4 are widely expressed in the CNS, we wanted to determine if P2X2
 144 could also interact with NMDARs. In a similar manner, we coexpressed P2X2 and NMDARs in
 145 oocytes and recorded the currents evoked by application of ATP (100 μ M), Glu (100 μ M) or both
 146 agonists (100 μ M each) (Figure 2). Similar to P2X4, P2X2 appeared to interact with NMDARs, as
 147 coactivation of P2X2 and NMDARs (containing GluN2A, GluN2B, or GluN2C) produced
 148 significantly lower responses than predicted (72.5 \pm 3.8 %, n = 21, p < 0.0001; 77.1 \pm 4.8 %, n = 22, p <
 149 0.0001; 77.9 \pm 5.6 %, n = 6, p < 0.05, respectively). Unlike P2X4, NMDAR responses after P2X2
 150 coactivation fully recovered (data not shown). Thus, to investigate the directional nature of this
 151 phenomenon, we added the agonists sequentially; i.e., ATP was coapplied when the Glu response
 152 reached its maximum or *vice versa* – Glu was coapplied when the ATP response reached its peak. As
 153 shown in Figure 2C, application of either ATP during Glu-evoked current or Glu during ATP-evoked
 154 current both led to responses that were significantly lower than the predicted sum of the individual
 155 responses. Collectively, these results suggest that P2X2 and NMDARs do not function in isolation
 156 and that an interaction leads to a functional and reciprocal cross-inhibition that is independent of the
 157 GluN2 subunits composition of the NMDARs.

158
 159 **Figure 2.** P2X2-NMDAR coactivation produces an inhibited response. **(a)** Representative current
 160 recorded from an individual oocyte coexpressing GluN2B-containing NMDARs and P2X2
 161 responding to 100 μ M: Glu (left), ATP (middle), or Glu + ATP (right) are shown. **(b)** Bar graphs
 162 comparing the predicted and actual responses obtained from coapplication of agonists for P2X2 and
 163 NMDARs containing GluN2A ($n = 22$), GluN2B ($n = 21$), or GluN2C ($n = 6$), normalized to the sum of
 164 the separate Glu and ATP responses for each oocyte. **(c)** Representative current from an individual
 165 oocyte coexpressing P2X2 and NMDARs containing GluN2B. For sequential activation of P2X2 and
 166 NMDARs, primary application of either ATP (left) or Glu (right) first appears to reduce subsequent
 167 coactivation responses. The predicted response when ATP is applied first is calculated as the sum of
 168 the current response to ATP immediately before Glu is coapplied and the maximum current response
 169 to Glu thereafter. This order is reversed when calculating the predicted response when Glu is applied
 170 first. **(d)** Bar graphs of P2X2 and GluN2A ($n = 16$) or GluN2B ($n = 17$) containing NMDARs, comparing
 171 the predicted and actual responses obtained from sequential activation and coapplication of agonists,
 172 normalized to the sum of the predicted current. The data are expressed as mean \pm SEM; Statistical
 analysis performed using paired t-test * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$.

173 **2.2. P2X4-NMDAR interactions are independent of Ca^{2+} influx**

174 P2X4 and NMDAR both display a high calcium permeability [29] which raises the question of
 175 whether the inhibited responses observed during P2X4-NMDAR coactivation could be mediated by
 176 or depend on calcium. At the same time, the increased responses to Glu after P2X4-NMDAR
 177 coactivation may be explained by calcium influx via P2X4. Indeed, calcium influx has been shown to
 178 regulate NMDAR function, either by facilitating protein interactions [30] or activating downstream
 179 modulators [31, 32]. To determine whether the putative P2X4-NMDAR interaction was mediated by
 180 calcium influx, we utilized a Calcium-free Ringer's solution (CfRS) which substitutes barium chloride
 181 for the calcium chloride. In the absence of calcium, coactivation of P2X4 and NMDARs consistently
 182 produced significantly lower responses ($p < 0.0001$) than we predicted: P2X4 and GluN2A, GluN2B,
 183 and GluN2C produced $65.5 \pm 6.5\%$, $48.2 \pm 5.4\%$, and $85.7 \pm 6.2\%$ of the predicted additive responses,
 184 respectively (Figure 3A). Additionally, the degree of inhibition was similar to if not greater than the
 185 inhibition obtained in Ca^{2+} -containing medium (Figure 1) indicating that the Ca^{2+} -influx through the
 186 opened receptor-channels does not mediate the observed inhibitory interaction between P2X4 and
 187 NMDARs. Furthermore, in the absence of calcium, we observed that the Glu responses by NMDARs
 188 containing GluN2B remained lower after coactivation with P2X4, again preventing the determination
 189 of the directional nature of this interaction.




190 **Figure 3.** P2X4-NMDAR cross-talk is independent of calcium. **(a)** Representative currents recorded
 191 in Calcium-free Ringers' solution (CfRS) from an individual oocyte coexpressing P2X4 and GluN2B-
 192 containing NMDARs responding to: Glu (2 μ M), ATP (5 μ M), or Glu and ATP (2 μ M and 5 μ M
 193 respectively.) The predicted additive response (grey line) is calculated as the sum of the individual
 194 Glu and ATP induced currents.**(b)** Bar graphs representing the predicted and actual responses

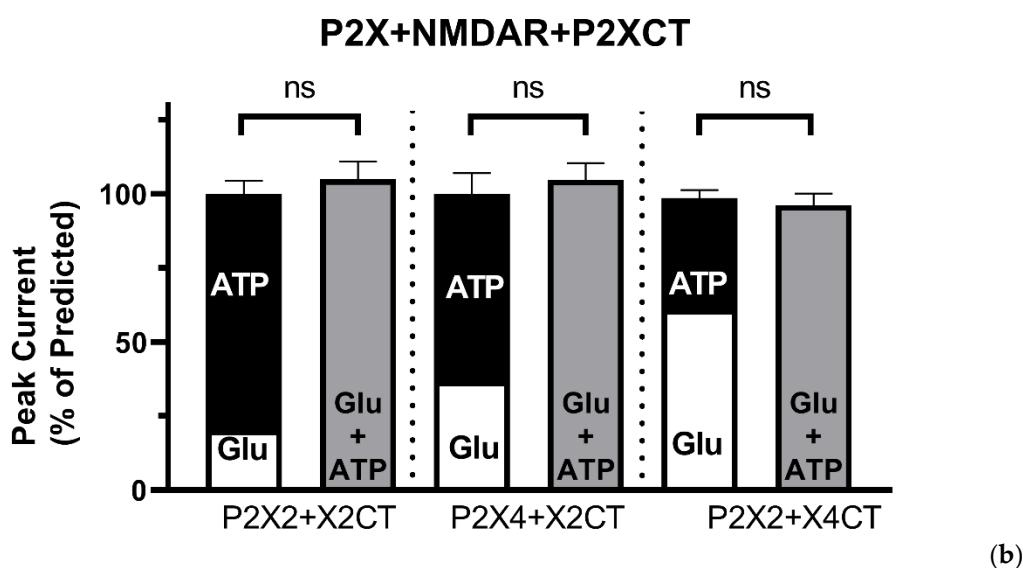
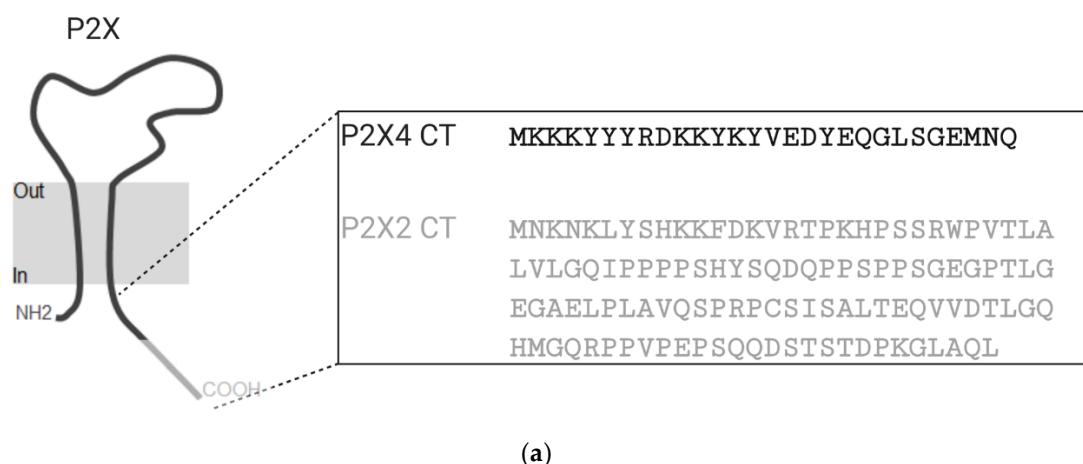
195 obtained from coapplication of agonists, normalized to the sum of the separate Glu and ATP
 196 responses for each oocyte. For GluN2A, coactivation produced a statistically lower response than the
 197 predicted response ($p < 0.0001$; paired t-test; $n = 10$). The same result was observed for GluN2B ($p <$
 198 0.0001 ; paired t-test; $n = 9$) and GluN2C ($p < 0.0001$; paired t-test; $n = 28$) coactivation. Furthermore, the
 199 degree of inhibition was not significantly different between the different GluN2 subunits (one-way
 200 ANOVA; $p > 0.05$) The data are expressed as mean \pm SEM; statistical analysis performed using paired
 201 t-test, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$.

