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Abstract: The conceptual and theoretical backbones of symmetry/asymmetry detections ot similarity/dissimilarity, and
identity/unidentity study are automorphism or isomorphism respectively. However, the development of equations and methods
for symmetry/asymmetry detections, similarity/dissimilarity, and identity/unidentity measures deviates from these backbones. In
this article, an equation was proposed for symmetry/asymmetry detections, similarity/dissimilarity, and identity/unidentity
measures, and proved that its isoreflective pairs-points are functionally bijective and inverse. The proposal, called Kabirian-based
optinalysis, is based on the conceptual and theoretical frameworks of automorphism and isomorphism. The Kabirian-based
optinalysis is also proven and characterized as invariant (robust) under translation (i.e., scaling and location shift), and rotation or
reflection. Computing codes were written in python language for Kabirian-based optinalysis to serve as working codes for

application and verification.
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1. Introduction

The notion of isometry (as a congruence mapping) is a general phenomenon commonly accepted in
Mathematics. It means a mapping that preserves distances. It is a bijective mapping, characterized as the one-to-one
mapping of a group onto itself or another in various transformational ways such as reflections, translation, or rotations

(1]-

Two graphs or sets are somorphic if there is a bijection between their vertices or elements that preserves
adjacency; such a bijection is called an isomorphism. In other terms, two graphs or sets, subsets A and B are isomorphic
if they have the same structure, but their elements or vertices may be different. An isomorphism from a graph onto
itself is called an automonphism, and the set of all automorphisms of a given graph G forms a group under composition
[2]. However, automorphism and isomorphism conceptually and theoretically framed the backbone of the study of
symmetry and similarity or identity respectively.

In this paper, Kabirian-based optinalysis is proposed which looks at two mathematical structures as
autoreflective or isoreflective as a mirror-like reflection of each other about a centre, and express their degree of
symmetry, identity, and similarity. Kabirian-based optinalysis is not a method for deciding that two mathematical
structures are isomorphic or automorphic, but extends to an estimation. Kabirian-based optinalysis is conceptually
and theoretically backboned by isomorphism and automorphism.

2. Preliminary definitions and theorems
Definition 1. Injections, surjections, and bijections of functions between sets, and subsets [3].
These are words that describe certain functions f : A = B from one set to another.

An injection also called a one-to-one function is a function that maps distinct elements to distinct elements, that

is, if x # y, then f(x) # f(y). Equivalently, if f(x) = f(y) then, x = y.

A surjection also called an onto function is one that includes all of B in its image, that is, if y € B, then there is
an X € A such that f(x) = y.

A bijection also called a one-to-one and onto correspondence, is a function that is simultaneously injective and
surjective. Another way to describe a bijection f : A = B is to say that there is an inverse function g : B — A so that
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the composition g 0 f : A = A is the identity function on A4 while f 0 g : B = B is the identity function on B. The
usual notation for the function inverse to f is f 1.

If f and g are inverse to each other, that is, if g is the inverse of f, g = f™1, then f is the inverse of g,

f=g7"Thus, (f ) =1

An important property of bijections is that you can convert equations involving f to equations involving

f
f(x) = yifand onlyif x = f~1(y).

Definition I1. Isometry (or congruence or congruent transformation) is a distance-preserving transformation between
metric spaces, usually assumed to be bijective. Let A and B be mettic spaces with metrics dy and dg. Amap f : A —
B is called an isometry ot distance preserving if, for any a, b € A one has

dg(f(@), f(b)) = dys(a,b)
(1], [3]-

Definition I1I. Isomorphism is a vertex bijection that preserves the mathematical structures (e.g., vertices, edges, non-
edges, and connections) between two spaces and graphs that can be reversed by inverse mapping. Two mathematical
structures A and B are isomorphic if they have the same structure, but their elements may be different [2], [3]. In some
sense, it is defined as the similarity or identity between two objects.

f:A-B
A=B

Definition IV, Automorphism is an isomorphism from a mathematical object to itself. It is, in some sense; define as
the symmetry of the object, and a way of mapping the object to itself while preserving all of its mathematical structure
(e.g., vertices, edges, non-edges, and connections)[2], [3].

f:A- Aut(4)
A=A

Definition 1. Scale can be defined as the system of marks at fixed intervals, which define the relationship between the
units being used and their representation on the graph.

Theorem 1. An isomorphism maps
(i) straight lines to straight lines;
(i) segments to congruent segments;
(iii) triangles to congruent triangles;
(iv) angles to congruent angles.
121, 3]
Theorem 1. Any isomorphism of the plane is a composition of at most three reflections [2], [3].

Theorem 1I1. A symmetry about a point is an isomorphism [2], [3].

3. Concept and Proposition of Kabirian-based Optinalysis
3.1. Conceptual Definitions
Definition 1: Optinalysis

Optinalysis is a function that autoreflectively or isoreflectively compares the symmetry, similarity, and
identity between two mathematical structures as a mirror-like (optic-like) reflection of each other about a symmetrical
line or mid-point. In other words, it is a function that compares isoreflective or autoreflective pairs of mathematical
structures.

Definition 2: Optinalysis
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Optinalysis is a function that is comprised of an assigned optiscale (R) that bijectively re-maps (a symbol -
indicates re-mapping) isoreflective or autoreflective pairs of mathematical structures. Figure 1-2 illustrates how
isoreflective and autoreflective pairs of points are mapped and also re-mapped by an optiscale.

Optinalysis is expressed in ogptinalytic construction. An optinalytic construction is the mathematical
representation of optinalysis between isoreflective or autoreflective pairs.

Optinalysis is defined in two broad types: automorphic (shape) and isomorphic (comparative) optinalysis.

B
han

3 ; 3 ¥
R 1E-| ‘i..,_ “‘Ej :E, Yy ?;, i 1: E’ ‘Elr f§> ’

Figure I: Mapping between isoreflective pairs of points and re-mapping (pair-mapping) with the optiscale. A is a

domain; B is a co-domain of 4; § is a mid-point, and R is the optiscale. The symbol # indicates a bijective mapping
between the isoreflective pairs around a midpoint, and —» indicates a bijective re-mapping (pair-mapping) by the
optiscale R.
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Figure 2: Mapping between autoreflective paits of points and re-mapping (pair-mapping) with the optiscale. A4 is a
domain; A" is a co-domain of 4; § is a mid-point or symmetrical line, and R is the optiscale. The symbol + indicates
a bijective mapping between the autoreflective pairs around a midpoint, and - indicates a bijective re-mapping
(pair-mapping) by the optiscale R.

Definition 3: Optiscale

An optiscale refers to a symmetric (with equal and same spread of intervals) scale R = (7y,73,73 ...T;;) ot
R = (1,715,173 ...To41) such that R € R, r; # 0, n € N. Because the elements of the optiscale belong to the set of
non-zero real numbers, the complexity of the arithmetic operations in optinalysis can be regulated especially when
dealing with numerical values that are decimally low or high.

Definition 4: Conceptual ordering

Conceptual ordering refers to concept-based structuring or arrangement of terms and items. For instance,
the arrangement of DNA, RNA, and amino acid sequences is based on the concept of molecular transcription and
translation.

Definition 5: Theoretical ordering

Theoretical ordering refers to theory-based structuring or arrangement of terms and items. For instance, the
arrangement of real numbers in ascending or descending order is theory-based.
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Definition 6: Autoreflective pairs

Autoreflective pairs describes splitting patts of a single mathematical structure or points under reflection
about a central midpoint. An autoreflectivity refers to the logical and meaningful essence or property of being
autoreflective.

§=(@ g

A= (ay,a;as,...,a,) =(a'y,..,a's5,a,,a'y)

Such that § € A & A’
Definition 7: Isoreflective pairs

Isoreflective pairs describes two mathematical structures or points under reflection about a central midpoint.
An isoreflectivity refers to the logical and meaningful essence or property of being isoreflective.

)
A = (al, a,, as, ...,an) B = (bn, ...,b3, bz, bl)

-+
Such that 6 € A& B
Definition 8: Shape (Automorphic or Intrametric) Optinalysis:

Shape or automorphic or intrametric optinalysis refers to the analysis (of symmetry) between autoreflective
pairs of a mathematical structure under optinalysis. It is a method of symmetry detection. Shape optinalysis is defined
by its optinalytic constructions:

fi A i A > R

5=(an+1) ! ! ! ! !
=) A'= An-, ..., @3, 05,0 » R = (r,1,13, ., 1)

f: A=1(ay,aya;, ...,anT—l)
_ 5 = (dn+1) 1 __ 1 1 1 1
A=(aya;ya;,..,an-1 ) A =(ad'n-,..,a3a,a;
f 2 > 2
’ 2 2 {

R = (1,715,713, e T, Tni, Tn;—3, s oo Tne1, Tn)

Such that § E A& A'; A, A, 6 &R ER; 1, #0; n € N; and A & A’ is an autoreflective pair on a chosen
paiting about a midpoint 4.
Definition 9: Definition 9: Comparative (Isomorphic) Optinalysis:

Comparative or isomorphic optinalysis refers to the analysis (of similarity and identity measures) between
isoreflective pairs of mathematical structures under optinalysis. It is a method of similarity and identity measures.
Comparative optinalysis is defined by its optinalytic constructions:

. é
fi A - B » R
)
f: A = (al, a,,as, ...,an) - B = (bn, ...,b3, bz, bl) » R = (TI,TZ,T'?,, ...,T2n+1)

1)
A = (a,a;,as,...,a,)

. - B = (bn, ...,b3,b2,b1)
f: ¢ ¢ ¢
R= (r,1,73, . Ty Tnvts Tngz oo Tan—1Tons Tan+1)
Suchthat § € A& B;A,B,0 &R € R; 1y # 0;n € N;and A & B are isoreflective pairs.

