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Abstract: We explored the statistics of filtering of simple patterns on a number of deterministic and
random graphs as a tractable simple example of information processing in complex systems. In this
problem, multiple inputs map to the same output, and the statistics of filtering is represented by
the distribution of this degeneracy. For a few simple filter patterns on a ring we obtained an exact
solution of the problem and described numerically more difficult filter setups. For each of the filter
patterns and networks we found a few numbers essentially describing the statistics of filtering and
compared them for different networks. Our results for networks with diverse architectures appear to
be essentially determined by two factors: whether the graphs structure is deterministic or random,
and the vertex degree. We find that filtering in random graphs produces a much richer statistics than
in deterministic graphs. This statistical richness is reduced by increasing the graph’s degree.
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1. Introduction

Filtering is the processing of an input signal to produce an output signal according to some
rule, based on the content of the input. The filter does not add information, with the number of
possible outputs being less than (or at most equal to) the number of possible inputs. Thus, outputs
are degenerate: multiple inputs map to the same output. Even very simple filters can produce a
complex distribution of degeneracies [1]. This characteristic, of a nontrivial mapping of a configuration
space to a smaller set of final configurations, also appears in sampling, compression and more general
information processing [2,3], and in numerous complex systems, including the basins of attraction of
local minima in spin glasses, and deep learning neural networks [4–6]. Understanding the statistics of
degeneracies can give important insight into these systems. In a previous work [1], we showed that a
simple filtering problem produces analogous behaviour of the degeneracy distribution to these more
complex systems, and that one can obtain exact results up to large system sizes that are simply not
accessible in more complex problems.

Numerous studies have shown that the heterogeneous structure of interactions between elements
of a complex system, usually represented as a complex network, can have a profound effect on the
properties of the system [7]. Here we examine a simple filtering process on a network. The input
consists of the binary states of nodes in a given network. The filter outputs a 1 for every instance of a
particular pattern of states on a node and its immediate neighbours, and a 0 when the pattern is absent.
This generalises the filtering problem examined in Ref. [1] for binary inputs in a cyclical string (ring).
The process applied to a small graph is represented in Figure 1. We studied this problem on a variety
of degree-regular graphs. We studied this problem on a variety of degree-regular graphs. We show
that one may find the exact degeneracy distribution corresponding to the complete set of all possible
inputs, up to relatively large system sizes, for any given graph. Just as in our previous study on rings,
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we show that the principal characteristics of the degeneracy distribution are described asymptotically
by three key numbers. These numbers may be obtained exactly by simple arguments.

SR WR

Input:

Outputs:

Figure 1. Application of different filters to a set of zeros and ones place on a graph. Each node of the
input and output graphs is in one of two states, namely 0 (open circles) or 1 (closed circles). In the SR
filter, an output node is one only when the corresponding input node is one and all its neighbours are
zero. In the WR filter, an output node is one when the corresponding input node is one and one or
more of its neighbours are zero.

This problem serves as a tractable simple model to explore information processing in complex
systems. In a graph, the connections between nodes create complex interactions between the
filter output at each node. We show that the degeneracy distribution correctly captures this
complexity. In particular, the entropy of the degeneracy distribution, called the relevance [8] is lower
in deterministically constructed graphs, and higher in random graphs. We show that relevance is
maximum when the graph degree takes its smallest value greater than two. We compared two different
filters, and found that the stronger filter (detecting less easily satisfied conditions) is more informative,
because it is more sensitive to the state of neighboring nodes. Interestingly, as Figure 6 demonstrates,
our results for regular graphs of diverse architectures essentially depend only on a vertex degree.

2. Results

2.1. Filtering statistics on a ring

For orientation, we begin by studying nodes located on a ring. The input is a set of N strings of
zeroes and ones {xi}, xi = 0, 1, of length n, assuming the periodic condition x1 = xn+1. We consider
the complete set of all possible unique inputs. Its size N is determined by the size n of inputs, N = 2n.

The filter works as follows: every instance of a specific pattern in the input (a short sequence of
ones and zeroes) is marked by a one in the corresponding position in the output. All other positions
are marked with zeroes. Multiple inputs correspond to the same output, creating a distribution of
degeneracies of the outputs. We illustrate the results from a simple example filter pattern in Figure 2 (a)
and (b). We observe complex degeneracy distributions reminiscent of those observed in, for example,
Ref. [9].

The filter pattern may be arbitrary, but for illustrative purposes we will consider in particular
a family of filters consisting of a string of ones with zeroes at either end: 010, 0110, 01110, etc. The
length of the filter, w, can be used as a crude control parameter to observe the effects on resolution and
relevance (see below). For convenience, we use the notation 1l to indicate a chain of l ones. Thus the
filter of length w is 01w−20. In principle, for each of the 2n possible inputs we can obtain, one by one,
an output numerically. In practice, we use a more efficient algorithm described in Ref. [1]. Other types
of filter patterns on a ring may be analyzed using the same methods.
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Figure 2. Degeneracy distribution (a) and cumulative degeneracy distribution (b) for the filter 010 on a
ring, and for its generalization on a torus, which is a 1 with four neighboring 0’s [panels (c) and (d)].

2.1.1. Degeneracy distribution

We obtained the number of outputs N (d) for the full spectrum of degeneracies d for a variety
of filters. The degeneracies di , i = 1, ..., D, form a discrete spectrum of values where dD is the largest
degeneracy, and d1 = 1. A few examples of the degeneracy distributions and cumulative degeneracy
distributions are shown in Figure 2. Here Ncum(di) ≡ ∑D

j=iN (dj). In particular, the total number of
outputs is given by M(n) = Ncum(d1). The cumulative degeneracy distribution is broad, but decays
more rapidly than a power law.

The tail of the cumulative distribution has a notably complex structure resembling a staircase,
with steep jumps between steps. The heights of these jumps are especially large in the region of high
degeneracies. Similar structures may be observed in real systems, see for example Figure 3 of Ref.
[9]. As shown in Ref. [1], when the number of ones in the output is few, and some or all of them
are separated by large gaps, such outputs have very similar but not exactly equal degeneracies for
finite n. These closely located degeneracies lead to the staircase structure observed in the cumulative
distribution.