202 2.3 P2X4-induced a long-lasting inhibition of NMDAR is GluN2-subunit dependent

203 Activating P2X4 and NMDARs simultaneously (Figure 1) cannot inform the directionality of this
 204 interaction, as the effects of coactivation seem persistent. To further investigate the duration of P2X4-
 205 induced inhibition of NMDAR, we first obtained stable NMDAR currents by applying Glu every 5
 206 min and recorded, after a single P2X4 mediated current evoked by application of ATP, Glu-evoked
 207 responses over the time, in the presence or absence of calcium (Figure 4). As shown in Figure 4A, the
 208 amplitude of GluN2B response in CfRS recorded 5 min after P2X4 activation was significantly lower
 209 than the one recorded before P2X4 activation, representing ~70% of the baseline response and seemed
 210 to recover only partially over time (Figure 4B). GluN2A and GluN2B showed similar reduced
 211 responses to Glu 5-min after P2X4 activation; $57.8 \pm 6.6\%$ and $69.1 \pm 4.04\%$ of baseline, respectively.
 212 Consistent with the current inhibition observed during coapplication of both agonists (see Figures 1
 213 and 3), NMDARs containing GluN2C showed the lowest effect-size 5 min after P2X4 activation with
 214 $87.5 \pm 1.9\%$ of the baseline response to Glu. Recovery of the Glu responses over the time was distinct
 215 among the different GluN2 subunits. NMDARs containing GluN2A do not recover 15 min after P2X4
 216 activation, with Glu-induced current representing $64.3 \pm 5.0\%$ of the baseline responses to Glu.
 217 Similarly, GluN2C containing NMDARs, which showed the smallest effect size, behaved similarly
 218 after 15 min initial P2X4 activation, producing $87.3 \pm 3.8\%$ of the

219 **Figure 4.** The time-course for recovery of P2X4-mediated NMDAR inhibition in the absence or
 220 presence of calcium. **(a)** Representative current evoked by application of Glu (2 μ M), before and after
 221 activation of P2X4 by ATP (5 μ M), from an individual oocyte coexpressing GluN2B-containing
 222 NMDARs and P2X4 in the absence of calcium (CfRS.) Bar graphs representing the mean of the
 223 amplitude of NMDARs responses in the absence **(b)** or presence **(c)** of calcium, before and after P2X4
 224 activation by ATP. All values were normalized to the Glu response obtained before P2X4 stimulation.
 225 Glu responses after P2X4 activation were significantly lower NMDARs containing each of the
 226 GluN2A-C subunits in the absence of calcium (* $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$, one-
 227 way ANOVA with Dunnet's post-hoc test; n=10-17 oocytes). Additionally, the time course of
 228 glutamate current recovery appears distinct, i.e. GluN2-subunit specific. The data are expressed as
 229 mean \pm SEM. The same results are seen using a saturating concentration of 100 mM Glu (data not
 230 shown).

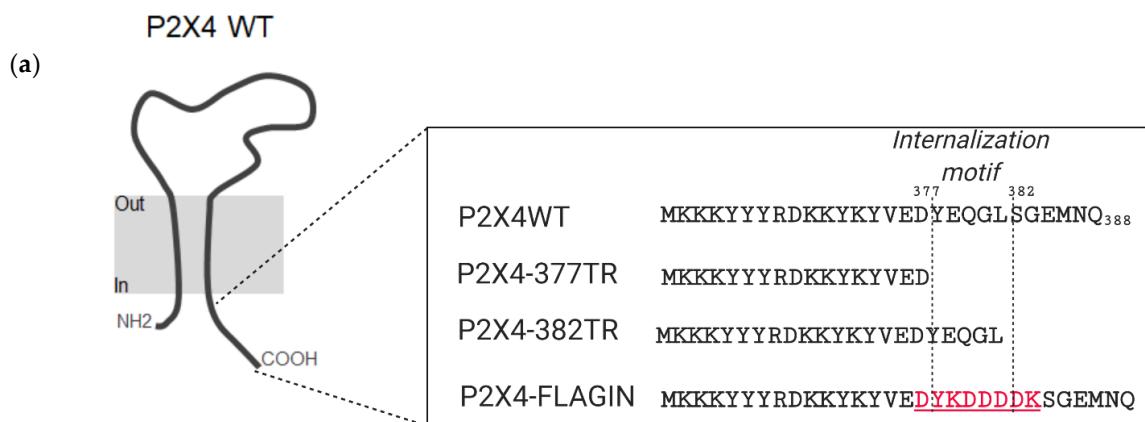
231 baseline responses to Glu. On the other hand, NMDARs containing GluN2B seemed to recover more
 232 rapidly, although 15 min after P2X4 activation, responses to Glu remained significantly inhibited ($p <$
 233 0.05) representing $87.9 \pm 3.1\%$ of the baseline response. Interestingly, while the presence of calcium
 234 (Figure 4C) produced significant differences between the NMDAR responses before and after P2X4
 235 activation ($p < 0.05$), post-hoc analyses of Glu responses by GluN2A-C containing NMDARs were
 236 generally not significantly different from baseline ($p > 0.05$). Indeed, only GluN2B containing
 237 NMDARs showed a significant decrease in Glu responses, after 15 min. These results suggest that
 238 activation of P2X4 alone can induce a long-lasting inhibitory response from NMDARs, the extent and
 239 duration of which depends upon the nature of GluN2 subunit. These results also suggest that, while
 240 P2X4-NMDAR inhibitory interactions are independent of calcium influx, calcium entry via P2X4 can
 241 affect NMDAR function via a distinct mechanism.