Definition 10: Head-to-head Reflection or Pairing

In isomorphic optinalysis, a reflection (pairing) is said to be head-to-head, 0pt(g, 5), if the lower order
elements (observations) of the isoreflective pairs (of two mathematical structures) are extreme away from the
midpoint.

)
A = (al, az, a3, ...,an) N B = (bn, ...,b3,b2, bl)
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Definition 11: Tail-to-tail Reflection or Pairing

>
In comparative optinalysis, a reflection or pairing is said to be tail-to-tail, Opt(A, B), if the lower order
elements (observations) of the isoreflective pairs (of two mathematical structures) are extreme towards the midpoint.

)
A = (an, ...,a3, az, al) N B = (bl' bz, b3, ...,bn)

Definition 12: Scalement

A scalement, refers to the product of any member of isoreflective or autoreflective pairs of a mathematical
structure and its assigned optiscale.

Suppose we have an optinalytic construction of isoreflective pairs of mathematical structures A and B with an
assigned optiscale (R) as follows:

o)
A = (al,az,a:g,...,an) - B = (bn, ...,b3,b2,b1)
f: ' ' '
R= (r,1,73, . Ty Tt Tnsz o Tan—1Ton Tan+1)
Suchthat§ € A& B;A,B,6§ &R € R; 1y # 0;n € N; and A & B ate isoreflective pairs on a chosen pairing
about a midpoint §.

Then, the sum of scalements S, for instance, between the isoreflective pairs A and B is defined as:

n 2n+1

SCAB) = (.0) 4 (g 0) + oo (sacb) = D D (1 + 1308 +75)

i=1 j=k=n+2
Definition 13: Kabirian coefficient of isomorphic optinalysis

Kabirian coefficient, of isoreflective pairs, is expressed as the quotient of the product of the median optiscale
and the summation of all elements (of the isoreflective pairs) by the summation of all scalements (of the isoreflective
pairs).

Suppose we have an optinalytic construction of isoreflective pairs of mathematical structures A and B with
an assigned optiscale (R) as follows:

. é
fi A - B » R
)
f: A = (al, a,,as, ...,an) - B = (bn, ...,b3, bz, bl) » R = (TI,TZ,T'?,, ...,T2n+1)

1)
A = (a,a;,as,...,a,)

. - B = (bn, ...,b3,b2,b1)
f: ¢ ¢ ¢
R= (r,7,73 . Ty Tnets Tngz oo T2n—1Tons Tan+1)
Suchthat 6 € A& B;A,B,6 & R € R;1; # 0; n € N; and A & B are isoreflective pairs on a chosen paiting about a
midpoint &.

Then, the Kabirian coefficient of identity and similarity between the isoreflective pairs is expressed in Eq. 1.

Thi1(ag +a; +az+-+a, + 6§ +b, +--+ b3+ b, +by)
(ry.aq) + (p.ay) + (13.a3) + -+ (. a,) + (141.0) + (Eq.D)
(T2 bn) + =+ (12p—1.b3) + (1o b2) + (Topi1-b1)

Th+1[Xie1(a; + 6 + b)]

Nl
Y (1 + 16 + 15 by) Eq-D

KCSim./Id. (4,B) =

KCSim./Id.(A' B) =
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if g(A) =g(B);  KCsimsa.(A,B) =1
if g(A) = —g(B),or — g(A) = 9(B);  KCsim ia.(A,B) =0
if g(A) <g(B); 0= KCsima.(4,B)<1
if g(A) > g(B); 1=<KCsima.(A,B)<n+1
if g(A) > g(B)  KCsimpa(AB)=n+1,<0

Where g(A) and g(B) ate the optical moments of A and B respectively about the mid-point through a
symmetric distance D started from the center. It is expressed by Eq. 2.1 and Eq. 2.2.
é
-

A = (al, az, a3, ...,an) B = (bn, ...,b3,b2, bl)

g: ¢ ¢ ¢
D = (dn, dn—l' dn_z, vy dl' do, dl’ ) dn_z, dn—l' dn)

g(4) = (dp.ay) + (dp-1-a3) + (dp_z-a3) + -+ (dy.ay) = Z(diai) (Eq.2.1)
g(B)=(d,. b))+ (dp_1-by) + (dy_z.b3) + -+ (dy. by) = Z(dibi) (Eq.2.2)

SuCh that: (al, az, a3, ey an) € A, (bn, ...,b3, bz, bl) € B, (do, dl’ dz, d3, ey dn) € D, A, B, & D € R 5
dy = 0;d; # 0;n € N; D must have a symmetric interval, and A & B are isoreflective pairs in a chosen pairing about
a midpoint 8.

Definition 14: Kabirian coefficient of automorphic optinalysis

Kabirian coefficient, of autoreflective pairs, is expressed as the quotient of the product of the median
optiscale and the summation of all elements (of the autoreflective pairs) by the summation of all scalements (of the
autoreflective pairs).

Suppose we have an optinalytic construction of autoreflective pairs of a mathematical structure A and A’
with an assigned optiscale (R) as follows:

1)
f: A A" » R
Eird
. A — 6 = (&n+1) A/ _ ! ! ’ ’ _
fr A=(ay,a;as ...,an;1) = = an;1, o'z, ay,a' ) » R=(r,1,13,..,1%)
e d

5 = (an+1) ’ I I 1 1
A= (al,az,a3,...,an—1) =) A =\(dn-,..,a'5,a'5,a
2 T 2

f: v v ¢

R = (r, 1,13, e TR, Tas, Tn43, ey Tne2, Tne1, )
2

Such that § € A& A, A, A,6 &R ER; 1, # 0; n € N; and A & A" are autoreflective pairs on a chosen
paiting about a midpoint 8.

Then, the Kabirian coefficient of symmetry between the autoreflective pairs is expressed in Eq. 4.

rnti(a; + ay +az+ -+ an-1 + Anes + a'na 4 -+ a3 +a'y +a’y)
KCSym./Id.(A:A,) =2 2 2 2

(rn.ay) + (rp.ay) + (13.a3) + -+ (TnT—l. anT—1) + (T'nT+1. &%) + (Eq.4)

(rnT+3. a’"T—l) + ot (o2 @'3) + (o1 @'y) + (a'y)

n-1
Tnt1 [Zi_zl (ai + Gnt1 + a'i)]
: Z
KCsym 1a. (A A') = gz : (Eq-4)
X422, (riai + rnTﬂ&nTﬂ + rja’i)
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if g(A) =g(A");  KCsimya(A4) =1
if g(A) = —g(4),or — g(A) = g(A");  KCsima.(A,A4)=0
if g(A) <g(A); 0= KCsima.(AA) <1
if g(A)> gAY 1< KCsmpa(AA)<n+1
if g(4) > g(A);  KCsimyia(A,A)2n+1,<0

Where g(A) and g(A") are the optical moment of A and A’ respectively about the mid-point through a
symmetric distance D started from the centre. It is expressed by Eq. 5.1 and Eq. 5.2.

6= (&n+1) ’ 14 ! lJ lJ
A=(a1,a2,a3,...,anT—1) =) A = anT—1,...,a3,a2,a1

s ! v !
D= (i, iz sy, o, Ay iy i1, )
k n
IA) = (@ 01) + (y1-@) + (@) + -+ (dpean) = > Y (diay) (Eq.5.1)
i=1j=1
k n
IA) = (i @) + [y @) + [y @) + o0 (don @) = » Y (dic)) (Eq.5.2)
i=1 =1

Suchthat 4,B,&D € R;d, =0;d; # 0;k = nT—l; n, k € N; D must have a symmetric interval,and A & B

are isoreflective pairs in a chosen pairing about a midpoint 4.
3.2. Propositions (theorems)
Theorem 1: Bijection function of isomorphic optinalysis

Isoreflective pairs of mathematical structures under optinalysis are similar and identical to a certain
magnitude by a coefficient, called optinalytic coefficient (i.e., Kabirian coefficient, denoted as KC).

Claim:
Pairs of isoreflective points under optinalysis are bijective (one-to-one and onto) to each other functionally.
Prove of theoren 1:

Supposed we have an optinalytic construction between isoreflective pairs of similar or identical mathematical
structures A and B as follows:

. o)
fi A - B » R
_ 6 _
A = (x1,%3,X3) - B = (¥3,¥2,Y1)
f: ¢ ¢ ¢
R= (1,23, 4, 56,7)

Such that d € A& B; A,B,6§ &R € R;n € N; and A & B are isoreflective paits on a chosen paiting about
a midpoint §.

By Kabirian-based optinalysis (i.e., Eq. 3), each element functions as in Eq. 3.1- Eq.3.7.