Let us consider the evolution of the degeneracy distribution (and cumulative distribution) with
input size n. The largest degeneracy dD(n) corresponds to the output with all zeroes, and for large
n, grows as dD(n) ∼= zn

d , where the value of zd depends on the specific filter. Naturally N (dD, n) = 1.
The number of outputs with degeneracy 1 behaves as N (1, n) ∼= zn

a . Meanwhile the total number of
outputs, M(n) is asymptotically M(n) ∼= zn

g . Together, these three key constants, zd, zg and za, delimit
the asymptotic behaviour of the degeneracy distribution [1]. We list these numbers for a selection of
short filter patterns on a ring in Table 1.

Rather surprisingly, one may obtain these asymptotic behaviours, and exact expressions for the
constants zg, zd and za through simple arguments. Each output consists of isolated ones separated
by strings of zeroes of various lengths. By careful consideration of how valid outputs for a larger
n can be constructed by adding specific segments to shorter outputs, one may construct recursive
relations for the key quantities M(n), dD(n) and N(1, n), whose asymptotics are given by zg, zd and za.
To demonstrate this, we focus on the particular family of filter patterns consisting of a chain of ones
with a zero at each end. The shortest such pattern is 010. Each member of this set may be indexed by
the length of the filter, w ≥ 3. The filter pattern length w determines the minimum number of zeroes,
w− 2, between each one. We give the derivation of zd, zg and za for any w in Section 4.2 below.
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2.1.2. Effect of filter length

In analogy with complex systems, we can consider each filter pattern as sampling the hidden state
of a complex system [1]. The length of these filters acts as a crude control parameter of our sampling.
Intuitively, we expect shorter filters to be more informative. The resolution of a sampling process,
defined as the entropy of a sample:

H[y] = − 1
N

N

∑
i=1

log
(

di
N

)
= −∑

d

dN (d, n)
N

log
(

d
N

)
(1)

is a measure of the ability to distinguish, at the output, between different input states [8]. It takes its
maximum value when there is a different output for each input. However in this case all outputs are
distinct, and so these filters are not informative about the system being sampled. As shown in Ref. [8],
the informativeness of a sample is captured by a different entropy measure, the relevance, defined as

H[d] = −∑
d

dN (d, n)
N

log
(

dN (d, n)
N

)
. (2)

Results for a variety of short filter patterns are given in Table 1. The family of filters composed of
a string of ones with a zero at each end, 010, 0110, 01110, etc., are indicated in boldface in the Table. As
can be seen in the Table, the relevance is greater for shorter filters, but is actually zero for the shortest
possible filters 0 and 1. The filter pattern 1 trivially reproduces the input, while 0 it’s inverse, and
all outputs have degeneracy one. Within the family of filters 01w−20, the relevance is maximised for
w = 3.

Filter patterns of length two begin to have nontrivial properties. For the pattern 01, the number of
outputs with degeneracy 1, N(1, n), is either 0 (when n is odd) or 2 (when n is even), so za = 1. This is
because the only outputs that have degeneracy one are periodic sequences of alternating 0’s and 1’s —
there are two of these sequences n is even, and none when n odd. The maximum degeneracy dD(n) for
this pattern grows by an integer factor of 4 for an increment in n of 5. In fact it can be written explicitly,

dD(n > 11) =
[

3
44/5

]−mod(n,−5)
4n/5, (3)

where the coefficient of 4n/5 equals (3/44/5)0 = 1, (3/44/5)4 = 0.959164, (3/44/5)3 = 0.969214,
(3/44/5)2 = 0.979369, and (3/44/5)1 = 0.989631 for mod(n, 5) = 0, 1, 2, 3, and 4, respectively. As a
result, the number zd, which gives the asymptotic behaviour of the maximum degeneracy dD, is equal
to 41/5.

As can be seen in Figure 5 (c), the degeneracy distribution of the filter 01 does not have
the characteristic shape, and the broad tailed cumulative distribution seen in other filters. The
filter pattern 00 already produces more complexity, see Figure 5 (a). The degeneracy distribution
and the cumulative distribution already have the shape and complexity seen in longer filters [1].
Curiously N(1, n) = dD(n) + in + (−i)n (where i is the imaginary unit) where the last two terms give
0, 2, 0,−2, 0, 2, 0,−2, 0, . . . for n = 3, 4, 5, 6, . . . . This means that zd = za ≈ 1.618.

The largest degeneracies behave as ∼= zn
d for large n. The number zd quickly approaches 2 as the

filter pattern length increases. Since N = 2n, this means that almost all outputs concentrate in a few
outputs, and in the limit, in a single state, i.e. all outputs are the same and the filter patterns are not
informative. For the shortest filter patterns, the value of zd falls rapidly, while the relevance increases,
indicating a transition to informative sampling. On the contrary, zg, which gives the total number of
outputs M(n), increases with decreasing filter length, as shorter filters have more possible outputs.
Taken together, these results indicate that the maximally informative sampling for a given family of
filters is the shortest pattern having length greater than 1. This behavior is analogous to the transition
observed in more complex problems (see for example [10]).
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Table 1. Values of the numbers zg, zd, and za for different filters. Note that we also included filter
patterns consisting of all zeroes. For each filter we also give the relevance per node H[d]/n (in nats)
calculated from the degeneracy distribution and the resolution per node H[y]/n. For the sake of
comparison, the standard entropy of the inputs of this size is H/n = ln 2 = 0.69315. Finally we include
the number of distinct degeneracies D for each pattern. Inputs of size n = 36 were used except for
filters 00 and 10, for which n = 34, and 000 for which n = 35. Values for D for these three filters were
extrapolated to n = 36 for comparison with other results.

pattern zg zd za H[d]/n H[y]/n D

0 (or 1) 2 1 2 0 0.69315 1

00 1.75488 1.61803 1.61803 0.18261 0.48468 924(1)

10 1.61803 1.31951 1 0.13954 0.46986 513(1)

010 1.61803 1.75488 1.46557 0.17248 0.35187 777

000 1.61803 1.83929 1.49710 0.1453(1) 0.30105 554(2)

