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Abstract: The South African Weather Service (SAWS) manages an in-situ solar irradiance 

radiometric network of 13 stations and a very dense sunshine recording network; located in all six 

macro-climate zones of South Africa. A sparsely distributed radiometric network and over a 

landscape with dynamic climate and weather shifts is inadequate for solar energy studies and 

applications. Therefore, there is a need to develop mathematical models to estimate solar irradiation 

for a multitude of diverse climates. In this study, the annual regression coefficients, a and b, of the 

Å ngström-Prescott (AP) model that can be used to estimate global horizontal irradiance from 

observed sunshine hours were calibrated and validated with observed station data. The AP 

regression coefficients were calibrated and validated for each of the six macro-climate zones of 

South Africa using the observation data that spans 2013 to 2019. 

The predictive effectiveness of the calibrated AP model coefficients was evaluated by comparing 

estimated and observed daily global horizontal irradiance. The maximum annual relative Mean Bias 

Error (rMBE) was 0.371 %, relative Mean Absolute Error (rMAE) was 0.745 %, relative Root Mean 

Square Error (rRMSE) was 0.910 % and the worst-case correlation coefficient (R2) was 0.910. The 

statistical validation metrics results show that there is a strong correlation and linear relation 

between observed and estimated solar radiation values. The AP model coefficients calculated in this 

study can be used with quantitative confidence in estimating daily GHI data at locations in South 

Africa where the daily observation sunshine duration data is available. 

Keywords: South African Weather Services; radiometric network; climatic zone; Angström-Prescott; 

Global Horizontal Irradiance; sunshine duration. 

 

1. Introduction 

Solar radiation data is important because it is required in many research fields such as 

meteorology, agriculture, hydrology, ecology and environment [1, 2, 3, 4]. Solar radiation data is also 

an important reference for many applications such as solar power plants, engineering designs, 

regional crop growth modelling, evapotranspiration estimation and irrigation system development 

[1, 3, 5]. In relation to this, South African Weather Services (SAWS) re-established a global horizontal 

irradiance (GHI) radiometric network with 13 solar radiometric stations located in all 6 macro 

climatic zones of South Africa [6]. The data collected from SAWS network help in the validation of 

satellites as well as the development and verification of empirical models [7]. SAWS also manage a 
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very dense sunshine duration recording network over South Africa to the extent that sunshine 

duration data has been continuously measured for several years [8]. SAWS GHI stations are sparse, 

according to [1, 2, 3, 4, 5, 9]. Having dense radiometric networks is a worldwide challenge because of 

the high costs involved in the installation and maintenance of the solar radiation stations. To 

compensate for this, reliable measurements taken from a sparse network are needed to develop and 

validate empirical models that can be used to estimate and forecast the availability of solar energy at 

other locations [10]. The main objective of this study is to calibrate the Å ngström-Prescott (AP) model 

regression coefficients a and b that could be used to estimate GHI in different climatic zones of South 

Africa, thus increasing the density of available solar radiation data in the country.  

 

The AP model estimates daily GHI using daily extra-terrestrial (Top of the Atmosphere) GHI 

radiation (𝐺𝐻𝐼𝑇𝑂𝐴), daily astronomical day length (N), daily measured sunshine duration (n) and 

Angström model coefficients a and b. The model was first proposed by Angström [11] in 1924 before 

Prescott [12] modified it in 1940 by adding 𝐺𝐻𝐼𝑇𝑂𝐴 to replace GHI on a clear sky day. The original AP 

coefficients were a=0.25 and b=0.75 these were calculated using data from Stockholm [13]. The 

regression coefficients a and b are site dependent, therefore there is a need to calibrate them using a 

linear relationship in equation (1) at regions where they will be used to estimate GHI [1, 4, 13]. 

Researchers such as those from the Chinese Academy of Sciences, the Indian National Academy of 

Agricultural Research Management, the Brazilian Federal University of Rio Grande do Norte and 

Spanish Polytechnic University of Madrid [1-5] calibrated AP coefficients to their own climatic 

regions by using the linear relationship in equation (1). According to works by three different 

research groups [1, 2, 14] sunshine-based models provided better GHI estimates when compared to 

cloud and temperature-based models. 