41+ x4+ x5+ S+ y;+y, + y1)

K.(A,B) = .
(4.B) X + 2x, + 3x5 + 48 + 5y; + 6y, + 7y, Eq-3)

KC(sz + 3x3 + 46 + 5y3 + 6y2 + 7y1) - 4(x2 + X3 + 6 + y3 + yz + yl)
X, = . (Eq.3.1)
c

Kc(xl + 3X3 + 4‘6 + 5y3 + 6y2 + 7y1) - 4(x1 + X3 + (S + y3 + yz + yl)
Xy = 4 _ 2K (Eq.3.2)
[
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x :Kc(x1+2x2+ 45+5y3+6y2+7y1)—4(x1+x2+ (S+y3 +y2 +Y1) (E 33)
3 43K, a4
S_Kc(xl+2x2+3x3+5y3+6y2+7y1)_4(x1 +x2 +X3 +y3 +y2 +Y1)
= (Eq.3.4)
4 — 4K,
_Kc(x1+2x2+3X3+ 45+6y2+7y1)—4(x1+x2 +X3+ 6+y2 +y1) 35
y3_ 4‘_5Kc (Eq' ')
_Kc(x1+2x2+3x3+ 46+5:V3+7y1)_4(x1+x2 +X3+ 6+y3 +Y1) 36
Y2 = 4— 6K, (Eq.3.6)
_Kc(x1+2x2+3X3+ 4‘6+5y3+6y2)_4(x1 +x2 +x3+ 8+y3 +y2) 37
= 4— 7K, (Eq.3.7)

Recall the definition of bijective mapping (one-to-one and onto), such that if x =y, then f(g(x)) = g(f (v)).
To verify that x and y are bijective, three (3) cases of mathematical proves were evaluated (see details of the proves
in Appendix A). Based on the analysis of the proven cases, we conclude that isomorphic optinalysis is a construction
and function based on bijective mapping which signifies isomorphism of defined mathematical structures. It is
interesting to verify that each pair of isoreflective points are bijective with a different optinalysis-derived function.
That means the bijectivity of one pair-points is independent of the others.

Theorem 2: Bijection function of automorphic optinalysis

Autoreflective pairs of mathematical structures under optinalysis are symmetrical or identical to a certain
magnitude by a coefficient, called optinalytic coefficient (i.e., Kabirian coefficient, denoted as KC).

Claim:
Pairs of autoreflective points under optinalysis are bijective (one-to-one and onto) to each other functionally.
Prove of theorem 2:

Supposed we have an optinalytic construction between autoreflective pairs of symmetrical or identical
mathematical structure A and A’ as follow:

fa % a5

>

(S: X I ’ ! '
A = (xq,x5,%3) éx") A= (x'3,x'5,x'))

f: ' ' '
R=(1,23, 4, 5,6,7)

Such that § € A& A';A,A',6 &R € R; n €N; and A & B are autoreflective pairs on a chosen pairing
about a midpoint 8.

By Kabirian-based optinalysis (i.e., in Eq. 6), each element functions in Eq. 6.1 - Eq.6.7.

4(x,+x,+x3+ 6+ x5+x,+ x'y)

K.(4,A") = & g , 6
(A 4) Xy + 2x, + 3x3 + 46 + 5x'5 + 6x', + 7x'; (Eq.6)
KC(ZXZ + 3X3 + 4‘8 + 5x’3 + 6x,2 + 7x,1) - 4‘(X2 + X3 + 6 + x,3 + xlz + x’l)
X, = 1K (Eq.6.1)
c
Kc(xl + SX3 + 46 + 5x,3 + 6x,2 + 7x,1) - 4(.’)61 + X3 + 6 + x,3 + x,2 + x’l)
X, = (Eq.6.2)
4 — 2K,
Kc(xl + 2x2 + 46 + 5x,3 + 6x,2 + 7x,1) - 4(.’)61 + xz + 6 + x,3 + x,2 + x’l)
X3 = — (Eq.6.3)
c
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Kc(x1 + 2x2 + 3X3 + 5x,3 + 6x,2 + 7.x,1) - 4(.x1 + xz + X3 + x,3 + xlz + x’l)
5= (Eq.6.4)
4 — 4K,

r_ Kc(x1 + 2x2 + SX3 + 46 + 6x,2 + 7x’1) - 4(x1 + xz + X3 + 6 + xlz + x’l) 6 5
X3 = 4 — SKC (Eq' . )
r_ Kc(x1 + 2x2 + SX3 + 46 + 5x,3 + 7x’1) - 4(x1 + xz + X3 + 6 + x,3 + x’l) 6 6
X2 = 4— 6K, (Eq.6.6)
ro_ Kc(xl + 2x2 + 3X3 + 4‘8 + 5x,3 + 6x,2) - 4(x1 + xZ + X3 + 6 + x,3 + xlz) 6 7
X1 = 4— 7K, (Eq.6.7)

Recall the definition of bijective mapping (ome-to-one and onto), such that if x = x', then f(g(x)) = g(f (x")).
To verify that X and x” are bijective, three (3) cases of mathematical proof were evaluated (see Appendix B). Based on
the analysis of the proven cases, we conclude that automorphic optinalysis is a construction and function based on
bijective mapping which signifies automorphism of a defined mathematical structure. It is interesting to verify that
each pair of autoreflective points are bijective with a different optinalysis-derived function. That means the bijectivity
of one pair-points is independent of the others.

3.3. Optinalysis-probability translation models (OpTMs)
Principle of the transiation models

The translation models of Kabirian coefficient of optinalysis to a probability model cannot be achieved by
the existing probability rules or theorems, such as the product and addition rules of frequency-based probability and
the Bayesian probability. In this case, we are trying to draw a probabilistic conclusion by using the primary result
obtained from optinalysis (i.e., Kabirian coefficient of optinalysis) which was based on an independent, mutually
inclusive (simultaneously occur), and multi-dimensional pattern of events. The multi-dimensional pattern (shape) of
the events makes this approach more conditionally special requiring some special considerations. This probability
model is not only providing the proportion of chances from the sample space; but it further evaluates the probability
of closeness or distantness of and to an independent, mutually inclusive, and multi-dimensional pattern of events.

The real-world phenomena, implication, and application of this uncovered probability model are seen from
the probability of unlocking a password. There is only one chance (from the sample space) of unlocking the password,
but each trial from the sample space has a certain probability of appearing closer or distant to the true or cottrect
password. This probability of closeness or distantness is expressed by this translation model.

Definition 15: Optinalysis-probability translation models

The optinalysis-probability translation models are bridges that connect the outcomes of Kabirian-based
optinalysis (i.e., Kabirian bi-coefficients) to probability. The translation models translate the two possible Kabirian bi-
coefficients into a probability model that infers the level of certainty to which the isoreflective or autoreflective pairs
of mathematical structures are similar, identical, or symmetrical.

The expectation of the translation models

The expectations of this translation model (of forward and backward translations of Kabirian-based
optinalytic outcomes) are described as Y-rule (of Kabirian-based isomorphic or automorphic optinalysis). The Y-rule,
demonstrated below, is a Y-shaped chain of forward and backward proceedings of Kabirian-based isomorphic or
automorphic outcomes.

For automorphic optinalysis

KClPSym./Id. (4,47
, = PSym./Id.(A: A), = PSym./Id.(A,r A4) = PAsym./Uid.(A: A) = PAsym./Uid.(A’r 4)
KCZPSym./Id. (A ’ A)
For isomorphic optinalysis
KClPSim./Id. (A’ B)
= Psim j1a.(A4, B), = Psim j10.(B, A) = Ppsim jvia.(4, B) = Ppsim juia.(B, 4)
KCZPSim./Id. (B,4)

Theorem 3: Optinalysis-probability translation models
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¢ actual probability of symmetry, similarity, or identi i is isoreflective to the expecte
The actual probability of sy try, larity, dentity (Psym./sim./1a flective to th ted
probability (equals to unity, Peypectea = 1) about 2 midpoint of the isoreflective event’s dimensions. The number of
dimensions here refers to the number of isoreflective or autoreflective pairs during the optinalysis.

Prove of theorem 3:

Phase:1 forward transiation: from Kabirian bi-coefficients to probability of symmetry and similarity

é
f: PSym./Sim./Id - 1 »R
6=0
PSym./Sim./Id N 1
A I v v
R =(n, nry+mn, 2nn +n)

Or the optinalytic construction is inversely expressed as:

6=0
1 "N PSym./Sim./Id

oy ¢ '

R=(r, nn+n, 2nn+n)

where 17 is the first term of the established optiscale and n was the number of isoreflective pairs or
autoreflective pairs during the optinalysis or the number of dimensions or the sample size.

Then, Kabirian coefficient (K,) is defined as:

(TlT'1 + rl)(PSym./Sim./Id + 1)

= 7.1
¢ (X Psymysimyia) + (2nry + 1) ®q.7D
Or the Kabirian coefficient (K,) is inversely defined as:
(TlT'1 + rl)(l + PSym./S'm./Id)
.= s (Eq.7.2)

11+ Psym /sim.y1a(2nry +11)

By making Psym, /sim./1a the subject of the formula from Eq. 7.1 and Eq. 7.2, we obtain models in Eq. 7.3
and Eq. 7.4 respectively. These Eq. 7.3 and Eq. 7.4 translate the obtained Kabirian bi-coefficients of symmetry,
similarity, and identity to the probability of symmetry, similarity, and identity respectively

(nry + 1) —K.(2nry + 1)

P. i = L, VO<K. <1 .
Sym./Sim./Id. X Kc _ (TlT'1 + 7’1) c (Eq 7 3)
on+1 , ,
if 571 S KCsymysimpa(ABor AA) <1 0= Psym /simia.(A, B or A,A7) <1
] , n+1 ,
lf 0< KCSym./Sim./Id(A:B or A,A) < mn + 1, -1< PSym./Sim./Id.(A:B or A,A) <0

Or inversely as:
_ (nry + 1) — 1K,
@ +r)K.— (1)’

Pyym /sim j1a. = X VI<K. <n+LK >n+1&VK <0 (Eq.7.4)
lf 1< KCSym./Sim./Id(A'B or A,A’) <n-+ 1; 0< PSym./Sim./Id.(AﬂB or A,A’) <1
lf KCSym./Sim./Id(A:B or A,A,) >n+ 1, or < 0, -1< PSym./Sim./Id(A:B or A,A’) <0

Phase 2: forward translation: from the probability of symmetry, similarity, and identity to the probability of asymmetry, dissimilarity, and
unidentity

Eq. 8 and Eq. 9 translate forward the probability of symmetry, similarity, and identity (Psym./sim./14.) to the
probability of asymmetry, dissimilarity, and unidentity (Pasym. /psim.juia.) between isoreflective or autoreflective pairs
of mathematical structures under Kabirian-based optinalysis. Translation of Kabirian coefficient is valid if and only if
the outcomes are within the range of values -1 to 1 (or -100 to 100 of its equivalent percentage).