0110 }
1.46557 1.86676 1.22074 0.11881 0.22387 6980100

0000 1.52895 1.92756 1.41963(2) 0.08856 0.17673 311

00100 1.46557 1.9417 1.38028 0.06434 0.13371 291

01110 }
1.38028 1.93318 1.16730 0.06312 0.13562 25501100

01000

01010 1.44327 1.94789 1.32472 0.06117 0.12584 301

00000 1.46557(2) 1.96595 1.3652(2) 0.05108 0.10052 190

001100 }
1.38028 1.96931 1.2499(2) 0.03606 0.07899 197001000

010010 1.37108(1) 1.97113 1.1938(5) 0.03586 0.07692 218

011110




1.32472 1.96717 1.13472 0.03448 0.07939 123

011100
011010
011000
010100
010000

000000 1.4176(2) 1.98358 1.32486 0.02968 0.05606 123

0110110 1.32472 1.98574 1.158(2) 0.02084 0.04353 129

0111110 }
1.28520 1.98386 1.11278 0.02016 0.04535 640111010

01111110 1.25542 1.99203 1.09698 0.01213 0.02546 36

011111110 1.23205 1.99605 1.08507 0.00727 0.01411 25

0111111110 1.21315 1.99803 1.07577 0.00427 0.00774 16
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Note that one may also consider filters constructed as logical combinations of more than one
pattern. For example, there are 3 kinds of ‘OR’ filters of size 2 + 2 (in fact, there are (16− 4)/2 = 6
combinations of different filters, but some are equivalent in terms of degeneracies). All of these OR
filters have trivial degeneracies: 01 OR 10 detects when the next digit is different from the current one.
Given the value of an input digit we can completely reconstruct that input, and, since the first input
digit has 2 possible values, each output has degeneracy 2. The only degeneracy in the spectrum is 2
and its frequency is 2n−1, so zd = 1 and zg = 2. There are no outputs of degeneracy one, N(1, n) = 0.
00 OR 11 detects when the next digit is the same as the current one. The same reasoning as for the
filter 01 OR 10 applies here: we can reconstruct the input completely from the output if we know a
single digit of the input. Finally 11 OR 10 (which is the same as 11 OR 01, 00 OR 10 and 00 OR 01) is
equivalent to the filter 1 of length 1.

2.2. Filtering on graphs

The process described in the previous Section may be generalised to an arbitrary graph as follows.
The input consists of the binary status for each node in the graph. We filter for a particular condition of
the state of a node and of its immediate neighbors. If the state of the node and its neighbours matches
the filter pattern, the output for that node is 1, otherwise it is 0. We consider two examples: Firstly, we
set the output to 1 if the selected node has state 1 and all of its neighbours have state 0 (we refer to this
filter as the strong rule, or SR). This filter applied on a ring is equivalent to the pattern 010 discussed in
the previous Section. Secondly, we apply a less selective filter, outputting 1 if a node is in state 1 and
any of its neighbours has state 0 (we call this filter the weak rule, or WR). We illustrate the application
of these two filter patterns to a small graph in Figure 1.

These filters were applied to several families of degree-regular graphs. These were chosen to have
a variety of structures and to vary in the degree of randomness in their construction, while being of
comparable size and degree. We considered the following families of graphs: Small world graphs.
These graphs created by placing all nodes in a ring, and adding shortcuts between nodes to reach
the desired degree. The locations of shortcuts were either random – we use the code SW(q) for these
graphs, where q is the graph degree – or in a deterministic way – SWB(q); Random regular graphs
(RRG); Tori, which are two dimensional square lattices with cyclic boundary conditions; Cages. These
are graphs defined by two numbers, the degree q and the shortest cycle length g. A (q,g)-cage is the
graph fulfilling these properties while having the smallest possible numbers n of nodes [11]. For each
family of graphs we considered different sizes, up to at least n = 30, and where possible, degrees, from
q = 2 up to q = 5. Finally we investigated the second and third Apollonian networks (Apollonian 2
and 3), which are the only graphs here that are not degree regular.
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Figure 3. Degeneracy distributions (left) and cumulative degeneracy distributions (right) for outputs
of the SR filter on random regular graphs of degree 2 (a,b) 3 (c,d) and 4 (e,f).
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Figure 4. Degeneracy distributions and cumulative degeneracy distributions for outputs of the SR
filter on selected deterministic graphs of degree 2 (a,b) 3 (c,d) and 4 (e,f).
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We give some examples of the resulting degeneracy distributions and cumulative degeneracy
distributions, for the SR filter, in Figures 3, for random graphs, and 4, for deterministically generated
graphs. Note that the distributions for random graphs correspond to a single realization of the graph.
We see that there is a dramatic difference in the distribution for random graphs between degree two
and degree three. The degree two random regular graph necessarily consists of one or several closed
rings, and the distribution is little different than that shown in Figure 2 (a). For degree three, there
is a great deal of randomness in the formation of the graph, and this is reflected in the degeneracy
distribution, which becomes much more dense, having a fine structure not observed in deterministic
graphs. For higher degrees, the distribution becomes less broad, and as we will discuss below, this
corresponds to a reducing relevance with increasing degree.

We have not included examples of the distributions for the "small world" graphs. The deterministic
small world graphs, SWB(q), produce distributions almost indistinguishable from those for other
deterministic graphs of the same degree, while the random small world graphs, SW(q), generate
degeneracy distributions very similar to those found for random regular graphs. For completeness,
we give the degeneracy distributions and cumulative distributions for the same graphs using the WR
filter in Figures A1 and A2 in Appendix A.
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Figure 5. Degeneracy distributions and cumulative degeneracy distributions for outputs of the SR
filter on selected deterministic graphs of degree 2 (a,b) 3 (c,d) and 4 (e,f).
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We plot some examples of some less typical degeneracy distributions in Figure 5. These are the
00 and 10 filters applied on a ring, and the SR filter applied to Apollonian networks (which are not
degree regular).
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Figure 6. Dependence of key observables related to the degeneracy distribution on graph degree
q. (a) The relevance entropy H[d] scaled by system size n. (b) Resolution H[y]. (c) Total number of
degeneracies D(n) for n = 30. (d) The nth root of the largest degeneracy dD(n), which tends to zd. (e)
The nth root of the number of outputs M(n), tending to zg. (f) The nth root of the number of outputs of
degeneracy onem N(1, n), tending to za.