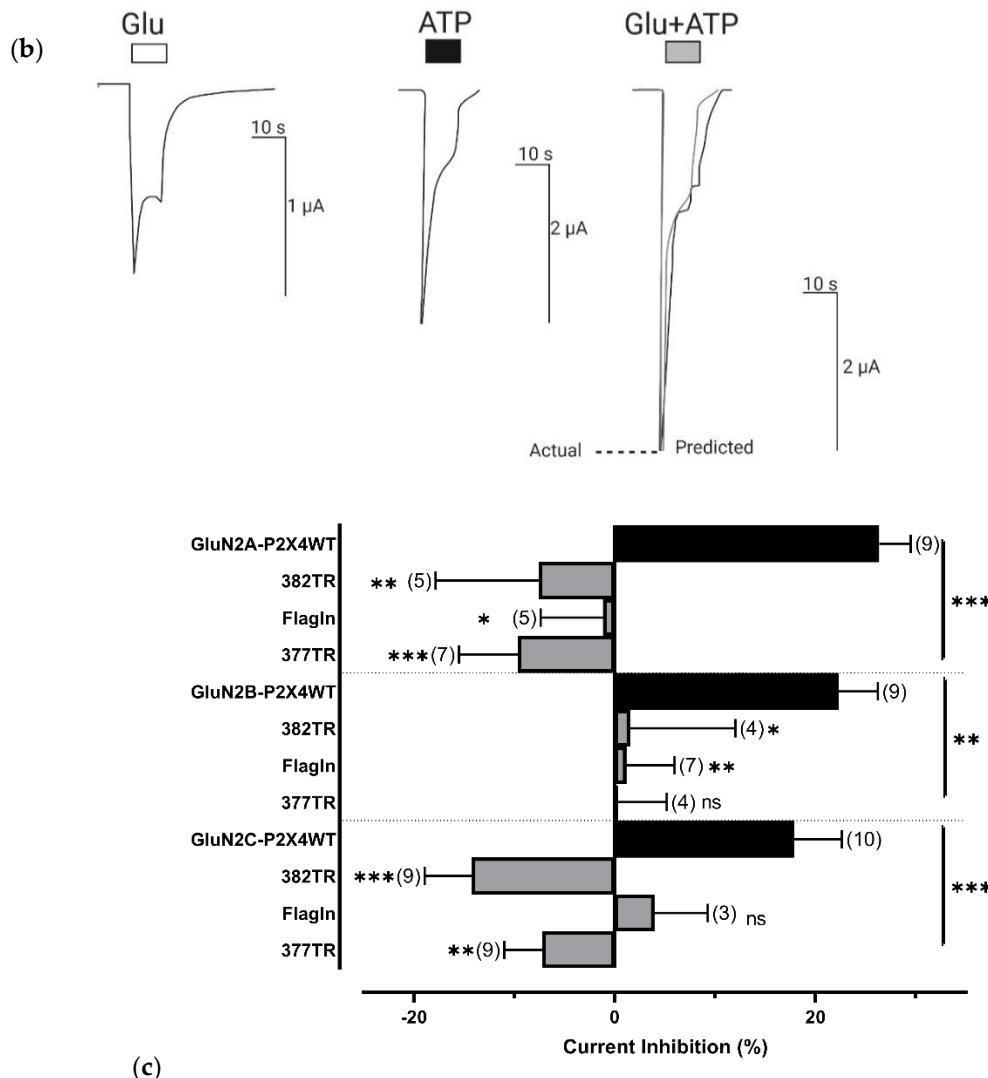


242 2.4. Intracellular P2X domains mediate NMDAR interactions

243 Inhibitory forms of cross-talk were previously reported between several P2X subtypes and distinct
 244 members of the cys-loop receptor family (such as nicotinic receptors, GABA_A or 5-HT3 receptors)
 245 which led to reciprocal or unilateral inhibition observed only during the coactivation of both
 246 receptors. These previous cross-talk investigations suggest (by mutagenesis, peptide competition, or
 247 domain overexpression experiments) that the phenomena rely on physical interactions between
 248 motifs within the C-terminal tail (CT) of P2X subunits and the intracellular loop between TM3 and
 249 TM4 of cys-loop receptors [17-23]. Since our results indicated that P2X2 and P2X4 could interact with
 250 NMDARs in a similar manner, we investigated whether the CT of these subunits is required for the
 251 interaction with NMDAR and whether a motif shared by both P2X subunit confer the ability to
 252 interact with NMDARs.

253 2.4.1 P2X-NMDAR inhibitory interactions depend on C-terminal P2X domains

254 We reasoned that if the mechanism of NMDAR inhibition relies on residues located in either P2X CT
 255 (see Figure 5A), then coexpressing the CT domain of P2X4 (K373-Q388; P2X4 CT) with P2X2 and

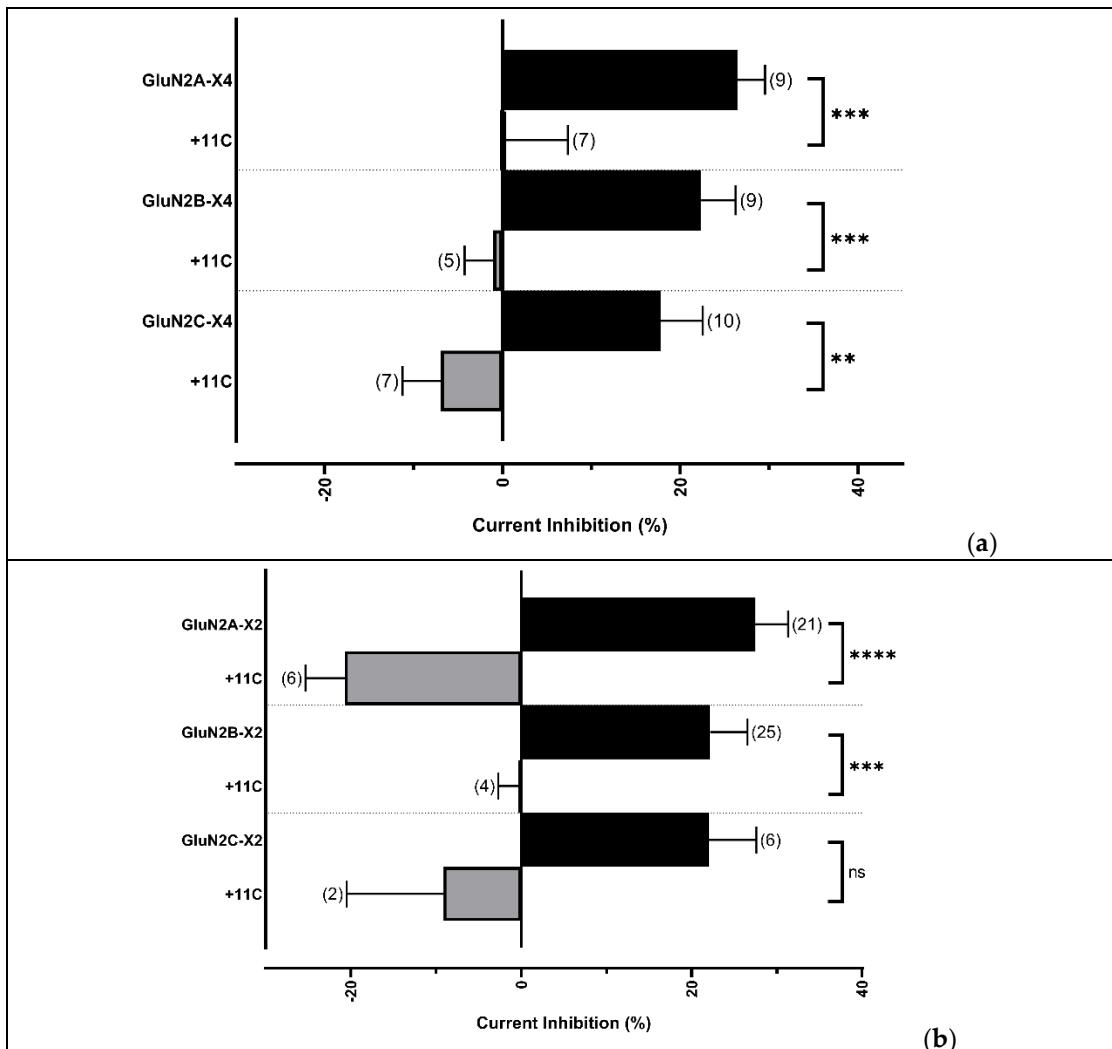

256 NMDAR would interfere and preclude inhibitory cross-talk between P2X2 and NMDAR.
 257 Reciprocally, expression of the CT domain of P2X2 (M3374-L472; P2X2 CT) should interfere with
 258 P2X4-NMDAR interactions and alter the previously inhibitory responses. As presented in Figure 5B,
 259 we found that the expression of a small construct (or minigene) encoding for only the P2X2 CT [17]
 260 in oocytes coexpressing P2X4 and GluN2A-containing NMDARs was capable of interfering with the
 261 GluN2A-P2X4 interaction, as the current inhibition observed between P2X4 and GluN2A (see Figure
 262 1) during the coapplication of both agonists was abolished ($104.9 \pm 5.5\%$ of the prediction, $p > 0.05$.)
 263 Conversely, expression of a construct coding for P2X4 CT in oocytes coexpressing GluN2A containing
 264 NMDARs and P2X2 was able to abolish the functional cross-inhibition the interaction, as the
 265 coactivation response ($96.2 \pm 3.9\%$) was not significantly different from the predicted sum of the
 266 individual responses ($p > 0.05$.) As a positive control, the expression of the P2X2 CT in oocytes
 267 coexpressing P2X2 and GluN2A-containing NMDARs abolished the cross-inhibition observed
 268 during P2X2-GluN2A coactivation ($105.5 \pm 6.2\%$ of the prediction, $p > 0.05$). These results suggest that
 269 neither P2X2 nor P2X4 interacted functionally with NMDAR in the presence of the CT domain of
 270 P2X2. These results also illustrate how cross-talk between P2X and NMDARs relies on the CT domain
 271 of P2X subunits. Overall, this work suggests that a common motif within the CT tail of P2X subunits
 272 can confer the ability to interact with NMDARs. To identify such motifs, we decided to perform
 273 mutagenesis analysis on the CT of P2X4, which is shorter (in amino acid length) than P2X2 subunits.