If Psym. /sim.j1a(A, B or A,A") = 0, then
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Pasym.jpsim.juia.(A, B or A, A") = 1 = Psy ssim y1a(A, B or A, A) (Eq.8)
If Psym. /sim.j1a(A, B or A,A") < 0, then
Pasym.psim.juia.(A, B or A, A") = =1 = Psym ssim 1a(A, B or A, A") (Eq.9)
Phase 3: backward translation: from the probability of asymmetry, dissiniilarity, and unidentity to the probability of symmetry, similarity,

and identity

These Eq. 10 and Eq. 11 translate backward the probability of asymmetry, dissimilarity, and unidentity
(Pasym./psim.juia.) to the probability of symmetry, similarity, and identity (Psym./sim./1a.) tespectively.

If PAsym./Dsim./Uid (A,Bor A,A") = 0, then

Psym.jsim.ia.(A, B or A,A") =1 = Pysym spsim.jvia (A, B or A, A") (Eq.10)
If PAsym./Dsim./Uid (A,Bor A,A") =0, then

PSym./Sim./id.(A' Bor A, A,) =-1- PAsym./Dsim./Uid (A' Bor A, A’) (Eq-ll)
Phase 4: backward translation: from the probability of symmetry, similarity, and identity to Kabirian bi-coefficients

These Eq. 12 and Eq. 13 translate backward the probability of symmetry, similarity, and identity outcomes
to its two possible Kabirian bi-coefficients, designated as KC_Alt. 1 and KC_Alt. 2.

KC_Alt.1 =

nr; + 1) (P i +1
( 1 1)( Sym./Sim./Id ) VO < Kc <1 (Eq.lZ)
(11 X Psym sim.j1a) + (2nry +11)

(nry + 1) (1 + Psym sim./1a)

KC_Alt.2 = ,
71+ Psym./simjia(2nry +11)

VI<SK. <n+LK =2n+1&VYK <0 (Eq.13)

where 7y is the first term of the established optiscale and 7 is the sample size/item length.
3.4. Properties of Kabirian-based optinalysis

i Kabirian-based optinalysis is bi-coefficients and chain-translative (i.e., forward and reverse chain-
translations). It gives two possible coefficients (KC1 PSym./Sim./1d. KC2 Psym./sim./1d.) due to its inverse
property, but each coefficient translates into the same results (Psym /sim./1a.» a0d Pasym. /psim./nia.)> Which

can be used to compute back up to the two bi-coefficients. This phenomenon is called the Y-rule of Kabirian-
based isomorphic or antomorphic optinalysis.

For automorphic optinalysis

KClPSym./Id. (A’ A’)

, = PSym./Id.(A: A,)' = PSym./Id.(A” A) = PAsym./Uid.(A: A,) = PAsym./Uid.(A" A)
KCZPSym./Id. (A’ 4)

For isomorphic optinalysis

KClPSim./Id. (A’ B)

: = Psim.1a.(4, B), = Psim 1a.(B, A) = Ppsim jvia.(4, B) = Ppsim yia.(B, A)
KCZPSim./Id. (B,4)

The two possible Kabirian bi-coefficients function on different optiscales.

il. The complete symmetry, identity, or similarity between isoreflective or autoreflective pairs of mathematical
structures is invariant (remains the same) under transformations such as pericentral rotation (alternate
reflection), central rotation (inversion), product translation, additive translation, and central modulation. Find
the proof in Appendix C.

iii. The asymmetry, dissimilarity, and unidentity between isoreflective or autoreflective pairs of mathematical
structutres are invariant (remain the same) under product translation and central rotation (inversion). Find

the proof in Appendix D.
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iv. Under optinalytic normalization, a complete symmetry, similarity, and identity (.e., KC = 1) between
isoreflective pairs of mathematical structures remains invariant, but asymmetry, dissimilarity, and unidentity
are normalized, to a relative extent, toward completeness. Find the details in Appendix E.

3.5. Python codes

The proposed methods of isomorphic and automorphic optinalysis, computing codes were written in python
language. Get the python codes at these links:

3.6. Drawbacks and limitations of Kabirian-based optinalysis

The following are some of the identified drawbacks and limitations of Kabirian-based optinalysis.

i The given random ordering (sequence) of elements of a list of the variable(s) can either be preserved or
otherwise a conceptual or theoretical (i.e., ascend or descend sorting) ordering has to be established.
ii. For isomorphic optinalysis, the variable lengths must be the same, otherwise, a suitable method needs to be
used to align them.
iii. For isomorphic optinalysis, a suitable and efficient pairing style or alternate reflection has to be chosen and
adopted for repeatability and comparison of results.
iv. The two possible Kabirian bi-coefficients do not function on the same optinalytic scale. For comparison of

results, estimates with the mixed Kabirian coefficients should either be translated forward or otherwise
uninformed by backward alternate translation its translations. (See Y-rule of Kabirian-based isomorphic or
antomorphic optinalysis.).

4. Discussion

In this paper, Kabitian-based optinalysis expressed an important paradigm shift for symmetry/asymmetry
detections, similarity/dissimilarity, and identity/unidentity measutes between isoreflective or autoreflective paits of
mathematical structures. The Kabirian-based optinalysis is conceptually and theoretically based on the methodological
paradigm of automorphism and isomorphism. The uniform intervals of the optiscale preserve an equidistant
relationship (i.e., isometry) between the corresponding pair of mathematical structures. Furthermore, the optinalytic
relationship between any pair point of isoreflective or autoreflective pairs of mathematical structures is proven, in this
paper, to be a bijective (inverse) function. It is also interesting to verify that each pair of autoreflective or isoreflective
points under optinalysis are bijective with a different function. That means the bijectivity of one pair is independent
of the others. This makes optinalysis a reliable method for the comparison of mathematical structures.

The outcomes of Kabirian-based optinalysis are invariant under a set of mathematical operations or
transformations such as scaling, rotation, and location shift. These invariance properties of Kabirian-based optinalysis
are sufficient evidence to prove its robustness for symmetry detection, similarity, and identity measures.

The main drawbacks and limitations of Kabirian-based optinalytic measures include: the ordering of the list
of the variable(s) has to be chosen or established, variables lengths must be the same (for the case of pairwise
comparison), pairing style or alternate reflection has to be chosen and adopted.

5. Conclusion

Kabirian-based optinalysis is a new paradigm proposed for symmetry/asymmetry detections,
similarity/dissimilarity, and identity/unidentity measures between isoreflective or autoreflective pairs of mathematical
structutes. The paradigm of Kabitian-based optinalysis is the optiscale bijective re-mapping of isoreflective or
autoreflective pairs. Kabirian-based optinalysis is characterized as a bijection function and invariant under a set of
transformations such as scaling, rotation, and location shift.

6. Recommendation

Further studies look into the applications of this new paradigm in other fields of mathematics, physics, and
as well as statistics, and geometry (development of statistical and geometrical estimators).

Supplementary material
The supplementary files are the appendices and the python codes. All the python codes are available at:
https://github.com/Abdullahi-KB/Kabirian-based optinalysis
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Appendix A

Theorem 1: Bijection function of isomorphic optinalysis

Isoreflective pairs of mathematical structures under optinalysis are similar or identical to a certain magnitude by a coefficient, called optinalytic coefficient (i.e., Kabirian
coefficient, denoted as KC).

Claim:
Pairs of isoreflective points under optinalysis are bijective (one-to-one and onto) to each other functionally.
Prove of theorem 1:
Supposed we have an optinalytic construction between isoreflective pairs of identical or similar mathematical structures A and B as follows:

0
A = (x1, X2, X3) - B = (¥3,Y2,Y1)

f: ' ' '
R= (1,23, 4 5,6,7)

Suchthat § € A& B; A,B,6 & R € R; and A & B are isoreflective paits on a chosen paiting about a midpoint §.