In Figure 6 we represent various quantities of interest as a function of graph degree, for the
different graph families studied. We see that there is a clear separation in results between the two
filters.

The weak filter (WR) detects when a node has state 1 while having at least one immediate neighbor
with state 0. This neighbour condition is more easily satisfied the larger the number of neighbours
q. Thus for large q, the number of possible outputs M(n) for the WR filter approaches the number of
possible inputs, 2n. We see in panel (e) that indeed the nth root of M(n), which tends to zg for large n,
approaches 2 for large q. By the same token, most outputs have a degeneracy of one, so the number of
outputs of degeneracy one, N(1, n) also approaches 2n (za approaching 2) for large q [panel (f)], with
while the largest degeneracy dD(n) (whose asymptotic behaviour is given by zd) grows only slowly
with n, [panel (d)]. The resolution H[y] measures how well the filter distinguishes different inputs,
and as we see in panel (b) of Figure 6, and in agreement with the above observations, the resolution
for the weak filter is high. The maximum possible value of H[y] is n ln 2, corresponding to a value of
H[y]/n = 0.693... in the figure. We see that the resolution is already close to this value at q = 5.
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The correct measure of how informative a sample of the observable variables of a complex system
is about the underlying system is the relevance [8], H[d]. Such sampling is represented in our problem
as the filtering process, and the interactions of the system by the graph structure. The importance of
the relevance is confirmed by our results, as shown in Figure 6 (a). A higher relevance is measured
in graphs having some randomness in their structure, while deterministic and regular graphs have
lower relevance. This is particularly true for the strong filter SR, which produces a significantly
higher relevance for random regular graphs (RRG) and rings with random shortcuts (SW), compared
with rings with deterministic shortcuts (SWB) and cages. The effect for the WR filter is much less
pronounced.

The highest relevance occurs at degree q = 3. The explanation for this is clear. As shown above,
and in [1], smaller filters generally produce higher relevance, as there are more outputs than for larger
filters, except in the extreme limit of perfect reproduction of the input (maximum resolution). Thus
we would expect lower values of q, which correspond to smaller SR filters, to have higher relevance.
Meanwhile, and opposing this trend, graphs of degree q = 2 are necessarily either rings or sets of
rings, which thus have a (nearly) deterministic structure and suffer a penalty in relevance. Notice
also the similarity of the degeneracy distributions for q = 2 in Figures 3 and A1. As can be seen in
the figure, the reduction in relevance in moving from q = 3 to q = 2 due to this regularity outweighs
the expected increase due to the filter being smaller. To put it another way, the maximum relevance
occurs at the smallest value of q for which the graph is non deterministic. This echoes our finding for
filters on rings, for which the maximum relevance is found for the shortest filter which doesn’t trivially
reproduce the input [1]. We show the degeneracy ditribution for q = 3 for a deterministic graph in
Figure 4, and for a random graph in Figure 3.

For the SR filter, in contrast to the weak filter, there is significant degeneracy of the outputs. The
number of outputs is significantly less than the number of inputs, as is the number of outputs with
degeneracy one. Similarly, the resolution is small for the SR filter, for all graph families, and decreases
with q. The largest degeneracy, dD, on the other hand, does become very large. In the limit of large q, a
large fraction of possible outputs give the same single output (all zeroes). In Figure 6 (c), the behaviour
of the number of degeneracies, D(n) noticeably mirrors that of the relevance, H[d]. Note that data
points for random graphs are averaged over several realisations of the graph.

In Table 2 we list the key degeneracy distribution statistics for the SR filter, for all families of
graphs studied. Corresponding results for the WR filter may be found in Table A1. In addition to
representing the data highlighted in Figure 6 in the quantitative form, these tables demonstrate the
size effects with exponentially rapid convergence to the infinite n limit. In this work, we are mainly
interested in regular graphs (graphs where nodes have a uniform degree), because we can better
isolate the effects of varying the graph’s degree. Nevertheless, for the sake of completeness, we also
present results for a few examples of non-regular graphs, namely Apollonian networks. In Tables 2
and A1, each group of rows delimited by horizontal lines represents a different class of graphs. The
four classes at the top of the tables, namely Apollonian networks, cage graphs, square lattices with
periodic boundary conditions (torus), rings with deterministic shortcuts, are deterministic graphs,
while the two remaining classes represent random models, namely random regular graphs, and rings
with random shortcuts. The numbers presented for the random models result from averaging over 10
realizations sampled uniformly at random.

We include results for graphs of several sizes for each type of graph. This allows one to see
the convergence of values with increasing n. Within the set of consecutive rows of each class, the
graphs are ordered by ascending degree, then by ascending number of nodes. The exception to this
organization is the two first rows, which are for the non-regular Apollonian networks. All of these
numbers, as well as the number of degeneracies D, for n = 30 are plotted in Figure 6.
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Table 2. Important values for the degeneracy distribution resulting from applying the strong rule
(SR) filter to various graphs. The numbers n√M(n), n√dD(n) and n√N(1, n) approximate zg, zd and za

respectively. We also give the relevance per node H[d]/n and the resolution per node H[y]/n. Numbers
for RRG(q) and SW(q) were obtained by averaging over 10 random realizations.

graph n n√M(n) n√dD(n) n√N(1, n) H[d]/n H[y]/n

Apollonian 2 7 1.47236 1.94420 1.40854 0.08504 0.12919
Apollonian 3 16 1.52380 1.94596 1.49013 0.08148 0.13005