274 **Figure 5.** P2X CT mediate interactions with NMDARs. **(a)** Top A representative illustration of a
 275 homotrimeric P2X. The insert illustrates the differences in the size of the P2X4 (black) and P2X2 (grey)
 276 CT. **(b)** Bar graphs representing the predicted and actual responses obtained from coapplication of
 277 Glu (2 μ M) and ATP (5 μ M) in oocytes expressing either the P2X2 CT or the P2X4 CT, in combination
 278 with P2X2s or P2X4s and NMDARs. Agonist responses were normalized to the sum of the individual
 279 Glu and ATP responses for each oocyte. There was no statistically significant difference between the
 280 predicted responses and the actual responses produced by GluN2A-containing NMDARs and P2X4s
 281 in the presence of the P2X2 CT (105.0 \pm 5.5% , $p>0.05$, $n=7$) Similarly, there was no statistically
 282 significant difference between the predicted responses and the actual responses produced GluN2A-
 283 containing NMDARs and P2X2s in the presence of the P2X4 CT (96.2 \pm 3.9% , $p>0.05$, $n=10$) or the P2X2
 284 CT (106.0 \pm 6.21% , $p>0.05$, $n=2$). The data are expressed as mean \pm SEM. Statistical analysis performed
 285 using paired t-test.

286 **2.4.2 Resolving the P2X4 CT domain responsible for NMDAR inhibition**

287 Among the seven P2X subunits, P2X4 is the only subunit to rely on a non-canonical motif
 288 ($Y_{378}XXGL_{382}$) of endocytosis [33, 34] to undergo constitutive internalization. It is important to note
 289 that previously, GABA-P2X4 cross-talk was shown to be independent of this domain, relying instead
 290 on two other CT residues: Y_{374} and V_{375} [20]. To investigate whether the residues in the P2X4 CT that
 291 are responsible for P2X4 internalization are also responsible for the interaction with NMDARs, we
 292 truncated or replaced the P2X4 internalization motif, as illustrated in Figure 6A. We hypothesized
 293 that, if residues in the internalization domain of P2X4 are responsible for mediating NMDAR
 294 inhibition, then truncating the P2X4 receptor at residue 377 (P2X4-377TR) or replacing the
 295 internalization domain (YEQGL) of the wildtype P2X4 receptor with a FLAG epitope (DYKDDDK;
 296 P2X4-FlagIN) would abolish the inhibitory effects of receptor costimulation. Similarly, if only the
 297 internalization motif were driving the interaction with NMDARs, then truncating P2X4 after the
 298 internalization motif, corresponding to residue 382, (P2X4-382TR) would still show inhibitory
 299 coactivation responses. Figure 6B shows that the inhibitory response previously shown (i.e., Figure
 300 2) were no longer present when coactivating either P2X4-377TR or P2X4-FlagIN. Furthermore, Figure
 301 A3 shows that P2X4-377TR failed to produce the long-lasting inhibition previously seen by full-length
 302 P2X4 in the absence of calcium, as shown in Figure 4B. Unexpectedly, we did not see any inhibitory
 303 P2X4-NMDAR coactivation responses when P2X4s were truncated at residue 382, (P2X4-382TR)
 304 despite the inclusion of the P2X4 internalization motif in these mutant receptors. Collectively, these
 305 results suggest that the distal part of the CT tail, corresponding to the last 11 amino-acids of P2X4, is
 306 necessary for P2X4 to functionally interact with NMDARs.


307

308 **Figure 6.** Residues in the P2X4 CT confer the ability to interact with NMDARs. (a) An illustration of
 309 the mutations performed on the P2X4 internalization motif, compared to the wildtype P2X4
 310 (P2X4WT); (b) Representative currents recorded in Ringers' solution from an individual oocyte
 311 coexpressing P2X4-377TR and GluN2A-containing NMDARs responding to: Glu (2 μM), ATP (1 μM),
 312 or Glu and ATP (2 μM and 1 μM respectively.) The predicted additive response (grey line) is
 313 calculated as the sum of the individual Glu and ATP induced currents. (c) Bar graphs representing
 314 the current inhibition obtained from coapplication of Glu and ATP for oocytes coexpressing different
 315 P2X4 mutants and NMDARs. Agonist responses were normalized to the sum of the individual Glu
 316 and ATP responses for each oocyte and subtracted from 100%. The data are expressed as mean ± SEM.
 317 P2X4 CT mutations were statistically significantly different ($p < 0.05$) from the previously obtained
 318 inhibitory coactivation responses for each GluN2 subunit (Kruskal-Wallis test with Dunn's post-hoc
 319 analysis.) ns > 0.05, * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$, **** $p < 0.0001$ Parentheses denote number of
 320 replicates.

321 2.4.3 A small peptide disrupts P2X-NMDAR interactions

322 Recombinant studies have shown that a peptide corresponding to the last 11 amino-acids of P2X4
 323 subunit (namely 11C) blocks P2X4 internalization and was previously used to determine the function
 324 of increased surface P2X4 in neurons from hypothalamus brain slices [20]. To confirm whether the
 325 distal domain of P2X4 is necessary and sufficient to ablate inhibitory cross-talk with NMDARs, we
 326 reproduced the interaction-competition experiments as described in Figure 5, but instead of

327 coexpressing the P2X4 CT, we injected the 11C peptide into oocytes (150 μ M final concentration)
 328 expressing P2X2 or P2X4 in combination with NMDARs containing GluN2A, GluN2B, or GluN2C.
 329 Figure 7 showed that the presence of peptide 11C abolished the observed inhibitory responses during
 330 the coactivation of both receptor types (see Figure 2B and 2D.)

331 **Figure 7.** 11C peptide disrupts P2X-NMDAR cross-talk. Bar graphs representing the current
 332 inhibition obtained from coapplication of Glu and ATP for oocytes expressing either P2X4 (a) or P2X2
 333 (b) and NMDARs containing GluN2A-C, 30 minutes after injection with 11C (grey). The inhibitory
 334 responses (black) are ablated by 11C. Agonist responses were normalized to the sum of the individual
 335 Glu and ATP responses for each oocyte and subtracted from 100%. The data are expressed as mean \pm
 336 SEM and were analyzed using a Welch's *t*-test. ns>0.05, * p< 0.05, ** p< 0.01, *** p< 0.001, **** p< 0.0001
 337 Parentheses denote number of replicates.

338 **3. Discussion**

339 **P2X modulation of NMDA receptors**

340 Our results are the first to provide direct evidence for and characterize P2X-NMDA interactions. We
 341 found that, when heterologously expressed in *Xenopus laevis* oocytes, P2X4 can interact with and
 342 inhibit NMDAR function consisting of GluN2A-C subunits (Figure 1). Furthermore, we report a
 343 similar inhibitory phenomenon between P2X2 and NMDA receptors (Figure 2). Interestingly, this
 344 P2X2-NMDA receptor interaction seems to be reciprocal in nature (each receptor inhibits the other;
 345 *cross-talk*.) These results indicate that P2X modulation of NMDARs may be more complicated and
 346 robust than the early reports [7, 8, 35].

347 Our results support the hypothesis that P2X serve an important role in modulating the function of
348 NMDARs and provide new context for which to interpret the function of P2Xs; this has remained
349 elusive, if not controversial. Early studies reported that P2X could contribute to synaptic
350 transmission, albeit sparsely, and suggested that P2X could function as a “low-frequency filter”,
351 suppressing NMDAR-mediated LTP under weak stimuli [35]. With the development of P2X4 KO
352 mice came more support for a role for P2Xs in synaptic plasticity: 1) in the absence of P2X4,
353 hippocampal neurons exhibited reduced LTP facilitation, and 2) Ivermectin, a P2X4 positive allosteric
354 modulator, could increase LTP in wildtype mice, but not P2X4 KO mice [6]. These results suggested
355 that P2X in the post-synaptic membrane modulate NMDAR function and LTP induction via calcium
356 influx, rather than through synaptic transmission. However, studies have also demonstrated that
357 P2X4 themselves must contribute to NMDAR modulation at post-synaptic densities, as intracellular
358 administration of a calcium chelator could block NMDAR facilitation in WT mice, but had no effect
359 in P2X4 KO mice. [7]. Indeed, our results indicate that these hypotheses regarding the mechanism of
360 P2X modulation of NMDARs are not mutually exclusive, as we found that Calcium-free Ringer’s
361 solution did not preclude P2X4-NMDAR cross-talk during receptor coactivation (Figure 3A) but that,
362 in the presence of calcium, Glu responses by NMDARs after P2X4-NMDAR coactivation increase
363 (Figure 1C). Collectively, our results suggest that, while the interaction between P2X4 and NMDARs
364 may be long-lasting, calcium influx via P2X4 plays a distinct role in modulating NMDARs.