By Kabirian-based optinalysis (i.e., as in equation A), each element functions as Equations A1-A7:

4(x; +x, +x3+ S+ ys +y, + y1)

= A
¢ x;+2x,+3x3+ 48 + 5y; + 6y, + 7y, @
. = KC(ZxZ + 3x3 + 46 + 5y3 + 6y2 + 7y1) - 4(x2 + X3 + 6 + y3 + yz + yl) (Al)
! 4—K,
o = Kc(xl + 3x3 + 46 + 5y3 + 6y2 + 7y1) - 4(x1 + X3 + 6 + y3 + yz + yl) (AZ
z 4 — 2K, )
X = Kc(xl + sz + 46 + 5y3 + 6y2 + 7y1) - 4(x1 + xZ + 6 + y3 + yz + yl) (A3)
3 4 — 3K,
6 _ Kc(xl + 2x2 + 3x3 + 5y3 + 6y2 + 7y1) - 4(x1 + xz + X3 + y3 +y2 +y1)
= (A4)
4 — 4K,
y _ Kc(xl + 2x2 + 3X3 + 4‘8 + 6y2 + 7y1) - 4‘(x1 + xz + x3 + 6 + yz + yl) (AS)
3 =

4 — 5K,
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Kc(xl + 2x2 + 3X3 + 4‘8 + 5y3 + 7y1) - 4‘(x1 +x2 +x3 + 6 +y3 +y1)
Y2 = — (A0)
4— 6K,
Kc(xl + 2x2 + 3x3 + 46 + 5y3 + 6y2) - 4(x1 + xz + X3 + 6 + y3 + yz) (A7)
=

4 - 7K,
Recall the definition of bijective mapping (one-to-one and onts), such that if x =y, then f(g(x)) = g(f (7). We now have three (3) cases evaluated as follows:

Case Al:
Firstly, we verify if the pair of isoreflective points (i.e., X; and y;) are functionally mapped ozne-zo-one.

KC(2x2+3X3+46+5y3+6y2+7y1)—4(x2+X3+ 6+y3 +y2 +y1)_Kc(x1+2x2+3X3+45+5y3+6y2)—4(x1+x2+X3+5+y3 +y2)

=y, =
1= 4—K, 47K,
KC(ZXZ + 3X3 + 4’6 + 5y3 + 6y2) - 4(x2 + X3 + 6 + y3 + yz) Kc(7:V1) - 4’y1
== 4—K, "ok
c C
_ KC(Z‘xZ + 3X3 + 4‘8 + 5y3 + 6y2) - 4‘(x2 + X3 + 6 + y3 + yz) Kc(xl) - 4x1
B 4 — 7K, 4 — 7K,

When two completely similar or identical pairs of mathematical structures are compared optinalytically, then K, = 1.
Therefore, we now have

(sz + 3X3 +4‘8+ 5y3 + 6y2) —4(x2 +X3 + (S +y3 +y2) + 7y1 _4‘y1

== 3 3 Bl
_ (sz + 3X3 + 4‘8 + 5y3 + 6y2) - 4(x2 + X3 + (S + y3 + yz) + x1 - 4‘x1 q
B -3 -3

. . (2x2+3x3+46+5y3+6Yy2)—4(x2+x3+ 5+y3+y.
Let the common factor to both sides of the equation Eql. be p; = ~——2—— 2 ; CEAEE: s+y2)

py+ 31 _Thi— 3%,
3 -3

Xp =Y =

Secondly, we verify if the pair of isoreflective points (i.e., X; and y;) are functionally mapped on#o each other.

By composing g(y;) onto f(x;)

-p1-3
FgG) = p1 +3 (_p1_3 x1) _T3p+3p 9%
3

=x=2f(x) =9"0n)

-9
Again by composing f(x;) onto g(y;)
p1+3y;
- =3\ 3p1 —3p1 — 9y
g(fm) = _g =) — == g0 =f""(x)

Finally, since x; and Y, are one-to-one and onto, we conclude that x; and y,; are functionally bijective and inverse.
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Case A2:
Firstly, we verify if the pair of isoreflective points (i.e., X, and y;) are functionally mapped orne-fo-one.

K. (xy +3x3+ 46+ 5y5 + 6y, + 7y,) —4(xy + x5+ 6+ y3 + ¥y, +y1) KO +2x; +3x3+46 +5y5 + 7y1) =40 + x, + x5+ 6+ y3 + 1)

Xy =Y =

42K, 4— 6K,
= v o K.(x; +3x3+46 +5y3 + 7y;) —4(xy +x3+ § +y; +y1)  K.(6y,) — 4y,
2 =2 42K, 42K,
_ KC(X1 + 3X3 + 4’6 + 5y3 + 7y1) - 4(x1 + X3 + 6 + y3 + yl) KC(sz) - 4x2
- 4 — 6K, 4 — 6K,

When two completely similar or identical pairs of mathematical structures are compared optinalytically, then K, = 1.

Therefore, we now have

(x1+3X3+45+5y3+7y1)—4(x1+X3+ 6+y3 +y1)+6y2_4y2

X =Y2 =
_ (x1+3x3 +4‘6+5y3 +7y1)—4(x1+X3 +8+y3 +y1)+2x2 —4x2 q
B -2 -2

. . (X1+3x3+48+5y3+7y1)—4(x1+x3+ §+y3+y
Let the common factor to both sides of the equation Eq2. be p, = ——— 2 12 CEReE 5101

_ 2p, + 2y,  —2p; — 2x,
X =Y2 = 2 = )

Secondly, we verify if the pair of isoreflective points (i.c., X, and ¥,) are functionally mapped on70 each other.

By composing g(y,) onto f(x5)

—py—2x
Pz"‘Z# —2p, + 2p, — 4x
f(g(xz))= (2 2 )= s _4_2 2 =x, = f(x) = g7 ()
Again by composing f(x,) onto g(¥,)
P2+2y2
—P2—2(———) 2p,—2p,—4y B
9(fG) = _g ) = =n =900 =f"'(x)

Finally, since x, and y, are one-fo-one and onto, we conclude that x, and y, are functionally bijective and inverse.

Case A3:

Firstly, we verify if the pair isoreflective points (i.e., X3 and y3) are functionally mapped one-to-one.

Kc(xl +2x2 +4‘6+5y3 +6y2 +7y1) _4‘(x1 +x2 + 6+y3 +y2 +y1) _ Kc(xl +2x2 +3X3 +48+6y2 +7y1) _4‘(X1 +XZ +x3 +6+y2 ++y1)
4 — 3K, a 4 — 5K,

X3 =Y3 =
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e = v o Ko (xy +2x; + 46 + 6y, + 7y1) —4(x; + x, + 6+ ¥, +y1)  K(5y3) — 4ys
3= Vs 43K, 43K,

_ Kc(xl + 2x2 + 46 + 6y2 + 7y1) - 4(x1 + xz + 6 + yz + +y1) KC(3X3) - 4X3

B 4 — 5K, 4 — 5K,
When two completely similar or identical pairs of mathematical structures are compared optinalytically, then K, = 1.
Therefore, we now have

(x1 + sz + 4’6 + 6y2 + 7y1) - 4(x1 + xz + 6 + yz + yl) 5y3 - 4y3
X3 =Yz = 1 + 1

-1 -1

. . (X1+2x2+48+6Y,+7y1)—4(xX1+x2+ 5+ +y
Let the common factor to both sides of the equation Eg3. be p3 = ———= 2 11 (1 tx 2*31)

ps +ys3 _ —P3 — X3
1 -1

Secondly, we verify if the pair of isoreflective points (i.e., X3 and y3) are functionally mapped oo each other.

X3 =Y3 =

By composing g(¥3) onto f(x3)

p (=p3—x3) Py + Py —
3 —_— - - —_
f(g(xs)) = 1 L= _13 = x3 = f(x3) = g7 (¥3)
Again by composing f(x3) onto g(y3)
Py — p3tys Py — D3 —
g(fs) = —— =" =y =g05) = f'(x)

Finally, since x3 and y3 are one-to-one and onto, we conclude that x3 and Y3 are functionally bijective and inverse.
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Appendix B

Theorem 2: Bijection function of antomorphic optinalysis

Autoreflective pairs of mathematical structures under optinalysis are symmetrical or identical to a certain magnitude by a coefficient, called optinalytic coefficient (i.e.,
Kabirian coefficient, denoted as KC).

Claim:
Pairs of autoreflective points under optinalysis are bijective (one-fo-one and onto) to each other functionally.
Prove of theorem 2:
Supposed we have an optinalytic construction between autoreflective pairs of identical or symmetrical mathematical structures A and A’ as follows:

0
A = (X1, X3, X3) - A= (x'3,x'5,x')

f: ' y '
R= (1,23, 4 5,6,7)

Suchthat § € A& A'; A,A',§ & R € R;and A & A’ are autoreflective pairs on a chosen pairing about a midpoint §.

By Kabirian-based optinalysis (i.e., as in equation B), each element functions as Equations B1-B7:

4(xy +x,+x3+ 6+ x'5+x5 + x'y)

¢~ X, + 2x, + 3x3 + 46 + 5x'3 + 6x', + 7x'; ®)

_ KC(ZXZ + 3X3 + 4’6 + 5x,3 + 6x,2 + 7x’1) - 4(x2 + X3 + 6 + x,3 + xlz + x’l) l

X1 = 4—K, (B1)
_ Kc(xl + 3X3 + 4‘8 + 5x’3 + 6x,2 + 7x,1) - 4(x1 + X3 + 6 + x,3 + xlz + x’l) 2

X2 = 4— 2K, (B2

Kc(xl + 2x2 + 4‘8 + 5x’3 + 6x,2 + 7x,1) - 4(x1 + xZ + 6 + x,3 + xlz + x’l)
X3 = 13K B3)
c

Kc(xl + sz + 3X3 + 5x’3 + 6x,2 + 7x,1) - 4(x1 + xZ + X3 + x,3 + xlz + x’l)
o= 4— 4K B9
- c

Kc(xl + 2x2 + 3X3 + 46 + 6x,2 + 7x,1) - 4(x1 + xz + X3 + 6 + xlz + x’l)
N 4—5K ®3)
c

x's
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' Kc(xl + 2x2 + 3X3 + 46 + 5x,3 + 7x,1) - 4(x1 + xz + X3 + 6 + x,3 + x’l)
¥z = 4- 6K, B6)
c

’ KC(X1 + 2x2 + 3X3 + 46 + 5x,3 + 6x’2) - 4(x1 + xz + X3 + 6 + x,3 + xlz)
X1 = 41— 7K B7)
c

Recall the definition of bijective mapping (ore-to-one and onts), such that if x =y, then f(g(x)) = g(f (7). We now have three (3) cases evaluated as follows:

Case B1:

Firstly, we verify if the pair of autoreflective points (i.e., X; and x';) are functionally mapped one-to-one.