(3,5)-cage 10 1.54199 1.88916 1.42694 0.10463 0.22185
(3,6)-cage 14 1.54904 1.88549 1.46952 0.09741 0.22302
(3,7)-cage 24 1.54516 1.88688 1.42191 0.12412 0.22268
(3,8)-cage 30 1.54618 1.88722 1.44630 0.08763 0.22254
(4,5)-cage 19 1.48991 1.94458 1.37494 0.08094 0.13458
(4,6)-cage 26 1.50129 1.94386 1.44997 0.05243 0.13497
(5,5)-cage 1 30 1.44928 1.97192 1.34932 0.04164 0.07890
(5,5)-cage 2 30 1.44984 1.97191 1.35558 0.04602 0.07891
(5,5)-cage 3 30 1.44954 1.97192 1.35543 0.04201 0.07890
(5,5)-cage 4 30 1.44964 1.97191 1.35280 0.05264 0.07891

torus 3×3 9 1.47967 1.94480 1.42350 0.07165 0.13112
torus 4×4 16 1.51160 1.94843 1.46895 0.06205 0.13043
torus 5×5 25 1.50066 1.94752 1.41779 0.05857 0.13132
torus 6×5 30 1.50206 1.94754 1.42286 0.06159 0.13131
torus 10×3 30 1.48922 1.94678 1.39796 0.05933 0.13100
torus 8×4 32 1.50701 1.94785 1.44980 0.06251 0.13096
torus 6×6 36 1.50405 1.94756 1.44490 0.05890 0.13130

SWB(3) 10 1.55564 1.89336 1.48457 0.10987 0.21539
SWB(3) 20 1.55376 1.89450 1.46394 0.09850 0.21540
SWB(3) 30 1.55377 1.89450 1.46573 0.10256 0.21541
SWB(4) 12 1.48818 1.94653 1.40063 0.07107 0.13103
SWB(4) 21 1.48924 1.94678 1.39802 0.06401 0.13100
SWB(4) 30 1.48922 1.94678 1.39797 0.06211 0.13100
SWB(5) 12 1.43618 1.97359 1.32007 0.04433 0.07602
SWB(5) 20 1.43469 1.97223 1.31634 0.03927 0.07765
SWB(5) 32 1.43463 1.97225 1.31607 0.03597 0.07765

RRG(2) 10 1.55934 1.77122 1.41900 0.15869 0.32044
RRG(2) 20 1.60061 1.76297 1.45744 0.16195 0.33977
RRG(2) 30 1.61251 1.75289 1.46125 0.16997 0.35053
RRG(3) 10 1.49614 1.87903 1.30837 0.17514 0.21708
RRG(3) 20 1.52503 1.87847 1.37793 0.20373 0.22357
RRG(3) 30 1.54129 1.87706 1.41134 0.21442 0.22868
RRG(4) 10 1.44023 1.93770 1.30201 0.11648 0.13463
RRG(4) 20 1.48205 1.93399 1.36490 0.14077 0.14659
RRG(4) 30 1.48439 1.93797 1.37705 0.13959 0.14166
RRG(5) 10 1.41641 1.95111 1.27098 0.10038 0.11042
RRG(5) 20 1.42488 1.96513 1.30706 0.08722 0.08896
RRG(5) 30 1.43068 1.96825 1.31653 0.08344 0.08393

SW(3) 10 1.55356 1.87107 1.43216 0.16610 0.23788
SW(3) 20 1.55998 1.86334 1.43951 0.22050 0.24702
SW(3) 30 1.54842 1.88077 1.43167 0.21643 0.22839
SW(4) 10 1.47637 1.91449 1.33514 0.14321 0.16987
SW(4) 20 1.49157 1.93385 1.38141 0.14235 0.14885
SW(4) 30 1.49811 1.93505 1.39764 0.14519 0.14804
SW(5) 10 1.43017 1.95045 1.29919 0.09802 0.11240
SW(5) 20 1.44575 1.95995 1.33955 0.09722 0.09962
SW(5) 30 1.45251 1.96562 1.35962 0.08951 0.09047

For fully connected graphs, both the strong and the weak rules produce trivial output and
degeneracy distributions. Using the strong rule, for an output node yi to be 1, we must have xi = 1
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and all other inputs xj 6=i = 0. So, when there is a 1 in the output string, we have yi = xi. There are n of
these outputs, and their degeneracy is 1. Since, there can be no more than a single 1 in the output string,
the only other possible output is a string of n zeros, which has degeneracy 2n − n. In this case there are
only two degeneracies in the degree distribution d1 = 1 and d2 = 2n − n, and their frequencies are
N(d1, n) = n, and N(d2, n) = 1, respectively.

On a fully connected graph under the weak rule, for an output node yi to be 1, it is enough to
have xi = 1 and just one other input xj 6=i = 0. Therefore, when one or more of the inputs xi is 0 the
output is equal to the input. The only situation in which the output does not match the input is for an
input string of all 1’s, in which case the output is a strings of 0’s. The weak rule also produces only
two degeneracies d1 = 1 and d2 = 2, with frequencies N(d1, n) = 2n − 2, and N(d2, n) = 1.

It is worth noticing the relation with the class of cage graphs, which we have studied here:
(q, 3)-cage graphs are fully connected graphs with q + 1 nodes, while (q, 4)-cages are bipartite graphs
with two fully connected layers of q nodes each. Bipartite graphs with two fully connected layers of
the same size also result in trivial degeneracy distributions in both the strong and weak rules. With the
strong rule applied to such a bipartite graph, for an output yi to be 1 we must have all inputs in the
opposite layer to be xi = 0. Conversely, when one input of one of the layers is xi = 1 all the outputs of
the other layer are 0. So, when all the input digits of one of the layers are all equal to 0 the outputs
equal the inputs, yi = xi, and when there are 1’s in both layers of the input, the output is all 0’s. In
this case the degeneracy distribution also contains just two degeneracies, d1 = 1 and d2 = 2n − 2n/2+1,
with frequencies N(d1, n) = 2n/2+1 and N(d2, n) = 1, respectively (notice there are n/2 nodes in each
layer). With the weak rule applied to symmetrical fully connected bipartite graphs, for an output yi to
be 1 it is enough to have just one xi = 0 in the opposite layer. Therefore, all inputs with at least a 0 in
each layer produce an output yi = xi. All inputs with at least one 0 in layer α and only 1’s in layer β

produce an output consisting of all 0’s in layer α and all 1’s in layer β. Finally, if the input contains no
0’s in either layer, the output is yi = 0 for all i. Therefore, we have d1 = 1, d2 = 2, and d3 = 2n/2 − 1,
with frequencies N(d1, n) = 2n − 2n/2 − 1, N(d2, n) = 1, and N(d3, n) = 1, respectively.