 

In South Africa studies to calibrate AP coefficients were carried out by Eberhard [15] and 

Mulaudzi et al. [16]. The challenge, according to Mulaudzi et al. [16] was the unavailability of a long-

term observation GHI data set that covers all the climatic regions to calibrate and validate the AP 

coefficients. In this study a large enough data set with observations spanning 2013 to 2019 from 

stations that covers all the climatological zones of South Africa was used to calibrate the AP 

coefficients which were then used to estimate GHI. The estimated GHI was validated using the 

observed GHI daily averages, while the statistical metrics (10) to (16) from [17, 18] were used to 

quantify the differences between observed and estimated GHI.  

 

The results from this study, annual AP coefficients a and b in all six macro-climatological regions 

could be used to estimate daily GHI using daily observation sunshine duration data. The knowledge 

of estimated daily GHI data, can thereby be used to develop energy policies and solar energy 

programmes. They can also be used as benchmarks in climate analysis studies.  

 

2. Materials and Methods  

The observed 1-minute GHI data used in the study was collected from 8 SAWS solar radiometric 

stations during the periods shown in Table 1; which also shows the geographical locations and the 

climatic zones in which the stations are located. GHI data was collected using secondary standard, 

CMP11, Kipp & Zonen pyranometers. 
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Table 1. SAWS radiometric station location, altitude, period covered and climatic zones. 

 

Station  Latitude 

    (°) 

Longitude 

    (°) 

Altitude 

  (m) 

Period Climatic zone 

Upington  -28.48 21.12 848 2014-02-01 to 2019-11-30 Arid Interior  

De Aar -30.67 23.99 1284 2014-05-01 to 2019-12-31 Cold Interior 

Irene -25.91 28.21 1524 2014-03-01 to 2019-12-31 Temperature Interior  

Mthatha -31.55 28.67 744 2014-07-01 to 2019-12-31 Subtropical Coastal  

George -34.01 22.38 192 2015-01-01 to 2019-12-31 Temperature Coastal 

Durban -29.61 31.11 91 2015-03-01 to 2019-12-31 Subtropical Coastal  

Polokwane -23.86 29.45 1233 2015-03-01 to 2019-12-31 Temperature Interior 

Thohoyandou -23.08 30.38 619 2015-03-01 to 2017-10-31 Hot Interior 

 

    Daily GHI data was calculated from 1-minute GHI data. First, the 1-minute GHI data was quality 

controlled using a Baseline Solar Radiation Network (BSRN) quality control (QC) procedure outlined 

by Long and Dutton in [19]. GHI values that failed the QC test were regarded as outliers and were 

discarded, only the data that passed test was used [6, 7, 20-22]. Minute values that passed the BSRN 

QC were averaged to 15 minutes and then 4 slots of 15-minute averages were averaged to get an 

hourly mean [6, 7, 20-23]. Hourly mean values were then averaged to get daily average values. Daily 

average values were further quality checked by subjecting them to HelioClim model QC , described 

by Geiger et al in [24], outliers, which were daily average points coded 1 were discarded before 

further analysis.  

 

Hourly sunshine duration data was obtained by determining the burn made by the sun on a 

coated card in a Campbell-Stokes sunshine recorder [8]. Hourly data was then summed to get total 

daily sunshine duration (n). Daily top-of-atmosphere (TOA) irradiance (GHITOA) and theoretical 

sunshine duration (N) were calculated using equations (1) to (9), from Iqbal [13], and the solar angles 

were calculated using the Solar Position Algorithm (SPA) on Python PVLIB [25, 26] and Microsoft 

Excel. The coefficients a and b of the AP model were calculated by using the linear regression analysis 

between the irradiance fraction or clearness index , 
𝐺𝐻𝐼

𝐺𝐻𝐼𝑇𝑂𝐴
 and daily sunshine fraction, 

𝑛

𝑁
 for each 

day, based on a linear relationship shown by equation (1) proposed by Angström [11] and then 

modified by Prescott [12].                                                                                                                      

𝐺𝐻𝐼

𝐺𝐻𝐼𝑇𝑂𝐴
= 𝑎 + 𝑏(𝑛/𝑁),                                                  (1) 

where 𝐺𝐻𝐼 is the daily Global Horizontal Irradiance in W/m2 

𝐺𝐻𝐼𝑇𝑂𝐴  is approximation of the top of the atmosphere GHI or extra-terrestrial radiation on a 

horizontal surface i.e., the amount of global horizontal radiation that a location on Earth’s surface 

would receive if there was no atmosphere and it is given it is given by equation (2) , as in Duffie and 

Beckman [27].  