365 Until recently, the modulatory nature of P2Xs (including regulation of NMDARs) was inextricably
366 linked to their ability to permeate calcium. However, with the characterization of a novel knock-in
367 mouse strain, where P2X4 is fluorescently labeled and internalization-deficient (P2X4mCherryIn), a
368 more nuanced role for P2X has emerged [15]. The study demonstrated that in CA1 synapses,
369 P2X4mCherryIn mice displayed no changes in basal excitatory transmission, but exhibit changes to
370 LTP and LTD induction. Considering that, in CA1 hippocampus neurons, LTP and LTD have been
371 shown to rely on post-synaptic NMDARs [36] (for review on LTP see[37]), these results suggest that
372 increased P2X4 activity in CA1 neurons alters NMDAR function, supporting the idea that P2X4s are
373 involved in regulating synaptic plasticity.

374 P2X intracellular domains mediate NMDAR cross-talk

375 Interactions of P2X2 and P2X4 were demonstrated for nicotinic [21], GABA [18], AMPA [27], and 5-
376 HT_{3A} receptors [22, 23]. This P2X-mediated regulation of other LGICs has been found to rely on
377 diverse mechanisms 1) physical protein-protein interactions, 2) receptor cotrafficking, or 3) signaling
378 cascades, which can all be linked to direct interactions involving the receptor CT. P2X2 are similar in
379 sequence and structure to P2X4, with the most prominent differences being found between the
380 intracellular CTs. In an effort to better understand the receptor domains that drive this interaction,
381 we chose to focus on the P2X4 CT, which is significantly shorter and thus more simple to mutate [33,
382 38]. Our studies show that truncation of P2X4 before the start of their internalization motif ablated
383 NMDAR cross-talk, which leads one to believe that this interaction might be dependent upon P2X4
384 trafficking. Replacing only the internalization motif (YEQGL) with a flag epitope (DYKDDDDK) also
385 ablated cross-talk, which seemed to confirm the significance of the domain. However, the P2X4
386 internalization motif does not seem to mediate this interaction entirely, as P2X4 truncated after the
387 internalization motif also fail to interact with NMDARs (Figure 6). In support of this notion, the well
388 characterized non-canonical tyrosine-based sorting motif YXXGL [33, 34] [38], was not shown to be
389 responsible for the cross-talk interaction between P2X4 and GABA receptors [20]

390 While this resolves the interaction between P2X4 and NMDARs, does P2X2 interact with NMDARs
391 via a similar mechanism? Based on the P2X4 truncation results, we reasoned that, if the P2X2 and
392 P2X4 CT did mediate interactions with NMDA receptors, coexpressing the P2X4 CT in oocytes would
393 interfere with P2X2-NMDAR cross-talk, and vice versa. As shown in Figure 5, our results are
394 consistent with the hypothesis that each CT disrupted the inhibitory responses that we presented in
395 Figures 1 and 2. Our mutation investigations suggested that the distal 11 CT residues of P2X4 seem

396 to be required for NMDAR interaction, allowing us to hypothesize that suppression of cross-talk
397 could be achieved by a peptide mimicking this domain. We synthesized and injected 11C as reported
398 [20], and found that 11C ablated P2X2 and P2X4 interactions with NMDARs, suggesting that this
399 interaction relies on several key residues found on the intracellular domains of P2X. Given that P2X2-
400 NMDAR cross-talk was suppressed by 11C, our results also suggest that P2X2-NMDAR interactions
401 rely on similar residues.

402 How could the CT of both P2X4 and P2X2 mediate inhibition of NMDA receptors, given the size
403 difference of these domains? Studies on the P2X4 CT and its non-canonical internalization motif
404 revealed that, when co-crystallized with the μ 2 AP subunit, residues 374 to 380 do not adopt a rigid
405 structure [34]. Furthermore, the non-canonical YXXGL motif functions at the same canonical YXX Φ
406 site due to the flexibility imparted by the glycine residue. When looking at the composition of the
407 P2X2 CT, proline and other hydrophobic residues are prevalent. This is notable because proline can
408 disrupt secondary protein structures and limit flexibility, while hydrophobic residues can promote a
409 more “buried” conformation. It is possible that these residues allow the P2X2 CT to adopt a
410 conformation that favors an interaction with NMDA receptors, much like in the case with P2X4.
411 Unfortunately, no structural information exists for the P2X2 CT, which would provide more insight
412 into their function. Despite these limitations, future studies can investigate the GluN2 region
413 responsible for this P2X interaction, as well as the exact residues mediate P2X-NMDAR cross-talk,
414 using a point-mutation approach.

415 **Resolving the function of P2X in the brain**

416 Distinct forms of P2X cross-talk might serve discrete regulatory functions and arise from P2X mobility
417 and localization, which has been shown to be subunit dependent. For example, P2X2 are highly
418 mobile and stable at the cell surface, but rarely found on synaptic densities [39, 40]. On the other
419 hand, P2X4 are primarily found within intracellular compartments (due to constitutive
420 internalization). Evidence has already shown that P2X4 play a role in integrating ATP signaling from
421 astrocytes in the tripartite synapse, specifically by inhibiting GluN2B-containing NMDARs, an
422 interaction that involves a multiprotein complex [8]. As such, P2X2 at extra synaptic densities may
423 serve as molecular “trap”, inhibiting NMDAs via an interaction that prevents their inclusion into the
424 post-synaptic densities. The reciprocal nature of this interaction might act as a negative feedback loop
425 and allow for more diverse responses or fine tuning. In contrast, P2X4s can act in a more targeted
426 manner, waiting inside the cell and mobilizing into the post-synaptic density when stimulated.

427 **4. Materials and Methods**

428 **Molecular Biology**

429 Rat GluN receptor subunits were a kind gift from Dr. John Woodward. P2X4 cDNA was a kind
430 gift from Dr. Iain Chessell and GlaxoSmithKline, and cloned into the pCDNA3.1 vector as previously
431 described [41] while P2X2 cDNA was cloned into pCDNA3 [17]. pUNIV backbone was a gift from
432 Cynthia Czajkowski (Addgene plasmid # 24705 ; <http://n2t.net/addgene:24705> ;
433 RRID:Addgene_24705) and was modified for subcloning of rat GluN subunits (to enhance RNA
434 expression.) Mutant receptors (P2X4 377-TR, P2X4-FlagIn) or P2X-CT minigenes were either available
435 from previous studies [17-20, 38] or mutated using the SuperFi PCR kit and transformed into Zymo
436 Mix&Go competent cells. Single colonies were inoculated into Luria Broth and after 16-20 hours,
437 minipreps were performed using the ZymoPure miniprep kit. Plasmids were then restriction-
438 digested with NotI-HF (New England Biolabs) and purified using the Zymo DNA clean-up kit. All
439 constructs were sequence verified via sanger sequencing (Genewiz; La Jolla, CA). The 11C peptide
440 was synthesized by GenScript (Piscataway, NJ, USA), reconstituted (110mM) in ultrapure water, and
441 diluted to 10 mM using HEPES (10 mM; pH 7.2). Single-use aliquots were stored in -20°C prior to
442 injection.
443