From the trivial degeneracy distribution of these examples of graphs, i.e., fully connected and
bipartite fully connected, we see that the entropies approach trivial limits for large system sizes.
Namely, for the strong rule, using Eqs. (1) and (2) for the output and degeneracy entropies, respectively,
we see the in both types of graphs H[y] and H[d] both approach 0, since the distribution is dominated
by a single degeneracy d ∼= 2n with N(d, n) = 1. With the weak rule,the entropy H[y]/n approaches
ln 2 = 0.693. . . and H[d] approaches 0. In general, we expect that the entropies approach these limits
was we increase the degree of the graphs generated by any model. Interestingly, this effect is already
quite visible in Tables 2 and A1, when we compare the values of the entropy for different degrees
within each class of graphs, even for degrees up to only 5.

3. Discussion

In Ref. [1] we introduced a simple filtering problem which produces a rich and complex
distribution of output degeneracies. The input is a cyclic sequence of zeroes and ones (a ring),
and the process outputs a one in any position where a particular short pattern occurs, and a zero
otherwise. The tractability of the problem means that we are able to give the complete degeneracy
distribution, for the set of all possible inputs, up to relatively large system sizes.

In this paper, we have extended this problem to consider general graphs. The input is a digit 1 or
0 assigned to each node of the graph, and the output for each node is 1 if the state of the node and those
of its immediate neighbours match a given filter pattern, and 0 otherwise. We demonstrate this process
by calculating the full degeneracy distributions for various degree regular graphs with 30 or more
nodes, using two example filter patterns. The weak (WR) pattern registers a 1 if the corresponding
node has state 1 and at least one of its neighbours has state 0. The strong (SR) pattern only registers 1 if
the node is in state 1 and all of its neighbours are in state 0. We found degeneracy distributions having
similar form and features to those seen in the simpler problem of filtering on a ring. We showed that
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three key features of the degeneracy distribution: the largest degeneracy dD(n), the number of distinct
outputs M(n) and the number of outputs having degeneracy one, N(1, n) behave as zn

d , zn
g and zn

a ,
respectively, where the three numbers zd, zg and za take values from 1 to 2 depending on the graph
and the filter. We find precise values for these three numbers for all the graphs studied.

The two filter examples used give quite different results, and have different behaviour with
respect to graph degree. The key results are summarised by our main figure, Figure 6. The weak rule
filter, WR, is only weakly sensitive to the neighborhood of a node, and hence the structure of the graph.
For large degree, it almost always produces an output matching the input. Thus the WR filter produces
large values for the ouput entropy, called the resolution, and small values for the degeneracy entropy,
the relevance.

The strong rule filter, SR, on the other hand, imposes a condition on all the neighbours of the
node where the filter is applied. This produces a much larger relevance (which is a measure of the
informativeness of the filtering process) in random graphs, but much lower resolution, as the number
of unique outputs is restricted. The relevance is largest for the smallest graph degree not equal to two.
Deterministically constructed graphs do not demonstrate the same peak in relevance, underlining the
importance of this measure for detecting complexity. For larger degree, the condition becomes more
restrictive, so the number of outputs is reduced. The resolution decreases with increasing q, but so
does the relevance. The reason that the q = 2 graphs do not give the maximum relevance is that these
graphs necessarily have a highly predictable structure. All nodes lie in one or at most a few rings. One
may observe that the degeneracy distributions and corresponding statistics are very similar for all
families of graphs studied when q = 2. The fact that results are largely determined by degree, indicates
that it should be possible to write a mean field theory for the degeneracy distribution.

Similar complexity is observed in various complex systems, particularly with regard to
information processing. In such systems, degeneracy distributions has been shown to be an important
observation of the system. The entropy of this distribution, called the relevance, was shown [8] to be
the relevant measure of complexity, and we showed that our simple problem reproduces many of the
important qualitative phenomena observed in such systems. The filtering problem is therefore a highly
tractable problem illuminating some of the key features of information processing in more complex
systems. The extension of this problem to arbitrary graphs, makes the interactions between nodes
more complex, and the analogy with the complex interactions of real complex systems more explicit.

4. Materials and Methods

4.1. Calculation of degeneracy distributions

The distributions shown in Figures 2-5, A1 and A2, and the numbers presented in the Tables 1,
2, and A1 and plotted in Figure 6 were experimentally obtained by considering all 2n configurations
of the n input binary variables xi individually. For a specified filter, or rule, we obtain the output
variables yi corresponding to each input. From the frequency with which each output configuration
appears, we build the degeneracy distribution.

For the sake of simplicity in the implementation of the computational experiments, we apply
a basic indexing system to the output configurations. We start by initializing an array with 2n

positions populated with zeros, representing the frequency of observation of each output. Then, as
we systematically run through all the possible inputs and calculate the corresponding outputs {yi},
we increment by 1 the value in position ∑i yi2i of the array, where i = 0, 1, . . . , n − 1. In the end
of this process, each position of the array contains the frequency of its corresponding output. This
method is memory intensive, and in some cases uses much more memory than strictly necessary, since
most of the positions of the frequency array will remain unchanged after initialization (corresponding
to non-realizable, or unobserved, outputs). It is relatively simple to develop methods that do not
require so much memory, however they would necessarily require more CPU resources, and have a
larger time complexity. Notice that our method’s time complexity is linear with the number of input
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configurations 2n. In the case of rings, a much more efficient algorithm may be used, as described in
Ref. [1].

4.2. Asymptotics of the degeneracy distribution on rings

Here we show how the asymptotic behaviour of the degeneracy distribution may be obtained.
We focus on the particular family of filter patterns consisting of a chain of 1s with a 0 at each end.
The shortest such pattern is 010. Each member of this set may be indexed by the length of the filter,
w ≥ 3. Each output consists of isolated ones separated by strings of zeroes of various lengths. The
filter pattern length w determines the minimum number of zeroes, w− 2, between each one.