𝐺𝐻𝐼𝑇𝑂𝐴 = (
24

π
) I𝑆𝐶E𝑜[(π/180) ∙ ω𝑠 ∙ (sinδ sin∅)  + (cosδ cos∅ sinω𝑠),           (2) 

       I𝑆𝐶 = solar constant = 1367 W/m2 ,    (World Meteorological Organization          

recommendation, according to Gueymard in [28]),                                        (3) 

E𝑜 = eccentricity factor = 1 + 0.033cos [(
2πD

365
)],                         (4) 

where D is the Julian day,  

ω𝑠  = sunset hour angle = cos−1(−tan ∅ tan δ),                         (5) 
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 ∅ = degree of latitude,                                            (6) 

δ = solar declination = −23.45sin [
360(𝐷+284)

365
],                        (7) 

N = 
2

15
 cos−1(−tan ∅ tan δ)  = Astronomical sunshine duration,         (8) 

 n = daily recorded sunshine duration (in hours),                     (9)   

where a, b represents Å ngström-Prescott regression coefficients.                                                                                                                                                                                    

Annual AP coefficients were calculated for 8 stations. The observation periods for concurrent 

GHI and sunshine duration data for these stations are given in Table 1. Datasets up to the end of 2018 

were used for the determination of the AP coefficients, and the daily observation data for 2019 was 

used to validate the corresponding estimated daily GHI data. For Thohoyandou, the 2017 data was 

used to validate the coefficients. 

 

The statistical metrics that were used to compare estimated daily GHI data with the observed 

daily GHI data were derived from literature [17, 18] and these are: 

 

1. Mean Bias Error (MBE) which estimates the average error in the prediction. A positive MBE 

indicates that the prediction is overestimated and vice versa and the lower values of MBE 

indicates a strong correlation between the prediction and observation. A relative Mean Bias 

Error (rMBE) which measures the size of the error in percentage terms was also calculated. 

The metrices are expressed as: 

 

     MBE =
1

n
∑ (Pi − Oi)n

i=1                                             (10)                                                              

                                                                                               

    rMBE = 100 ∗
1

n
∑

(Pi−Oi)

𝑂i

n
i=1                                          (11) 

                                                                                            

2. Mean Absolute Error (MAE) which measures the absolute value of the differences between 

the observed and the predicted values, it gives a better idea of the prediction accuracy, 

relative Mean Absolute Error (rMAE), which measures the size of the error in percentage 

terms was also calculated. The caution with MBE and rMBE is with cancelling of positive and 

negative bias which can lead to a false interpretation. The metrics are expressed as: 

 

            𝑀𝐴𝐸 =
1

𝑛
∑ |𝑃𝑖 − 𝑂𝑖|𝑛

𝑖=1                                           (12)                                                           

                                                                         

              𝑟𝑀𝐴𝐸 = 100 ∗
1

𝑛
∑

|𝑃𝑖−𝑂𝑖|

𝑂𝑖

𝑛

𝑖=1
                                      (13) 

  

3. Root Mean Square Error (RMSE) which compares the predicted and observed data sets, it 

measures the statistical variability of the prediction accuracy, is expressed as shown in 

equation (14), while equation (15) shows the relative Root Mean Square Error (rRMSE) which 

measures the size error in percentage terms. The RMSE and rRMSE are also indifferent to the 

direction of the error. They are considered in this study since these put extra weight on large 

errors. The metrices are expressed as: 

                                                                               

          𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑃𝑖 − 𝑃𝑜)2𝑛

𝑖=1                                        (14) 

         𝑟𝑅𝑀𝑆𝐸 =
100

𝑂𝑖̅̅ ̅
∗ √

1

𝑛
∑ (𝑃𝑖 − 𝑃𝑜)2𝑛

𝑖=1                                    (15) 
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4. Coefficient of Determination (R2) which is a statistical measure of the strength of the 

relationship between the movement of predicted and observed. R2 also measures how well 

the regression line represents the data. The value of R2 is such that 0 ≤ 𝑅2 ≤ 1. The closer R2 

is to 1, the better the prediction. The metric is expressed as:                       

            R2 = 1 −
∑  (𝑃𝑖−𝑂𝑖)2  

n
i=1

∑ (Pi−𝑂𝑖̅̅ ̅)2  
n
i=1

                                           (16)       

where 𝑂𝑖 is the observation value, 𝑃𝑖 is the estimated value, 𝑂 is average of the observation values, 

i is the time point and n is the total number of points used. 