' KC(ZXZ + 3X3 + 46 + 5x,3 + 6x,2 + 7x,1) - 4(x2 + X3 + 6 + x,3 + x,2 + x’l)

X =x'1 = I-K,
_ Ke(xy +2x5 +3x3 +46 + 55 + 6x'5) —4(xy + X, + x5+ 0 + X5+ x'5)
- 4 — 7K,
. K.(2x, +3x3 + 48 +5x"3 + 6x)) —4(x, +x3+ S+ x5 +x';) K (7x'y) —4x'y
=X 4i-K, i-K,
_ Ke(2x; +3x3 + 46 +5x'3 + 6x')) —4(x; +x3 + 5+ x'3 +x'5) | Ko(x) —4x
B 4 — 7K, 4 — 7K,

When two completely symmetrical or identical pairs of mathematical structures are compared optinalytically, then K, = 1.
Therefore, we now have

X = x, - (sz + 3X3 + 4‘8 + 5x’3 + 6x,2) - 4(x2 + X3 + (S + x’3 + xlz) 7x,1 - 4‘x,1
1 1 3 3 (E 1)
_ (sz + 3X3 + 4‘8 + 5x,3 + 6x,2) - 4(x2 + X3 + (S + x’3 + xlz) + x1 - 4‘x1 q
B -3 -3

. . 2Xx+3x3+48+5y3+6y2)—4 (X2 +x3+ S+y3+
Let the common factor to both sides of the equation Eql. be p; = (2xp 435 Ygt€ya) Gy bzt S4yatys)

- 3

‘= =>p1+3x'1 =—p1—3x1
1 1 3 3

Secondly, we verify if the pair of autoreflective points (i.e., X; and x';) are functionally mapped on#o each other.

By composing g(x';) onto f(x;)

pr+3(FE) _3p, +3p, =9
Floe) = = (3 =), P s ) = g7 ()

Again by composing f (x;) onto g(x'y)
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p1+3x73
=3 3p—3p -9y _ i
g(fen) = ———2 L =TT T ) = £ )
Finally, since X; and X'y are one-fo-one and onto, we conclude that x; and x'; are functionally bijective and inverse.
Case B2:
Firstly, we verify if the pair of autoreflective points (i.e., X, and x';) are functionally mapped ore-#o-one.
’ Kc(xl + 3X3 + 4‘6 + 5x’3 + 6x,2 + 7x,1) - 4(x1 + X3 + 6 + x,3 + xlz + x’l)
xz =X 2 =
4 - 2K,
_ Ke(xy +2x5 +3x3 + 46 +5x'5 + 7yx'y) —4(xy +x, + x3+ 6 + x5 + x1)
4 — 6K,
’ = KC(X1 + 3X3 + 4’6 + 5x,3 + 7x,1) - 4(.’)61 + X3 + 6 + x,3 + x’l) KC(6.’X’2) - 4x’2
Xy = X
z z 4 — 2K, 4 — 2K,
_ KC(X1 + 3X3 + 46 + 5x,3 + 7x’1) - 4(x1 + X3 + 6 + x,3 + x’l) KC(sz) - 4x2
B 4 — 6K, 4 — 6K,
When two completely symmetrical or identical pairs of mathematical structures are compared optinalytically, then K, = 1.
Therefore, we now have
’ (x1 + 3X3 + 4‘6 + 5x’3 + 7x,1) - 4‘(x1 + X3 + (S + x’3 + x’l) + 6x’2 - 4‘x,2
xZ =X 2 =
2 2
_ (x1 + 3X3 + 4’6 + 5x,3 + 7x,1) - 4(.’)61 + X3 + 6 + x,3 + x’l) + 2x2 - 4x2 (qu)

-2 -2

. . (x1+3x3+48+5x73+7x11)—4(x1+x3+ S+x13+x7
Let the common factor to both sides of the equation Eq2. be p, = ——— 2 12 (ra+¥s 330

2p;, +2x';  —2p, — 2x,
2 Y

xZ =X 2
Secondly, we verify if the pair of autoreflective points (i.e., X, and x';) are functionally mapped on#o each other.
By composing g(x';) onto f(x;)

—p2—2
fla(x)) = P +2(5%) _ T2p2 +2p; — 4%,
2

=%, = f(xz) = g7 (x'2)

—4
Again by composing f(x;) onto g(x';)
—p, — (w) 2, — 2p, — 4’
9(f@'2) = — = =y 2 () =)

Finally, since X, and X', are one-fo-one and onto, we conclude that x, and x', are functionally bijective and inverse.
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Case B3:
Firstly, we verify if the pair of autoreflective points (i.e., X3 and X'3) are functionally mapped ore-#o-one.
' Kc(xl + 2x2 + 4‘6 + 5x,3 + 6x’2 + 7x,1) - 4‘(x1 + xz + (S + x’3 + xlz + x’l)
X3 =X 3 =
4 - 3K,
_ Kc(xl + 2x2 + 3X3 + 4’6 + 6x,2 + 7x,1) - 4(.’)61 + xz + X3 + 6 + xlz + x’l)
- 4 — 5K,
o = KC(X1 + 2x2 + 4’6 + 6x,2 + 7x,1) - 4(.’)61 + xz + 6 + x,2 + x’l) KC(S.’X’3) - 4x’3
Y3 = X¥s 43K, 4 - 3K,
_ KC(X1 + 2x2 + 46 + 6x,2 + 7x’1) - 4(x1 + xz + 6 + x,2 + x’l) KC(3X3) - 4X3
B 4 — 5K, 4 — 5K,
When two completely symmetrical or identical pairs of mathematical structures are compared optinalytically, then K, = 1.
Therefore, we now have
’ (x1 + 2x2 + 4‘6 + 6x’2 + 7x,1) - 4‘(x1 + xZ + (S + x’Z + x’l) + 5x’3 - 4‘x,3
X3 =X 3 =
1 1
_ (x1 + 2x2 + 4’6 + 6x,2 + 7x,1) - 4(.’)61 + xz + 6 + xlz + x’l) + 3X3 - 4X3 (Eq3)

-1 -1

. . (X1+2x2+48+6x15+7x11)—4(xX1+X2+ S+x15+x1
Let the common factor to both sides of the equation Eg3. be p3 = ———= 2 11 (1t 24 x0)

U =>p3+x'3_—p3—x3
3 3 1 1

Secondly, we verify if the pair of autoreflective points (i.e., X3 and x'3) are functionally mapped on#o each other.

By composing g(x'3) onto f(x3)

Ps3 (—pi—xz) —P3 D3 — X3
f(,g(X3)) = 1 L= 1 =x3 = f(x3) = g7 (x'3)
Again by composing f(x3) onto g(x'3)
bz~ P P3s —Ps —X'3 -
g(f(x'y) = 1 L= 1 =y; = g(x'3) = f(x3)

Finally, since X3 and X'5 are one-fo-one and onto, we conclude that x5 and y5 are functionally bijective and inverse.
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Appendix C
Property C: Optinalytic invariance under operation (1)

A perfect symmetry or identity and similarity state between isoreflective or autoreflective pairs under optinalysis
remain invariant (stable) under transformations such as pericentral rotation (alternate reflection), central rotation (inversion),
translation, (scaling and location shift), and central modulation.

Prove of property C1: Location Invariance
Optinalysis is a location invariance if K.(4,B) = K.(A + ¢,B + ¢).

Suppose we have an optinalytic construction of isoreflective pairs with an assigned optiscale R =1, 2, 3, 4, 5, 6, 7) as

follows:
_ 6 _
A = (X1, %5, X3) - B = (x3,x3,%1)
f: ¢ ¢ ¢
R= (1,23, 4, 5,6,7)

Let ¢ be a change in location structure. The optinalytic construction becomes:

0
A = [(xl + C), (xZ + C)' (x3 + C)] “ B = [(x3 + C)' (xZ + C), (xl + C)]
f: ¢ ¢ ¢
R= (1,23, 4, 5,6,7)
Such that 6 € 4,B & c; A,B,6,R & c € R; and A & B ate isoreflective paits on a chosen paiting about a midpoint
0.
Then,
4(x;+x, +x3+6+x3+ x, +x
K.(A,B) = (x4 2 3 3 2 1)
X1 + 2%, + 3x3 + 48 + 5x3 + 6%, + 7x4
8x; + 8x, + 8x3 + 46
K.(A,B) = 1 2 3 _
8x, + 8x, + 8x3 + 46
Similarly,

A +)+ O +o)+(xs+)+ (@ +e)+(xz3+c)+ (x+¢) + (% +0)]
(1 +c)+2x,+c)+Bxs+c)+ (@5 +c)+ (Bxs+c)+ (6xy, +¢)+ (7x, +¢)
Bx;+c)+ 8(x;+c)+8(x3+c)+45 8xy +8x, +8x3 +45 +24c
8(x; +c)+ 8(x,+¢c)+8(x3+c)+45 8x; +8x, + 8x3 + 45 + 24c

K.(A+c¢,B+c)=

K.(A+c¢,B+c¢c)=

It now shows that K.(A, B) = K.(A + ¢, B + ¢). Therefore, optinalysis is a location invariant.
Prove of property C2: Scale Invariance
Optinalysis is a scale invariance if K. (4, B) = K.(cA, cB).