For w = 3, chains of three or fewer zeroes in the output can only be produced in one way. Thus
outputs containing only such chains of zeroes have degeneracy 1. Possible such output sequences can
be built up out of three kinds of building blocks, 01, 001, and 0001, put together in a ring of length n.
We can thus find the number of outputs of degeneracy 1, N (1, n), by counting all possible ways of
building a ring of length n out of these blocks. We can do this recursively. For every configuration of
length n− 2, we can obtain a valid configuration of length n by inserting the block 01 to the right, say,
of a particular position i in the ring. This gives all the configurations of length n with the block 01 to the
right of i. Doing the same with configurations of length n− 3 and blocks 001, we get all configurations
with a block 001 to the right of the block of i. Finally, repeating the procedure for configurations of
length n− 4 and blocks 0001, gives all configurations with a block 0001 to the right of the block of i.
Since every block must be 01, 001, or 0001, the union of these three sets is the full set of configurations
of degeneracy 1 in rings of n digits. Thus, we can write

N (1, n) = N (1, n− 2) +N (1, n− 3) +N (1, n− 4). (4)

Starting from the first few values

N (1, 1)=0, N (1, 2)=2, N (1, 3)=3, N (1, 4)=6, (5)

we could build up the sequence and find N (1, n) for any n. However it is not necessary to iterate
through all values of n.

The explicit solution of this linear difference equation (4) can be written in terms of the roots, zi,
of the characteristic equation z4 = z2 + z + 1:

N (1, n) = z1
n + z2

n + z3
n + z4

n, (6)

where the coefficients of the powers of the roots zi, all equal to one, are found form the initial condition,
Eq. (5). The root z1 ≡ za = 1.46557... determines the large n asymptotics of N (1, n).

For w ≥ 4, it becomes possible for there to be chains of ones in the input that are shorter than that
in the filter pattern. This means that only sequences of w− 2 or w− 1 zeroes in the output are not
degenerate. Any sequence of w or more zeroes in the output can be produced in more than one way.
One may therefore extend an input of degeneracy 1 only by inserting blocks of length w− 1 and w.
Hence the recursion for N (1, n) becomes

N (1, n) = N (1, n− w + 1) +N (1, n− w). (7)

The corresponding characteristic equation is

zw = z + 1. (8)

For large n, then,

N (1, n) ∼= zn
a (9)
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Where za corresponds to the dominant solution of Eq. (8).
The total number of possible outputs may be derived in a similar way. The presence of a 1 at a

given position in the output corresponds uniquely to w fixed digits at the same position in the input.
Any degeneracy therefore arises in the parts of the input corresponding to strings of zeroes in the
output. The total number of possible outputs, M(n), is then the number of ways of arranging isolated
ones in a chain of length n, subject to this constraint. For every output of length n− 1, we can create
an output of length n by inserting an additional 0. The same is not true for the digit 1, however.
Any 1 in the output must be accompanied by a sequence of w− 2 zeroes. We can account for this
condition precisely by inserting the sequence 10w−2 into any valid output of length n− (w− 1) in a
position immediately following a sequence of w− 2 zeroes (at least one such sequence must exist).
Thus M(n) = M(n− 1) + M(n− w + 1), with initial conditions M(n = w) = 2, M(n < w) = 1. The
elements of the sequence may be written in terms of the roots of the characteristic equation [12–14]

zw−1 = zw−2 + 1. (10)

Then zg corresponds to the largest root of this equation. We list values for various filter lengths (as
well as for some other filter patterns) in Table 1.

The entire degeneracy distribution may be built up by considering chains of zeroes of different
lengths in the output, and the number of different possible corresponding sections of the input. Let an
output with m ≥ 1 ones contain m strings of zeroes with lengths `1, `2, ..., `m. Then the degeneracy of
this output equals

d =
m

∏
i=1

d̃(`i). (11)

Here d̃(`) is the number of input strings of length `, having the first and last digits 0, that generate
an output string of ` zeroes. This number plays an important role in our problem, similar to prime
numbers in number theory, so we call the d̃(`) prime degeneracies. Suppose that the output contains µ`

strings of zeroes of length `, ` = w− 2, w− 1, w, ..., where

m + ∑
`≥w−2

`µ` = n. (12)

Then Eq. (11) may be rewritten
d = ∏

`≥w−2
[d̃(`)] µ` (13)

for m ≥ 1.
The prime degeneracies d̃(`) can be obtained recursively by taking into account three points:
(i) Relevant input configurations of length ` are obtained by inserting 0 or 1 into each relevant

configuration of length `− 1 between the first and second positions of the sequence. (Recall that the
first and last positions of the input sequence are fixed to 0.)

(ii) Input strings of length ` beginning and/or ending with 01w−20 are irrelevant, and so they
should be removed from the set generated at the previous step. These configurations can be obtained
by inserting the w− 1 digits 1w−20 into each relevant input string of length `− w + 1 between its first
and second positions.

(iii) Finally, there exist input strings, compatible with the output string of ` zeroes, that cannot be
obtained by inserting a single digit into relevant input strings of length `− 1 between their first and
second positions. These are the input strings of length ` beginning with 01w−10 (i.e. a string of ones
one digit longer than in the filter). These inputs can be obtained by inserting 1w−10 into each relevant
input string of length `− w between their first and second positions.
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Following these rules, the degeneracy of a string of ` zeroes at the output, prime degeneracy d̃(`),
can be written recursively as a linear difference equation:

d̃(`) = 2d̃(`− 1)− d̃(`− w + 1) + d̃(`− w) (14)

with the initial condition d̃(1) = d̃(2) = 1, d̃(`) = 2`−2 for 3 ≤ ` < w and d(w) = 2w−2 − 1. The
solution of Eq. (14) may be explicitly expressed in terms of the complex roots of the characteristic
equation

zw = 2zw−1 − z + 1. (15)

giving
d̃(`) = C1z1

` + C2z2
` + C3z3

` + ... + Cwzw
`. (16)

The largest real root of Eq. (15), z1, say, dominates for large `, and we identify it as zd:

d̃(`) ∼= C1z`d. (17)