                                                                                     

  The results were converted from W/m2 to MJm-2d-1 by dividing by 11.57415; a methodology 

used by Almorox et al. [5] to allow for easy comparison with other literature studies. Monthly 

averages of each metric were calculated and then aggregated to annual averages, and where 

observation data was not available data was replaced by NaN. The annual AP coefficients a and b 

coefficients were calculated. 

3. Results and Discussions  

3.1 Annual AP results  

In this study, the annual AP regression coefficients a and b were calculated using equation (1) 

and the following variables: daily n, daily mean GHI, daily mean 𝐺𝐻𝐼𝑇𝑂𝐴 and daily N were used as 

inputs. The calculated a and b were then used together with daily n and N to estimate daily GHI, 

which was then compared to corresponding observed daily GHI. Statistical metrics in equations (10) 

to (16) were used to quantify the errors between the two datasets; the results are shown in Table 2 

and Figures 1 to 4.  

 

  In Figures 1 and 2, the annual AP coefficients and the data points that were used to derive 

them are displayed. The values of the AP coefficients ranged from 0.188 to 0.243 for a while those for 

b ranged from 0.515 to 0.6. Values of a=0.25 and b=0.5 were recommended by Allen et al. [29] to be 

used when there is no local observation GHI data to calibrate the coefficients. The minimum value of 

a in this study was less than 0.25 maximum value was greater than 0.25, the minimum and maximum 

values of b were greater than 0.5. The difference in default AP coefficients and calibrated AP 

coefficients proved that calibrating the coefficients locally is a necessity  

 

Studies done by Zhang et al., De Medeiros et al., Almorox et al. and Tsung et al. in [3-5, 14] also 

found different results to Allen et al. [29] when they did a local calibration. The AP coefficients from 

this study are in line with the coefficients from similar studies done elsewhere in the  
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Figure 1. Regression lines and AP coefficients for Upington station (top left), De Aar top right, George (bottom 

left) and Thohoyandou (bottom right) 

 

When comparing the factors for stations that are located in the same climatological zone such as 

Irene and Polokwane located in the Temperature Interior climatic zone, and Mthatha and Durban in 

the Tropical Coastal climatic zone (Table 1), the difference was less than 0.05 for both a and b which 

is a very small difference. This means that the AP coefficients a and b, calibrated for a climatic zone 

could be used as a representative for an entire climatic zone to estimate GHI when observed sunshine 

duration data for the location is available.  
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Figure 2. Regression lines and AP coefficients for Mthatha station (top left), Durban station (top right), Irene 

station (bottom left) and Polokwane (bottom right). 

 

3.2 Validation Results  

 

Estimated GHI values were compared to the measured GHI values; errors were quantified by 

validation metrics in equations 10 to 16 and the results were tabulated in Table 2. It can be seen that 

in Table 2, that the rMBE ranged from -1.20 to 0.371 %, rMAE from 0.311 to 0.745 %, rRMSE from 

0.393 to 0.910 % and R2 from 0.910 to 0.948. De Aar, Irene and Thohoyandou had a positive MBE 

meaning that the model overestimated GHI while Upington, Durban, Mthatha, George and 

Polokwane had a negative MBE meaning that the model underestimated GHI values at these 

locations. The values of MBE and rMBE for all the stations were less than 1 indicating that there was 

a strong correlation between the predicted and observed GHI values. The worst case R2 value was 

0.910 suggesting that there is a very strong linear relation between observed and predicted values.  

 

Table 2. Calibration coefficients a and b and validation metrics results in (MJm-2d-1). 