Suppose we have an optinalytic construction of isoreflective pairs with an assigned optiscale R =1, 2, 3,4, 5, 6, 7) as

follows:
_ 9 _
A = (xq, X3, X3) - B = (x3,x,%1)
f: ¢ ¢ ¢
R= (1,23, 4, 56,7)

Let ¢ be a change in scale parameter. The optinalytic construction becomes:

A = (cxq,¢xy,Cx3) i B = (cx3,¢x5,¢cx1)
f: v v v
R= (1,23, 4, 5,6,7)
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Such that 6 € A,B & ¢; A,B,6,R & c € R; and A & B ate isoreflective paits on a chosen pairing about a midpoint

0.
Then,
4(x;+x, +x3+6+x3+ x,+x
K.(A,B) = (% 2 3 3 2 1)
X1 + 2%, + 3x3 + 48 + 5x3 + 6%, + 7x4
8x; + 8x, + 8x3 + 46
K.(A,B) = — 2 3 =1
8x, + 8x, + 8x3 + 46
Similarly,
4(cx; + cx, + cx3+ 6 +cx3 +cx, + cx
K.(cA, cB) = (cxq 2 3 3 2 1)

cx1 + 2¢x, + 3cx3 + 46 + 5cx3 + 6¢xy + 7cxq

8cx; +8cx; +8cx3 + 45

K.(cA,cB) = =1
e(cA,cB) 8cx; + 8cx, + 8cx; + 46

It now shows that K.(A, B) = K.(cA, cB). Therefore, optinalysis is a scale-invariant.
Prove of property C3: Invariance under central rotation (Inversion)
Optinalysis is invariant under central rotation if K.(4, B) = K (B, 4).

Definition: Central rotation refers to the rotation of all the members of two mathematical structures of an isoreflective pairs
through 180° around the central mid-point (8). This rotation is equivalent to an inversion.

Suppose we have an optinalytic construction of isoreflective pairs with an assigned optiscale (R =1, 2, 3,4, 5,6, 7) as

follows:
o 5 ~ )
A = (xq1, X3, X3) - B = (x3,x3,%1)
f: v v v
| R=(1,2,3, 4, 56,7)

_ s -
B = (xy1,x3,%3) - A = (x3,%x3,%1)
f: ¢ ¢ ¢
| R= (1,2,3, 4, 56,7)

By central rotation, the optinalytic construction becomes:

Such that § € A,& B; A,B,5,& R € R; and A & B ate isoreflective pairs on a chosen paiting about a midpoint 4.

Then,
4y +x, +x3+6+x3+ x, +x
KC(A,B)= (1 2 3 3 2 1)
X1 + 2x, + 3x3 + 48 + 5x3 + 6x, + 7x;
8x, + 8x, + 8x3 + 46
K.(A,B) = =1
(4,8 8x; + 8x, + 8x5 + 46
Similarly,
4y +x, +x3+6+x3+ x, +x
KC(B,A)= (1 2 3 3 2 1)
X1 + 2x, + 3x3 + 48 + 5x3 + 6x, + 7x;
4x1 + 4x, + 4x3 + 40 + 4x3 + 4x, + 4x
KC(B,A)= 1 2 3 3 2 1
X1 + 2x, + 3x3 + 48 + 5x3 + 6x, + 7x;
8x; + 8x, + 8x3 + 46
K.(B,A) = 1 2 3 _

8x, + 8x, + 8x3 + 45
It now shows that K.(4, B) = K.(B, A). Therefore, optinalysis is a rotation invariant.
Prove of property C4: Invariance under pericentral rotation (Alternate reflection)
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Optinalysis is invariant under alternate reflection if K, (g, B ) =K, (A), B )

Definition: Central rotation refers to the rotation of all the members of two mathematical structures of an isoreflective pairs
through 180° around the pericentres (A pericentre is a mid-point of each of the two comparing mathematical structures). This
corresponds to an alternate reflection (i.e., from the head-to-head to tail-to-tail reflection or otherwise). An alternate reflection
is the alternative form of reflection between isoreflective pairs. The alternate reflection can, in some cases, be used to distinguish
between two similar structures but not identical to each other.

Suppose we have an optinalytic construction of isoreflective pairs with an assigned optiscale (R =1, 2, 3,4, 5,6, 7) as

follows:
_ 6 _
A = (X1, %3, %3) - B = (x3,x3,%1)
f: ¢ ¢ ¢
R= (1,23, 4, 56,7)
By alternate reflection, the optinalytic construction becomes:
_ 6 _
A = (x3,%x2,%1) - B = (x1, %3, X3)
f: ¢ ¢ ¢
R= (1,23, 4, 56,7)
Such that § € A,& B; A,B,6,& R € R; and A & B are isoreflective paits in an annotated paiting about a midpoint
0.
Then,
« = 4(x; +x,+x3+6+x3+ x, +x
KC(A,B) _ (4 2 3 3 2 1)
X1 + 2%, + 3x3 + 46 + 5x3 + 6x, + 7x4
« o 8x; + 8x, + 8x3 + 46
K.(AB) = =
«(4.5) 8x; + 8x, + 8x5 + 4§
Similarly,
S e d(xs+x,+x;,+6+x;+ x, +x
KC(A,B) _ (x5 2 1 1 2 3)
X3 + 2%y + 3%, + 46 + 5x; + 6%, + 7x3
s = 4x; + 4x, + 4x; + 46 + 4x; + 4x, + 4x
KC(A,B) _ 3 2 1 1 2 3

X3 + 2%y + 3%, + 46 + 5x; + 6%, + 7x3

K(ZE)_8x3+8x2+8x1+46_1
TS T 8xy +8x, +8x; +45

It now shows that K, (121_, B ) =K, (z‘T, B ) Therefore, optinalysis is a rotation invariant.
Prove of property C5: Invariance under central modulation
Optinalysis is invariant under central modulation if K, (A,B) =K.(A,6 £ B,B).

Suppose we have an optinalytic construction of isoreflective pairs with an assigned optiscale (R =1, 2, 3,4, 5,6, 7) as

follows:
_ 6 _
A = (xq, X3, X3) - B = (x3,x,%1)
f: v v v
R= (1,23, 4, 56,7)
By central modulation, the optinalytic construction becomes:
o+
A = (xq1, %3, X3) _:_)ﬁ B = (x3,%3,%1)
f: ¢ v ¢
R= (1,23, 4, 56,7)

Suchthat§ € A,&B; A,B,5,5,& R € R;and A & B are isoreflective pairs on a chosen paitring about a midpoint §.
24
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Then,
4(xy +x+x3+6+x3+ x, + x
K.(A,B) = (%1 + %, + x3 3 2+ %1)
X1 + 2%, + 3x3 + 48 + 5x3 + 6%, + 7x;
8x, + 8x, + 8x3 + 46
K.(A,B) = =1
(4,8 8x; + 8x, + 8x5 + 46
Similarly,
4(xy +x, +x3+ (0 £ B) +x3+ x, +x
K.(A,6 + B,B) = (X1 +x, +x3+ (5 £ B) +x3 2+ %1)
X1+ 2x, +3x3+4(6 £ ) + 5x3 + 6x, + 7x;
8x; + 8x, + 8x3 +4(6 £
KC(A,Si[)’,B)= 1 2 3 ( ﬁ)_

8x; +8x, +8x; +4(8+B)

It now shows that K.(4,B) = K.(4,6 + 8, B). Therefore, optinalysis is invariant under central modulation
(normalization).
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Appendix D
Property D: Optinalytic invariance under operations (1I)

An asymmetrical or dissimilar and unidentical state between autoreflective or isoreflective pairs under optinalysis
remains invariant (the same) under product translation and central rotation (inversion).

Prove of property D1: Location Invariance
Optinalysis is a location invariance if K.(4,B) = K.(A + ¢,B + ¢).