444 **Xenopus laevis Oocyte injection and electrophysiology**

445 cRNA for experiments were synthesized with the Ambion message machine T7 kit
446 (ThermoFisher Scientific), purified using the Ambion MegaClear kit (ThermoFisher Scientific), and
447 injected into *Xenopus laevis* oocytes (Ecocyte Biosciences, Austin, TX). Previous studies have reported
448 functional receptors using an injection concentration of approximately 10 ng of total NMDA RNA (5
449 ng of GluN1 and 5 ng of GluN2 subunit), 10-20pg of P2X2 RNA, or 20 ng of P2X4 receptor RNA. 10-
450 20ng P2X4 RNA or 5-10ng of NMDAR RNA was injected alone or combined, with a final injection
451 volume of 40 nL. For P2X2 studies, 10-20pg of P2X2 RNA or 0.25-1ng of total NMDAR RNA was
452 injected alone or combined and injected into each cell, with a final injection volume of 40 nL. 11C
453 peptide injections were performed 30 minutes before TEVC recordings. 15 nL of 10 mM 11C peptide
454 in HEPES was injected into each oocyte, for an approximate intracellular concentration of 150 μ M.
455 1ng of CT minigenes were injected into oocytes in an injection volume of 20 nL, with injections
456 performed 1 day before recordings. All injections were performed using a NanoJect III system
457 (Drummond). Recordings were performed 1-3 days after cRNA injection. Two-electrode voltage
458 clamp recordings were performed using previously established methods [41, 42]. In brief, oocyte
459 membrane potentials were clamped at -70 mV using oocyte clamp OC-725C (Warner Instruments,
460 Hamden, CT), and the oocyte recording chamber was continuously perfused with Ringer's solution
461 \pm agonist using a Dynamax peristaltic pump (Rainin Instrument Co., Emeryville, CA) at 3 ml/min
462 using an 18-gauge polyethylene tube (Becton Dickinson, Sparks, MD). All perfusion solutions contain
463 a buffer solution consisting of 115mM NaCl, 2.5mM KCl, 1.8mM CaCl₂ (or 1.8 mM BaCl₂ to avoid
464 calcium induced current generated by Ringer's solution), and 10mM 4-(2-hydroxyethyl)-1-
465 piperazineethanesulfonic acid (HEPES), with a final pH of 7.2. In the presence of calcium, Glutamate
466 and/or ATP were applied for 10 seconds (to reach a peak current response). In the absence of calcium,
467 (i.e. Calcium-free Ringer's solution or CfRS) Glutamate and/or ATP were applied for 25 seconds. A
468 wait time of at least 5 minutes of perfusion buffer occurred between any agonist applications as to
469 ensure complete washout of agonist. The resulting currents were filtered at 5kHz and recorded using
470 an analog chart recorder (Linear). All current values obtained were normalized to the most recent
471 stable responses obtained immediately before agonist coapplications began, unless stated otherwise.
472 Figures were created with BioRender.com

473

474

475 **Data Analysis.**

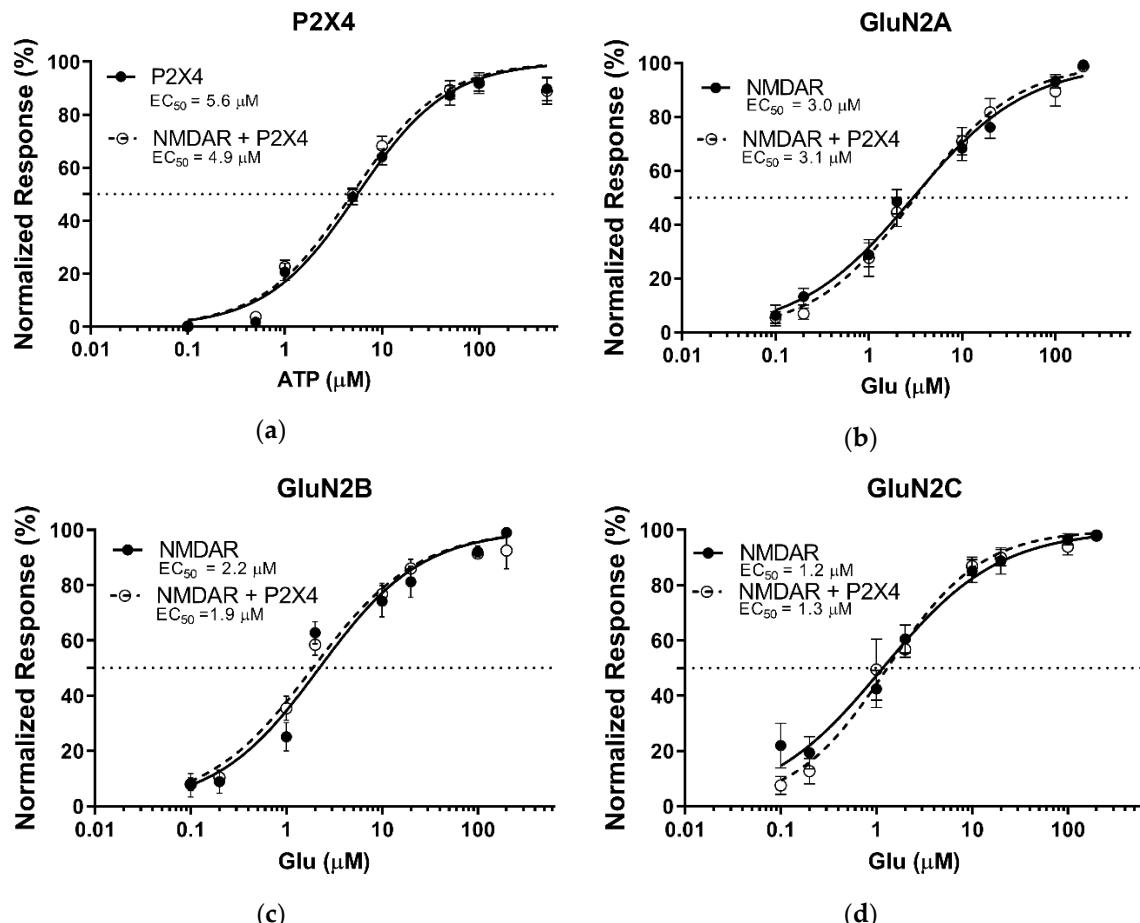
476 Data were obtained from several batches of oocytes from at least three different frogs, and are
477 expressed as mean \pm S.E.M. The effects of costimulation are presented as percentages of the stable
478 currents evoked by ATP and glutamate alone on individual oocytes, or as a percentage of the
479 inhibition previously observed. The Prism 8 software suite (GraphPad Software, Inc., San Diego, CA)
480 was used for data analysis and curve fitting. Statistical analysis was performed using student's paired
481 t-test, Welch's t-test, one-way ANOVA followed by a Bonferroni post-hoc comparison, or Kruskal-
482 Wallis test with a Dunn's test for multiple comparisons, as noted. Significance was set at $p < 0.05$.

483 **Author Contributions:** Conceptualization, L.R., L.A., E.B-G., and D.D.; methodology, L.R., E.B-G., L.A., and
484 D.D.; validation, L.R. and E.B-G.; formal analysis, L.R., E.B-G., and Q.D.; investigation, L.R., C.Y., C.C., Q.D.,
485 S.W., M.R., and B.R.; resources, D.D. and E. B-G.; data curation, L.R., E.B-G., C.Y., C.C., Q.D., S.W., M.R., B.R.;
486 writing—original draft preparation, L.R., L.A., E.B-G., D.D., C.Y., C.C., Q.D., S.W., M.R., and B.R.; writing—
487 review and editing, L.R., L.A., E.B-G., and D.D.; visualization, L.R. and L.A.; supervision, L.R., L.A., E.B-G., and
488 D.D.; project administration, L.R. and D.D.; funding acquisition, D.D., E. B-G., and L.R. All authors have read
489 and agreed to the published version of the manuscript.

490 **Funding:** This work was supported by funding and grants from the NIH NIAA R01AA022448 (D.D.) and a
491 diversity supplement (L.R.) to this grant as well as from the American Foundation for Pharmaceutical Education
492 Pre-doctoral fellowship (L.R.), USC Undergraduate research Fund (D.D.), USC Good Neighbors Campaign
493 (D.D.), and the USC School of Pharmacy. Funding support was also provided from CNRS and university of
494 Bordeaux (E.B-G.) **Acknowledgments:** We would like to thank Albert Lam, and Audrey Martinez for their
495 technical assistance during this project, as well as Jesse Chen, Tahmina Hasan, Ed Jeong, Alan Guan, Istiak Aziz,

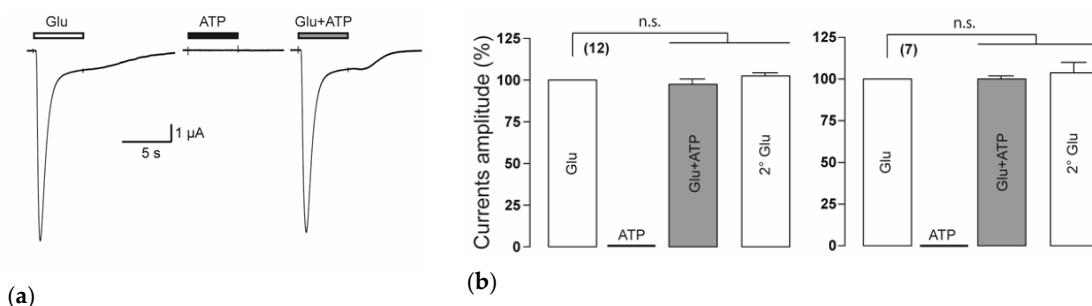
496 and Nirali Patel for their assistance in collecting data. We would also like to thank Dr. John Woodward for his
 497 kind gift of plasmids containing the GluN subunits.