 

Station  a 

     

b 

       

RMBE    rMBE 

(%) 

MAE rMAE 

(%) 

RMSE rRMSE 

(%) 

R2 

Upington  0.243 0.549 -0.360 -0.120 0.841 0.311 1.061 0.393 0.930 

De Aar 0.191 0.600 0.733 0.371 1.136 0.506 1.375 0.598 0.930 

Irene 0.224 0.546 0.689 0.353 1.328 0.608 1.618 0.729 0.912 

Mthatha 0.210 0.562 -0.104 -0.013 1.168 0.582 1.474 0.735 0.915 

George 0.215 0.560 -0.270 -0.036 1.261 0.636 1.520 0.769 0.948 

Durban 0.207 0.540 -0.322 -0.106 1.425 0.745 1.741 0.910 0.915 

Polokwane 0.243 0.515 -0.286 -0.085 1.272 0.488 1.572 0.606 0.910 

Thohoyandou 0.188 0.571 0.286 0.168 1.071 0.550 1.433 0.746 0.937 
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Maximum RMSE of 1.741 MJm-2d-1 was less than 1.850, 1.94 and 1.9 MJm-2d-1 that Almorox et al. 

[5], De Medeiros et al. [4] and Tsung et al. [14], respectively, determined. Maximum MAE of 1.425 

MJm-2d-1 was less than 1.8 MJm-2d-1 that Tsung et al. [14] determined. Maximum MBE of 0.733 MJm-

2d-1 was less than 1.040 and 0.85 MJm-2d-1 that De Medeiros et al [4] and Tsung et al. [14], respectively, 

determined and the worst case R2 of 0.910 was greater than 0.875, 0.74 and 0.8 that Zhang et al. [3], 

Adamala et al. [2] and De Medeiros et al. [4], respectively, determined. The overall validation results 

from this study are comparable and even better than what was found in similar studies like [2, 3, 4, 

5, 14] which concluded that the AP coefficients could be used to estimate GHI with confidence based 

on those validation results. The data used in the study was collected using secondary standard 

pyranometers (CMP11), which according to Urraca et al. [21] generate high quality records of GHI. 

GHI data was subjected to robust quality control methodologies BSRN QC [19] and HelioClim model 

QC [24] before any analysis and outliers were discarded. The use of Python codes in data analysis 

enabled big data to be handled much more efficient, execution of a code in data analysis resulted in 

correct and consistent outputs, these some of the reasons why the results in this study are better. This 

means that the AP coefficients results from this study could also be used with confidence to estimate 

GHI in different climatological zones of South Africa. 

 

Figure 3. Comparison between measured and predicted monthly GHI values in De Aar (top left), Upington (top 

right), George (bottom left) and Thohoyandou (bottom right). 

 

In Figure 3, 2019 monthly GHI observed data was compared to corresponding estimated 2019 

monthly GHI data. Thohoyandou is the only station where validation was done using 2017 monthly 

data sets and the observation data was only available from February to October (January, November 

and December 2017 data sets were not available). The need to fill in missing data further motivates 

for this study i.e., development and validation of models, and results of this study can be used to fill 

any missing monthly mean GHI values for South African locations. 
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Similarly, in Figure 4, the 2019 monthly GHI observed data was compared to corresponding 

estimated 2019 monthly GHI data. In Durban GHI observation data for September was not available. 

In Polokwane the GHI observation data for March, April, May and June was not available. Results 

from the study can be used to fill those missing monthly mean GHI values. 

 

Figure 4. Comparison between measured and predicted GHI values in Mthatha (top left), Durban (top right), 

Irene (bottom left) and Polokwane (bottom right) 

 

5. Conclusions 

    The annual Å ngström-Prescott coefficients a and b were calculated using the linear 

relationship between ratio of the daily radiation on a horizontal surface to the daily extraterrestrial 

radiation on that surface, and the ratio of the daily sunshine duration to the theoretical sunshine 

duration were used to estimate global horizontal irradiance and there was a very close agreement 

with the corresponding observation global horizontal irradiance , the agreement was quantified by 

statistical metrics in equations (10) to (16), i.e. relative Mean Bias Error, relative Mean Absolute Error, 

relative Root Mean Square Error and correlation coefficient (R2). The results were in good agreement 

with what other studies found. The Å ngström-Prescott coefficients calibrated for each station can be 

used as a representative for the climatic zone where that station is located. The Å ngström-Prescott 

coefficients calculated in this study could enable the estimation of daily global horizontal irradiance 

data at any location in South Africa where the daily observation sunshine duration data is available. 

The knowledge of estimated daily global horizontal irradiance data can thereby be used to support 

energy policies and solar energy programmes. It can also be used as benchmarking in climate analysis 

studies. The methodology used in the study can be applied elsewhere, where there is a station that 

records global horizontal irradiance and sunshine duration. 
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