Suppose we have an optinalytic construction of isoreflective pairs with an assigned optiscale R =1, 2, 3, 4, 5, 6, 7) as

follows:
_ 6 _
A = (txq, X3, X3) - B = (x3,%,%1)
f: ¢ ¢ ¢
R= (1,23, 4, 56,7)

Let ¢ be a change in location structure. The optinalytic construction becomes:

1)
A=t +0), 0z +0)(xs+0)] | B=[lx3+0)(xz+¢)(x +0)]
f: v v ¢
R= (1,23, 4, 5,6,7)
Such that 6 € 4,B & c; A,B,6,R & c € R; and A & B ate isoreflective paits on a chosen paiting about a midpoint
0.
Then,
4(txy +x,+x3+6+x3+ x, +x
K.(A,B) = (txy 2 3 3 2 1)
tx; + 2x, + 3x3 + 48 + 5x3 + 6x, + 7x;
4tx,; + 4x, + 8x, + 8x3 + 46
K, (4,B)=——"1 2 > #1
tx; +7x; + 8x, + 8x3 + 46
Similarly,

Aty +)+ e+ )+ (s +c)+ (S +c)+ (x3+¢)+ (x +¢) + (2 + )]
(tx;+c)+ 2x,+c)+(Bxz+c)+ (46 +c)+ (5xz3+¢c)+ (6x, +¢) + (7x, + ¢)

K.(A+c,B+c)=

4(tx; +c)+40q +c)+ 8(xy +¢c)+8(x3+¢) +46
(tx;+ )+ (Tx; +c)+ 8(xy +¢) +8(x3+c¢c)+ 45

K.(A+c¢,B+c)=

It now shows that K.(4, B) # K.(A + ¢, B + c¢). Therefore, optinalysis is a location variant (not location invariant).

Prove of property D2: Scale Invariance
Optinalysis is a scale invariance if K. (4, B) = K.(cA, cB).

Suppose we have an optinalytic construction of isoreflective pairs with an assigned optiscale R =1, 2, 3,4, 5, 6, 7) as

follows:
- § p_
A = (tx1, X2, X3) - B = (x3,%2,%1)
f: y ! y
R= (1,23 4, 5,6,7)
Let ¢ be a change in scale parameter. The optinalytic construction becomes:
A = (ctxy,cxq,Cx3) i B = (cx3,¢x3,cx1)
I ! Y y
R= (1,23, 4, 5,6,7)
Such that § € A,B & ; A,B,6,R & c € R; and A & B ate isoteflective paits on a chosen pairing about a midpoint
6.

26


https://doi.org/10.20944/preprints202008.0072.v3
https://doi.org/10.20944/preprints202008.0072.v3

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 26 October 2022 d0i:10.20944/preprints202008.0072.v3

Then,
4(txy +x, +x3+5 +x3+ x, +x
KC(A, B) — ( 1 2 3 3 2 1)
tx; + 2x, + 3x3 + 48 + 5x3 + 6x, + 7x;
4tx, + 4x; +8x, + 8x5 + 46
K.(A,B) = — L 2 3 #1
tx; + 7x; + 8x, + 8x3 + 46
Similarly,

4(ctxy + cxy +cx3+ 8+ cx3 + cxy + cxq)

K.(cA,cB) =
e(cA, cB) ctxy + 2cx, + 3cxs + 48 + 5cx; + 6¢x, + 7cxy

c(4tx; +4x; +8x; +8x3) + 46 4tx; + 4%, +8x, +8x3 + 46

K.(cA,cB) = =
c(cA, cB) c(tx; +7x; + 8x, +8x3) + 48  tx; + 7x; + 8x, + 8x5 + 48

*1

It now shows that K. (4, B) = K.(cA, cB). Therefore, optinalysis is a scale-invatiant.
Prove of property D3: Invariance under central rotation (Inversion)
Optinalysis is invariant under central rotation if K.(4, B) = K. (4, B).

Definition: Central rotation refers to the rotation of all the members of two mathematical structures of an isoreflective pairs
through 180° around the central mid-point (8). This rotation is equivalent to an inversion.

Suppose we have an optinalytic construction of isoreflective pairs with an assigned optiscale R =1, 2, 3,4, 5, 6, 7) as

follows:
o s B i
A = (txq, X3, X3) - B = (x3,%,%1)
f: ¢ ¢ ¢
R= (1,23, 4, 56,7)

By central rotation, the optinalytic construction becomes:

_ s ]
B = (x1, %3, X3) - A = (x3,%x, txq)
f: ‘ ‘ ¢
| R= (1,2,3, 4, 56,7)

Such that § € A,& B; A,B,5,& R € R; and A & B ate isoreflective paits on a chosen paiting about a midpoint 4.

Then,
4(txy +x, +x3+5 +x3+ x, +x
KC(A, B) — ( 1 2 3 3 2 1)
tx; + 2x, + 3x3 + 48 + 5x3 + 6x, + 7x;
4tx, + 4x; +8x, + 8x5 + 46
K.(A4,B) = — L 2 3 #1
tx; + 7x; + 8x, + 8x3 + 46
Similarly,

4(x; + x5 +x3+ 6+ x5+ x5, +txy)
tx; + 2x, + 3x3 + 48 + 5x3 + 6x, + 7x;

K.(A,B) =

T Xy + 2+ 3x3 + 48 +5x3 + 62, + Ttx;  xp + 7tx; + 8x, +8x5 + 46

It now shows that K.(4, B) = K.(4, B). Therefore, optinalysis is a rotation invariant.
Prove of property D4 Invariance under pericentral rotation (Alternate reflection)
Optinalysis is invariant under alternate reflection if K, (g, B ) * K, (ff, B )

Definition: Central rotation refers to the rotation of all the members of two mathematical structures of an isoreflective pairs
through 180° around the pericentres (A pericentre is a mid-point of each of the two comparing mathematical structures). This
corresponds to an alternate reflection (i.e., from the head-to-head to tail-to-tail reflection or otherwise). An alternate reflection
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is the alternative form of reflection between isoreflective pairs. The alternate reflection can, in some cases, be used to distinguish
between two similar structures but not identical to each other.

Suppose we have an optinalytic construction of isoreflective pairs with an assigned optiscale (R =1, 2, 3,4, 5,6, 7) as

follows:
o s B -
A = (tx1, X2, X3) - B = (x3,x3,%1)
f: v v v
R= (1,23, 4, 56,7)
By alternate reflection, the optinalytic construction becomes:
- s ~ :
B = (x3,%;,tx;) o A= (1, X2, X3)
f: v v v
R= (1,23, 4, 56,7)
Such that § € A,& B; A,B,5,& R € R; and A & B are isoreflective paits in an annotated pairing about a midpoint
6.
Then,
= 4(tx; +x, +x3+0 +x3+ x, +x
KC(A, B) _ (tx; 2 3 3 2 1)
tx; + 2x, + 3x53 + 48 + 5x3 + 6%, + 7x;
o oy Atxy + 4x +8x, +8x3 + 445
K.(AB)=————2 "% #1
tx; + 7x, + 8x, + 8x3 + 46
Similarly,
- 4(xz3+x,+tx; +5+x,+ x, + X
KC(A, B) _ (3 2 1 1 2 3)
X3 + 2x, + 3tx; + 46 + 5x + 6x, + x4
ooy Axg +4x, + 4t + 46 + 4xy + dxy + 4
K.(A,B) =
X3 + 2x, + 3tx; + 46 + 5x + 6x, + x4
4oy Atxy +4x; + 8x, +8x5 + 46
K.(A,B) = *1
«(4.B) 3tx; + 5x; + 8x, + 8x5 + 46
It now shows that K, (121_, B ) * K, (z‘T, B ) Therefore, optinalysis is a rotation variant (not rotation invariant).
Appendix E

Property E: Optinalytic normalization

An asymmetrical, dissimilat, or unidentical state between autoreflective or isoreflective pairs of given mathematical
structures under optinalysis, can be transformed near-symmetrical or similar states by central modulation. A central modulation
refers to the deliberate increase or dectease in quantity at the central mid-point (§). The quantity affected is called the
normalization unit or value, .

Prove of property E:
Optinalysis is invariant under central modulation if K.(4, B) = K.(4,6 + 8, B).

Suppose we have an optinalytic construction of isoreflective pairs with an assigned optiscale R =1, 2, 3, 4, 5, 6, 7) as

follows:
_ 6 _
A = (txq, X3, X3) - B = (x3,%x,%1)
f: ¢ ¢ ¢
R= (1,23, 4, 56,7)

By central rotation, the optinalytic construction becomes:
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5+
A = (txq, X2, X3) _;B B = (x3,%2,%1)
f: ¢ ¢ ¢
R= (1,23, 4, 56,7)

Suchthat§ € A,& B; A,B,5,5,& R € R;and A & B ate isoreflective paits on a chosen pairing about a midpoint §.

Then,
4(tx; +x,+x3+6+ x5+ x, +x
KC(A,B)= ( 1 2 3 3 2 1)
tx; + 2x, + 3x3 + 48 + 5x3 + 6x, + 7x;
4tx, + 4x; +8x, + 8x5 + 46
K.(A4,B) = — L 2 3 #1
tx; + 7x; + 8x, + 8x3 + 46
Similarly,
4(tx; +x,+x3+ (2B + x5+ x, +x
KC(A,Siﬁ,B) — ( 1 2 3 ( ﬁ) 3 2 1)
txy + 2x, + 3x3 +4(6 £ f) + 5x3 + 6%, + 7x;
dtx, +4x, +4x3 +4(6 £ B) + 4x3 + 4x, + 4x
K.(A,6 + B,B) = 1 2 3 (6xp) 3 2 1
tx, + 2x, + 3x3 +4(6 £ ) + 5x3 + 6x, + 7x;
4tx, + 4x; +8x, +8x3 +4(6 £
KC(A,Siﬁ,B)= 1 1 2 3 ( ﬁ)

tx; + 7x, + 8x, + 8x3 + 4(8 = B)

It now shows that K.(4,B) # K.(4,8 £ 3, B). Therefore, optinalysis is variant (not invariant) under central
modulation (normalization).

Let f = oo, than K. (4,6 + B, B) = 1. Therefore, A and B are normalized similar, or symmetrical.
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