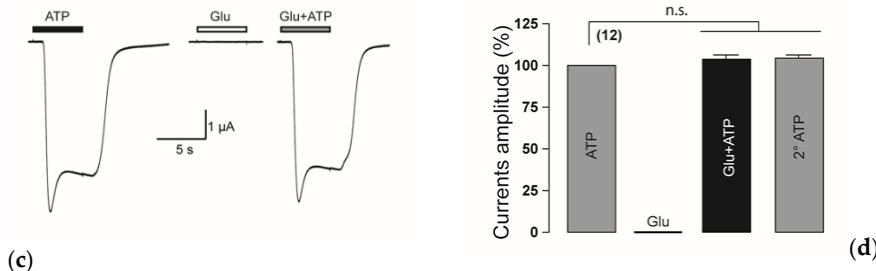
498 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
 499 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
 500 publish the results.


501 **Abbreviations**

P2X	Purinergic receptors
NMDARs	N-methyl-D-aspartate receptors
GABA	γ -aminobutyric acid
AMPA	α -amino-3-hydroxy-5- methyl-4-isoxazolepropionic acid
CT	Carboxy-terminal tail
LGICS	Ligand-gated ion channels
ATP	Adenosine triphosphate
CNS	Central nervous system
P2X4 KO	P2X4 knockout
LTP	Long-term potentiation
LTD	Long-term depression
TEVC	Two-electrode voltage clamp
Glu	Glutamate
CfRS	Calcium-free Ringers' solution
P2X4-377TR	P2X4 receptor truncated at residue 377
P2X4-382TR	P2X4 receptor truncated at residue 382
P2X4-FlagIN	P2X4 receptor with a FLAG epitope in place of internalization domain (YEQGL)
11C	Peptide consisting of the distal C-terminal 11 amino-acids of P2X4
5-HT _{3A}	5-Hydroxytryptamine Receptor 3A

502 **Appendix A**


503 To evaluate the potential functional interaction between P2X and NMDARs using two-electrode
 504 voltage-clamp (TEVC) we coexpressed both receptor types in *Xenopus laevis* oocytes. We performed
 505 mRNA injection of P2X or NMDARs at previously reported concentrations, titrating injections until
 506 each receptor system produced comparable currents. We then generated 8-point concentration
 507 response curves for oocytes expressing either P2X4 or NMDARs (GluN1 and GluN2A or GluN2B or
 508 GluN2C). The EC₅₀ values for P2X4 and NMDA receptors calculated from ATP and Glu concentration
 509 response curves (Figure A1a-d, solid lines), were consistent with previously reported values [38, 43].
 510 We then generated an 8-point ATP or Glu concentration response curve for oocytes coexpressing both
 511 P2Xs and NMDARs. There were no shifts in concentration response curves when P2X4s and
 512 NMDARs were coexpressed (Fig. 1a-d, dotted lines vs solid lines). Consistently, there were no
 513 statistically significant differences in the EC50 values for receptors regardless those were expressing
 514 individually or in combination (Figure A1). These studies demonstrate that coexpressing both P2X
 515 and NMDARs does not change the function of either receptor.


516 **Appendix B**

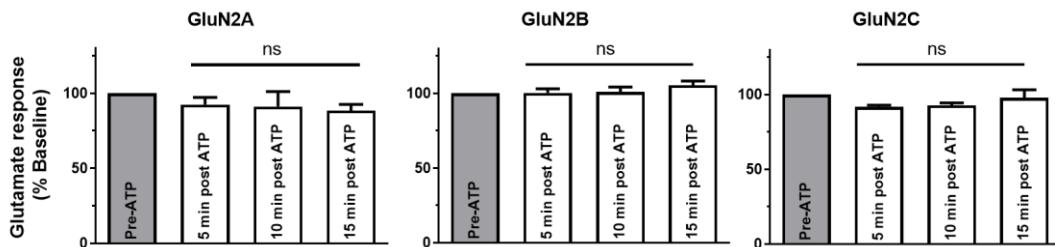

517
518
519
520
521
522
523
524
525
526

Figure A1. Comparison of the concentration-response curves for P2X4Rs or NMDARs expressed individually (depicted with solid lines) or together (depicted with dotted lines) in *Xenopus* oocytes. (a) ATP concentration-response curves. EC₅₀ values obtained from ATP-concentration curves of individual P2X4 and P2X4 coexpressed with NMDARs were not significantly different. (b-d) Glutamate-concentration response curves. EC₅₀ values were not statistically significantly different for Glu-concentration response curves for individual GluN2A, GluN2B, GluN2C (solid lines) and each NMDAR subtype coexpressed with P2X4 (dotted lines). P2X4 and NMDARs were injected at respectively 20 ng and 10 ng cRNAs. Data represent Mean \pm SEM. Statistical analysis performed using Exact sum-of-squares F-test. (a) $p > 0.5$; n=9-12; (b) $p > 0.5$; n=9-12; (c) $p > 0.3$; n=9-12; (d) $p > 0.5$; n=9-12.

527 **Figure A2.** Application of ATP agonist does not affect Glu responses when NMDARs are expressed
 528 alone and conversely, application of Glu does not modulate ATP responses when P2X are expressed
 529 alone. **(a)** Representative current recorded from an individual oocyte GluN2B-containing NMDARs
 530 responding to 100 μ M: Glu (left), ATP (middle), or Glu + ATP (right) are shown.; **(b)** Bar graphs
 531 representing the current obtained from application of agonists, normalized to the Glu response for
 532 each GluN2B-expressing oocyte.; **(c)** Representative current recorded from an individual oocyte
 533 expressing only P2X2 responding to 100 μ M: ATP (left), Glu (middle), or Glu + ATP (right) are shown.
 534 **(d)** Bar graphs representing the current obtained from application of agonists, normalized to the ATP
 535 response for each P2X2-expressing oocyte. The data are expressed as mean \pm SEM. ns>0.05 (one-way
 536 ANOVA)

537 **Figure A3.** P2X4-mediated NMDAR inhibition depends on the P2X4 CT domain. Bar graphs
 538 representing the mean of the amplitude of NMDARs responses in CfRS before and after P2X4-377TR
 539 activation by ATP. All values were normalized to the Glu response obtained before P2X4-377TR
 540 stimulation. None of the Glu responses after ATP application were statistically significantly different
 541 (p> 0.05) from the baseline response (before ATP application) for any GluN2 subunit. The data are
 542 expressed as mean \pm SEM. Statistical analysis performed using a one-way ANOVA test.

543

544

545 References

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).

546

547

1. Barria, A. and R. Malinow, *Subunit-Specific NMDA Receptor Trafficking to Synapses*. Neuron, 2002. **35**(2): p. 345-353.
2. Kopec, C.D., et al., *Glutamate receptor exocytosis and spine enlargement during chemically induced long-term potentiation*. J Neurosci, 2006. **26**(7): p. 2000-9.

552 3. Khakh, Baljit S. and R.A. North, *Neuromodulation by Extracellular ATP and P2X Receptors in the CNS*.
553 *Neuron*, 2012. **76**(1): p. 51-69.

554 4. Mori, M., et al., *Fast synaptic transmission mediated by P2X receptors in CA3 pyramidal cells of rat hippocampal*
555 *slice cultures*. *J Physiol*, 2001. **535**(Pt 1): p. 115-23.

556 5. Jo, Y.H. and R. Schlichter, *Synaptic corelease of ATP and GABA in cultured spinal neurons*. *Nat Neurosci*,
557 1999. **2**(3): p. 241-5.

558 6. Sim, J.A., et al., *Altered Hippocampal Synaptic Potentiation in P2X4 Knock-Out Mice*. *The Journal of*
559 *Neuroscience*, 2006. **26**(35): p. 9006-9009.

560 7. Baxter, A.W., et al., *Role of P2X4 receptors in synaptic strengthening in mouse CA1 hippocampal neurons*.
561 *European Journal of Neuroscience*, 2011. **34**(2): p. 213-220.