The case of the periodic output of length n with all digits 0 has to be considered separately.
Consider one digit of the input, at an arbitrary position. The number of input configurations where this
digit is 0 and the resulting output has only zeroes is given by d̃(n + 1), because the periodicity of the
input means that this digit 0 plays the role of both first and last digit of the configurations of a string
of n + 1 digits. If the digit is 1, then the number of input configurations equals 1 + ∑i 6=w−2 id̃(n− i),
where the sum over i accounts for the configurations where the digit is in a group of i consecutive ones
whose length is not w− 2, plus one configuration with all input digits equal to 1. Thus the degeneracy
of the output with all zeroes is given by

dD(n) = 1 + d̃(n + 1) +
n−1

∑
i=1;i 6=w−2

id̃(n− i), (18)

which is the largest possible degeneracy of an output of a given length. Applying the recursion relation
for prime degeneracies d̃, Eq. (14) to the terms on the right-hand side of Eq. (18) we find that the
largest degeneracy dD(n) satisfies the same difference equation as Eq. (14) though with different initial
condition

dD(n) = 2dD(n− 1)− dD(n− w + 1) + dD(n− w) (19)

with the initial condition dD(n) = 2n for n < w, and dD(w) = 2w − w. For large n, the solution is
dominated by a single solution,

dD(n) ∼= zn
d . (20)
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Appendix A Further results for the weak rule filter

Here we plot degeneracy distributions, cumulative distributions, and tabulate measures for the
weak rule filter, WR, for comparison with those given for the strong rule, SR, in the main body of the
text above.
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Figure A1. Degeneracy distributions (left) and cumulative degeneracy distributions (right) for outputs
of the WR filter on selected deterministic graphs of degree 2 (a,b) 3 (c,d) and 4 (e,f).
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Figure A2. Degeneracy distributions and cumulative degeneracy distributions for outputs of the SR
filter on random regular graphs of degree 2 (a,b) 3 (c,d) and 4 (e,f).
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Table A1. Important values for the degeneracy distribution resulting from applying the weak rule
(WR) filter to various graphs. The numbers n√M(n), n√dD(n) and n√N(1, n) approximate zg, zd and za

respectively. We also give the relevance per node H[d]/n and the resolution per node H[y]/n. Numbers
for RRG(q) and SW(q) were obtained by averaging over 10 random realizations.

graph n n√M(n) n√dD(n) n√N(1, n) H[d]/n H[y]/n

Apollonian 2 7 1.95461 1.21901 1.91660 0.11519 0.66045
Apollonian 3 16 1.94788 1.43435 1.91189 0.09594 0.64711

(3,5)-cage 10 1.91202 1.21481 1.84295 0.13705 0.62974
(3,6)-cage 14 1.91394 1.34590 1.83757 0.12271 0.63149
(3,7)-cage 24 1.91348 1.25055 1.83511 0.11462 0.63259
(3,8)-cage 30 1.91330 1.34897 1.83337 0.10559 0.63275
(4,5)-cage 19 1.95248 1.21101 1.91027 0.08217 0.65878
(4,6)-cage 26 1.95322 1.37995 1.91085 0.07188 0.65902
(5,5)-cage 1 30 1.97461 1.16392 1.95220 0.04494 0.67453
(5,5)-cage 2 30 1.97461 1.18854 1.95219 0.04495 0.67453
(5,5)-cage 3 30 1.97461 1.21540 1.95220 0.04496 0.67453
(5,5)-cage 4 30 1.97461 1.17585 1.95220 0.04495 0.67453

torus 3×3 9 1.95698 1.16653 1.92324 0.10088 0.66192
torus 4×4 16 1.95546 1.38485 1.92191 0.09024 0.65777
torus 5×5 25 1.95475 1.21993 1.91904 0.08076 0.65828
torus 6×5 30 1.95475 1.28517 1.91898 0.07568 0.65831
torus 10×3 30 1.95626 1.22522 1.91924 0.07072 0.66127
torus 8×4 32 1.95510 1.38392 1.91932 0.07475 0.65813
torus 6×6 36 1.95475 1.38400 1.91883 0.07034 0.65833

SWB(3) 10 1.91492 1.35588 1.85212 0.14568 0.62873
SWB(3) 20 1.91523 1.30100 1.84849 0.12731 0.62956
SWB(3) 30 1.91523 1.35620 1.84851 0.11281 0.62956
SWB(4) 12 1.95603 1.17605 1.91983 0.09152 0.66087
SWB(4) 21 1.95626 1.21231 1.91923 0.08079 0.66127
SWB(4) 30 1.95626 1.20790 1.91924 0.07071 0.66127
SWB(5) 12 1.97929 1.17605 1.96131 0.05848 0.67803
SWB(5) 20 1.97927 1.16442 1.96025 0.04881 0.67840
SWB(5) 32 1.97927 1.14893 1.96021 0.04144 0.67842

RRG(2) 10 1.76075 1.33214 1.62827 0.16029 0.53010
RRG(2) 20 1.81141 1.29593 1.65746 0.14345 0.56553
RRG(2) 30 1.83115 1.27447 1.67090 0.11728 0.58305
RRG(3) 10 1.86350 1.31014 1.73760 0.18497 0.59914
RRG(3) 20 1.88987 1.28690 1.78608 0.13766 0.61721
RRG(3) 30 1.89895 1.27941 1.80483 0.11537 0.62310
RRG(4) 10 1.92754 1.24293 1.86647 0.13602 0.64106
RRG(4) 20 1.93917 1.25076 1.88272 0.09610 0.65019
RRG(4) 30 1.94507 1.25247 1.89654 0.07819 0.65347
RRG(5) 10 1.93764 1.26982 1.88340 0.12318 0.64808
RRG(5) 20 1.95952 1.23790 1.92369 0.07520 0.66371
RRG(5) 30 1.96616 1.22872 1.93641 0.05720 0.66839

SW(3) 10 1.90692 1.25638 1.82855 0.15381 0.62737
SW(3) 20 1.90025 1.27244 1.80865 0.13264 0.62404
SW(3) 30 1.91093 1.27260 1.82941 0.10905 0.63105
SW(4) 10 1.91972 1.26865 1.85154 0.14500 0.63556
SW(4) 20 1.93992 1.25544 1.88853 0.09904 0.64926
SW(4) 30 1.94584 1.26608 1.89776 0.07874 0.65403
SW(5) 10 1.94942 1.23419 1.90650 0.11008 0.65650
SW(5) 20 1.96150 1.23542 1.92709 0.07365 0.66525
SW(5) 30 1.96889 1.23140 1.94184 0.05471 0.67024
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