562 8. Lalo, U., et al., *ATP from synaptic terminals and astrocytes regulates NMDA receptors and synaptic plasticity*
563 *through PSD-95 multi-protein complex*. 2016. **6**: p. 33609.

564 9. Wyatt, L.R., et al., *Contribution of P2X4 receptors to ethanol intake in male C57BL/6 mice*. *Neurochemical*
565 *research*, 2014. **39**(6): p. 1127-1139.

566 10. Wyatt, L.R.G., Sean C; Khoja, Sheraz; Jakowec, Michael W; Alkana, Ronald L; Bortolato, Marco; and
567 Davies, Daryl L, *Sociocommunicative and Sensorimotor Impairments in Male*
568 *P2X4-Deficient Mice*. *Neuropsychopharmacology*, 2013. **38**: p. 10.

569 11. Khoja, S.S., Vivek; Garcia, Damaris; Asatryan, Liana; Jakowec, Michael W.; and Davies, Daryl L, *Role*
570 *of purinergic P2X4 receptors in regulating striatal dopamine homeostasis and dependent behaviors*. *Journal of*
571 *Neurochemistry*, 2016. **139**(1): p. 14.

572 12. Stokes, L., et al., *To Inhibit or Enhance? Is There a Benefit to Positive Allosteric Modulation of P2X Receptors?*
573 *Frontiers in Pharmacology*, 2020. **11**(627).

574 13. Yardley, M.M., et al., *Ivermectin reduces alcohol intake and preference in mice*. *Neuropharmacology*, 2012.
575 **63**(2): p. 190-201.

576 14. Huynh, N., et al., *Preclinical development of moxidectin as a novel therapeutic for alcohol use disorder*.
577 *Neuropharmacology*, 2017. **113, Part A**: p. 60-70.

578 15. Bertin, E., et al., *Increased surface P2X4 receptor regulates anxiety and memory in P2X4 internalization-*
579 *defective knock-in mice*. *Mol Psychiatry*, 2020.

580 16. Stokes, L., et al., *P2X4 Receptor Function in the Nervous System and Current Breakthroughs in Pharmacology*.
581 *Front Pharmacol*, 2017. **8**: p. 291.

582 17. Boué-Grabot, É., et al., *Subunit-specific Coupling between γ -Aminobutyric Acid Type A and P2X2 Receptor*
583 *Channels*. *Journal of Biological Chemistry*, 2004. **279**(50): p. 52517-52525.

584 18. Boué-Grabot, É., et al., *Cross-talk and Co-trafficking between ρ 1/GABA Receptors and ATP-gated Channels*.
585 *Journal of Biological Chemistry*, 2004. **279**(8): p. 6967-6975.

586 19. Toulmé, E., et al., *An intracellular motif of P2X3 receptors is required for functional cross-talk with GABA_A*
587 *receptors in nociceptive DRG neurons*. *Journal of Neurochemistry*, 2007. **102**(4): p. 1357-1368.

588 20. Jo, Y.-H., et al., *Cross-talk between P2X4 and γ -Aminobutyric Acid, Type A Receptors Determines Synaptic*
589 *Efficacy at a Central Synapse*. *The Journal of Biological Chemistry*, 2011. **286**(22): p. 19993-20004.

590 21. Khakh, B.S., et al., *State-dependent cross-inhibition between transmitter-gated cation channels*. *Nature*, 2000.
591 **406**(6794): p. 405-10.

592 22. Boué-Grabot, É., et al., *Intracellular Cross Talk and Physical Interaction between Two Classes of*
593 *Neurotransmitter-Gated Channels*. *The Journal of Neuroscience*, 2003. **23**(4): p. 1246-1253.

594 23. Emerit, M.B., et al., *A New Mechanism of Receptor Targeting by Interaction between Two Classes of Ligand-*
595 *Gated Ion Channels*. The Journal of Neuroscience, 2016. **36**(5): p. 1456-1470.

596 24. Soto, P., et al., *Function of P2X4 Receptors Is Directly Modulated by a 1:1 Stoichiometric Interaction With 5-*
597 *HT(3)A Receptors*. Front Cell Neurosci, 2020. **14**: p. 106.

598 25. Gordon, G.R., et al., *Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy*. Nat
599 *Neurosci*, 2005. **8**(8): p. 1078-86.

600 26. Pougnet, J.-T., et al., *ATP P2X Receptors Downregulate AMPA Receptor Trafficking and Postsynaptic Efficacy*
601 *in Hippocampal Neurons*. Neuron, 2014. **83**(2): p. 417-430.

602 27. Pougnet, J.-T., et al., *P2X-mediated AMPA receptor internalization and synaptic depression is controlled by*
603 *two CaMKII phosphorylation sites on GluA1 in hippocampal neurons*. Scientific Reports, 2016. **6**: p. 31836.

604 28. Pankratov, Y., et al., *P2X receptors and synaptic plasticity*. Neuroscience, 2009. **158**(1): p. 137-48.

605 29. Khakh, B.S., et al., *Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds*. Nat
606 *Neurosci*, 1999. **2**(4): p. 322-330.

607 30. Krupp, J.J., et al., *Calcium-dependent inactivation of recombinant N-methyl-D-aspartate receptors is NR2*
608 *subunit specific*. Molecular Pharmacology, 1996. **50**(6): p. 1680-1688.

609 31. Zheng, X., et al., *Ca²⁺ Influx Amplifies Protein Kinase C Potentiation of Recombinant NMDA Receptors*. The
610 *Journal of Neuroscience*, 1997. **17**(22): p. 8676-8686.

611 32. Michailidis, I.E., et al., *Phosphatidylinositol-4,5-Bisphosphate Regulates NMDA Receptor Activity through α-*
612 *Actinin*. The Journal of Neuroscience, 2007. **27**(20): p. 5523-5532.

613 33. Royle, S.J., L.K. Bobanović, and R.D. Murrell-Lagnado, *Identification of a Non-canonical Tyrosine-based*
614 *Endocytic Motif in an Ionotropic Receptor*. Journal of Biological Chemistry, 2002. **277**(38): p. 35378-35385.

615 34. Royle, S.J., et al., *Non-canonical YXXGΦ endocytic motifs: recognition by AP2 and preferential utilization in*
616 *P2X4 receptors*. Journal of Cell Science, 2005. **118**(14): p. 3073-3080.

617 35. Pankratov, Y.V., U.V. Lalo, and O.A. Krishtal, *Role for P2X Receptors in Long-Term Potentiation*. The
618 *Journal of Neuroscience*, 2002. **22**(19): p. 8363-8369.

619 36. Mizuno, T., I. Kanazawa, and M. Sakurai, *Differential induction of LTP and LTD is not determined solely by*
620 *instantaneous calcium concentration: an essential involvement of a temporal factor*. Eur J Neurosci, 2001. **14**(4):
621 p. 701-8.

622 37. Huganir, R.L. and R.A. Nicoll, *AMPARs and synaptic plasticity: the last 25 years*. Neuron, 2013. **80**(3): p.
623 704-17.

624 38. Toulmé, E., et al., *Functional Properties of Internalization-Deficient P2X4 Receptors Reveal a Novel Mechanism*
625 *of Ligand-Gated Channel Facilitation by Ivermectin*. Molecular Pharmacology, 2006. **69**(2): p. 576-587.

626 39. Richler, E., E. Shigetomi, and B.S. Khakh, *Neuronal P2X2 receptors are mobile ATP sensors that explore the*
627 *plasma membrane when activated*. J Neurosci, 2011. **31**(46): p. 16716-30.

628 40. Bobanovic, L.K., S.J. Royle, and R.D. Murrell-Lagnado, *P2X Receptor Trafficking in Neurons Is Subunit*
629 *Specific*. The Journal of Neuroscience, 2002. **22**(12): p. 4814-4824.

630 41. Popova, M., et al., *Residues in Transmembrane Segments of the P2X4 Receptor Contribute to Channel Function*
631 *and Ethanol Sensitivity*. Int J Mol Sci, 2020. **21**(7).

632 42. Davies, D.L., et al., *Ethanol differentially affects ATP-gated P2X(3) and P2X(4) receptor subtypes expressed in*
633 *Xenopus oocytes*. Neuropharmacology, 2005. **49**(2): p. 243-53.

634 43. Ogata, J., et al., *Effects of Anesthetics on Mutant N-Methyl-d-Aspartate Receptors Expressed in Xenopus*
635 *Oocytes*. Journal of Pharmacology and Experimental Therapeutics, 2006. **318**(1): p. 434-443.

636